blob: 97807be6422bd09d668105ac326eb8779fcf943f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
4 *
5 * (c) Copyright IBM Corp. 2003-2004
6 *
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
9 *
10 *
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
14 *
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23 *
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
28 *
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
32 * safe enough ...
33 *
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
42 * implementation...
43 *
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
55 *
56 * History:
57 *
58 * Nov. 13, 2003 : 0.5
59 * - First release
60 *
61 * Nov. 14, 2003 : 0.6
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
64 * do much.
65 * - Move a bunch of definitions to .h file
66 *
67 * Nov. 18, 2003 : 0.7
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
71 *
72 * Dec. 18, 2003 : 0.8
73 * - Fix typo when reading back fan speed on 2 CPU machines
74 *
75 * Mar. 11, 2004 : 0.9
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
81 * pressure on i2c
82 *
83 * Oct. 20, 2004 : 1.1
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
85 * pumps when present
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
91 *
92 * Mar. 10, 2005 : 1.2
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
97 *
98 */
99
100#include <linux/config.h>
101#include <linux/types.h>
102#include <linux/module.h>
103#include <linux/errno.h>
104#include <linux/kernel.h>
105#include <linux/delay.h>
106#include <linux/sched.h>
107#include <linux/i2c.h>
108#include <linux/slab.h>
109#include <linux/init.h>
110#include <linux/spinlock.h>
111#include <linux/smp_lock.h>
112#include <linux/wait.h>
113#include <linux/reboot.h>
114#include <linux/kmod.h>
115#include <linux/i2c.h>
116#include <linux/i2c-dev.h>
117#include <asm/prom.h>
118#include <asm/machdep.h>
119#include <asm/io.h>
120#include <asm/system.h>
121#include <asm/sections.h>
122#include <asm/of_device.h>
Jeff Mahoney5e655772005-07-06 15:44:41 -0400123#include <asm/macio.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700124
125#include "therm_pm72.h"
126
127#define VERSION "1.2b2"
128
129#undef DEBUG
130
131#ifdef DEBUG
132#define DBG(args...) printk(args)
133#else
134#define DBG(args...) do { } while(0)
135#endif
136
137
138/*
139 * Driver statics
140 */
141
142static struct of_device * of_dev;
143static struct i2c_adapter * u3_0;
144static struct i2c_adapter * u3_1;
145static struct i2c_adapter * k2;
146static struct i2c_client * fcu;
147static struct cpu_pid_state cpu_state[2];
148static struct basckside_pid_params backside_params;
149static struct backside_pid_state backside_state;
150static struct drives_pid_state drives_state;
151static struct dimm_pid_state dimms_state;
152static int state;
153static int cpu_count;
154static int cpu_pid_type;
155static pid_t ctrl_task;
156static struct completion ctrl_complete;
157static int critical_state;
158static int rackmac;
159static s32 dimm_output_clamp;
160
161static DECLARE_MUTEX(driver_lock);
162
163/*
164 * We have 3 types of CPU PID control. One is "split" old style control
165 * for intake & exhaust fans, the other is "combined" control for both
166 * CPUs that also deals with the pumps when present. To be "compatible"
167 * with OS X at this point, we only use "COMBINED" on the machines that
168 * are identified as having the pumps (though that identification is at
169 * least dodgy). Ultimately, we could probably switch completely to this
170 * algorithm provided we hack it to deal with the UP case
171 */
