blob: 16a6b48883cf28c131e7143f045b183f140b7cd8 [file] [log] [blame]
Russell King6365bea2012-01-09 21:44:07 +00001/*
2 * SA11x0 DMAengine support
3 *
4 * Copyright (C) 2012 Russell King
5 * Derived in part from arch/arm/mach-sa1100/dma.c,
6 * Copyright (C) 2000, 2001 by Nicolas Pitre
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#include <linux/sched.h>
13#include <linux/device.h>
14#include <linux/dmaengine.h>
15#include <linux/init.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/platform_device.h>
20#include <linux/sa11x0-dma.h>
21#include <linux/slab.h>
22#include <linux/spinlock.h>
23
24#define NR_PHY_CHAN 6
25#define DMA_ALIGN 3
26#define DMA_MAX_SIZE 0x1fff
27#define DMA_CHUNK_SIZE 0x1000
28
29#define DMA_DDAR 0x00
30#define DMA_DCSR_S 0x04
31#define DMA_DCSR_C 0x08
32#define DMA_DCSR_R 0x0c
33#define DMA_DBSA 0x10
34#define DMA_DBTA 0x14
35#define DMA_DBSB 0x18
36#define DMA_DBTB 0x1c
37#define DMA_SIZE 0x20
38
39#define DCSR_RUN (1 << 0)
40#define DCSR_IE (1 << 1)
41#define DCSR_ERROR (1 << 2)
42#define DCSR_DONEA (1 << 3)
43#define DCSR_STRTA (1 << 4)
44#define DCSR_DONEB (1 << 5)
45#define DCSR_STRTB (1 << 6)
46#define DCSR_BIU (1 << 7)
47
48#define DDAR_RW (1 << 0) /* 0 = W, 1 = R */
49#define DDAR_E (1 << 1) /* 0 = LE, 1 = BE */
50#define DDAR_BS (1 << 2) /* 0 = BS4, 1 = BS8 */
51#define DDAR_DW (1 << 3) /* 0 = 8b, 1 = 16b */
52#define DDAR_Ser0UDCTr (0x0 << 4)
53#define DDAR_Ser0UDCRc (0x1 << 4)
54#define DDAR_Ser1SDLCTr (0x2 << 4)
55#define DDAR_Ser1SDLCRc (0x3 << 4)
56#define DDAR_Ser1UARTTr (0x4 << 4)
57#define DDAR_Ser1UARTRc (0x5 << 4)
58#define DDAR_Ser2ICPTr (0x6 << 4)
59#define DDAR_Ser2ICPRc (0x7 << 4)
60#define DDAR_Ser3UARTTr (0x8 << 4)
61#define DDAR_Ser3UARTRc (0x9 << 4)
62#define DDAR_Ser4MCP0Tr (0xa << 4)
63#define DDAR_Ser4MCP0Rc (0xb << 4)
64#define DDAR_Ser4MCP1Tr (0xc << 4)
65#define DDAR_Ser4MCP1Rc (0xd << 4)
66#define DDAR_Ser4SSPTr (0xe << 4)
67#define DDAR_Ser4SSPRc (0xf << 4)
68
69struct sa11x0_dma_sg {
70 u32 addr;
71 u32 len;
72};
73
74struct sa11x0_dma_desc {
75 struct dma_async_tx_descriptor tx;
76 u32 ddar;
77 size_t size;
78
79 /* maybe protected by c->lock */
80 struct list_head node;
81 unsigned sglen;
82 struct sa11x0_dma_sg sg[0];
83};
84
85struct sa11x0_dma_phy;
86
87struct sa11x0_dma_chan {
88 struct dma_chan chan;
89 spinlock_t lock;
90 dma_cookie_t lc;
91
92 /* protected by c->lock */
93 struct sa11x0_dma_phy *phy;
94 enum dma_status status;
95 struct list_head desc_submitted;
96 struct list_head desc_issued;
97
98 /* protected by d->lock */
99 struct list_head node;
100
101 u32 ddar;
102 const char *name;
103};
104
105struct sa11x0_dma_phy {
106 void __iomem *base;
107 struct sa11x0_dma_dev *dev;
108 unsigned num;
109
110 struct sa11x0_dma_chan *vchan;
111
112 /* Protected by c->lock */
113 unsigned sg_load;
114 struct sa11x0_dma_desc *txd_load;
115 unsigned sg_done;
116 struct sa11x0_dma_desc *txd_done;
117#ifdef CONFIG_PM_SLEEP
118 u32 dbs[2];
119 u32 dbt[2];
120 u32 dcsr;
121#endif
122};
123
124struct sa11x0_dma_dev {
125 struct dma_device slave;
126 void __iomem *base;
127 spinlock_t lock;
128 struct tasklet_struct task;
129 struct list_head chan_pending;
130 struct list_head desc_complete;
131 struct sa11x0_dma_phy phy[NR_PHY_CHAN];
132};
133
134static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan)
135{
136 return container_of(chan, struct sa11x0_dma_chan, chan);
137}
138
139static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev)
140{
141 return container_of(dmadev, struct sa11x0_dma_dev, slave);
142}
143
144static struct sa11x0_dma_desc *to_sa11x0_dma_tx(struct dma_async_tx_descriptor *tx)
145{
146 return container_of(tx, struct sa11x0_dma_desc, tx);
147}
148
149static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c)
150{
151 if (list_empty(&c->desc_issued))
152 return NULL;
153
