blob: f8411bd1b805b9f93df3dd4ea53e3a388bf5957e [file] [log] [blame]
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
David Teiglande0c2a9a2012-01-09 17:18:05 -05003 * Copyright 2004-2011 Red Hat, Inc.
Steven Whitehousef057f6c2009-01-12 10:43:39 +00004 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#include <linux/fs.h>
11#include <linux/dlm.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090012#include <linux/slab.h>
Steven Whitehousef057f6c2009-01-12 10:43:39 +000013#include <linux/types.h>
David Teiglande0c2a9a2012-01-09 17:18:05 -050014#include <linux/delay.h>
Steven Whitehousef057f6c2009-01-12 10:43:39 +000015#include <linux/gfs2_ondisk.h>
16
17#include "incore.h"
18#include "glock.h"
19#include "util.h"
David Teiglande0c2a9a2012-01-09 17:18:05 -050020#include "sys.h"
Steven Whitehousea2457692012-01-20 10:38:36 +000021#include "trace_gfs2.h"
Steven Whitehousef057f6c2009-01-12 10:43:39 +000022
David Teiglande0c2a9a2012-01-09 17:18:05 -050023extern struct workqueue_struct *gfs2_control_wq;
Steven Whitehousef057f6c2009-01-12 10:43:39 +000024
Steven Whitehousea2457692012-01-20 10:38:36 +000025/**
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
29 *
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
32 * update the current srtt estimate. The varience estimate is a bit
33 * more complicated. We subtract the abs value of the @delta from
34 * the current variance estimate and add 1/4 of that to the running
35 * total.
36 *
37 * Note that the index points at the array entry containing the smoothed
38 * mean value, and the variance is always in the following entry
39 *
40 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
41 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
42 * they are not scaled fixed point.
43 */
44
45static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
46 s64 sample)
47{
48 s64 delta = sample - s->stats[index];
49 s->stats[index] += (delta >> 3);
50 index++;
51 s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
52}
53
54/**
55 * gfs2_update_reply_times - Update locking statistics
56 * @gl: The glock to update
57 *
58 * This assumes that gl->gl_dstamp has been set earlier.
59 *
60 * The rtt (lock round trip time) is an estimate of the time
61 * taken to perform a dlm lock request. We update it on each
62 * reply from the dlm.
63 *
64 * The blocking flag is set on the glock for all dlm requests
65 * which may potentially block due to lock requests from other nodes.
66 * DLM requests where the current lock state is exclusive, the
67 * requested state is null (or unlocked) or where the TRY or
68 * TRY_1CB flags are set are classified as non-blocking. All
69 * other DLM requests are counted as (potentially) blocking.
70 */
71static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
72{
73 struct gfs2_pcpu_lkstats *lks;
74 const unsigned gltype = gl->gl_name.ln_type;
75 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
76 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
77 s64 rtt;
78
79 preempt_disable();
80 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
81 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
82 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
83 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
84 preempt_enable();
85
86 trace_gfs2_glock_lock_time(gl, rtt);
87}
88
89/**
90 * gfs2_update_request_times - Update locking statistics
91 * @gl: The glock to update
92 *
93 * The irt (lock inter-request times) measures the average time
94 * between requests to the dlm. It is updated immediately before
95 * each dlm call.
96 */
97
98static inline void gfs2_update_request_times(struct gfs2_glock *gl)
99{
100 struct gfs2_pcpu_lkstats *lks;
101 const unsigned gltype = gl->gl_name.ln_type;
102 ktime_t dstamp;
103 s64 irt;
104
105 preempt_disable();
106 dstamp = gl->gl_dstamp;
107 gl->gl_dstamp = ktime_get_real();
108 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
109 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
110 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
111 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
112 preempt_enable();
113}
114
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000115static void gdlm_ast(void *arg)
116{
117 struct gfs2_glock *gl = arg;
118 unsigned ret = gl->gl_state;
119
Steven Whitehousea2457692012-01-20 10:38:36 +0000120 gfs2_update_reply_times(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000121 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
122
123 if (gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID)
124 memset(gl->gl_lvb, 0, GDLM_LVB_SIZE);
125
126 switch (gl->gl_lksb.sb_status) {
