Christian Hohnstaedt | 81bef01 | 2008-06-25 14:38:47 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Intel IXP4xx NPE-C crypto driver |
| 3 | * |
| 4 | * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of version 2 of the GNU General Public License |
| 8 | * as published by the Free Software Foundation. |
| 9 | * |
| 10 | */ |
| 11 | |
| 12 | #include <linux/platform_device.h> |
| 13 | #include <linux/dma-mapping.h> |
| 14 | #include <linux/dmapool.h> |
| 15 | #include <linux/crypto.h> |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/rtnetlink.h> |
| 18 | #include <linux/interrupt.h> |
| 19 | #include <linux/spinlock.h> |
| 20 | |
| 21 | #include <crypto/ctr.h> |
| 22 | #include <crypto/des.h> |
| 23 | #include <crypto/aes.h> |
| 24 | #include <crypto/sha.h> |
| 25 | #include <crypto/algapi.h> |
| 26 | #include <crypto/aead.h> |
| 27 | #include <crypto/authenc.h> |
| 28 | #include <crypto/scatterwalk.h> |
| 29 | |
Russell King | a09e64f | 2008-08-05 16:14:15 +0100 | [diff] [blame] | 30 | #include <mach/npe.h> |
| 31 | #include <mach/qmgr.h> |
Christian Hohnstaedt | 81bef01 | 2008-06-25 14:38:47 +0800 | [diff] [blame] | 32 | |
| 33 | #define MAX_KEYLEN 32 |
| 34 | |
| 35 | /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */ |
| 36 | #define NPE_CTX_LEN 80 |
| 37 | #define AES_BLOCK128 16 |
| 38 | |
| 39 | #define NPE_OP_HASH_VERIFY 0x01 |
| 40 | #define NPE_OP_CCM_ENABLE 0x04 |
| 41 | #define NPE_OP_CRYPT_ENABLE 0x08 |
| 42 | #define NPE_OP_HASH_ENABLE 0x10 |
| 43 | #define NPE_OP_NOT_IN_PLACE 0x20 |
| 44 | #define NPE_OP_HMAC_DISABLE 0x40 |
| 45 | #define NPE_OP_CRYPT_ENCRYPT 0x80 |
| 46 | |
| 47 | #define NPE_OP_CCM_GEN_MIC 0xcc |
| 48 | #define NPE_OP_HASH_GEN_ICV 0x50 |
| 49 | #define NPE_OP_ENC_GEN_KEY 0xc9 |
| 50 | |
| 51 | #define MOD_ECB 0x0000 |
| 52 | #define MOD_CTR 0x1000 |
| 53 | #define MOD_CBC_ENC 0x2000 |
| 54 | #define MOD_CBC_DEC 0x3000 |
| 55 | #define MOD_CCM_ENC 0x4000 |
| 56 | #define MOD_CCM_DEC 0x5000 |
| 57 | |
| 58 | #define KEYLEN_128 4 |
| 59 | #define KEYLEN_192 6 |
| 60 | #define KEYLEN_256 8 |
| 61 | |
| 62 | #define CIPH_DECR 0x0000 |
| 63 | #define CIPH_ENCR 0x0400 |
| 64 | |
| 65 | #define MOD_DES 0x0000 |
| 66 | #define MOD_TDEA2 0x0100 |
| 67 | #define MOD_3DES 0x0200 |
| 68 | #define MOD_AES 0x0800 |
| 69 | #define MOD_AES128 (0x0800 | KEYLEN_128) |
| 70 | #define MOD_AES192 (0x0900 | KEYLEN_192) |
| 71 | #define MOD_AES256 (0x0a00 | KEYLEN_256) |
| 72 | |
| 73 | #define MAX_IVLEN 16 |
| 74 | #define NPE_ID 2 /* NPE C */ |
| 75 | #define NPE_QLEN 16 |
| 76 | /* Space for registering when the first |
| 77 | * NPE_QLEN crypt_ctl are busy */ |
| 78 | #define NPE_QLEN_TOTAL 64 |
| 79 | |
| 80 | #define SEND_QID 29 |
| 81 | #define RECV_QID 30 |
| 82 | |
| 83 | #define CTL_FLAG_UNUSED 0x0000 |
| 84 | #define CTL_FLAG_USED 0x1000 |
| 85 | #define CTL_FLAG_PERFORM_ABLK 0x0001 |
| 86 | #define CTL_FLAG_GEN_ICV 0x0002 |
| 87 | #define CTL_FLAG_GEN_REVAES 0x0004 |
| 88 | #define CTL_FLAG_PERFORM_AEAD 0x0008 |
| 89 | #define CTL_FLAG_MASK 0x000f |
| 90 | |
| 91 | #define HMAC_IPAD_VALUE 0x36 |
| 92 | #define HMAC_OPAD_VALUE 0x5C |
| 93 | #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE |
| 94 | |
| 95 | #define MD5_DIGEST_SIZE 16 |
| 96 | |
| 97 | struct buffer_desc { |
| 98 | u32 phys_next; |
| 99 | u16 buf_len; |
| 100 | u16 pkt_len; |
| 101 | u32 phys_addr; |
| 102 | u32 __reserved[4]; |
| 103 | struct buffer_desc *next; |
| 104 | }; |
| 105 | |
| 106 | struct crypt_ctl { |
| 107 | u8 mode; /* NPE_OP_* operation mode */ |
| 108 | u8 init_len; |
| 109 | u16 reserved; |
| 110 | u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */ |
| 111 | u32 icv_rev_aes; /* icv or rev aes */ |
| 112 | u32 src_buf; |
| 113 | u32 dst_buf; |
| 114 | u16 auth_offs; /* Authentication start offset */ |
| 115 | u16 auth_len; /* Authentication data length */ |
| 116 | u16 crypt_offs; /* Cryption start offset */ |
| 117 | u16 crypt_len; /* Cryption data length */ |
| 118 | u32 aadAddr; /* Additional Auth Data Addr for CCM mode */ |
| 119 | u32 crypto_ctx; /* NPE Crypto Param structure address */ |
| 120 | |
| 121 | /* Used by Host: 4*4 bytes*/ |
| 122 | unsigned ctl_flags; |
| 123 | union { |
| 124 | struct ablkcipher_request *ablk_req; |
| 125 | struct aead_request *aead_req; |
| 126 | struct crypto_tfm *tfm; |
| 127 | } data; |
| 128 | struct buffer_desc *regist_buf; |
| 129 | u8 *regist_ptr; |
| 130 | }; |
| 131 | |
| 132 | struct ablk_ctx { |
| 133 | struct buffer_desc *src; |
| 134 | struct buffer_desc *dst; |
| 135 | unsigned src_nents; |
| 136 | unsigned dst_nents; |
| 137 | }; |
| 138 | |
| 139 | struct aead_ctx { |
| 140 | struct buffer_desc *buffer; |
| 141 | unsigned short assoc_nents; |
| 142 | unsigned short src_nents; |
| 143 | struct scatterlist ivlist; |
| 144 | /* used when the hmac is not on one sg entry */ |
| 145 | u8 *hmac_virt; |
| 146 | int encrypt; |
| 147 | }; |
| 148 | |
| 149 | struct ix_hash_algo { |
| 150 | u32 cfgword; |
| 151 | unsigned char *icv; |
| 152 | }; |
| 153 | |
| 154 | struct ix_sa_dir { |
| 155 | unsigned char *npe_ctx; |
| 156 | dma_addr_t npe_ctx_phys; |
| 157 | int npe_ctx_idx; |
| 158 | u8 npe_mode; |
| 159 | }; |
| 160 | |
| 161 | struct ixp_ctx { |
| 162 | struct ix_sa_dir encrypt; |
| 163 | struct ix_sa_dir decrypt; |
| 164 | int authkey_len; |
| 165 | u8 authkey[MAX_KEYLEN]; |
| 166 | int enckey_len; |
| 167 | u8 enckey[MAX_KEYLEN]; |
| 168 | u8 salt[MAX_IVLEN]; |
| 169 | u8 nonce[CTR_RFC3686_NONCE_SIZE]; |
| 170 | unsigned salted; |
| 171 | atomic_t configuring; |
| 172 | struct completion completion; |
| 173 | }; |
| 174 | |
| 175 | struct ixp_alg { |
| 176 | struct crypto_alg crypto; |
| 177 | const struct ix_hash_algo *hash; |
| 178 | u32 cfg_enc; |
| 179 | u32 cfg_dec; |
| 180 | |
| 181 | int registered; |
| 182 | }; |
| 183 | |
| 184 | static const struct ix_hash_algo hash_alg_md5 = { |
| 185 | .cfgword = 0xAA010004, |
| 186 | .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF" |
| 187 | "\xFE\xDC\xBA\x98\x76\x54\x32\x10", |
| 188 | }; |
| 189 | static const struct ix_hash_algo hash_alg_sha1 = { |
| 190 | .cfgword = 0x00000005, |
| 191 | .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA" |
| 192 | "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0", |
| 193 | }; |
| 194 | |
| 195 | static struct npe *npe_c; |
| 196 | static struct dma_pool *buffer_pool = NULL; |
| 197 | static struct dma_pool *ctx_pool = NULL; |
| 198 | |
| 199 | static struct crypt_ctl *crypt_virt = NULL; |
| 200 | static dma_addr_t crypt_phys; |
