Jonas Bonn | 61e85e3 | 2011-06-04 11:06:11 +0300 | [diff] [blame] | 1 | /* |
| 2 | * OpenRISC Linux |
| 3 | * |
| 4 | * Linux architectural port borrowing liberally from similar works of |
| 5 | * others. All original copyrights apply as per the original source |
| 6 | * declaration. |
| 7 | * |
| 8 | * OpenRISC implementation: |
| 9 | * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com> |
| 10 | * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se> |
| 11 | * et al. |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or modify |
| 14 | * it under the terms of the GNU General Public License as published by |
| 15 | * the Free Software Foundation; either version 2 of the License, or |
| 16 | * (at your option) any later version. |
| 17 | */ |
| 18 | |
| 19 | /* or32 pgtable.h - macros and functions to manipulate page tables |
| 20 | * |
| 21 | * Based on: |
| 22 | * include/asm-cris/pgtable.h |
| 23 | */ |
| 24 | |
| 25 | #ifndef __ASM_OPENRISC_PGTABLE_H |
| 26 | #define __ASM_OPENRISC_PGTABLE_H |
| 27 | |
| 28 | #include <asm-generic/pgtable-nopmd.h> |
| 29 | |
| 30 | #ifndef __ASSEMBLY__ |
| 31 | #include <asm/mmu.h> |
| 32 | #include <asm/fixmap.h> |
| 33 | |
| 34 | /* |
| 35 | * The Linux memory management assumes a three-level page table setup. On |
| 36 | * or32, we use that, but "fold" the mid level into the top-level page |
| 37 | * table. Since the MMU TLB is software loaded through an interrupt, it |
| 38 | * supports any page table structure, so we could have used a three-level |
| 39 | * setup, but for the amounts of memory we normally use, a two-level is |
| 40 | * probably more efficient. |
| 41 | * |
| 42 | * This file contains the functions and defines necessary to modify and use |
| 43 | * the or32 page table tree. |
| 44 | */ |
| 45 | |
| 46 | extern void paging_init(void); |
| 47 | |
| 48 | /* Certain architectures need to do special things when pte's |
| 49 | * within a page table are directly modified. Thus, the following |
| 50 | * hook is made available. |
| 51 | */ |
| 52 | #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) |
| 53 | #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval) |
| 54 | /* |
| 55 | * (pmds are folded into pgds so this doesn't get actually called, |
| 56 | * but the define is needed for a generic inline function.) |
| 57 | */ |
| 58 | #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) |
| 59 | |
| 60 | #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2)) |
| 61 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| 62 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| 63 | |
| 64 | /* |
| 65 | * entries per page directory level: we use a two-level, so |
| 66 | * we don't really have any PMD directory physically. |
| 67 | * pointers are 4 bytes so we can use the page size and |
| 68 | * divide it by 4 (shift by 2). |
| 69 | */ |
| 70 | #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2)) |
| 71 | |
| 72 | #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2)) |
| 73 | |
| 74 | /* calculate how many PGD entries a user-level program can use |
| 75 | * the first mappable virtual address is 0 |
| 76 | * (TASK_SIZE is the maximum virtual address space) |
| 77 | */ |
| 78 | |
| 79 | #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) |
| 80 | #define FIRST_USER_ADDRESS 0 |
| 81 | |
| 82 | /* |
| 83 | * Kernels own virtual memory area. |
| 84 | */ |
| 85 | |
| 86 | /* |
| 87 | * The size and location of the vmalloc area are chosen so that modules |
| 88 | * placed in this area aren't more than a 28-bit signed offset from any |
| 89 | * kernel functions that they may need. This greatly simplifies handling |