127 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
Steven Whitehousefc0e38d2011-03-09 10:58:04 +0000128 gfs2_glock_free(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000129 return;
130 case -DLM_ECANCEL: /* Cancel while getting lock */
131 ret |= LM_OUT_CANCELED;
132 goto out;
133 case -EAGAIN: /* Try lock fails */
Steven Whitehouse1fea7c22010-09-08 10:09:25 +0100134 case -EDEADLK: /* Deadlock detected */
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000135 goto out;
Steven Whitehouse1fea7c22010-09-08 10:09:25 +0100136 case -ETIMEDOUT: /* Canceled due to timeout */
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000137 ret |= LM_OUT_ERROR;
138 goto out;
139 case 0: /* Success */
140 break;
141 default: /* Something unexpected */
142 BUG();
143 }
144
Benjamin Marzinski02ffad082009-03-06 10:03:20 -0600145 ret = gl->gl_req;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000146 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
Benjamin Marzinski02ffad082009-03-06 10:03:20 -0600147 if (gl->gl_req == LM_ST_SHARED)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000148 ret = LM_ST_DEFERRED;
Benjamin Marzinski02ffad082009-03-06 10:03:20 -0600149 else if (gl->gl_req == LM_ST_DEFERRED)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000150 ret = LM_ST_SHARED;
151 else
152 BUG();
153 }
154
155 set_bit(GLF_INITIAL, &gl->gl_flags);
156 gfs2_glock_complete(gl, ret);
157 return;
158out:
159 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
160 gl->gl_lksb.sb_lkid = 0;
161 gfs2_glock_complete(gl, ret);
162}
163
164static void gdlm_bast(void *arg, int mode)
165{
166 struct gfs2_glock *gl = arg;
167
168 switch (mode) {
169 case DLM_LOCK_EX:
170 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
171 break;
172 case DLM_LOCK_CW:
173 gfs2_glock_cb(gl, LM_ST_DEFERRED);
174 break;
175 case DLM_LOCK_PR:
176 gfs2_glock_cb(gl, LM_ST_SHARED);
177 break;
178 default:
179 printk(KERN_ERR "unknown bast mode %d", mode);
180 BUG();
181 }
182}
183
184/* convert gfs lock-state to dlm lock-mode */
185
186static int make_mode(const unsigned int lmstate)
187{
188 switch (lmstate) {
189 case LM_ST_UNLOCKED:
190 return DLM_LOCK_NL;
191 case LM_ST_EXCLUSIVE:
192 return DLM_LOCK_EX;
193 case LM_ST_DEFERRED:
194 return DLM_LOCK_CW;
195 case LM_ST_SHARED:
196 return DLM_LOCK_PR;
197 }
198 printk(KERN_ERR "unknown LM state %d", lmstate);
199 BUG();
200 return -1;
201}
202
203static u32 make_flags(const u32 lkid, const unsigned int gfs_flags,
204 const int req)
205{
Steven Whitehousea2457692012-01-20 10:38:36 +0000206 u32 lkf = DLM_LKF_VALBLK;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000207
208 if (gfs_flags & LM_FLAG_TRY)
209 lkf |= DLM_LKF_NOQUEUE;
210
211 if (gfs_flags & LM_FLAG_TRY_1CB) {
212 lkf |= DLM_LKF_NOQUEUE;
213 lkf |= DLM_LKF_NOQUEUEBAST;
214 }
215
216 if (gfs_flags & LM_FLAG_PRIORITY) {
217 lkf |= DLM_LKF_NOORDER;
218 lkf |= DLM_LKF_HEADQUE;
219 }
220
221 if (gfs_flags & LM_FLAG_ANY) {
222 if (req == DLM_LOCK_PR)
223 lkf |= DLM_LKF_ALTCW;
224 else if (req == DLM_LOCK_CW)
225 lkf |= DLM_LKF_ALTPR;
226 else
227 BUG();
228 }
229
230 if (lkid != 0)
231 lkf |= DLM_LKF_CONVERT;
232
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000233 return lkf;
234}
235
Steven Whitehousea2457692012-01-20 10:38:36 +0000236static void gfs2_reverse_hex(char *c, u64 value)
237{
238 while (value) {
239 *c-- = hex_asc[value & 0x0f];
240 value >>= 4;
241 }
242}
243
Steven Whitehouse921169c2010-11-29 12:50:38 +0000244static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
245 unsigned int flags)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000246{
247 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000248 int req;
249 u32 lkf;
Steven Whitehousea2457692012-01-20 10:38:36 +0000250 char strname[GDLM_STRNAME_BYTES] = "";
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000251
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000252 req = make_mode(req_state);
253 lkf = make_flags(gl->gl_lksb.sb_lkid, flags, req);
Steven Whitehousea2457692012-01-20 10:38:36 +0000254 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
255 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
256 if (gl->gl_lksb.sb_lkid) {
257 gfs2_update_request_times(gl);
258 } else {
259 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
260 strname[GDLM_STRNAME_BYTES - 1] = '\0';
261 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
262 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
263 gl->gl_dstamp = ktime_get_real();
264 }
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000265 /*
266 * Submit the actual lock request.