| 201 | |
| 202 | static int support_aes = 1; |
| 203 | |
| 204 | static void dev_release(struct device *dev) |
| 205 | { |
| 206 | return; |
| 207 | } |
| 208 | |
| 209 | #define DRIVER_NAME "ixp4xx_crypto" |
| 210 | static struct platform_device pseudo_dev = { |
| 211 | .name = DRIVER_NAME, |
| 212 | .id = 0, |
| 213 | .num_resources = 0, |
| 214 | .dev = { |
| 215 | .coherent_dma_mask = DMA_32BIT_MASK, |
| 216 | .release = dev_release, |
| 217 | } |
| 218 | }; |
| 219 | |
| 220 | static struct device *dev = &pseudo_dev.dev; |
| 221 | |
| 222 | static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt) |
| 223 | { |
| 224 | return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl); |
| 225 | } |
| 226 | |
| 227 | static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys) |
| 228 | { |
| 229 | return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl); |
| 230 | } |
| 231 | |
| 232 | static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm) |
| 233 | { |
| 234 | return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc; |
| 235 | } |
| 236 | |
| 237 | static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm) |
| 238 | { |
| 239 | return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec; |
| 240 | } |
| 241 | |
| 242 | static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm) |
| 243 | { |
| 244 | return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash; |
| 245 | } |
| 246 | |
| 247 | static int setup_crypt_desc(void) |
| 248 | { |
| 249 | BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64); |
| 250 | crypt_virt = dma_alloc_coherent(dev, |
| 251 | NPE_QLEN * sizeof(struct crypt_ctl), |
| 252 | &crypt_phys, GFP_KERNEL); |
| 253 | if (!crypt_virt) |
| 254 | return -ENOMEM; |
| 255 | memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl)); |
| 256 | return 0; |
| 257 | } |
| 258 | |
| 259 | static spinlock_t desc_lock; |
| 260 | static struct crypt_ctl *get_crypt_desc(void) |
| 261 | { |
| 262 | int i; |
| 263 | static int idx = 0; |
| 264 | unsigned long flags; |
| 265 | |
| 266 | spin_lock_irqsave(&desc_lock, flags); |
| 267 | |
| 268 | if (unlikely(!crypt_virt)) |
| 269 | setup_crypt_desc(); |
| 270 | if (unlikely(!crypt_virt)) { |
| 271 | spin_unlock_irqrestore(&desc_lock, flags); |
| 272 | return NULL; |
| 273 | } |
| 274 | i = idx; |
| 275 | if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { |
| 276 | if (++idx >= NPE_QLEN) |
| 277 | idx = 0; |
| 278 | crypt_virt[i].ctl_flags = CTL_FLAG_USED; |
| 279 | spin_unlock_irqrestore(&desc_lock, flags); |
| 280 | return crypt_virt +i; |
| 281 | } else { |
| 282 | spin_unlock_irqrestore(&desc_lock, flags); |
| 283 | return NULL; |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | static spinlock_t emerg_lock; |
| 288 | static struct crypt_ctl *get_crypt_desc_emerg(void) |
| 289 | { |
| 290 | int i; |
| 291 | static int idx = NPE_QLEN; |
| 292 | struct crypt_ctl *desc; |
| 293 | unsigned long flags; |
| 294 | |
| 295 | desc = get_crypt_desc(); |
| 296 | if (desc) |
| 297 | return desc; |
| 298 | if (unlikely(!crypt_virt)) |
| 299 | return NULL; |
| 300 | |
| 301 | spin_lock_irqsave(&emerg_lock, flags); |
| 302 | i = idx; |
| 303 | if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { |
| 304 | if (++idx >= NPE_QLEN_TOTAL) |
| 305 | idx = NPE_QLEN; |
| 306 | crypt_virt[i].ctl_flags = CTL_FLAG_USED; |
| 307 | spin_unlock_irqrestore(&emerg_lock, flags); |
| 308 | return crypt_virt +i; |
| 309 | } else { |
| 310 | spin_unlock_irqrestore(&emerg_lock, flags); |
| 311 | return NULL; |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | static void free_buf_chain(struct buffer_desc *buf, u32 phys) |
| 316 | { |
| 317 | while (buf) { |
| 318 | struct buffer_desc *buf1; |
| 319 | u32 phys1; |
| 320 | |
| 321 | buf1 = buf->next; |
| 322 | phys1 = buf->phys_next; |
| 323 | dma_pool_free(buffer_pool, buf, phys); |
| 324 | buf = buf1; |
| 325 | phys = phys1; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | static struct tasklet_struct crypto_done_tasklet; |
| 330 | |
| 331 | static void finish_scattered_hmac(struct crypt_ctl *crypt) |
| 332 | { |
| 333 | struct aead_request *req = crypt->data.aead_req; |
| 334 | struct aead_ctx *req_ctx = aead_request_ctx(req); |
| 335 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| 336 | int authsize = crypto_aead_authsize(tfm); |
| 337 | int decryptlen = req->cryptlen - authsize; |
| 338 | |
| 339 | if (req_ctx->encrypt) { |
| 340 | scatterwalk_map_and_copy(req_ctx->hmac_virt, |
| 341 | req->src, decryptlen, authsize, 1); |
| 342 | } |
| 343 | dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes); |
| 344 | } |
| 345 | |
| 346 | static void one_packet(dma_addr_t phys) |
| 347 | { |
| 348 | struct crypt_ctl *crypt; |
| 349 | struct ixp_ctx *ctx; |
| 350 | int failed; |
| 351 | enum dma_data_direction src_direction = DMA_BIDIRECTIONAL; |
| 352 | |
| 353 | failed = phys & 0x1 ? -EBADMSG : 0; |
| 354 | phys &= ~0x3; |
| 355 | crypt = crypt_phys2virt(phys); |
| 356 | |
| 357 | switch (crypt->ctl_flags & CTL_FLAG_MASK) { |
| 358 | case CTL_FLAG_PERFORM_AEAD: { |
| 359 | struct aead_request *req = crypt->data.aead_req; |
| 360 | struct aead_ctx *req_ctx = aead_request_ctx(req); |
| 361 | dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents, |
| 362 | DMA_TO_DEVICE); |
| 363 | dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL); |
| 364 | dma_unmap_sg(dev, req->src, req_ctx->src_nents, |
| 365 | DMA_BIDIRECTIONAL); |
| 366 | |
| 367 | free_buf_chain(req_ctx->buffer, crypt->src_buf); |
| 368 | if (req_ctx->hmac_virt) { |
| 369 | finish_scattered_hmac(crypt); |
| 370 | } |
| 371 | req->base.complete(&req->base, failed); |
| 372 | break; |
| 373 | } |
| 374 | case CTL_FLAG_PERFORM_ABLK: { |
| 375 | struct ablkcipher_request *req = crypt->data.ablk_req; |
| 376 | struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); |
| 377 | int nents; |
| 378 | if (req_ctx->dst) { |
| 379 | nents = req_ctx->dst_nents; |
| 380 | dma_unmap_sg(dev, req->dst, nents, DMA_FROM_DEVICE); |
| 381 | free_buf_chain(req_ctx->dst, crypt->dst_buf); |
| 382 | src_direction = DMA_TO_DEVICE; |
| 383 | } |
| 384 | nents = req_ctx->src_nents; |
| 385 | dma_unmap_sg(dev, req->src, nents, src_direction); |
| 386 | free_buf_chain(req_ctx->src, crypt->src_buf); |
| 387 | req->base.complete(&req->base, failed); |
| 388 | break; |
| 389 | } |
| 390 | case CTL_FLAG_GEN_ICV: |
| 391 | ctx = crypto_tfm_ctx(crypt->data.tfm); |
| 392 | dma_pool_free(ctx_pool, crypt->regist_ptr, |