| 90 | * of the relocations for l.j and l.jal instructions as we don't need to |
| 91 | * introduce any trampolines for reaching "distant" code. |
| 92 | * |
| 93 | * 64 MB of vmalloc area is comparable to what's available on other arches. |
| 94 | */ |
| 95 | |
| 96 | #define VMALLOC_START (PAGE_OFFSET-0x04000000) |
| 97 | #define VMALLOC_END (PAGE_OFFSET) |
| 98 | #define VMALLOC_VMADDR(x) ((unsigned long)(x)) |
| 99 | |
| 100 | /* Define some higher level generic page attributes. |
| 101 | * |
| 102 | * If you change _PAGE_CI definition be sure to change it in |
| 103 | * io.h for ioremap_nocache() too. |
| 104 | */ |
| 105 | |
| 106 | /* |
| 107 | * An OR32 PTE looks like this: |
| 108 | * |
| 109 | * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 | |
| 110 | * Phys pg.num L PP Index D A WOM WBC CI CC |
| 111 | * |
| 112 | * L : link |
| 113 | * PPI: Page protection index |
| 114 | * D : Dirty |
| 115 | * A : Accessed |
| 116 | * WOM: Weakly ordered memory |
| 117 | * WBC: Write-back cache |
| 118 | * CI : Cache inhibit |
| 119 | * CC : Cache coherent |
| 120 | * |
| 121 | * The protection bits below should correspond to the layout of the actual |
| 122 | * PTE as per above |
| 123 | */ |
| 124 | |
| 125 | #define _PAGE_CC 0x001 /* software: pte contains a translation */ |
| 126 | #define _PAGE_CI 0x002 /* cache inhibit */ |
| 127 | #define _PAGE_WBC 0x004 /* write back cache */ |
| 128 | #define _PAGE_FILE 0x004 /* set: pagecache, unset: swap (when !PRESENT) */ |
| 129 | #define _PAGE_WOM 0x008 /* weakly ordered memory */ |
| 130 | |
| 131 | #define _PAGE_A 0x010 /* accessed */ |
| 132 | #define _PAGE_D 0x020 /* dirty */ |
| 133 | #define _PAGE_URE 0x040 /* user read enable */ |
| 134 | #define _PAGE_UWE 0x080 /* user write enable */ |
| 135 | |
| 136 | #define _PAGE_SRE 0x100 /* superuser read enable */ |
| 137 | #define _PAGE_SWE 0x200 /* superuser write enable */ |
| 138 | #define _PAGE_EXEC 0x400 /* software: page is executable */ |
| 139 | #define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */ |
| 140 | |
| 141 | /* 0x001 is cache coherency bit, which should always be set to |
| 142 | * 1 - for SMP (when we support it) |
| 143 | * 0 - otherwise |
| 144 | * |
| 145 | * we just reuse this bit in software for _PAGE_PRESENT and |
| 146 | * force it to 0 when loading it into TLB. |
| 147 | */ |
| 148 | #define _PAGE_PRESENT _PAGE_CC |
| 149 | #define _PAGE_USER _PAGE_URE |
| 150 | #define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE) |
| 151 | #define _PAGE_DIRTY _PAGE_D |
| 152 | #define _PAGE_ACCESSED _PAGE_A |
| 153 | #define _PAGE_NO_CACHE _PAGE_CI |
| 154 | #define _PAGE_SHARED _PAGE_U_SHARED |
| 155 | #define _PAGE_READ (_PAGE_URE | _PAGE_SRE) |
| 156 | |
| 157 | #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
| 158 | #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) |
| 159 | #define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED) |
| 160 | #define _KERNPG_TABLE \ |
| 161 | (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY) |
| 162 | |
| 163 | #define PAGE_NONE __pgprot(_PAGE_ALL) |
| 164 | #define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE) |
| 165 | #define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC) |
| 166 | #define PAGE_SHARED \ |
| 167 | __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \ |
| 168 | | _PAGE_SHARED) |
| 169 | #define PAGE_SHARED_X \ |
| 170 | __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \ |
| 171 | | _PAGE_SHARED | _PAGE_EXEC) |
| 172 | #define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE) |