267 */
268
Steven Whitehousea2457692012-01-20 10:38:36 +0000269 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
Steven Whitehouse921169c2010-11-29 12:50:38 +0000270 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000271}
272
Steven Whitehousebc015cb2011-01-19 09:30:01 +0000273static void gdlm_put_lock(struct gfs2_glock *gl)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000274{
Steven Whitehousee4027462010-01-25 11:20:19 +0000275 struct gfs2_sbd *sdp = gl->gl_sbd;
276 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000277 int error;
278
279 if (gl->gl_lksb.sb_lkid == 0) {
Steven Whitehousefc0e38d2011-03-09 10:58:04 +0000280 gfs2_glock_free(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000281 return;
282 }
283
Steven Whitehousea2457692012-01-20 10:38:36 +0000284 clear_bit(GLF_BLOCKING, &gl->gl_flags);
285 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
286 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
287 gfs2_update_request_times(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000288 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
289 NULL, gl);
290 if (error) {
291 printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
292 gl->gl_name.ln_type,
293 (unsigned long long)gl->gl_name.ln_number, error);
294 return;
295 }
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000296}
297
298static void gdlm_cancel(struct gfs2_glock *gl)
299{
300 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
301 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
302}
303
David Teiglande0c2a9a2012-01-09 17:18:05 -0500304/*
305 * dlm/gfs2 recovery coordination using dlm_recover callbacks
306 *
307 * 1. dlm_controld sees lockspace members change
308 * 2. dlm_controld blocks dlm-kernel locking activity
309 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
310 * 4. dlm_controld starts and finishes its own user level recovery
311 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
312 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
313 * 7. dlm_recoverd does its own lock recovery
314 * 8. dlm_recoverd unblocks dlm-kernel locking activity
315 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
316 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
317 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
318 * 12. gfs2_recover dequeues and recovers journals of failed nodes
319 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
320 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
321 * 15. gfs2_control unblocks normal locking when all journals are recovered
322 *
323 * - failures during recovery
324 *
325 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
326 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
327 * recovering for a prior failure. gfs2_control needs a way to detect
328 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
329 * the recover_block and recover_start values.
330 *
331 * recover_done() provides a new lockspace generation number each time it
332 * is called (step 9). This generation number is saved as recover_start.
333 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
334 * recover_block = recover_start. So, while recover_block is equal to
335 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
336 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
337 *
338 * - more specific gfs2 steps in sequence above
339 *
340 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
341 * 6. recover_slot records any failed jids (maybe none)
342 * 9. recover_done sets recover_start = new generation number
343 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
344 * 12. gfs2_recover does journal recoveries for failed jids identified above
345 * 14. gfs2_control clears control_lock lvb bits for recovered jids
346 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
347 * again) then do nothing, otherwise if recover_start > recover_block
348 * then clear BLOCK_LOCKS.
349 *
350 * - parallel recovery steps across all nodes
351 *
352 * All nodes attempt to update the control_lock lvb with the new generation
353 * number and jid bits, but only the first to get the control_lock EX will
354 * do so; others will see that it's already done (lvb already contains new
355 * generation number.)
356 *
357 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
358 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
359 * . One node gets control_lock first and writes the lvb, others see it's done
360 * . All nodes attempt to recover jids for which they see control_lock bits set
361 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
362 * . All nodes will eventually see all lvb bits clear and unblock locks
363 *
364 * - is there a problem with clearing an lvb bit that should be set
365 * and missing a journal recovery?
366 *
367 * 1. jid fails
368 * 2. lvb bit set for step 1
369 * 3. jid recovered for step 1
370 * 4. jid taken again (new mount)
371 * 5. jid fails (for step 4)
372 * 6. lvb bit set for step 5 (will already be set)
373 * 7. lvb bit cleared for step 3
374 *
375 * This is not a problem because the failure in step 5 does not
376 * require recovery, because the mount in step 4 could not have
377 * progressed far enough to unblock locks and access the fs. The
378 * control_mount() function waits for all recoveries to be complete
379 * for the latest lockspace generation before ever unblocking locks
380 * and returning. The mount in step 4 waits until the recovery in
381 * step 1 is done.
382 *
383 * - special case of first mounter: first node to mount the fs
384 *
385 * The first node to mount a gfs2 fs needs to check all the journals
386 * and recover any that need recovery before other nodes are allowed
387 * to mount the fs. (Others may begin mounting, but they must wait
388 * for the first mounter to be done before taking locks on the fs
389 * or accessing the fs.) This has two parts:
390 *
391 * 1. The mounted_lock tells a node it's the first to mount the fs.
392 * Each node holds the mounted_lock in PR while it's mounted.
393 * Each node tries to acquire the mounted_lock in EX when it mounts.
394 * If a node is granted the mounted_lock EX it means there are no
395 * other mounted nodes (no PR locks exist), and it is the first mounter.
396 * The mounted_lock is demoted to PR when first recovery is done, so
397 * others will fail to get an EX lock, but will get a PR lock.
398 *
399 * 2. The control_lock blocks others in control_mount() while the first
400 * mounter is doing first mount recovery of all journals.
401 * A mounting node needs to acquire control_lock in EX mode before
402 * it can proceed. The first mounter holds control_lock in EX while doing
403 * the first mount recovery, blocking mounts from other nodes, then demotes
404 * control_lock to NL when it's done (others_may_mount/first_done),
405 * allowing other nodes to continue mounting.
406 *
407 * first mounter:
408 * control_lock EX/NOQUEUE success
409 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
410 * set first=1
411 * do first mounter recovery
412 * mounted_lock EX->PR
413 * control_lock EX->NL, write lvb generation
414 *
415 * other mounter:
416 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
417 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
418 * mounted_lock PR/NOQUEUE success
419 * read lvb generation
420 * control_lock EX->NL
421 * set first=0
422 *
423 * - mount during recovery
424 *
425 * If a node mounts while others are doing recovery (not first mounter),
426 * the mounting node will get its initial recover_done() callback without
427 * having seen any previous failures/callbacks.