| 393 | crypt->regist_buf->phys_addr); |
| 394 | dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf); |
| 395 | if (atomic_dec_and_test(&ctx->configuring)) |
| 396 | complete(&ctx->completion); |
| 397 | break; |
| 398 | case CTL_FLAG_GEN_REVAES: |
| 399 | ctx = crypto_tfm_ctx(crypt->data.tfm); |
| 400 | *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR); |
| 401 | if (atomic_dec_and_test(&ctx->configuring)) |
| 402 | complete(&ctx->completion); |
| 403 | break; |
| 404 | default: |
| 405 | BUG(); |
| 406 | } |
| 407 | crypt->ctl_flags = CTL_FLAG_UNUSED; |
| 408 | } |
| 409 | |
| 410 | static void irqhandler(void *_unused) |
| 411 | { |
| 412 | tasklet_schedule(&crypto_done_tasklet); |
| 413 | } |
| 414 | |
| 415 | static void crypto_done_action(unsigned long arg) |
| 416 | { |
| 417 | int i; |
| 418 | |
| 419 | for(i=0; i<4; i++) { |
| 420 | dma_addr_t phys = qmgr_get_entry(RECV_QID); |
| 421 | if (!phys) |
| 422 | return; |
| 423 | one_packet(phys); |
| 424 | } |
| 425 | tasklet_schedule(&crypto_done_tasklet); |
| 426 | } |
| 427 | |
| 428 | static int init_ixp_crypto(void) |
| 429 | { |
| 430 | int ret = -ENODEV; |
| 431 | |
| 432 | if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH | |
| 433 | IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) { |
| 434 | printk(KERN_ERR "ixp_crypto: No HW crypto available\n"); |
| 435 | return ret; |
| 436 | } |
| 437 | npe_c = npe_request(NPE_ID); |
| 438 | if (!npe_c) |
| 439 | return ret; |
| 440 | |
| 441 | if (!npe_running(npe_c)) { |
| 442 | npe_load_firmware(npe_c, npe_name(npe_c), dev); |
| 443 | } |
| 444 | |
| 445 | /* buffer_pool will also be used to sometimes store the hmac, |
| 446 | * so assure it is large enough |
| 447 | */ |
| 448 | BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc)); |
| 449 | buffer_pool = dma_pool_create("buffer", dev, |
| 450 | sizeof(struct buffer_desc), 32, 0); |
| 451 | ret = -ENOMEM; |
| 452 | if (!buffer_pool) { |
| 453 | goto err; |
| 454 | } |
| 455 | ctx_pool = dma_pool_create("context", dev, |
| 456 | NPE_CTX_LEN, 16, 0); |
| 457 | if (!ctx_pool) { |
| 458 | goto err; |
| 459 | } |
| 460 | ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0); |
| 461 | if (ret) |
| 462 | goto err; |
| 463 | ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0); |
| 464 | if (ret) { |
| 465 | qmgr_release_queue(SEND_QID); |
| 466 | goto err; |
| 467 | } |
| 468 | qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL); |
| 469 | tasklet_init(&crypto_done_tasklet, crypto_done_action, 0); |
| 470 | |
| 471 | qmgr_enable_irq(RECV_QID); |
| 472 | return 0; |
| 473 | err: |
| 474 | if (ctx_pool) |
| 475 | dma_pool_destroy(ctx_pool); |
| 476 | if (buffer_pool) |
| 477 | dma_pool_destroy(buffer_pool); |
| 478 | npe_release(npe_c); |
| 479 | return ret; |
| 480 | } |
| 481 | |
| 482 | static void release_ixp_crypto(void) |
| 483 | { |
| 484 | qmgr_disable_irq(RECV_QID); |
| 485 | tasklet_kill(&crypto_done_tasklet); |
| 486 | |
| 487 | qmgr_release_queue(SEND_QID); |
| 488 | qmgr_release_queue(RECV_QID); |
| 489 | |
| 490 | dma_pool_destroy(ctx_pool); |
| 491 | dma_pool_destroy(buffer_pool); |
| 492 | |
| 493 | npe_release(npe_c); |
| 494 | |
| 495 | if (crypt_virt) { |
| 496 | dma_free_coherent(dev, |
| 497 | NPE_QLEN_TOTAL * sizeof( struct crypt_ctl), |
| 498 | crypt_virt, crypt_phys); |
| 499 | } |
| 500 | return; |
| 501 | } |
| 502 | |
| 503 | static void reset_sa_dir(struct ix_sa_dir *dir) |
| 504 | { |
| 505 | memset(dir->npe_ctx, 0, NPE_CTX_LEN); |
| 506 | dir->npe_ctx_idx = 0; |
| 507 | dir->npe_mode = 0; |
| 508 | } |
| 509 | |
| 510 | static int init_sa_dir(struct ix_sa_dir *dir) |
| 511 | { |
| 512 | dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys); |
| 513 | if (!dir->npe_ctx) { |
| 514 | return -ENOMEM; |
| 515 | } |
| 516 | reset_sa_dir(dir); |
| 517 | return 0; |
| 518 | } |
| 519 | |
| 520 | static void free_sa_dir(struct ix_sa_dir *dir) |
| 521 | { |
| 522 | memset(dir->npe_ctx, 0, NPE_CTX_LEN); |
| 523 | dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys); |
| 524 | } |
| 525 | |
| 526 | static int init_tfm(struct crypto_tfm *tfm) |
| 527 | { |
| 528 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| 529 | int ret; |
| 530 | |
| 531 | atomic_set(&ctx->configuring, 0); |
| 532 | ret = init_sa_dir(&ctx->encrypt); |
| 533 | if (ret) |
| 534 | return ret; |
| 535 | ret = init_sa_dir(&ctx->decrypt); |
| 536 | if (ret) { |
| 537 | free_sa_dir(&ctx->encrypt); |
| 538 | } |
| 539 | return ret; |
| 540 | } |
| 541 | |
| 542 | static int init_tfm_ablk(struct crypto_tfm *tfm) |
| 543 | { |
| 544 | tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx); |
| 545 | return init_tfm(tfm); |
| 546 | } |
| 547 | |
| 548 | static int init_tfm_aead(struct crypto_tfm *tfm) |
| 549 | { |
| 550 | tfm->crt_aead.reqsize = sizeof(struct aead_ctx); |
| 551 | return init_tfm(tfm); |
| 552 | } |
| 553 | |
| 554 | static void exit_tfm(struct crypto_tfm *tfm) |
| 555 | { |
| 556 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| 557 | free_sa_dir(&ctx->encrypt); |
| 558 | free_sa_dir(&ctx->decrypt); |
| 559 | } |
| 560 | |
| 561 | static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target, |
| 562 | int init_len, u32 ctx_addr, const u8 *key, int key_len) |
| 563 | { |
| 564 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| 565 | struct crypt_ctl *crypt; |
| 566 | struct buffer_desc *buf; |
| 567 | int i; |
| 568 | u8 *pad; |
| 569 | u32 pad_phys, buf_phys; |
| 570 | |
| 571 | BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN); |
| 572 | pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys); |
| 573 | if (!pad) |
| 574 | return -ENOMEM; |
| 575 | buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys); |
| 576 | if (!buf) { |
| 577 | dma_pool_free(ctx_pool, pad, pad_phys); |
| 578 | return -ENOMEM; |
| 579 | } |
| 580 | crypt = get_crypt_desc_emerg(); |
| 581 | if (!crypt) { |
| 582 | dma_pool_free(ctx_pool, pad, pad_phys); |
| 583 | dma_pool_free(buffer_pool, buf, buf_phys); |
| 584 | return -EAGAIN; |
| 585 | } |
| 586 | |
| 587 | memcpy(pad, key, key_len); |
| 588 | memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len); |
| 589 | for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) { |
| 590 | pad[i] ^= xpad; |
| 591 | } |
| 592 | |
| 593 | crypt->data.tfm = tfm; |
| 594 | crypt->regist_ptr = pad; |
| 595 | crypt->regist_buf = buf; |
| 596 | |
| 597 | crypt->auth_offs = 0; |
| 598 | crypt->auth_len = HMAC_PAD_BLOCKLEN; |
| 599 | crypt->crypto_ctx = ctx_addr; |
| 600 | crypt->src_buf = buf_phys; |