172#define CPU_PID_TYPE_SPLIT 0
173#define CPU_PID_TYPE_COMBINED 1
174#define CPU_PID_TYPE_RACKMAC 2
175
176/*
177 * This table describes all fans in the FCU. The "id" and "type" values
178 * are defaults valid for all earlier machines. Newer machines will
179 * eventually override the table content based on the device-tree
180 */
181struct fcu_fan_table
182{
183 char* loc; /* location code */
184 int type; /* 0 = rpm, 1 = pwm, 2 = pump */
185 int id; /* id or -1 */
186};
187
188#define FCU_FAN_RPM 0
189#define FCU_FAN_PWM 1
190
191#define FCU_FAN_ABSENT_ID -1
192
193#define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
194
195struct fcu_fan_table fcu_fans[] = {
196 [BACKSIDE_FAN_PWM_INDEX] = {
197 .loc = "BACKSIDE,SYS CTRLR FAN",
198 .type = FCU_FAN_PWM,
199 .id = BACKSIDE_FAN_PWM_DEFAULT_ID,
200 },
201 [DRIVES_FAN_RPM_INDEX] = {
202 .loc = "DRIVE BAY",
203 .type = FCU_FAN_RPM,
204 .id = DRIVES_FAN_RPM_DEFAULT_ID,
205 },
206 [SLOTS_FAN_PWM_INDEX] = {
207 .loc = "SLOT,PCI FAN",
208 .type = FCU_FAN_PWM,
209 .id = SLOTS_FAN_PWM_DEFAULT_ID,
210 },
211 [CPUA_INTAKE_FAN_RPM_INDEX] = {
212 .loc = "CPU A INTAKE",
213 .type = FCU_FAN_RPM,
214 .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
215 },
216 [CPUA_EXHAUST_FAN_RPM_INDEX] = {
217 .loc = "CPU A EXHAUST",
218 .type = FCU_FAN_RPM,
219 .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
220 },
221 [CPUB_INTAKE_FAN_RPM_INDEX] = {
222 .loc = "CPU B INTAKE",
223 .type = FCU_FAN_RPM,
224 .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
225 },
226 [CPUB_EXHAUST_FAN_RPM_INDEX] = {
227 .loc = "CPU B EXHAUST",
228 .type = FCU_FAN_RPM,
229 .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
230 },
231 /* pumps aren't present by default, have to be looked up in the
232 * device-tree
233 */
234 [CPUA_PUMP_RPM_INDEX] = {
235 .loc = "CPU A PUMP",
236 .type = FCU_FAN_RPM,
237 .id = FCU_FAN_ABSENT_ID,
238 },
239 [CPUB_PUMP_RPM_INDEX] = {
240 .loc = "CPU B PUMP",
241 .type = FCU_FAN_RPM,
242 .id = FCU_FAN_ABSENT_ID,
243 },
244 /* Xserve fans */
245 [CPU_A1_FAN_RPM_INDEX] = {
246 .loc = "CPU A 1",
247 .type = FCU_FAN_RPM,
248 .id = FCU_FAN_ABSENT_ID,
249 },
250 [CPU_A2_FAN_RPM_INDEX] = {
251 .loc = "CPU A 2",
252 .type = FCU_FAN_RPM,
253 .id = FCU_FAN_ABSENT_ID,
254 },
255 [CPU_A3_FAN_RPM_INDEX] = {
256 .loc = "CPU A 3",
257 .type = FCU_FAN_RPM,
258 .id = FCU_FAN_ABSENT_ID,
259 },
260 [CPU_B1_FAN_RPM_INDEX] = {
261 .loc = "CPU B 1",
262 .type = FCU_FAN_RPM,
263 .id = FCU_FAN_ABSENT_ID,
264 },
265 [CPU_B2_FAN_RPM_INDEX] = {
266 .loc = "CPU B 2",
267 .type = FCU_FAN_RPM,
268 .id = FCU_FAN_ABSENT_ID,
269 },
270 [CPU_B3_FAN_RPM_INDEX] = {
271 .loc = "CPU B 3",
272 .type = FCU_FAN_RPM,
273 .id = FCU_FAN_ABSENT_ID,
274 },
275};
276
277/*
278 * i2c_driver structure to attach to the host i2c controller
279 */
280
281static int therm_pm72_attach(struct i2c_adapter *adapter);
282static int therm_pm72_detach(struct i2c_adapter *adapter);
283
284static struct i2c_driver therm_pm72_driver =
285{
Laurent Riffarda33ca232005-11-26 20:40:34 +0100286 .driver = {
287 .owner = THIS_MODULE,
288 .name = "therm_pm72",
289 },
Linus Torvalds1da177e2005-04-16 15:20:36 -0700290 .attach_adapter = therm_pm72_attach,
291 .detach_adapter = therm_pm72_detach,
292};
293
294/*
295 * Utility function to create an i2c_client structure and
296 * attach it to one of u3 adapters
297 */
298static struct i2c_client *attach_i2c_chip(int id, const char *name)
299{
300 struct i2c_client *clt;
301 struct i2c_adapter *adap;
302
303 if (id & 0x200)
304 adap = k2;
305 else if (id & 0x100)
306 adap = u3_1;
307 else
308 adap = u3_0;