428 *
429 * It must wait for all recoveries preceding its mount to be finished
430 * before it unblocks locks. It does this by repeating the "other mounter"
431 * steps above until the lvb generation number is >= its mount generation
432 * number (from initial recover_done) and all lvb bits are clear.
433 *
434 * - control_lock lvb format
435 *
436 * 4 bytes generation number: the latest dlm lockspace generation number
437 * from recover_done callback. Indicates the jid bitmap has been updated
438 * to reflect all slot failures through that generation.
439 * 4 bytes unused.
440 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
441 * that jid N needs recovery.
442 */
443
444#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
445
446static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
447 char *lvb_bits)
448{
449 uint32_t gen;
450 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
451 memcpy(&gen, lvb_bits, sizeof(uint32_t));
452 *lvb_gen = le32_to_cpu(gen);
453}
454
455static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
456 char *lvb_bits)
457{
458 uint32_t gen;
459 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
460 gen = cpu_to_le32(lvb_gen);
461 memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
462}
463
464static int all_jid_bits_clear(char *lvb)
465{
466 int i;
467 for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) {
468 if (lvb[i])
469 return 0;
470 }
471 return 1;
472}
473
474static void sync_wait_cb(void *arg)
475{
476 struct lm_lockstruct *ls = arg;
477 complete(&ls->ls_sync_wait);
478}
479
480static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000481{
482 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
483 int error;
484
David Teiglande0c2a9a2012-01-09 17:18:05 -0500485 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
486 if (error) {
487 fs_err(sdp, "%s lkid %x error %d\n",
488 name, lksb->sb_lkid, error);
489 return error;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000490 }
491
David Teiglande0c2a9a2012-01-09 17:18:05 -0500492 wait_for_completion(&ls->ls_sync_wait);
493
494 if (lksb->sb_status != -DLM_EUNLOCK) {
495 fs_err(sdp, "%s lkid %x status %d\n",
496 name, lksb->sb_lkid, lksb->sb_status);
497 return -1;
498 }
499 return 0;
500}
501
502static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
503 unsigned int num, struct dlm_lksb *lksb, char *name)
504{
505 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
506 char strname[GDLM_STRNAME_BYTES];
507 int error, status;
508
509 memset(strname, 0, GDLM_STRNAME_BYTES);
510 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
511
512 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
513 strname, GDLM_STRNAME_BYTES - 1,
514 0, sync_wait_cb, ls, NULL);
515 if (error) {
516 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
517 name, lksb->sb_lkid, flags, mode, error);
518 return error;
519 }
520
521 wait_for_completion(&ls->ls_sync_wait);
522
523 status = lksb->sb_status;
524
525 if (status && status != -EAGAIN) {
526 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
527 name, lksb->sb_lkid, flags, mode, status);
528 }
529
530 return status;
531}
532
533static int mounted_unlock(struct gfs2_sbd *sdp)
534{
535 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
536 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
537}
538
539static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
540{
541 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
542 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
543 &ls->ls_mounted_lksb, "mounted_lock");
544}
545
546static int control_unlock(struct gfs2_sbd *sdp)
547{
548 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
549 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
550}
551
552static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
553{
554 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
555 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
556 &ls->ls_control_lksb, "control_lock");
557}
558
559static void gfs2_control_func(struct work_struct *work)
560{
561 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
562 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
563 char lvb_bits[GDLM_LVB_SIZE];
564 uint32_t block_gen, start_gen, lvb_gen, flags;
565 int recover_set = 0;
566 int write_lvb = 0;
567 int recover_size;
568 int i, error;
569
570 spin_lock(&ls->ls_recover_spin);
571 /*
572 * No MOUNT_DONE means we're still mounting; control_mount()
573 * will set this flag, after which this thread will take over
574 * all further clearing of BLOCK_LOCKS.
575 *
576 * FIRST_MOUNT means this node is doing first mounter recovery,
577 * for which recovery control is handled by
578 * control_mount()/control_first_done(), not this thread.
579 */
580 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
581 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
582 spin_unlock(&ls->ls_recover_spin);
583 return;
584 }
585 block_gen = ls->ls_recover_block;
586 start_gen = ls->ls_recover_start;
587 spin_unlock(&ls->ls_recover_spin);
588
589 /*
590 * Equal block_gen and start_gen implies we are between
591 * recover_prep and recover_done callbacks, which means
592 * dlm recovery is in progress and dlm locking is blocked.
593 * There's no point trying to do any work until recover_done.
594 */
595
596 if (block_gen == start_gen)
597 return;
598
599 /*
600 * Propagate recover_submit[] and recover_result[] to lvb:
601 * dlm_recoverd adds to recover_submit[] jids needing recovery
602 * gfs2_recover adds to recover_result[] journal recovery results
603 *
604 * set lvb bit for jids in recover_submit[] if the lvb has not
605 * yet been updated for the generation of the failure
606 *
607 * clear lvb bit for jids in recover_result[] if the result of
608 * the journal recovery is SUCCESS
609 */
610
611 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
612 if (error) {
613 fs_err(sdp, "control lock EX error %d\n", error);
614 return;
615 }
616
617 control_lvb_read(ls, &lvb_gen, lvb_bits);
618
619 spin_lock(&ls->ls_recover_spin);
620 if (block_gen != ls->ls_recover_block ||
621 start_gen != ls->ls_recover_start) {
622 fs_info(sdp, "recover generation %u block1 %u %u\n",
623 start_gen, block_gen, ls->ls_recover_block);
624 spin_unlock(&ls->ls_recover_spin);
625 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
626 return;
627 }
628
629 recover_size = ls->ls_recover_size;
630
631 if (lvb_gen <= start_gen) {
632 /*
633 * Clear lvb bits for jids we've successfully recovered.