154 return list_first_entry(&c->desc_issued, struct sa11x0_dma_desc, node);
155}
156
157static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd)
158{
159 list_del(&txd->node);
160 p->txd_load = txd;
161 p->sg_load = 0;
162
163 dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n",
164 p->num, txd, txd->tx.cookie, txd->ddar);
165}
166
167static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p,
168 struct sa11x0_dma_chan *c)
169{
170 struct sa11x0_dma_desc *txd = p->txd_load;
171 struct sa11x0_dma_sg *sg;
172 void __iomem *base = p->base;
173 unsigned dbsx, dbtx;
174 u32 dcsr;
175
176 if (!txd)
177 return;
178
179 dcsr = readl_relaxed(base + DMA_DCSR_R);
180
181 /* Don't try to load the next transfer if both buffers are started */
182 if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB))
183 return;
184
185 if (p->sg_load == txd->sglen) {
186 struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c);
187
188 /*
189 * We have reached the end of the current descriptor.
190 * Peek at the next descriptor, and if compatible with
191 * the current, start processing it.
192 */
193 if (txn && txn->ddar == txd->ddar) {
194 txd = txn;
195 sa11x0_dma_start_desc(p, txn);
196 } else {
197 p->txd_load = NULL;
198 return;
199 }
200 }
201
202 sg = &txd->sg[p->sg_load++];
203
204 /* Select buffer to load according to channel status */
205 if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) ||
206 ((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) {
207 dbsx = DMA_DBSA;
208 dbtx = DMA_DBTA;
209 dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN;
210 } else {
211 dbsx = DMA_DBSB;
212 dbtx = DMA_DBTB;
213 dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN;
214 }
215
216 writel_relaxed(sg->addr, base + dbsx);
217 writel_relaxed(sg->len, base + dbtx);
218 writel(dcsr, base + DMA_DCSR_S);
219
220 dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n",
221 p->num, dcsr,
222 'A' + (dbsx == DMA_DBSB), sg->addr,
223 'A' + (dbtx == DMA_DBTB), sg->len);
224}
225
226static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p,
227 struct sa11x0_dma_chan *c)
228{
229 struct sa11x0_dma_desc *txd = p->txd_done;
230
231 if (++p->sg_done == txd->sglen) {
232 struct sa11x0_dma_dev *d = p->dev;
233
234 dev_vdbg(d->slave.dev, "pchan %u: txd %p[%x]: completed\n",
235 p->num, p->txd_done, p->txd_done->tx.cookie);
236
237 c->lc = txd->tx.cookie;
238
239 spin_lock(&d->lock);
240 list_add_tail(&txd->node, &d->desc_complete);
241 spin_unlock(&d->lock);
242
243 p->sg_done = 0;
244 p->txd_done = p->txd_load;
245
246 tasklet_schedule(&d->task);
247 }
248
249 sa11x0_dma_start_sg(p, c);
250}
251
252static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id)
253{
254 struct sa11x0_dma_phy *p = dev_id;
255 struct sa11x0_dma_dev *d = p->dev;
256 struct sa11x0_dma_chan *c;
257 u32 dcsr;
258
259 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
260 if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB)))
261 return IRQ_NONE;
262
263 /* Clear reported status bits */
264 writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB),
265 p->base + DMA_DCSR_C);
266
267 dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr);
268
269 if (dcsr & DCSR_ERROR) {
270 dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n",
271 p->num, dcsr,
272 readl_relaxed(p->base + DMA_DDAR),
273 readl_relaxed(p->base + DMA_DBSA),
274 readl_relaxed(p->base + DMA_DBTA),
275 readl_relaxed(p->base + DMA_DBSB),
276 readl_relaxed(p->base + DMA_DBTB));
277 }
278
279 c = p->vchan;
280 if (c) {
281 unsigned long flags;
282
283 spin_lock_irqsave(&c->lock, flags);
284 /*
285 * Now that we're holding the lock, check that the vchan
286 * really is associated with this pchan before touching the
287 * hardware. This should always succeed, because we won't
288 * change p->vchan or c->phy while the channel is actively
289 * transferring.