| 601 | crypt->icv_rev_aes = target; |
| 602 | crypt->mode = NPE_OP_HASH_GEN_ICV; |
| 603 | crypt->init_len = init_len; |
| 604 | crypt->ctl_flags |= CTL_FLAG_GEN_ICV; |
| 605 | |
| 606 | buf->next = 0; |
| 607 | buf->buf_len = HMAC_PAD_BLOCKLEN; |
| 608 | buf->pkt_len = 0; |
| 609 | buf->phys_addr = pad_phys; |
| 610 | |
| 611 | atomic_inc(&ctx->configuring); |
| 612 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
| 613 | BUG_ON(qmgr_stat_overflow(SEND_QID)); |
| 614 | return 0; |
| 615 | } |
| 616 | |
| 617 | static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize, |
| 618 | const u8 *key, int key_len, unsigned digest_len) |
| 619 | { |
| 620 | u32 itarget, otarget, npe_ctx_addr; |
| 621 | unsigned char *cinfo; |
| 622 | int init_len, ret = 0; |
| 623 | u32 cfgword; |
| 624 | struct ix_sa_dir *dir; |
| 625 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| 626 | const struct ix_hash_algo *algo; |
| 627 | |
| 628 | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; |
| 629 | cinfo = dir->npe_ctx + dir->npe_ctx_idx; |
| 630 | algo = ix_hash(tfm); |
| 631 | |
| 632 | /* write cfg word to cryptinfo */ |
| 633 | cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */ |
| 634 | *(u32*)cinfo = cpu_to_be32(cfgword); |
| 635 | cinfo += sizeof(cfgword); |
| 636 | |
| 637 | /* write ICV to cryptinfo */ |
| 638 | memcpy(cinfo, algo->icv, digest_len); |
| 639 | cinfo += digest_len; |
| 640 | |
| 641 | itarget = dir->npe_ctx_phys + dir->npe_ctx_idx |
| 642 | + sizeof(algo->cfgword); |
| 643 | otarget = itarget + digest_len; |
| 644 | init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx); |
| 645 | npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx; |
| 646 | |
| 647 | dir->npe_ctx_idx += init_len; |
| 648 | dir->npe_mode |= NPE_OP_HASH_ENABLE; |
| 649 | |
| 650 | if (!encrypt) |
| 651 | dir->npe_mode |= NPE_OP_HASH_VERIFY; |
| 652 | |
| 653 | ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget, |
| 654 | init_len, npe_ctx_addr, key, key_len); |
| 655 | if (ret) |
| 656 | return ret; |
| 657 | return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget, |
| 658 | init_len, npe_ctx_addr, key, key_len); |
| 659 | } |
| 660 | |
| 661 | static int gen_rev_aes_key(struct crypto_tfm *tfm) |
| 662 | { |
| 663 | struct crypt_ctl *crypt; |
| 664 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| 665 | struct ix_sa_dir *dir = &ctx->decrypt; |
| 666 | |
| 667 | crypt = get_crypt_desc_emerg(); |
| 668 | if (!crypt) { |
| 669 | return -EAGAIN; |
| 670 | } |
| 671 | *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR); |
| 672 | |
| 673 | crypt->data.tfm = tfm; |
| 674 | crypt->crypt_offs = 0; |
| 675 | crypt->crypt_len = AES_BLOCK128; |
| 676 | crypt->src_buf = 0; |
| 677 | crypt->crypto_ctx = dir->npe_ctx_phys; |
| 678 | crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32); |
| 679 | crypt->mode = NPE_OP_ENC_GEN_KEY; |
| 680 | crypt->init_len = dir->npe_ctx_idx; |
| 681 | crypt->ctl_flags |= CTL_FLAG_GEN_REVAES; |
| 682 | |
| 683 | atomic_inc(&ctx->configuring); |
| 684 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
| 685 | BUG_ON(qmgr_stat_overflow(SEND_QID)); |
| 686 | return 0; |
| 687 | } |
| 688 | |
| 689 | static int setup_cipher(struct crypto_tfm *tfm, int encrypt, |
| 690 | const u8 *key, int key_len) |
| 691 | { |
| 692 | u8 *cinfo; |
| 693 | u32 cipher_cfg; |
| 694 | u32 keylen_cfg = 0; |
| 695 | struct ix_sa_dir *dir; |
| 696 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| 697 | u32 *flags = &tfm->crt_flags; |
| 698 | |
| 699 | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; |
| 700 | cinfo = dir->npe_ctx; |
| 701 | |
| 702 | if (encrypt) { |
| 703 | cipher_cfg = cipher_cfg_enc(tfm); |
| 704 | dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT; |
| 705 | } else { |
| 706 | cipher_cfg = cipher_cfg_dec(tfm); |
| 707 | } |
| 708 | if (cipher_cfg & MOD_AES) { |
| 709 | switch (key_len) { |
| 710 | case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break; |
| 711 | case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break; |
| 712 | case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break; |
| 713 | default: |
| 714 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
| 715 | return -EINVAL; |
| 716 | } |
| 717 | cipher_cfg |= keylen_cfg; |
| 718 | } else if (cipher_cfg & MOD_3DES) { |
| 719 | const u32 *K = (const u32 *)key; |
| 720 | if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) || |
| 721 | !((K[2] ^ K[4]) | (K[3] ^ K[5])))) |
| 722 | { |
| 723 | *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED; |
| 724 | return -EINVAL; |
| 725 | } |
| 726 | } else { |
| 727 | u32 tmp[DES_EXPKEY_WORDS]; |
| 728 | if (des_ekey(tmp, key) == 0) { |
| 729 | *flags |= CRYPTO_TFM_RES_WEAK_KEY; |
| 730 | } |
| 731 | } |
| 732 | /* write cfg word to cryptinfo */ |
| 733 | *(u32*)cinfo = cpu_to_be32(cipher_cfg); |
| 734 | cinfo += sizeof(cipher_cfg); |
| 735 | |
| 736 | /* write cipher key to cryptinfo */ |
| 737 | memcpy(cinfo, key, key_len); |
| 738 | /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */ |
| 739 | if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) { |
| 740 | memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len); |
| 741 | key_len = DES3_EDE_KEY_SIZE; |
| 742 | } |
| 743 | dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len; |
| 744 | dir->npe_mode |= NPE_OP_CRYPT_ENABLE; |
| 745 | if ((cipher_cfg & MOD_AES) && !encrypt) { |
| 746 | return gen_rev_aes_key(tfm); |
| 747 | } |
| 748 | return 0; |
| 749 | } |
| 750 | |
| 751 | static int count_sg(struct scatterlist *sg, int nbytes) |
| 752 | { |
| 753 | int i; |
| 754 | for (i = 0; nbytes > 0; i++, sg = sg_next(sg)) |
| 755 | nbytes -= sg->length; |
| 756 | return i; |
| 757 | } |
| 758 | |
| 759 | static struct buffer_desc *chainup_buffers(struct scatterlist *sg, |
| 760 | unsigned nbytes, struct buffer_desc *buf, gfp_t flags) |
| 761 | { |
| 762 | int nents = 0; |
| 763 | |
| 764 | while (nbytes > 0) { |
| 765 | struct buffer_desc *next_buf; |
| 766 | u32 next_buf_phys; |
| 767 | unsigned len = min(nbytes, sg_dma_len(sg)); |
| 768 | |
| 769 | nents++; |
| 770 | nbytes -= len; |
| 771 | if (!buf->phys_addr) { |
| 772 | buf->phys_addr = sg_dma_address(sg); |
| 773 | buf->buf_len = len; |
| 774 | buf->next = NULL; |
| 775 | buf->phys_next = 0; |
| 776 | goto next; |
| 777 | } |
| 778 | /* Two consecutive chunks on one page may be handled by the old |
| 779 | * buffer descriptor, increased by the length of the new one |
| 780 | */ |