634 * Because all nodes attempt to recover failed journals,
635 * a journal can be recovered multiple times successfully
636 * in succession. Only the first will really do recovery,
637 * the others find it clean, but still report a successful
638 * recovery. So, another node may have already recovered
639 * the jid and cleared the lvb bit for it.
640 */
641 for (i = 0; i < recover_size; i++) {
642 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
643 continue;
644
645 ls->ls_recover_result[i] = 0;
646
647 if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET))
648 continue;
649
650 __clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
651 write_lvb = 1;
652 }
653 }
654
655 if (lvb_gen == start_gen) {
656 /*
657 * Failed slots before start_gen are already set in lvb.
658 */
659 for (i = 0; i < recover_size; i++) {
660 if (!ls->ls_recover_submit[i])
661 continue;
662 if (ls->ls_recover_submit[i] < lvb_gen)
663 ls->ls_recover_submit[i] = 0;
664 }
665 } else if (lvb_gen < start_gen) {
666 /*
667 * Failed slots before start_gen are not yet set in lvb.
668 */
669 for (i = 0; i < recover_size; i++) {
670 if (!ls->ls_recover_submit[i])
671 continue;
672 if (ls->ls_recover_submit[i] < start_gen) {
673 ls->ls_recover_submit[i] = 0;
674 __set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
675 }
676 }
677 /* even if there are no bits to set, we need to write the
678 latest generation to the lvb */
679 write_lvb = 1;
680 } else {
681 /*
682 * we should be getting a recover_done() for lvb_gen soon
683 */
684 }
685 spin_unlock(&ls->ls_recover_spin);
686
687 if (write_lvb) {
688 control_lvb_write(ls, start_gen, lvb_bits);
689 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
690 } else {
691 flags = DLM_LKF_CONVERT;
692 }
693
694 error = control_lock(sdp, DLM_LOCK_NL, flags);
695 if (error) {
696 fs_err(sdp, "control lock NL error %d\n", error);
697 return;
698 }
699
700 /*
701 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
702 * and clear a jid bit in the lvb if the recovery is a success.
703 * Eventually all journals will be recovered, all jid bits will
704 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
705 */
706
707 for (i = 0; i < recover_size; i++) {
708 if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) {
709 fs_info(sdp, "recover generation %u jid %d\n",
710 start_gen, i);
711 gfs2_recover_set(sdp, i);
712 recover_set++;
713 }
714 }
715 if (recover_set)
716 return;
717
718 /*
719 * No more jid bits set in lvb, all recovery is done, unblock locks
720 * (unless a new recover_prep callback has occured blocking locks
721 * again while working above)
722 */
723
724 spin_lock(&ls->ls_recover_spin);
725 if (ls->ls_recover_block == block_gen &&
726 ls->ls_recover_start == start_gen) {
727 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
728 spin_unlock(&ls->ls_recover_spin);
729 fs_info(sdp, "recover generation %u done\n", start_gen);
730 gfs2_glock_thaw(sdp);
731 } else {
732 fs_info(sdp, "recover generation %u block2 %u %u\n",
733 start_gen, block_gen, ls->ls_recover_block);
734 spin_unlock(&ls->ls_recover_spin);
735 }
736}
737
738static int control_mount(struct gfs2_sbd *sdp)
739{
740 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
741 char lvb_bits[GDLM_LVB_SIZE];
742 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
743 int mounted_mode;
744 int retries = 0;
745 int error;
746
747 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
748 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
749 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
750 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
751 init_completion(&ls->ls_sync_wait);
752
753 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
754
755 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
756 if (error) {
757 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
758 return error;
759 }
760
761 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
762 if (error) {
763 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
764 control_unlock(sdp);
765 return error;
766 }
767 mounted_mode = DLM_LOCK_NL;
768
769restart:
770 if (retries++ && signal_pending(current)) {
771 error = -EINTR;
772 goto fail;
773 }
774
775 /*
776 * We always start with both locks in NL. control_lock is
777 * demoted to NL below so we don't need to do it here.
778 */
779
780 if (mounted_mode != DLM_LOCK_NL) {
781 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
782 if (error)
783 goto fail;
784 mounted_mode = DLM_LOCK_NL;
785 }
786
787 /*
788 * Other nodes need to do some work in dlm recovery and gfs2_control
789 * before the recover_done and control_lock will be ready for us below.
790 * A delay here is not required but often avoids having to retry.
791 */
792
793 msleep_interruptible(500);
794
795 /*
796 * Acquire control_lock in EX and mounted_lock in either EX or PR.