290 */
291 if (c->phy == p) {
292 if (dcsr & DCSR_DONEA)
293 sa11x0_dma_complete(p, c);
294 if (dcsr & DCSR_DONEB)
295 sa11x0_dma_complete(p, c);
296 }
297 spin_unlock_irqrestore(&c->lock, flags);
298 }
299
300 return IRQ_HANDLED;
301}
302
303static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c)
304{
305 struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c);
306
307 /* If the issued list is empty, we have no further txds to process */
308 if (txd) {
309 struct sa11x0_dma_phy *p = c->phy;
310
311 sa11x0_dma_start_desc(p, txd);
312 p->txd_done = txd;
313 p->sg_done = 0;
314
315 /* The channel should not have any transfers started */
316 WARN_ON(readl_relaxed(p->base + DMA_DCSR_R) &
317 (DCSR_STRTA | DCSR_STRTB));
318
319 /* Clear the run and start bits before changing DDAR */
320 writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB,
321 p->base + DMA_DCSR_C);
322 writel_relaxed(txd->ddar, p->base + DMA_DDAR);
323
324 /* Try to start both buffers */
325 sa11x0_dma_start_sg(p, c);
326 sa11x0_dma_start_sg(p, c);
327 }
328}
329
330static void sa11x0_dma_tasklet(unsigned long arg)
331{
332 struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg;
333 struct sa11x0_dma_phy *p;
334 struct sa11x0_dma_chan *c;
335 struct sa11x0_dma_desc *txd, *txn;
336 LIST_HEAD(head);
337 unsigned pch, pch_alloc = 0;
338
339 dev_dbg(d->slave.dev, "tasklet enter\n");
340
341 /* Get the completed tx descriptors */
342 spin_lock_irq(&d->lock);
343 list_splice_init(&d->desc_complete, &head);
344 spin_unlock_irq(&d->lock);
345
346 list_for_each_entry(txd, &head, node) {
347 c = to_sa11x0_dma_chan(txd->tx.chan);
348
349 dev_dbg(d->slave.dev, "vchan %p: txd %p[%x] completed\n",
350 c, txd, txd->tx.cookie);
351
352 spin_lock_irq(&c->lock);
353 p = c->phy;
354 if (p) {
355 if (!p->txd_done)
356 sa11x0_dma_start_txd(c);
357 if (!p->txd_done) {
358 /* No current txd associated with this channel */
359 dev_dbg(d->slave.dev, "pchan %u: free\n", p->num);
360
361 /* Mark this channel free */
362 c->phy = NULL;
363 p->vchan = NULL;
364 }
365 }
366 spin_unlock_irq(&c->lock);
367 }
368
369 spin_lock_irq(&d->lock);
370 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
371 p = &d->phy[pch];
372
373 if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
374 c = list_first_entry(&d->chan_pending,
375 struct sa11x0_dma_chan, node);
376 list_del_init(&c->node);
377
378 pch_alloc |= 1 << pch;
379
380 /* Mark this channel allocated */
381 p->vchan = c;
382
383 dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, c);
384 }
385 }
386 spin_unlock_irq(&d->lock);
387
388 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
389 if (pch_alloc & (1 << pch)) {
390 p = &d->phy[pch];
391 c = p->vchan;
392
393 spin_lock_irq(&c->lock);
394 c->phy = p;
395
396 sa11x0_dma_start_txd(c);
397 spin_unlock_irq(&c->lock);
398 }
399 }
400
401 /* Now free the completed tx descriptor, and call their callbacks */
402 list_for_each_entry_safe(txd, txn, &head, node) {
403 dma_async_tx_callback callback = txd->tx.callback;
404 void *callback_param = txd->tx.callback_param;
405
406 dev_dbg(d->slave.dev, "txd %p[%x]: callback and free\n",
407 txd, txd->tx.cookie);
408
409 kfree(txd);
410
411 if (callback)
412 callback(callback_param);
413 }
414
415 dev_dbg(d->slave.dev, "tasklet exit\n");
416}
417
418
419static void sa11x0_dma_desc_free(struct sa11x0_dma_dev *d, struct list_head *head)