309 if (adap == NULL)
310 return NULL;
311
312 clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
313 if (clt == NULL)
314 return NULL;
315 memset(clt, 0, sizeof(struct i2c_client));
316
317 clt->addr = (id >> 1) & 0x7f;
318 clt->adapter = adap;
319 clt->driver = &therm_pm72_driver;
320 strncpy(clt->name, name, I2C_NAME_SIZE-1);
321
322 if (i2c_attach_client(clt)) {
323 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
324 kfree(clt);
325 return NULL;
326 }
327 return clt;
328}
329
330/*
331 * Utility function to get rid of the i2c_client structure
332 * (will also detach from the adapter hopepfully)
333 */
334static void detach_i2c_chip(struct i2c_client *clt)
335{
336 i2c_detach_client(clt);
337 kfree(clt);
338}
339
340/*
341 * Here are the i2c chip access wrappers
342 */
343
344static void initialize_adc(struct cpu_pid_state *state)
345{
346 int rc;
347 u8 buf[2];
348
349 /* Read ADC the configuration register and cache it. We
350 * also make sure Config2 contains proper values, I've seen
351 * cases where we got stale grabage in there, thus preventing
352 * proper reading of conv. values
353 */
354
355 /* Clear Config2 */
356 buf[0] = 5;
357 buf[1] = 0;
358 i2c_master_send(state->monitor, buf, 2);
359
360 /* Read & cache Config1 */
361 buf[0] = 1;
362 rc = i2c_master_send(state->monitor, buf, 1);
363 if (rc > 0) {
364 rc = i2c_master_recv(state->monitor, buf, 1);
365 if (rc > 0) {
366 state->adc_config = buf[0];
367 DBG("ADC config reg: %02x\n", state->adc_config);
368 /* Disable shutdown mode */
369 state->adc_config &= 0xfe;
370 buf[0] = 1;
371 buf[1] = state->adc_config;
372 rc = i2c_master_send(state->monitor, buf, 2);
373 }
374 }
375 if (rc <= 0)
376 printk(KERN_ERR "therm_pm72: Error reading ADC config"
377 " register !\n");
378}
379
380static int read_smon_adc(struct cpu_pid_state *state, int chan)
381{
382 int rc, data, tries = 0;
383 u8 buf[2];
384
385 for (;;) {
386 /* Set channel */
387 buf[0] = 1;
388 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
389 rc = i2c_master_send(state->monitor, buf, 2);
390 if (rc <= 0)
391 goto error;
392 /* Wait for convertion */
393 msleep(1);
394 /* Switch to data register */
395 buf[0] = 4;
396 rc = i2c_master_send(state->monitor, buf, 1);
397 if (rc <= 0)
398 goto error;
399 /* Read result */
400 rc = i2c_master_recv(state->monitor, buf, 2);
401 if (rc < 0)
402 goto error;
403 data = ((u16)buf[0]) << 8 | (u16)buf[1];
404 return data >> 6;
405 error:
406 DBG("Error reading ADC, retrying...\n");
407 if (++tries > 10) {
408 printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
409 return -1;
410 }
411 msleep(10);
412 }
413}
414
415static int read_lm87_reg(struct i2c_client * chip, int reg)
416{
417 int rc, tries = 0;
418 u8 buf;
419
420 for (;;) {
421 /* Set address */
422 buf = (u8)reg;
423 rc = i2c_master_send(chip, &buf, 1);
424 if (rc <= 0)
425 goto error;
426 rc = i2c_master_recv(chip, &buf, 1);
427 if (rc <= 0)
428 goto error;
429 return (int)buf;
430 error:
431 DBG("Error reading LM87, retrying...\n");
432 if (++tries > 10) {
433 printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
434 return -1;
435 }
436 msleep(10);
437 }
438}
439
440static int fan_read_reg(int reg, unsigned char *buf, int nb)
441{
442 int tries, nr, nw;
443
444 buf[0] = reg;
445 tries = 0;
446 for (;;) {
447 nw = i2c_master_send(fcu, buf, 1);
448 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
449 break;
450 msleep(10);
451 ++tries;
452 }
453 if (nw <= 0) {
454 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
455 return -EIO;
456 }
457 tries = 0;
458 for (;;) {