| 173 | #define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC) |
| 174 | |
| 175 | #define PAGE_KERNEL \ |
| 176 | __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \ |
| 177 | | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC) |
| 178 | #define PAGE_KERNEL_RO \ |
| 179 | __pgprot(_PAGE_ALL | _PAGE_SRE \ |
| 180 | | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC) |
| 181 | #define PAGE_KERNEL_NOCACHE \ |
| 182 | __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \ |
| 183 | | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI) |
| 184 | |
| 185 | #define __P000 PAGE_NONE |
| 186 | #define __P001 PAGE_READONLY_X |
| 187 | #define __P010 PAGE_COPY |
| 188 | #define __P011 PAGE_COPY_X |
| 189 | #define __P100 PAGE_READONLY |
| 190 | #define __P101 PAGE_READONLY_X |
| 191 | #define __P110 PAGE_COPY |
| 192 | #define __P111 PAGE_COPY_X |
| 193 | |
| 194 | #define __S000 PAGE_NONE |
| 195 | #define __S001 PAGE_READONLY_X |
| 196 | #define __S010 PAGE_SHARED |
| 197 | #define __S011 PAGE_SHARED_X |
| 198 | #define __S100 PAGE_READONLY |
| 199 | #define __S101 PAGE_READONLY_X |
| 200 | #define __S110 PAGE_SHARED |
| 201 | #define __S111 PAGE_SHARED_X |
| 202 | |
| 203 | /* zero page used for uninitialized stuff */ |
| 204 | extern unsigned long empty_zero_page[2048]; |
| 205 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| 206 | |
| 207 | /* number of bits that fit into a memory pointer */ |
| 208 | #define BITS_PER_PTR (8*sizeof(unsigned long)) |
| 209 | |
| 210 | /* to align the pointer to a pointer address */ |
| 211 | #define PTR_MASK (~(sizeof(void *)-1)) |
| 212 | |
| 213 | /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ |
| 214 | /* 64-bit machines, beware! SRB. */ |
| 215 | #define SIZEOF_PTR_LOG2 2 |
| 216 | |
| 217 | /* to find an entry in a page-table */ |
| 218 | #define PAGE_PTR(address) \ |
| 219 | ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) |
| 220 | |
| 221 | /* to set the page-dir */ |
| 222 | #define SET_PAGE_DIR(tsk, pgdir) |
| 223 | |
| 224 | #define pte_none(x) (!pte_val(x)) |
| 225 | #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) |
| 226 | #define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0) |
| 227 | |
| 228 | #define pmd_none(x) (!pmd_val(x)) |
| 229 | #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE) |
| 230 | #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) |
| 231 | #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) |
| 232 | |
| 233 | /* |
| 234 | * The following only work if pte_present() is true. |
| 235 | * Undefined behaviour if not.. |
| 236 | */ |
| 237 | |
| 238 | static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } |
| 239 | static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } |
| 240 | static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } |
| 241 | static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| 242 | static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| 243 | static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } |
| 244 | static inline int pte_special(pte_t pte) { return 0; } |
| 245 | static inline pte_t pte_mkspecial(pte_t pte) { return pte; } |
| 246 | |
| 247 | static inline pte_t pte_wrprotect(pte_t pte) |
| 248 | { |
| 249 | pte_val(pte) &= ~(_PAGE_WRITE); |
| 250 | return pte; |
| 251 | } |
| 252 | |
| 253 | static inline pte_t pte_rdprotect(pte_t pte) |
| 254 | { |
| 255 | pte_val(pte) &= ~(_PAGE_READ); |
| 256 | return pte; |
| 257 | } |
| 258 | |
| 259 | static inline pte_t pte_exprotect(pte_t pte) |
| 260 | { |
| 261 | pte_val(pte) &= ~(_PAGE_EXEC); |
| 262 | return pte; |
| 263 | } |