420{
421 struct sa11x0_dma_desc *txd, *txn;
422
423 list_for_each_entry_safe(txd, txn, head, node) {
424 dev_dbg(d->slave.dev, "txd %p: freeing\n", txd);
425 kfree(txd);
426 }
427}
428
429static int sa11x0_dma_alloc_chan_resources(struct dma_chan *chan)
430{
431 return 0;
432}
433
434static void sa11x0_dma_free_chan_resources(struct dma_chan *chan)
435{
436 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
437 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
438 unsigned long flags;
439 LIST_HEAD(head);
440
441 spin_lock_irqsave(&c->lock, flags);
442 spin_lock(&d->lock);
443 list_del_init(&c->node);
444 spin_unlock(&d->lock);
445
446 list_splice_tail_init(&c->desc_submitted, &head);
447 list_splice_tail_init(&c->desc_issued, &head);
448 spin_unlock_irqrestore(&c->lock, flags);
449
450 sa11x0_dma_desc_free(d, &head);
451}
452
453static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p)
454{
455 unsigned reg;
456 u32 dcsr;
457
458 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
459
460 if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA ||
461 (dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU)
462 reg = DMA_DBSA;
463 else
464 reg = DMA_DBSB;
465
466 return readl_relaxed(p->base + reg);
467}
468
469static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan,
470 dma_cookie_t cookie, struct dma_tx_state *state)
471{
472 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
473 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
474 struct sa11x0_dma_phy *p;
475 struct sa11x0_dma_desc *txd;
476 dma_cookie_t last_used, last_complete;
477 unsigned long flags;
478 enum dma_status ret;
479 size_t bytes = 0;
480
481 last_used = c->chan.cookie;
482 last_complete = c->lc;
483
484 ret = dma_async_is_complete(cookie, last_complete, last_used);
485 if (ret == DMA_SUCCESS) {
486 dma_set_tx_state(state, last_complete, last_used, 0);
487 return ret;
488 }
489
490 spin_lock_irqsave(&c->lock, flags);
491 p = c->phy;
492 ret = c->status;
493 if (p) {
494 dma_addr_t addr = sa11x0_dma_pos(p);
495
496 dev_vdbg(d->slave.dev, "tx_status: addr:%x\n", addr);
497
498 txd = p->txd_done;
499 if (txd) {
500 unsigned i;
501
502 for (i = 0; i < txd->sglen; i++) {
503 dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n",
504 i, txd->sg[i].addr, txd->sg[i].len);
505 if (addr >= txd->sg[i].addr &&
506 addr < txd->sg[i].addr + txd->sg[i].len) {
507 unsigned len;
508
509 len = txd->sg[i].len -
510 (addr - txd->sg[i].addr);
511 dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n",
512 i, len);
513 bytes += len;
514 i++;
515 break;
516 }
517 }
518 for (; i < txd->sglen; i++) {
519 dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n",
520 i, txd->sg[i].addr, txd->sg[i].len);
521 bytes += txd->sg[i].len;
522 }
523 }
524 if (txd != p->txd_load && p->txd_load)
525 bytes += p->txd_load->size;
526 }
527 list_for_each_entry(txd, &c->desc_issued, node) {
528 bytes += txd->size;
529 }
530 spin_unlock_irqrestore(&c->lock, flags);
531
532 dma_set_tx_state(state, last_complete, last_used, bytes);
533
534 dev_vdbg(d->slave.dev, "tx_status: bytes 0x%zx\n", bytes);
535
536 return ret;
537}
538
539/*
540 * Move pending txds to the issued list, and re-init pending list.
541 * If not already pending, add this channel to the list of pending
542 * channels and trigger the tasklet to run.