797 * control_lock lvb keeps track of any pending journal recoveries.
798 * mounted_lock indicates if any other nodes have the fs mounted.
799 */
800
801 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
802 if (error == -EAGAIN) {
803 goto restart;
804 } else if (error) {
805 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
806 goto fail;
807 }
808
809 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
810 if (!error) {
811 mounted_mode = DLM_LOCK_EX;
812 goto locks_done;
813 } else if (error != -EAGAIN) {
814 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
815 goto fail;
816 }
817
818 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
819 if (!error) {
820 mounted_mode = DLM_LOCK_PR;
821 goto locks_done;
822 } else {
823 /* not even -EAGAIN should happen here */
824 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
825 goto fail;
826 }
827
828locks_done:
829 /*
830 * If we got both locks above in EX, then we're the first mounter.
831 * If not, then we need to wait for the control_lock lvb to be
832 * updated by other mounted nodes to reflect our mount generation.
833 *
834 * In simple first mounter cases, first mounter will see zero lvb_gen,
835 * but in cases where all existing nodes leave/fail before mounting
836 * nodes finish control_mount, then all nodes will be mounting and
837 * lvb_gen will be non-zero.
838 */
839
840 control_lvb_read(ls, &lvb_gen, lvb_bits);
841
842 if (lvb_gen == 0xFFFFFFFF) {
843 /* special value to force mount attempts to fail */
844 fs_err(sdp, "control_mount control_lock disabled\n");
845 error = -EINVAL;
846 goto fail;
847 }
848
849 if (mounted_mode == DLM_LOCK_EX) {
850 /* first mounter, keep both EX while doing first recovery */
851 spin_lock(&ls->ls_recover_spin);
852 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
853 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
854 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
855 spin_unlock(&ls->ls_recover_spin);
856 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
857 return 0;
858 }
859
860 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000861 if (error)
David Teiglande0c2a9a2012-01-09 17:18:05 -0500862 goto fail;
863
864 /*
865 * We are not first mounter, now we need to wait for the control_lock
866 * lvb generation to be >= the generation from our first recover_done
867 * and all lvb bits to be clear (no pending journal recoveries.)
868 */
869
870 if (!all_jid_bits_clear(lvb_bits)) {
871 /* journals need recovery, wait until all are clear */
872 fs_info(sdp, "control_mount wait for journal recovery\n");
873 goto restart;
874 }
875
876 spin_lock(&ls->ls_recover_spin);
877 block_gen = ls->ls_recover_block;
878 start_gen = ls->ls_recover_start;
879 mount_gen = ls->ls_recover_mount;
880
881 if (lvb_gen < mount_gen) {
882 /* wait for mounted nodes to update control_lock lvb to our
883 generation, which might include new recovery bits set */
884 fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
885 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
886 lvb_gen, ls->ls_recover_flags);
887 spin_unlock(&ls->ls_recover_spin);
888 goto restart;
889 }
890
891 if (lvb_gen != start_gen) {
892 /* wait for mounted nodes to update control_lock lvb to the
893 latest recovery generation */
894 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
895 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
896 lvb_gen, ls->ls_recover_flags);
897 spin_unlock(&ls->ls_recover_spin);
898 goto restart;
899 }
900
901 if (block_gen == start_gen) {
902 /* dlm recovery in progress, wait for it to finish */
903 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
904 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
905 lvb_gen, ls->ls_recover_flags);
906 spin_unlock(&ls->ls_recover_spin);
907 goto restart;
908 }
909
910 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
911 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
912 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
913 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
914 spin_unlock(&ls->ls_recover_spin);
915 return 0;
916
917fail:
918 mounted_unlock(sdp);
919 control_unlock(sdp);
920 return error;
921}
922
923static int dlm_recovery_wait(void *word)
924{
925 schedule();
926 return 0;
927}
928
929static int control_first_done(struct gfs2_sbd *sdp)
930{
931 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
932 char lvb_bits[GDLM_LVB_SIZE];
933 uint32_t start_gen, block_gen;
934 int error;
935
936restart:
937 spin_lock(&ls->ls_recover_spin);
938 start_gen = ls->ls_recover_start;
939 block_gen = ls->ls_recover_block;
940
941 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
942 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
943 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
944 /* sanity check, should not happen */
945 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
946 start_gen, block_gen, ls->ls_recover_flags);
947 spin_unlock(&ls->ls_recover_spin);
948 control_unlock(sdp);
949 return -1;
950 }
951
952 if (start_gen == block_gen) {
953 /*
954 * Wait for the end of a dlm recovery cycle to switch from
955 * first mounter recovery. We can ignore any recover_slot
956 * callbacks between the recover_prep and next recover_done
957 * because we are still the first mounter and any failed nodes
958 * have not fully mounted, so they don't need recovery.