| 781 | if (sg_dma_address(sg) == buf->phys_addr + buf->buf_len) { |
| 782 | buf->buf_len += len; |
| 783 | goto next; |
| 784 | } |
| 785 | next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys); |
| 786 | if (!next_buf) |
| 787 | return NULL; |
| 788 | buf->next = next_buf; |
| 789 | buf->phys_next = next_buf_phys; |
| 790 | |
| 791 | buf = next_buf; |
| 792 | buf->next = NULL; |
| 793 | buf->phys_next = 0; |
| 794 | buf->phys_addr = sg_dma_address(sg); |
| 795 | buf->buf_len = len; |
| 796 | next: |
| 797 | if (nbytes > 0) { |
| 798 | sg = sg_next(sg); |
| 799 | } |
| 800 | } |
| 801 | return buf; |
| 802 | } |
| 803 | |
| 804 | static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key, |
| 805 | unsigned int key_len) |
| 806 | { |
| 807 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| 808 | u32 *flags = &tfm->base.crt_flags; |
| 809 | int ret; |
| 810 | |
| 811 | init_completion(&ctx->completion); |
| 812 | atomic_inc(&ctx->configuring); |
| 813 | |
| 814 | reset_sa_dir(&ctx->encrypt); |
| 815 | reset_sa_dir(&ctx->decrypt); |
| 816 | |
| 817 | ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE; |
| 818 | ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE; |
| 819 | |
| 820 | ret = setup_cipher(&tfm->base, 0, key, key_len); |
| 821 | if (ret) |
| 822 | goto out; |
| 823 | ret = setup_cipher(&tfm->base, 1, key, key_len); |
| 824 | if (ret) |
| 825 | goto out; |
| 826 | |
| 827 | if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { |
| 828 | if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { |
| 829 | ret = -EINVAL; |
| 830 | } else { |
| 831 | *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; |
| 832 | } |
| 833 | } |
| 834 | out: |
| 835 | if (!atomic_dec_and_test(&ctx->configuring)) |
| 836 | wait_for_completion(&ctx->completion); |
| 837 | return ret; |
| 838 | } |
| 839 | |
| 840 | static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key, |
| 841 | unsigned int key_len) |
| 842 | { |
| 843 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| 844 | |
| 845 | /* the nonce is stored in bytes at end of key */ |
| 846 | if (key_len < CTR_RFC3686_NONCE_SIZE) |
| 847 | return -EINVAL; |
| 848 | |
| 849 | memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE), |
| 850 | CTR_RFC3686_NONCE_SIZE); |
| 851 | |
| 852 | key_len -= CTR_RFC3686_NONCE_SIZE; |
| 853 | return ablk_setkey(tfm, key, key_len); |
| 854 | } |
| 855 | |
| 856 | static int ablk_perform(struct ablkcipher_request *req, int encrypt) |
| 857 | { |
| 858 | struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
| 859 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| 860 | unsigned ivsize = crypto_ablkcipher_ivsize(tfm); |
| 861 | int ret = -ENOMEM; |
| 862 | struct ix_sa_dir *dir; |
| 863 | struct crypt_ctl *crypt; |
| 864 | unsigned int nbytes = req->nbytes, nents; |
| 865 | enum dma_data_direction src_direction = DMA_BIDIRECTIONAL; |
| 866 | struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); |
| 867 | gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? |
| 868 | GFP_KERNEL : GFP_ATOMIC; |
| 869 | |
| 870 | if (qmgr_stat_full(SEND_QID)) |
| 871 | return -EAGAIN; |
| 872 | if (atomic_read(&ctx->configuring)) |
| 873 | return -EAGAIN; |
| 874 | |
| 875 | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; |
| 876 | |
| 877 | crypt = get_crypt_desc(); |
| 878 | if (!crypt) |
| 879 | return ret; |
| 880 | |
| 881 | crypt->data.ablk_req = req; |
| 882 | crypt->crypto_ctx = dir->npe_ctx_phys; |
| 883 | crypt->mode = dir->npe_mode; |
| 884 | crypt->init_len = dir->npe_ctx_idx; |
| 885 | |
| 886 | crypt->crypt_offs = 0; |
| 887 | crypt->crypt_len = nbytes; |
| 888 | |
| 889 | BUG_ON(ivsize && !req->info); |
| 890 | memcpy(crypt->iv, req->info, ivsize); |
| 891 | if (req->src != req->dst) { |
| 892 | crypt->mode |= NPE_OP_NOT_IN_PLACE; |
| 893 | nents = count_sg(req->dst, nbytes); |
| 894 | /* This was never tested by Intel |
| 895 | * for more than one dst buffer, I think. */ |
| 896 | BUG_ON(nents != 1); |
| 897 | req_ctx->dst_nents = nents; |
| 898 | dma_map_sg(dev, req->dst, nents, DMA_FROM_DEVICE); |
| 899 | req_ctx->dst = dma_pool_alloc(buffer_pool, flags,&crypt->dst_buf); |
| 900 | if (!req_ctx->dst) |
| 901 | goto unmap_sg_dest; |
| 902 | req_ctx->dst->phys_addr = 0; |
| 903 | if (!chainup_buffers(req->dst, nbytes, req_ctx->dst, flags)) |
| 904 | goto free_buf_dest; |
| 905 | src_direction = DMA_TO_DEVICE; |
| 906 | } else { |
| 907 | req_ctx->dst = NULL; |
| 908 | req_ctx->dst_nents = 0; |
| 909 | } |
| 910 | nents = count_sg(req->src, nbytes); |
| 911 | req_ctx->src_nents = nents; |
| 912 | dma_map_sg(dev, req->src, nents, src_direction); |
| 913 | |
| 914 | req_ctx->src = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf); |
| 915 | if (!req_ctx->src) |
| 916 | goto unmap_sg_src; |
| 917 | req_ctx->src->phys_addr = 0; |
| 918 | if (!chainup_buffers(req->src, nbytes, req_ctx->src, flags)) |
| 919 | goto free_buf_src; |
| 920 | |
| 921 | crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK; |
| 922 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
| 923 | BUG_ON(qmgr_stat_overflow(SEND_QID)); |
| 924 | return -EINPROGRESS; |
| 925 | |
| 926 | free_buf_src: |
| 927 | free_buf_chain(req_ctx->src, crypt->src_buf); |
| 928 | unmap_sg_src: |
| 929 | dma_unmap_sg(dev, req->src, req_ctx->src_nents, src_direction); |
| 930 | free_buf_dest: |
| 931 | if (req->src != req->dst) { |
| 932 | free_buf_chain(req_ctx->dst, crypt->dst_buf); |
| 933 | unmap_sg_dest: |
| 934 | dma_unmap_sg(dev, req->src, req_ctx->dst_nents, |
| 935 | DMA_FROM_DEVICE); |
| 936 | } |
| 937 | crypt->ctl_flags = CTL_FLAG_UNUSED; |
| 938 | return ret; |
| 939 | } |
| 940 | |
| 941 | static int ablk_encrypt(struct ablkcipher_request *req) |
| 942 | { |
| 943 | return ablk_perform(req, 1); |
| 944 | } |
| 945 | |
| 946 | static int ablk_decrypt(struct ablkcipher_request *req) |
| 947 | { |
| 948 | return ablk_perform(req, 0); |
| 949 | } |
| 950 | |
| 951 | static int ablk_rfc3686_crypt(struct ablkcipher_request *req) |
| 952 | { |
| 953 | struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
| 954 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| 955 | u8 iv[CTR_RFC3686_BLOCK_SIZE]; |
| 956 | u8 *info = req->info; |
| 957 | int ret; |
| 958 | |
| 959 | /* set up counter block */ |
| 960 | memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE); |
| 961 | memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE); |
| 962 | |
| 963 | /* initialize counter portion of counter block */ |