543 */
544static void sa11x0_dma_issue_pending(struct dma_chan *chan)
545{
546 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
547 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
548 unsigned long flags;
549
550 spin_lock_irqsave(&c->lock, flags);
551 list_splice_tail_init(&c->desc_submitted, &c->desc_issued);
552 if (!list_empty(&c->desc_issued)) {
553 spin_lock(&d->lock);
554 if (!c->phy && list_empty(&c->node)) {
555 list_add_tail(&c->node, &d->chan_pending);
556 tasklet_schedule(&d->task);
557 dev_dbg(d->slave.dev, "vchan %p: issued\n", c);
558 }
559 spin_unlock(&d->lock);
560 } else
561 dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", c);
562 spin_unlock_irqrestore(&c->lock, flags);
563}
564
565static dma_cookie_t sa11x0_dma_tx_submit(struct dma_async_tx_descriptor *tx)
566{
567 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(tx->chan);
568 struct sa11x0_dma_desc *txd = to_sa11x0_dma_tx(tx);
569 unsigned long flags;
570
571 spin_lock_irqsave(&c->lock, flags);
572 c->chan.cookie += 1;
573 if (c->chan.cookie < 0)
574 c->chan.cookie = 1;
575 txd->tx.cookie = c->chan.cookie;
576
577 list_add_tail(&txd->node, &c->desc_submitted);
578 spin_unlock_irqrestore(&c->lock, flags);
579
580 dev_dbg(tx->chan->device->dev, "vchan %p: txd %p[%x]: submitted\n",
581 c, txd, txd->tx.cookie);
582
583 return txd->tx.cookie;
584}
585
586static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg(
587 struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen,
588 enum dma_transfer_direction dir, unsigned long flags)
589{
590 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
591 struct sa11x0_dma_desc *txd;
592 struct scatterlist *sgent;
593 unsigned i, j = sglen;
594 size_t size = 0;
595
596 /* SA11x0 channels can only operate in their native direction */
597 if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
598 dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
599 c, c->ddar, dir);
600 return NULL;
601 }
602
603 /* Do not allow zero-sized txds */
604 if (sglen == 0)
605 return NULL;
606
607 for_each_sg(sg, sgent, sglen, i) {
608 dma_addr_t addr = sg_dma_address(sgent);
609 unsigned int len = sg_dma_len(sgent);
610
611 if (len > DMA_MAX_SIZE)
612 j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1;
613 if (addr & DMA_ALIGN) {
614 dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %08x\n",
615 c, addr);
616 return NULL;
617 }
618 }
619
620 txd = kzalloc(sizeof(*txd) + j * sizeof(txd->sg[0]), GFP_ATOMIC);
621 if (!txd) {
622 dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", c);
623 return NULL;
624 }
625
626 j = 0;
627 for_each_sg(sg, sgent, sglen, i) {
628 dma_addr_t addr = sg_dma_address(sgent);
629 unsigned len = sg_dma_len(sgent);
630
631 size += len;
632
633 do {
634 unsigned tlen = len;
635
636 /*
637 * Check whether the transfer will fit. If not, try
638 * to split the transfer up such that we end up with
639 * equal chunks - but make sure that we preserve the
640 * alignment. This avoids small segments.
641 */
642 if (tlen > DMA_MAX_SIZE) {
643 unsigned mult = DIV_ROUND_UP(tlen,
644 DMA_MAX_SIZE & ~DMA_ALIGN);
645
646 tlen = (tlen / mult) & ~DMA_ALIGN;
647 }
648
649 txd->sg[j].addr = addr;
650 txd->sg[j].len = tlen;
651
652 addr += tlen;
653 len -= tlen;
654 j++;
655 } while (len);
656 }
657
658 dma_async_tx_descriptor_init(&txd->tx, &c->chan);
659 txd->tx.flags = flags;
660 txd->tx.tx_submit = sa11x0_dma_tx_submit;
661 txd->ddar = c->ddar;
662 txd->size = size;
663 txd->sglen = j;
664
665 dev_dbg(chan->device->dev, "vchan %p: txd %p: size %u nr %u\n",
666 c, txd, txd->size, txd->sglen);
667
668 return &txd->tx;
669}
670
671static int sa11x0_dma_slave_config(struct sa11x0_dma_chan *c, struct dma_slave_config *cfg)
672{
673 u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW);
674 dma_addr_t addr;
675 enum dma_slave_buswidth width;
676 u32 maxburst;
677
678 if (ddar & DDAR_RW) {
679 addr = cfg->src_addr;