959 */
960 spin_unlock(&ls->ls_recover_spin);
961 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
962
963 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
964 dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
965 goto restart;
966 }
967
968 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
969 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
970 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
971 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
972 spin_unlock(&ls->ls_recover_spin);
973
974 memset(lvb_bits, 0, sizeof(lvb_bits));
975 control_lvb_write(ls, start_gen, lvb_bits);
976
977 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
978 if (error)
979 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
980
981 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
982 if (error)
983 fs_err(sdp, "control_first_done control NL error %d\n", error);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000984
985 return error;
986}
987
David Teiglande0c2a9a2012-01-09 17:18:05 -0500988/*
989 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
990 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
991 * gfs2 jids start at 0, so jid = slot - 1)
992 */
993
994#define RECOVER_SIZE_INC 16
995
996static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
997 int num_slots)
998{
999 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1000 uint32_t *submit = NULL;
1001 uint32_t *result = NULL;
1002 uint32_t old_size, new_size;
1003 int i, max_jid;
1004
1005 max_jid = 0;
1006 for (i = 0; i < num_slots; i++) {
1007 if (max_jid < slots[i].slot - 1)
1008 max_jid = slots[i].slot - 1;
1009 }
1010
1011 old_size = ls->ls_recover_size;
1012
1013 if (old_size >= max_jid + 1)
1014 return 0;
1015
1016 new_size = old_size + RECOVER_SIZE_INC;
1017
1018 submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1019 result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1020 if (!submit || !result) {
1021 kfree(submit);
1022 kfree(result);
1023 return -ENOMEM;
1024 }
1025
1026 spin_lock(&ls->ls_recover_spin);
1027 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1028 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1029 kfree(ls->ls_recover_submit);
1030 kfree(ls->ls_recover_result);
1031 ls->ls_recover_submit = submit;
1032 ls->ls_recover_result = result;
1033 ls->ls_recover_size = new_size;
1034 spin_unlock(&ls->ls_recover_spin);
1035 return 0;
1036}
1037
1038static void free_recover_size(struct lm_lockstruct *ls)
1039{
1040 kfree(ls->ls_recover_submit);
1041 kfree(ls->ls_recover_result);
1042 ls->ls_recover_submit = NULL;
1043 ls->ls_recover_result = NULL;
1044 ls->ls_recover_size = 0;
1045}
1046
1047/* dlm calls before it does lock recovery */
1048
1049static void gdlm_recover_prep(void *arg)
1050{
1051 struct gfs2_sbd *sdp = arg;
1052 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1053
1054 spin_lock(&ls->ls_recover_spin);
1055 ls->ls_recover_block = ls->ls_recover_start;
1056 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1057
1058 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1059 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1060 spin_unlock(&ls->ls_recover_spin);
1061 return;
1062 }
1063 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1064 spin_unlock(&ls->ls_recover_spin);
1065}
1066
1067/* dlm calls after recover_prep has been completed on all lockspace members;
1068 identifies slot/jid of failed member */
1069
1070static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1071{
1072 struct gfs2_sbd *sdp = arg;
1073 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1074 int jid = slot->slot - 1;
1075
1076 spin_lock(&ls->ls_recover_spin);
1077 if (ls->ls_recover_size < jid + 1) {
1078 fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1079 jid, ls->ls_recover_block, ls->ls_recover_size);
1080 spin_unlock(&ls->ls_recover_spin);
1081 return;
1082 }
1083
1084 if (ls->ls_recover_submit[jid]) {
1085 fs_info(sdp, "recover_slot jid %d gen %u prev %u",
1086 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1087 }
1088 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1089 spin_unlock(&ls->ls_recover_spin);
1090}
1091
1092/* dlm calls after recover_slot and after it completes lock recovery */
1093
1094static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1095 int our_slot, uint32_t generation)
1096{
1097 struct gfs2_sbd *sdp = arg;
1098 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1099
1100 /* ensure the ls jid arrays are large enough */
1101 set_recover_size(sdp, slots, num_slots);
1102
1103 spin_lock(&ls->ls_recover_spin);
1104 ls->ls_recover_start = generation;
1105
1106 if (!ls->ls_recover_mount) {
1107 ls->ls_recover_mount = generation;
1108 ls->ls_jid = our_slot - 1;
1109 }
1110
1111 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1112 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1113
1114 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1115 smp_mb__after_clear_bit();
1116 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1117 spin_unlock(&ls->ls_recover_spin);
1118}
1119
1120/* gfs2_recover thread has a journal recovery result */
1121
1122static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1123 unsigned int result)
1124{
1125 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1126
1127 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1128 return;
1129
1130 /* don't care about the recovery of own journal during mount */
1131 if (jid == ls->ls_jid)
1132 return;
1133
1134 spin_lock(&ls->ls_recover_spin);