| 964 | *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = |
| 965 | cpu_to_be32(1); |
| 966 | |
| 967 | req->info = iv; |
| 968 | ret = ablk_perform(req, 1); |
| 969 | req->info = info; |
| 970 | return ret; |
| 971 | } |
| 972 | |
| 973 | static int hmac_inconsistent(struct scatterlist *sg, unsigned start, |
| 974 | unsigned int nbytes) |
| 975 | { |
| 976 | int offset = 0; |
| 977 | |
| 978 | if (!nbytes) |
| 979 | return 0; |
| 980 | |
| 981 | for (;;) { |
| 982 | if (start < offset + sg->length) |
| 983 | break; |
| 984 | |
| 985 | offset += sg->length; |
| 986 | sg = sg_next(sg); |
| 987 | } |
| 988 | return (start + nbytes > offset + sg->length); |
| 989 | } |
| 990 | |
| 991 | static int aead_perform(struct aead_request *req, int encrypt, |
| 992 | int cryptoffset, int eff_cryptlen, u8 *iv) |
| 993 | { |
| 994 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| 995 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); |
| 996 | unsigned ivsize = crypto_aead_ivsize(tfm); |
| 997 | unsigned authsize = crypto_aead_authsize(tfm); |
| 998 | int ret = -ENOMEM; |
| 999 | struct ix_sa_dir *dir; |
| 1000 | struct crypt_ctl *crypt; |
| 1001 | unsigned int cryptlen, nents; |
| 1002 | struct buffer_desc *buf; |
| 1003 | struct aead_ctx *req_ctx = aead_request_ctx(req); |
| 1004 | gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? |
| 1005 | GFP_KERNEL : GFP_ATOMIC; |
| 1006 | |
| 1007 | if (qmgr_stat_full(SEND_QID)) |
| 1008 | return -EAGAIN; |
| 1009 | if (atomic_read(&ctx->configuring)) |
| 1010 | return -EAGAIN; |
| 1011 | |
| 1012 | if (encrypt) { |
| 1013 | dir = &ctx->encrypt; |
| 1014 | cryptlen = req->cryptlen; |
| 1015 | } else { |
| 1016 | dir = &ctx->decrypt; |
| 1017 | /* req->cryptlen includes the authsize when decrypting */ |
| 1018 | cryptlen = req->cryptlen -authsize; |
| 1019 | eff_cryptlen -= authsize; |
| 1020 | } |
| 1021 | crypt = get_crypt_desc(); |
| 1022 | if (!crypt) |
| 1023 | return ret; |
| 1024 | |
| 1025 | crypt->data.aead_req = req; |
| 1026 | crypt->crypto_ctx = dir->npe_ctx_phys; |
| 1027 | crypt->mode = dir->npe_mode; |
| 1028 | crypt->init_len = dir->npe_ctx_idx; |
| 1029 | |
| 1030 | crypt->crypt_offs = cryptoffset; |
| 1031 | crypt->crypt_len = eff_cryptlen; |
| 1032 | |
| 1033 | crypt->auth_offs = 0; |
| 1034 | crypt->auth_len = req->assoclen + ivsize + cryptlen; |
| 1035 | BUG_ON(ivsize && !req->iv); |
| 1036 | memcpy(crypt->iv, req->iv, ivsize); |
| 1037 | |
| 1038 | if (req->src != req->dst) { |
| 1039 | BUG(); /* -ENOTSUP because of my lazyness */ |
| 1040 | } |
| 1041 | |
| 1042 | req_ctx->buffer = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf); |
| 1043 | if (!req_ctx->buffer) |
| 1044 | goto out; |
| 1045 | req_ctx->buffer->phys_addr = 0; |
| 1046 | /* ASSOC data */ |
| 1047 | nents = count_sg(req->assoc, req->assoclen); |
| 1048 | req_ctx->assoc_nents = nents; |
| 1049 | dma_map_sg(dev, req->assoc, nents, DMA_TO_DEVICE); |
| 1050 | buf = chainup_buffers(req->assoc, req->assoclen, req_ctx->buffer,flags); |
| 1051 | if (!buf) |
| 1052 | goto unmap_sg_assoc; |
| 1053 | /* IV */ |
| 1054 | sg_init_table(&req_ctx->ivlist, 1); |
| 1055 | sg_set_buf(&req_ctx->ivlist, iv, ivsize); |
| 1056 | dma_map_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL); |
| 1057 | buf = chainup_buffers(&req_ctx->ivlist, ivsize, buf, flags); |
| 1058 | if (!buf) |
| 1059 | goto unmap_sg_iv; |
| 1060 | if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) { |
| 1061 | /* The 12 hmac bytes are scattered, |
| 1062 | * we need to copy them into a safe buffer */ |
| 1063 | req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags, |
| 1064 | &crypt->icv_rev_aes); |
| 1065 | if (unlikely(!req_ctx->hmac_virt)) |
| 1066 | goto unmap_sg_iv; |
| 1067 | if (!encrypt) { |
| 1068 | scatterwalk_map_and_copy(req_ctx->hmac_virt, |
| 1069 | req->src, cryptlen, authsize, 0); |
| 1070 | } |
| 1071 | req_ctx->encrypt = encrypt; |
| 1072 | } else { |
| 1073 | req_ctx->hmac_virt = NULL; |
| 1074 | } |
| 1075 | /* Crypt */ |
| 1076 | nents = count_sg(req->src, cryptlen + authsize); |
| 1077 | req_ctx->src_nents = nents; |
| 1078 | dma_map_sg(dev, req->src, nents, DMA_BIDIRECTIONAL); |
| 1079 | buf = chainup_buffers(req->src, cryptlen + authsize, buf, flags); |
| 1080 | if (!buf) |
| 1081 | goto unmap_sg_src; |
| 1082 | if (!req_ctx->hmac_virt) { |
| 1083 | crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize; |
| 1084 | } |
| 1085 | crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD; |
| 1086 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
| 1087 | BUG_ON(qmgr_stat_overflow(SEND_QID)); |
| 1088 | return -EINPROGRESS; |
| 1089 | unmap_sg_src: |
| 1090 | dma_unmap_sg(dev, req->src, req_ctx->src_nents, DMA_BIDIRECTIONAL); |
| 1091 | if (req_ctx->hmac_virt) { |
| 1092 | dma_pool_free(buffer_pool, req_ctx->hmac_virt, |
| 1093 | crypt->icv_rev_aes); |
| 1094 | } |
| 1095 | unmap_sg_iv: |
| 1096 | dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL); |
| 1097 | unmap_sg_assoc: |
| 1098 | dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents, DMA_TO_DEVICE); |
| 1099 | free_buf_chain(req_ctx->buffer, crypt->src_buf); |
| 1100 | out: |
| 1101 | crypt->ctl_flags = CTL_FLAG_UNUSED; |
| 1102 | return ret; |
| 1103 | } |
| 1104 | |
| 1105 | static int aead_setup(struct crypto_aead *tfm, unsigned int authsize) |
| 1106 | { |
| 1107 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); |
| 1108 | u32 *flags = &tfm->base.crt_flags; |
| 1109 | unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize; |
| 1110 | int ret; |
| 1111 | |
| 1112 | if (!ctx->enckey_len && !ctx->authkey_len) |
| 1113 | return 0; |
| 1114 | init_completion(&ctx->completion); |
| 1115 | atomic_inc(&ctx->configuring); |
| 1116 | |
| 1117 | reset_sa_dir(&ctx->encrypt); |
| 1118 | reset_sa_dir(&ctx->decrypt); |
| 1119 | |
| 1120 | ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len); |
| 1121 | if (ret) |
| 1122 | goto out; |
| 1123 | ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len); |
| 1124 | if (ret) |
| 1125 | goto out; |
| 1126 | ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey, |
| 1127 | ctx->authkey_len, digest_len); |
| 1128 | if (ret) |
| 1129 | goto out; |
| 1130 | ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey, |
| 1131 | ctx->authkey_len, digest_len); |
| 1132 | if (ret) |
| 1133 | goto out; |
| 1134 | |
| 1135 | if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { |
| 1136 | if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { |
| 1137 | ret = -EINVAL; |
| 1138 | goto out; |