680 width = cfg->src_addr_width;
681 maxburst = cfg->src_maxburst;
682 } else {
683 addr = cfg->dst_addr;
684 width = cfg->dst_addr_width;
685 maxburst = cfg->dst_maxburst;
686 }
687
688 if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE &&
689 width != DMA_SLAVE_BUSWIDTH_2_BYTES) ||
690 (maxburst != 4 && maxburst != 8))
691 return -EINVAL;
692
693 if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
694 ddar |= DDAR_DW;
695 if (maxburst == 8)
696 ddar |= DDAR_BS;
697
698 dev_dbg(c->chan.device->dev, "vchan %p: dma_slave_config addr %x width %u burst %u\n",
699 c, addr, width, maxburst);
700
701 c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6;
702
703 return 0;
704}
705
706static int sa11x0_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
707 unsigned long arg)
708{
709 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
710 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
711 struct sa11x0_dma_phy *p;
712 LIST_HEAD(head);
713 unsigned long flags;
714 int ret;
715
716 switch (cmd) {
717 case DMA_SLAVE_CONFIG:
718 return sa11x0_dma_slave_config(c, (struct dma_slave_config *)arg);
719
720 case DMA_TERMINATE_ALL:
721 dev_dbg(d->slave.dev, "vchan %p: terminate all\n", c);
722 /* Clear the tx descriptor lists */
723 spin_lock_irqsave(&c->lock, flags);
724 list_splice_tail_init(&c->desc_submitted, &head);
725 list_splice_tail_init(&c->desc_issued, &head);
726
727 p = c->phy;
728 if (p) {
729 struct sa11x0_dma_desc *txd, *txn;
730
731 dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num);
732 /* vchan is assigned to a pchan - stop the channel */
733 writel(DCSR_RUN | DCSR_IE |
734 DCSR_STRTA | DCSR_DONEA |
735 DCSR_STRTB | DCSR_DONEB,
736 p->base + DMA_DCSR_C);
737
738 list_for_each_entry_safe(txd, txn, &d->desc_complete, node)
739 if (txd->tx.chan == &c->chan)
740 list_move(&txd->node, &head);
741
742 if (p->txd_load) {
743 if (p->txd_load != p->txd_done)
744 list_add_tail(&p->txd_load->node, &head);
745 p->txd_load = NULL;
746 }
747 if (p->txd_done) {
748 list_add_tail(&p->txd_done->node, &head);
749 p->txd_done = NULL;
750 }
751 c->phy = NULL;
752 spin_lock(&d->lock);
753 p->vchan = NULL;
754 spin_unlock(&d->lock);
755 tasklet_schedule(&d->task);
756 }
757 spin_unlock_irqrestore(&c->lock, flags);
758 sa11x0_dma_desc_free(d, &head);
759 ret = 0;
760 break;
761
762 case DMA_PAUSE:
763 dev_dbg(d->slave.dev, "vchan %p: pause\n", c);
764 spin_lock_irqsave(&c->lock, flags);
765 if (c->status == DMA_IN_PROGRESS) {
766 c->status = DMA_PAUSED;
767
768 p = c->phy;
769 if (p) {
770 writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
771 } else {
772 spin_lock(&d->lock);
773 list_del_init(&c->node);
774 spin_unlock(&d->lock);
775 }
776 }
777 spin_unlock_irqrestore(&c->lock, flags);
778 ret = 0;
779 break;
780
781 case DMA_RESUME:
782 dev_dbg(d->slave.dev, "vchan %p: resume\n", c);
783 spin_lock_irqsave(&c->lock, flags);
784 if (c->status == DMA_PAUSED) {
785 c->status = DMA_IN_PROGRESS;
786
787 p = c->phy;
788 if (p) {
789 writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_S);
790 } else if (!list_empty(&c->desc_issued)) {
791 spin_lock(&d->lock);
792 list_add_tail(&c->node, &d->chan_pending);
793 spin_unlock(&d->lock);
794 }
795 }
796 spin_unlock_irqrestore(&c->lock, flags);
797 ret = 0;
798 break;
799
800 default:
801 ret = -ENXIO;
802 break;
803 }
804
805 return ret;
806}
807
808struct sa11x0_dma_channel_desc {
809 u32 ddar;
810 const char *name;
811};
812
813#define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 }
814static const struct sa11x0_dma_channel_desc chan_desc[] = {
815 CD(Ser0UDCTr, 0),
816 CD(Ser0UDCRc, DDAR_RW),
817 CD(Ser1SDLCTr, 0),
818 CD(Ser1SDLCRc, DDAR_RW),
819 CD(Ser1UARTTr, 0),
820 CD(Ser1UARTRc, DDAR_RW),
821 CD(Ser2ICPTr, 0),
822 CD(Ser2ICPRc, DDAR_RW),
823 CD(Ser3UARTTr, 0),
824 CD(Ser3UARTRc, DDAR_RW),
825 CD(Ser4MCP0Tr, 0),
826 CD(Ser4MCP0Rc, DDAR_RW),
827 CD(Ser4MCP1Tr, 0),