| 264 | |
| 265 | static inline pte_t pte_mkclean(pte_t pte) |
| 266 | { |
| 267 | pte_val(pte) &= ~(_PAGE_DIRTY); |
| 268 | return pte; |
| 269 | } |
| 270 | |
| 271 | static inline pte_t pte_mkold(pte_t pte) |
| 272 | { |
| 273 | pte_val(pte) &= ~(_PAGE_ACCESSED); |
| 274 | return pte; |
| 275 | } |
| 276 | |
| 277 | static inline pte_t pte_mkwrite(pte_t pte) |
| 278 | { |
| 279 | pte_val(pte) |= _PAGE_WRITE; |
| 280 | return pte; |
| 281 | } |
| 282 | |
| 283 | static inline pte_t pte_mkread(pte_t pte) |
| 284 | { |
| 285 | pte_val(pte) |= _PAGE_READ; |
| 286 | return pte; |
| 287 | } |
| 288 | |
| 289 | static inline pte_t pte_mkexec(pte_t pte) |
| 290 | { |
| 291 | pte_val(pte) |= _PAGE_EXEC; |
| 292 | return pte; |
| 293 | } |
| 294 | |
| 295 | static inline pte_t pte_mkdirty(pte_t pte) |
| 296 | { |
| 297 | pte_val(pte) |= _PAGE_DIRTY; |
| 298 | return pte; |
| 299 | } |
| 300 | |
| 301 | static inline pte_t pte_mkyoung(pte_t pte) |
| 302 | { |
| 303 | pte_val(pte) |= _PAGE_ACCESSED; |
| 304 | return pte; |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * Conversion functions: convert a page and protection to a page entry, |
| 309 | * and a page entry and page directory to the page they refer to. |
| 310 | */ |
| 311 | |
| 312 | /* What actually goes as arguments to the various functions is less than |
| 313 | * obvious, but a rule of thumb is that struct page's goes as struct page *, |
| 314 | * really physical DRAM addresses are unsigned long's, and DRAM "virtual" |
| 315 | * addresses (the 0xc0xxxxxx's) goes as void *'s. |
| 316 | */ |
| 317 | |
| 318 | static inline pte_t __mk_pte(void *page, pgprot_t pgprot) |
| 319 | { |
| 320 | pte_t pte; |
| 321 | /* the PTE needs a physical address */ |
| 322 | pte_val(pte) = __pa(page) | pgprot_val(pgprot); |
| 323 | return pte; |
| 324 | } |
| 325 | |
| 326 | #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot)) |
| 327 | |
| 328 | #define mk_pte_phys(physpage, pgprot) \ |
| 329 | ({ \ |
| 330 | pte_t __pte; \ |
| 331 | \ |
| 332 | pte_val(__pte) = (physpage) + pgprot_val(pgprot); \ |
| 333 | __pte; \ |
| 334 | }) |
| 335 | |
| 336 | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| 337 | { |
| 338 | pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); |
| 339 | return pte; |
| 340 | } |
| 341 | |
| 342 | |
| 343 | /* |
| 344 | * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval |
| 345 | * __pte_page(pte_val) refers to the "virtual" DRAM interval |
| 346 | * pte_pagenr refers to the page-number counted starting from the virtual |
| 347 | * DRAM start |
| 348 | */ |
| 349 | |
| 350 | static inline unsigned long __pte_page(pte_t pte) |
| 351 | { |
| 352 | /* the PTE contains a physical address */ |
| 353 | return (unsigned long)__va(pte_val(pte) & PAGE_MASK); |
| 354 | } |
| 355 | |
| 356 | #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT) |
| 357 | |
| 358 | /* permanent address of a page */ |
| 359 | |
| 360 | #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) |
| 361 | #define pte_page(pte) (mem_map+pte_pagenr(pte)) |
| 362 | |
| 363 | /* |
| 364 | * only the pte's themselves need to point to physical DRAM (see above) |
| 365 | * the pagetable links are purely handled within the kernel SW and thus |
| 366 | * don't need the __pa and __va transformations. |
| 367 | */ |
| 368 | static inline void pmd_set(pmd_t *pmdp, pte_t *ptep) |
| 369 | { |
| 370 | pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep; |
| 371 | } |
| 372 | |
| 373 | #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) |
| 374 | #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) |
| 375 | |