1135 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1136 spin_unlock(&ls->ls_recover_spin);
1137 return;
1138 }
1139 if (ls->ls_recover_size < jid + 1) {
1140 fs_err(sdp, "recovery_result jid %d short size %d",
1141 jid, ls->ls_recover_size);
1142 spin_unlock(&ls->ls_recover_spin);
1143 return;
1144 }
1145
1146 fs_info(sdp, "recover jid %d result %s\n", jid,
1147 result == LM_RD_GAVEUP ? "busy" : "success");
1148
1149 ls->ls_recover_result[jid] = result;
1150
1151 /* GAVEUP means another node is recovering the journal; delay our
1152 next attempt to recover it, to give the other node a chance to
1153 finish before trying again */
1154
1155 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1156 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1157 result == LM_RD_GAVEUP ? HZ : 0);
1158 spin_unlock(&ls->ls_recover_spin);
1159}
1160
1161const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1162 .recover_prep = gdlm_recover_prep,
1163 .recover_slot = gdlm_recover_slot,
1164 .recover_done = gdlm_recover_done,
1165};
1166
1167static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1168{
1169 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1170 char cluster[GFS2_LOCKNAME_LEN];
1171 const char *fsname;
1172 uint32_t flags;
1173 int error, ops_result;
1174
1175 /*
1176 * initialize everything
1177 */
1178
1179 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1180 spin_lock_init(&ls->ls_recover_spin);
1181 ls->ls_recover_flags = 0;
1182 ls->ls_recover_mount = 0;
1183 ls->ls_recover_start = 0;
1184 ls->ls_recover_block = 0;
1185 ls->ls_recover_size = 0;
1186 ls->ls_recover_submit = NULL;
1187 ls->ls_recover_result = NULL;
1188
1189 error = set_recover_size(sdp, NULL, 0);
1190 if (error)
1191 goto fail;
1192
1193 /*
1194 * prepare dlm_new_lockspace args
1195 */
1196
1197 fsname = strchr(table, ':');
1198 if (!fsname) {
1199 fs_info(sdp, "no fsname found\n");
1200 error = -EINVAL;
1201 goto fail_free;
1202 }
1203 memset(cluster, 0, sizeof(cluster));
1204 memcpy(cluster, table, strlen(table) - strlen(fsname));
1205 fsname++;
1206
1207 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1208 if (ls->ls_nodir)
1209 flags |= DLM_LSFL_NODIR;
1210
1211 /*
1212 * create/join lockspace
1213 */
1214
1215 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1216 &gdlm_lockspace_ops, sdp, &ops_result,
1217 &ls->ls_dlm);
1218 if (error) {
1219 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1220 goto fail_free;
1221 }
1222
1223 if (ops_result < 0) {
1224 /*
1225 * dlm does not support ops callbacks,
1226 * old dlm_controld/gfs_controld are used, try without ops.
1227 */
1228 fs_info(sdp, "dlm lockspace ops not used\n");
1229 free_recover_size(ls);
1230 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1231 return 0;
1232 }
1233
1234 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1235 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1236 error = -EINVAL;
1237 goto fail_release;
1238 }
1239
1240 /*
1241 * control_mount() uses control_lock to determine first mounter,
1242 * and for later mounts, waits for any recoveries to be cleared.
1243 */
1244
1245 error = control_mount(sdp);
1246 if (error) {
1247 fs_err(sdp, "mount control error %d\n", error);
1248 goto fail_release;
1249 }
1250
1251 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1252 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1253 smp_mb__after_clear_bit();
1254 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1255 return 0;
1256
1257fail_release:
1258 dlm_release_lockspace(ls->ls_dlm, 2);
1259fail_free:
1260 free_recover_size(ls);
1261fail:
1262 return error;
1263}
1264
1265static void gdlm_first_done(struct gfs2_sbd *sdp)
1266{
1267 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1268 int error;
1269
1270 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1271 return;
1272
1273 error = control_first_done(sdp);
1274 if (error)
1275 fs_err(sdp, "mount first_done error %d\n", error);
1276}
1277
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001278static void gdlm_unmount(struct gfs2_sbd *sdp)
1279{
1280 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1281
David Teiglande0c2a9a2012-01-09 17:18:05 -05001282 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1283 goto release;
1284
1285 /* wait for gfs2_control_wq to be done with this mount */
1286
1287 spin_lock(&ls->ls_recover_spin);
1288 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1289 spin_unlock(&ls->ls_recover_spin);
1290 flush_delayed_work_sync(&sdp->sd_control_work);
1291
1292 /* mounted_lock and control_lock will be purged in dlm recovery */
1293release:
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001294 if (ls->ls_dlm) {
1295 dlm_release_lockspace(ls->ls_dlm, 2);
1296 ls->ls_dlm = NULL;
1297 }
David Teiglande0c2a9a2012-01-09 17:18:05 -05001298
1299 free_recover_size(ls);
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001300}
1301
1302static const match_table_t dlm_tokens = {
1303 { Opt_jid, "jid=%d"},
1304 { Opt_id, "id=%d"},
1305 { Opt_first, "first=%d"},
1306 { Opt_nodir, "nodir=%d"},
1307 { Opt_err, NULL },
1308};
1309
1310const struct lm_lockops gfs2_dlm_ops = {
1311 .lm_proto_name = "lock_dlm",
1312 .lm_mount = gdlm_mount,
David Teiglande0c2a9a2012-01-09 17:18:05 -05001313 .lm_first_done = gdlm_first_done,
1314 .lm_recovery_result = gdlm_recovery_result,
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001315 .lm_unmount = gdlm_unmount,
1316 .lm_put_lock = gdlm_put_lock,
1317 .lm_lock = gdlm_lock,
1318 .lm_cancel = gdlm_cancel,
1319 .lm_tokens = &dlm_tokens,
1320};
1321