828 CD(Ser4MCP1Rc, DDAR_RW),
829 CD(Ser4SSPTr, 0),
830 CD(Ser4SSPRc, DDAR_RW),
831};
832
833static int __devinit sa11x0_dma_init_dmadev(struct dma_device *dmadev,
834 struct device *dev)
835{
836 unsigned i;
837
838 dmadev->chancnt = ARRAY_SIZE(chan_desc);
839 INIT_LIST_HEAD(&dmadev->channels);
840 dmadev->dev = dev;
841 dmadev->device_alloc_chan_resources = sa11x0_dma_alloc_chan_resources;
842 dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources;
843 dmadev->device_control = sa11x0_dma_control;
844 dmadev->device_tx_status = sa11x0_dma_tx_status;
845 dmadev->device_issue_pending = sa11x0_dma_issue_pending;
846
847 for (i = 0; i < dmadev->chancnt; i++) {
848 struct sa11x0_dma_chan *c;
849
850 c = kzalloc(sizeof(*c), GFP_KERNEL);
851 if (!c) {
852 dev_err(dev, "no memory for channel %u\n", i);
853 return -ENOMEM;
854 }
855
856 c->chan.device = dmadev;
857 c->status = DMA_IN_PROGRESS;
858 c->ddar = chan_desc[i].ddar;
859 c->name = chan_desc[i].name;
860 spin_lock_init(&c->lock);
861 INIT_LIST_HEAD(&c->desc_submitted);
862 INIT_LIST_HEAD(&c->desc_issued);
863 INIT_LIST_HEAD(&c->node);
864 list_add_tail(&c->chan.device_node, &dmadev->channels);
865 }
866
867 return dma_async_device_register(dmadev);
868}
869
870static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr,
871 void *data)
872{
873 int irq = platform_get_irq(pdev, nr);
874
875 if (irq <= 0)
876 return -ENXIO;
877
878 return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data);
879}
880
881static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr,
882 void *data)
883{
884 int irq = platform_get_irq(pdev, nr);
885 if (irq > 0)
886 free_irq(irq, data);
887}
888
889static void sa11x0_dma_free_channels(struct dma_device *dmadev)
890{
891 struct sa11x0_dma_chan *c, *cn;
892
893 list_for_each_entry_safe(c, cn, &dmadev->channels, chan.device_node) {
894 list_del(&c->chan.device_node);
895 kfree(c);
896 }
897}
898
899static int __devinit sa11x0_dma_probe(struct platform_device *pdev)
900{
901 struct sa11x0_dma_dev *d;
902 struct resource *res;
903 unsigned i;
904 int ret;
905
906 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
907 if (!res)
908 return -ENXIO;
909
910 d = kzalloc(sizeof(*d), GFP_KERNEL);
911 if (!d) {
912 ret = -ENOMEM;
913 goto err_alloc;
914 }
915
916 spin_lock_init(&d->lock);
917 INIT_LIST_HEAD(&d->chan_pending);
918 INIT_LIST_HEAD(&d->desc_complete);
919
920 d->base = ioremap(res->start, resource_size(res));
921 if (!d->base) {
922 ret = -ENOMEM;
923 goto err_ioremap;
924 }
925
926 tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d);
927
928 for (i = 0; i < NR_PHY_CHAN; i++) {
929 struct sa11x0_dma_phy *p = &d->phy[i];
930
931 p->dev = d;
932 p->num = i;
933 p->base = d->base + i * DMA_SIZE;
934 writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR |
935 DCSR_DONEA | DCSR_STRTA | DCSR_DONEB | DCSR_STRTB,
936 p->base + DMA_DCSR_C);
937 writel_relaxed(0, p->base + DMA_DDAR);
938
939 ret = sa11x0_dma_request_irq(pdev, i, p);
940 if (ret) {
941 while (i) {
942 i--;
943 sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
944 }
945 goto err_irq;
946 }
947 }
948
949 dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
950 d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg;
951 ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev);
952 if (ret) {
953 dev_warn(d->slave.dev, "failed to register slave async device: %d\n",
954 ret);
955 goto err_slave_reg;
956 }
957
958 platform_set_drvdata(pdev, d);
959 return 0;
960
961 err_slave_reg:
962 sa11x0_dma_free_channels(&d->slave);
963 for (i = 0; i < NR_PHY_CHAN; i++)
964 sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
965 err_irq:
966 tasklet_kill(&d->task);
967 iounmap(d->base);
968 err_ioremap:
969 kfree(d);
970 err_alloc:
971 return ret;
972}
973
974static int __devexit sa11x0_dma_remove(struct platform_device *pdev)
975{
976 struct sa11x0_dma_dev *d = platform_get_drvdata(pdev);
977 unsigned pch;