| 1139 | } else { |
| 1140 | *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; |
| 1141 | } |
| 1142 | } |
| 1143 | out: |
| 1144 | if (!atomic_dec_and_test(&ctx->configuring)) |
| 1145 | wait_for_completion(&ctx->completion); |
| 1146 | return ret; |
| 1147 | } |
| 1148 | |
| 1149 | static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) |
| 1150 | { |
| 1151 | int max = crypto_aead_alg(tfm)->maxauthsize >> 2; |
| 1152 | |
| 1153 | if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3)) |
| 1154 | return -EINVAL; |
| 1155 | return aead_setup(tfm, authsize); |
| 1156 | } |
| 1157 | |
| 1158 | static int aead_setkey(struct crypto_aead *tfm, const u8 *key, |
| 1159 | unsigned int keylen) |
| 1160 | { |
| 1161 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); |
| 1162 | struct rtattr *rta = (struct rtattr *)key; |
| 1163 | struct crypto_authenc_key_param *param; |
| 1164 | |
| 1165 | if (!RTA_OK(rta, keylen)) |
| 1166 | goto badkey; |
| 1167 | if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) |
| 1168 | goto badkey; |
| 1169 | if (RTA_PAYLOAD(rta) < sizeof(*param)) |
| 1170 | goto badkey; |
| 1171 | |
| 1172 | param = RTA_DATA(rta); |
| 1173 | ctx->enckey_len = be32_to_cpu(param->enckeylen); |
| 1174 | |
| 1175 | key += RTA_ALIGN(rta->rta_len); |
| 1176 | keylen -= RTA_ALIGN(rta->rta_len); |
| 1177 | |
| 1178 | if (keylen < ctx->enckey_len) |
| 1179 | goto badkey; |
| 1180 | |
| 1181 | ctx->authkey_len = keylen - ctx->enckey_len; |
| 1182 | memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len); |
| 1183 | memcpy(ctx->authkey, key, ctx->authkey_len); |
| 1184 | |
| 1185 | return aead_setup(tfm, crypto_aead_authsize(tfm)); |
| 1186 | badkey: |
| 1187 | ctx->enckey_len = 0; |
| 1188 | crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 1189 | return -EINVAL; |
| 1190 | } |
| 1191 | |
| 1192 | static int aead_encrypt(struct aead_request *req) |
| 1193 | { |
| 1194 | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); |
| 1195 | return aead_perform(req, 1, req->assoclen + ivsize, |
| 1196 | req->cryptlen, req->iv); |
| 1197 | } |
| 1198 | |
| 1199 | static int aead_decrypt(struct aead_request *req) |
| 1200 | { |
| 1201 | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); |
| 1202 | return aead_perform(req, 0, req->assoclen + ivsize, |
| 1203 | req->cryptlen, req->iv); |
| 1204 | } |
| 1205 | |
| 1206 | static int aead_givencrypt(struct aead_givcrypt_request *req) |
| 1207 | { |
| 1208 | struct crypto_aead *tfm = aead_givcrypt_reqtfm(req); |
| 1209 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); |
| 1210 | unsigned len, ivsize = crypto_aead_ivsize(tfm); |
| 1211 | __be64 seq; |
| 1212 | |
| 1213 | /* copied from eseqiv.c */ |
| 1214 | if (!ctx->salted) { |
| 1215 | get_random_bytes(ctx->salt, ivsize); |
| 1216 | ctx->salted = 1; |
| 1217 | } |
| 1218 | memcpy(req->areq.iv, ctx->salt, ivsize); |
| 1219 | len = ivsize; |
| 1220 | if (ivsize > sizeof(u64)) { |
| 1221 | memset(req->giv, 0, ivsize - sizeof(u64)); |
| 1222 | len = sizeof(u64); |
| 1223 | } |
| 1224 | seq = cpu_to_be64(req->seq); |
| 1225 | memcpy(req->giv + ivsize - len, &seq, len); |
| 1226 | return aead_perform(&req->areq, 1, req->areq.assoclen, |
| 1227 | req->areq.cryptlen +ivsize, req->giv); |
| 1228 | } |
| 1229 | |
| 1230 | static struct ixp_alg ixp4xx_algos[] = { |
| 1231 | { |
| 1232 | .crypto = { |
| 1233 | .cra_name = "cbc(des)", |
| 1234 | .cra_blocksize = DES_BLOCK_SIZE, |
| 1235 | .cra_u = { .ablkcipher = { |
| 1236 | .min_keysize = DES_KEY_SIZE, |
| 1237 | .max_keysize = DES_KEY_SIZE, |
| 1238 | .ivsize = DES_BLOCK_SIZE, |
| 1239 | .geniv = "eseqiv", |
| 1240 | } |
| 1241 | } |
| 1242 | }, |
| 1243 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, |
| 1244 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, |
| 1245 | |
| 1246 | }, { |
| 1247 | .crypto = { |
| 1248 | .cra_name = "ecb(des)", |
| 1249 | .cra_blocksize = DES_BLOCK_SIZE, |
| 1250 | .cra_u = { .ablkcipher = { |
| 1251 | .min_keysize = DES_KEY_SIZE, |
| 1252 | .max_keysize = DES_KEY_SIZE, |
| 1253 | } |
| 1254 | } |
| 1255 | }, |
| 1256 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192, |
| 1257 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192, |
| 1258 | }, { |
| 1259 | .crypto = { |
| 1260 | .cra_name = "cbc(des3_ede)", |
| 1261 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 1262 | .cra_u = { .ablkcipher = { |
| 1263 | .min_keysize = DES3_EDE_KEY_SIZE, |
| 1264 | .max_keysize = DES3_EDE_KEY_SIZE, |
| 1265 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 1266 | .geniv = "eseqiv", |
| 1267 | } |
| 1268 | } |
| 1269 | }, |
| 1270 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, |
| 1271 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, |
| 1272 | }, { |
| 1273 | .crypto = { |
| 1274 | .cra_name = "ecb(des3_ede)", |
| 1275 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 1276 | .cra_u = { .ablkcipher = { |
| 1277 | .min_keysize = DES3_EDE_KEY_SIZE, |
| 1278 | .max_keysize = DES3_EDE_KEY_SIZE, |
| 1279 | } |
| 1280 | } |
| 1281 | }, |
| 1282 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192, |
| 1283 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192, |
| 1284 | }, { |
| 1285 | .crypto = { |
| 1286 | .cra_name = "cbc(aes)", |
| 1287 | .cra_blocksize = AES_BLOCK_SIZE, |
| 1288 | .cra_u = { .ablkcipher = { |
| 1289 | .min_keysize = AES_MIN_KEY_SIZE, |
| 1290 | .max_keysize = AES_MAX_KEY_SIZE, |
| 1291 | .ivsize = AES_BLOCK_SIZE, |
| 1292 | .geniv = "eseqiv", |
| 1293 | } |
| 1294 | } |
| 1295 | }, |
| 1296 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, |
| 1297 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, |
| 1298 | }, { |
| 1299 | .crypto = { |
| 1300 | .cra_name = "ecb(aes)", |
| 1301 | .cra_blocksize = AES_BLOCK_SIZE, |
| 1302 | .cra_u = { .ablkcipher = { |
| 1303 | .min_keysize = AES_MIN_KEY_SIZE, |
| 1304 | .max_keysize = AES_MAX_KEY_SIZE, |
| 1305 | } |
| 1306 | } |
| 1307 | }, |
| 1308 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB, |
| 1309 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB, |
| 1310 | }, { |
| 1311 | .crypto = { |
| 1312 | .cra_name = "ctr(aes)", |
| 1313 | .cra_blocksize = AES_BLOCK_SIZE, |
| 1314 | .cra_u = { .ablkcipher = { |
| 1315 | .min_keysize = AES_MIN_KEY_SIZE, |
| 1316 | .max_keysize = AES_MAX_KEY_SIZE, |
| 1317 | .ivsize = AES_BLOCK_SIZE, |
| 1318 | .geniv = "eseqiv", |
| 1319 | } |
| 1320 | } |
| 1321 | }, |
| 1322 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, |
| 1323 | .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, |