| 376 | /* to find an entry in a page-table-directory. */ |
| 377 | #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) |
| 378 | |
| 379 | #define __pgd_offset(address) pgd_index(address) |
| 380 | |
| 381 | #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) |
| 382 | |
| 383 | /* to find an entry in a kernel page-table-directory */ |
| 384 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| 385 | |
| 386 | #define __pmd_offset(address) \ |
| 387 | (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) |
| 388 | |
| 389 | /* |
| 390 | * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] |
| 391 | * |
| 392 | * this macro returns the index of the entry in the pte page which would |
| 393 | * control the given virtual address |
| 394 | */ |
| 395 | #define __pte_offset(address) \ |
| 396 | (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| 397 | #define pte_offset_kernel(dir, address) \ |
| 398 | ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address)) |
| 399 | #define pte_offset_map(dir, address) \ |
| 400 | ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) |
| 401 | #define pte_offset_map_nested(dir, address) \ |
| 402 | pte_offset_map(dir, address) |
| 403 | |
| 404 | #define pte_unmap(pte) do { } while (0) |
| 405 | #define pte_unmap_nested(pte) do { } while (0) |
| 406 | #define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT) |
| 407 | #define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot)) |
| 408 | |
| 409 | #define pte_ERROR(e) \ |
| 410 | printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \ |
| 411 | __FILE__, __LINE__, &(e), pte_val(e)) |
| 412 | #define pgd_ERROR(e) \ |
| 413 | printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \ |
| 414 | __FILE__, __LINE__, &(e), pgd_val(e)) |
| 415 | |
| 416 | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */ |
| 417 | |
| 418 | /* |
| 419 | * or32 doesn't have any external MMU info: the kernel page |
| 420 | * tables contain all the necessary information. |
| 421 | * |
| 422 | * Actually I am not sure on what this could be used for. |
| 423 | */ |
| 424 | static inline void update_mmu_cache(struct vm_area_struct *vma, |
| 425 | unsigned long address, pte_t *pte) |
| 426 | { |
| 427 | } |
| 428 | |
| 429 | /* __PHX__ FIXME, SWAP, this probably doesn't work */ |
| 430 | |
| 431 | /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */ |
| 432 | /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */ |
| 433 | |
| 434 | #define __swp_type(x) (((x).val >> 5) & 0x7f) |
| 435 | #define __swp_offset(x) ((x).val >> 12) |
| 436 | #define __swp_entry(type, offset) \ |
| 437 | ((swp_entry_t) { ((type) << 5) | ((offset) << 12) }) |
| 438 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| 439 | #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| 440 | |
| 441 | /* Encode and decode a nonlinear file mapping entry */ |
| 442 | |
| 443 | #define PTE_FILE_MAX_BITS 26 |
| 444 | #define pte_to_pgoff(x) (pte_val(x) >> 6) |
| 445 | #define pgoff_to_pte(x) __pte(((x) << 6) | _PAGE_FILE) |
| 446 | |
| 447 | #define kern_addr_valid(addr) (1) |
| 448 | |
| 449 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| 450 | remap_pfn_range(vma, vaddr, pfn, size, prot) |
| 451 | |
| 452 | #include <asm-generic/pgtable.h> |
| 453 | |
| 454 | /* |
| 455 | * No page table caches to initialise |
| 456 | */ |
| 457 | #define pgtable_cache_init() do { } while (0) |
Jonas Bonn | 61e85e3 | 2011-06-04 11:06:11 +0300 | [diff] [blame] | 458 | |
| 459 | typedef pte_t *pte_addr_t; |
| 460 | |
| 461 | #endif /* __ASSEMBLY__ */ |
| 462 | #endif /* __ASM_OPENRISC_PGTABLE_H */ |