978
979 dma_async_device_unregister(&d->slave);
980
981 sa11x0_dma_free_channels(&d->slave);
982 for (pch = 0; pch < NR_PHY_CHAN; pch++)
983 sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]);
984 tasklet_kill(&d->task);
985 iounmap(d->base);
986 kfree(d);
987
988 return 0;
989}
990
991#ifdef CONFIG_PM_SLEEP
992static int sa11x0_dma_suspend(struct device *dev)
993{
994 struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
995 unsigned pch;
996
997 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
998 struct sa11x0_dma_phy *p = &d->phy[pch];
999 u32 dcsr, saved_dcsr;
1000
1001 dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1002 if (dcsr & DCSR_RUN) {
1003 writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
1004 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1005 }
1006
1007 saved_dcsr &= DCSR_RUN | DCSR_IE;
1008 if (dcsr & DCSR_BIU) {
1009 p->dbs[0] = readl_relaxed(p->base + DMA_DBSB);
1010 p->dbt[0] = readl_relaxed(p->base + DMA_DBTB);
1011 p->dbs[1] = readl_relaxed(p->base + DMA_DBSA);
1012 p->dbt[1] = readl_relaxed(p->base + DMA_DBTA);
1013 saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) |
1014 (dcsr & DCSR_STRTB ? DCSR_STRTA : 0);
1015 } else {
1016 p->dbs[0] = readl_relaxed(p->base + DMA_DBSA);
1017 p->dbt[0] = readl_relaxed(p->base + DMA_DBTA);
1018 p->dbs[1] = readl_relaxed(p->base + DMA_DBSB);
1019 p->dbt[1] = readl_relaxed(p->base + DMA_DBTB);
1020 saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB);
1021 }
1022 p->dcsr = saved_dcsr;
1023
1024 writel(DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C);
1025 }
1026
1027 return 0;
1028}
1029
1030static int sa11x0_dma_resume(struct device *dev)
1031{
1032 struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
1033 unsigned pch;
1034
1035 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
1036 struct sa11x0_dma_phy *p = &d->phy[pch];
1037 struct sa11x0_dma_desc *txd = NULL;
1038 u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1039
1040 WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN));
1041
1042 if (p->txd_done)
1043 txd = p->txd_done;
1044 else if (p->txd_load)
1045 txd = p->txd_load;
1046
1047 if (!txd)
1048 continue;
1049
1050 writel_relaxed(txd->ddar, p->base + DMA_DDAR);
1051
1052 writel_relaxed(p->dbs[0], p->base + DMA_DBSA);
1053 writel_relaxed(p->dbt[0], p->base + DMA_DBTA);
1054 writel_relaxed(p->dbs[1], p->base + DMA_DBSB);
1055 writel_relaxed(p->dbt[1], p->base + DMA_DBTB);
1056 writel_relaxed(p->dcsr, p->base + DMA_DCSR_S);
1057 }
1058
1059 return 0;
1060}
1061#endif
1062
1063static const struct dev_pm_ops sa11x0_dma_pm_ops = {
1064 .suspend_noirq = sa11x0_dma_suspend,
1065 .resume_noirq = sa11x0_dma_resume,
1066 .freeze_noirq = sa11x0_dma_suspend,
1067 .thaw_noirq = sa11x0_dma_resume,
1068 .poweroff_noirq = sa11x0_dma_suspend,
1069 .restore_noirq = sa11x0_dma_resume,
1070};
1071
1072static struct platform_driver sa11x0_dma_driver = {
1073 .driver = {
1074 .name = "sa11x0-dma",
1075 .owner = THIS_MODULE,
1076 .pm = &sa11x0_dma_pm_ops,
1077 },
1078 .probe = sa11x0_dma_probe,
1079 .remove = __devexit_p(sa11x0_dma_remove),
1080};
1081
1082bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param)
1083{
1084 if (chan->device->dev->driver == &sa11x0_dma_driver.driver) {
1085 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
1086 const char *p = param;
1087
1088 return !strcmp(c->name, p);
1089 }
1090 return false;
1091}
1092EXPORT_SYMBOL(sa11x0_dma_filter_fn);
1093
1094static int __init sa11x0_dma_init(void)
1095{
1096 return platform_driver_register(&sa11x0_dma_driver);
1097}
1098subsys_initcall(sa11x0_dma_init);
1099
1100static void __exit sa11x0_dma_exit(void)
1101{
1102 platform_driver_unregister(&sa11x0_dma_driver);
1103}
1104module_exit(sa11x0_dma_exit);
1105
1106MODULE_AUTHOR("Russell King");
1107MODULE_DESCRIPTION("SA-11x0 DMA driver");
1108MODULE_LICENSE("GPL v2");
1109MODULE_ALIAS("platform:sa11x0-dma");