| 1324 | }, { |
| 1325 | .crypto = { |
| 1326 | .cra_name = "rfc3686(ctr(aes))", |
| 1327 | .cra_blocksize = AES_BLOCK_SIZE, |
| 1328 | .cra_u = { .ablkcipher = { |
| 1329 | .min_keysize = AES_MIN_KEY_SIZE, |
| 1330 | .max_keysize = AES_MAX_KEY_SIZE, |
| 1331 | .ivsize = AES_BLOCK_SIZE, |
| 1332 | .geniv = "eseqiv", |
| 1333 | .setkey = ablk_rfc3686_setkey, |
| 1334 | .encrypt = ablk_rfc3686_crypt, |
| 1335 | .decrypt = ablk_rfc3686_crypt } |
| 1336 | } |
| 1337 | }, |
| 1338 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, |
| 1339 | .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, |
| 1340 | }, { |
| 1341 | .crypto = { |
| 1342 | .cra_name = "authenc(hmac(md5),cbc(des))", |
| 1343 | .cra_blocksize = DES_BLOCK_SIZE, |
| 1344 | .cra_u = { .aead = { |
| 1345 | .ivsize = DES_BLOCK_SIZE, |
| 1346 | .maxauthsize = MD5_DIGEST_SIZE, |
| 1347 | } |
| 1348 | } |
| 1349 | }, |
| 1350 | .hash = &hash_alg_md5, |
| 1351 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, |
| 1352 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, |
| 1353 | }, { |
| 1354 | .crypto = { |
| 1355 | .cra_name = "authenc(hmac(md5),cbc(des3_ede))", |
| 1356 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 1357 | .cra_u = { .aead = { |
| 1358 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 1359 | .maxauthsize = MD5_DIGEST_SIZE, |
| 1360 | } |
| 1361 | } |
| 1362 | }, |
| 1363 | .hash = &hash_alg_md5, |
| 1364 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, |
| 1365 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, |
| 1366 | }, { |
| 1367 | .crypto = { |
| 1368 | .cra_name = "authenc(hmac(sha1),cbc(des))", |
| 1369 | .cra_blocksize = DES_BLOCK_SIZE, |
| 1370 | .cra_u = { .aead = { |
| 1371 | .ivsize = DES_BLOCK_SIZE, |
| 1372 | .maxauthsize = SHA1_DIGEST_SIZE, |
| 1373 | } |
| 1374 | } |
| 1375 | }, |
| 1376 | .hash = &hash_alg_sha1, |
| 1377 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, |
| 1378 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, |
| 1379 | }, { |
| 1380 | .crypto = { |
| 1381 | .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", |
| 1382 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 1383 | .cra_u = { .aead = { |
| 1384 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 1385 | .maxauthsize = SHA1_DIGEST_SIZE, |
| 1386 | } |
| 1387 | } |
| 1388 | }, |
| 1389 | .hash = &hash_alg_sha1, |
| 1390 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, |
| 1391 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, |
| 1392 | }, { |
| 1393 | .crypto = { |
| 1394 | .cra_name = "authenc(hmac(md5),cbc(aes))", |
| 1395 | .cra_blocksize = AES_BLOCK_SIZE, |
| 1396 | .cra_u = { .aead = { |
| 1397 | .ivsize = AES_BLOCK_SIZE, |
| 1398 | .maxauthsize = MD5_DIGEST_SIZE, |
| 1399 | } |
| 1400 | } |
| 1401 | }, |
| 1402 | .hash = &hash_alg_md5, |
| 1403 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, |
| 1404 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, |
| 1405 | }, { |
| 1406 | .crypto = { |
| 1407 | .cra_name = "authenc(hmac(sha1),cbc(aes))", |
| 1408 | .cra_blocksize = AES_BLOCK_SIZE, |
| 1409 | .cra_u = { .aead = { |
| 1410 | .ivsize = AES_BLOCK_SIZE, |
| 1411 | .maxauthsize = SHA1_DIGEST_SIZE, |
| 1412 | } |
| 1413 | } |
| 1414 | }, |
| 1415 | .hash = &hash_alg_sha1, |
| 1416 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, |
| 1417 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, |
| 1418 | } }; |
| 1419 | |
| 1420 | #define IXP_POSTFIX "-ixp4xx" |
| 1421 | static int __init ixp_module_init(void) |
| 1422 | { |
| 1423 | int num = ARRAY_SIZE(ixp4xx_algos); |
| 1424 | int i,err ; |
| 1425 | |
| 1426 | if (platform_device_register(&pseudo_dev)) |
| 1427 | return -ENODEV; |
| 1428 | |
| 1429 | spin_lock_init(&desc_lock); |
| 1430 | spin_lock_init(&emerg_lock); |
| 1431 | |
| 1432 | err = init_ixp_crypto(); |
| 1433 | if (err) { |
| 1434 | platform_device_unregister(&pseudo_dev); |
| 1435 | return err; |
| 1436 | } |
| 1437 | for (i=0; i< num; i++) { |
| 1438 | struct crypto_alg *cra = &ixp4xx_algos[i].crypto; |
| 1439 | |
| 1440 | if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME, |
| 1441 | "%s"IXP_POSTFIX, cra->cra_name) >= |
| 1442 | CRYPTO_MAX_ALG_NAME) |
| 1443 | { |
| 1444 | continue; |
| 1445 | } |
| 1446 | if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) { |
| 1447 | continue; |
| 1448 | } |
| 1449 | if (!ixp4xx_algos[i].hash) { |
| 1450 | /* block ciphers */ |
| 1451 | cra->cra_type = &crypto_ablkcipher_type; |
| 1452 | cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| 1453 | CRYPTO_ALG_ASYNC; |
| 1454 | if (!cra->cra_ablkcipher.setkey) |
| 1455 | cra->cra_ablkcipher.setkey = ablk_setkey; |
| 1456 | if (!cra->cra_ablkcipher.encrypt) |
| 1457 | cra->cra_ablkcipher.encrypt = ablk_encrypt; |
| 1458 | if (!cra->cra_ablkcipher.decrypt) |
| 1459 | cra->cra_ablkcipher.decrypt = ablk_decrypt; |
| 1460 | cra->cra_init = init_tfm_ablk; |
| 1461 | } else { |
| 1462 | /* authenc */ |
| 1463 | cra->cra_type = &crypto_aead_type; |
| 1464 | cra->cra_flags = CRYPTO_ALG_TYPE_AEAD | |
| 1465 | CRYPTO_ALG_ASYNC; |
| 1466 | cra->cra_aead.setkey = aead_setkey; |
| 1467 | cra->cra_aead.setauthsize = aead_setauthsize; |
| 1468 | cra->cra_aead.encrypt = aead_encrypt; |
| 1469 | cra->cra_aead.decrypt = aead_decrypt; |
| 1470 | cra->cra_aead.givencrypt = aead_givencrypt; |
| 1471 | cra->cra_init = init_tfm_aead; |
| 1472 | } |
| 1473 | cra->cra_ctxsize = sizeof(struct ixp_ctx); |
| 1474 | cra->cra_module = THIS_MODULE; |
| 1475 | cra->cra_alignmask = 3; |
| 1476 | cra->cra_priority = 300; |
| 1477 | cra->cra_exit = exit_tfm; |
| 1478 | if (crypto_register_alg(cra)) |
| 1479 | printk(KERN_ERR "Failed to register '%s'\n", |
| 1480 | cra->cra_name); |
| 1481 | else |
| 1482 | ixp4xx_algos[i].registered = 1; |
| 1483 | } |
| 1484 | return 0; |
| 1485 | } |
| 1486 | |
| 1487 | static void __exit ixp_module_exit(void) |
| 1488 | { |
| 1489 | int num = ARRAY_SIZE(ixp4xx_algos); |
| 1490 | int i; |
| 1491 | |
| 1492 | for (i=0; i< num; i++) { |
| 1493 | if (ixp4xx_algos[i].registered) |
| 1494 | crypto_unregister_alg(&ixp4xx_algos[i].crypto); |
| 1495 | } |
| 1496 | release_ixp_crypto(); |
| 1497 | platform_device_unregister(&pseudo_dev); |
| 1498 | } |
| 1499 | |
| 1500 | module_init(ixp_module_init); |
| 1501 | module_exit(ixp_module_exit); |
| 1502 | |
| 1503 | MODULE_LICENSE("GPL"); |
| 1504 | MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>"); |
| 1505 | MODULE_DESCRIPTION("IXP4xx hardware crypto"); |
| 1506 | |