459 nr = i2c_master_recv(fcu, buf, nb);
460 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
461 break;
462 msleep(10);
463 ++tries;
464 }
465 if (nr <= 0)
466 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
467 return nr;
468}
469
470static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
471{
472 int tries, nw;
473 unsigned char buf[16];
474
475 buf[0] = reg;
476 memcpy(buf+1, ptr, nb);
477 ++nb;
478 tries = 0;
479 for (;;) {
480 nw = i2c_master_send(fcu, buf, nb);
481 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
482 break;
483 msleep(10);
484 ++tries;
485 }
486 if (nw < 0)
487 printk(KERN_ERR "Failure writing to FCU: %d", nw);
488 return nw;
489}
490
491static int start_fcu(void)
492{
493 unsigned char buf = 0xff;
494 int rc;
495
496 rc = fan_write_reg(0xe, &buf, 1);
497 if (rc < 0)
498 return -EIO;
499 rc = fan_write_reg(0x2e, &buf, 1);
500 if (rc < 0)
501 return -EIO;
502 return 0;
503}
504
505static int set_rpm_fan(int fan_index, int rpm)
506{
507 unsigned char buf[2];
508 int rc, id;
509
510 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
511 return -EINVAL;
512 id = fcu_fans[fan_index].id;
513 if (id == FCU_FAN_ABSENT_ID)
514 return -EINVAL;
515
516 if (rpm < 300)
517 rpm = 300;
518 else if (rpm > 8191)
519 rpm = 8191;
520 buf[0] = rpm >> 5;
521 buf[1] = rpm << 3;
522 rc = fan_write_reg(0x10 + (id * 2), buf, 2);
523 if (rc < 0)
524 return -EIO;
525 return 0;
526}
527
528static int get_rpm_fan(int fan_index, int programmed)
529{
530 unsigned char failure;
531 unsigned char active;
532 unsigned char buf[2];
533 int rc, id, reg_base;
534
535 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
536 return -EINVAL;
537 id = fcu_fans[fan_index].id;
538 if (id == FCU_FAN_ABSENT_ID)
539 return -EINVAL;
540
541 rc = fan_read_reg(0xb, &failure, 1);
542 if (rc != 1)
543 return -EIO;
544 if ((failure & (1 << id)) != 0)
545 return -EFAULT;
546 rc = fan_read_reg(0xd, &active, 1);
547 if (rc != 1)
548 return -EIO;
549 if ((active & (1 << id)) == 0)
550 return -ENXIO;
551
552 /* Programmed value or real current speed */
553 reg_base = programmed ? 0x10 : 0x11;
554 rc = fan_read_reg(reg_base + (id * 2), buf, 2);
555 if (rc != 2)
556 return -EIO;
557
558 return (buf[0] << 5) | buf[1] >> 3;
559}
560
561static int set_pwm_fan(int fan_index, int pwm)
562{
563 unsigned char buf[2];
564 int rc, id;
565
566 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
567 return -EINVAL;
568 id = fcu_fans[fan_index].id;
569 if (id == FCU_FAN_ABSENT_ID)
570 return -EINVAL;
571
572 if (pwm < 10)
573 pwm = 10;
574 else if (pwm > 100)
575 pwm = 100;
576 pwm = (pwm * 2559) / 1000;
577 buf[0] = pwm;
578 rc = fan_write_reg(0x30 + (id * 2), buf, 1);
579 if (rc < 0)
580 return rc;
581 return 0;
582}
583
584static int get_pwm_fan(int fan_index)
585{
586 unsigned char failure;
587 unsigned char active;
588 unsigned char buf[2];
589 int rc, id;
590
591 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
592 return -EINVAL;
593 id = fcu_fans[fan_index].id;
594 if (id == FCU_FAN_ABSENT_ID)
595 return -EINVAL;
596
597 rc = fan_read_reg(0x2b, &failure, 1);
598 if (rc != 1)
599 return -EIO;
600 if ((failure & (1 << id)) != 0)
601 return -EFAULT;
602 rc = fan_read_reg(0x2d, &active, 1);
603 if (rc != 1)
604 return -EIO;
605 if ((active & (1 << id)) == 0)
606 return -ENXIO;
607
608 /* Programmed value or real current speed */
609 rc = fan_read_reg(0x30 + (id * 2), buf, 1);
610 if (rc != 1)
611 return -EIO;
612
613 return (buf[0] * 1000) / 2559;
614}
615
616/*
617 * Utility routine to read the CPU calibration EEPROM data
618 * from the device-tree
619 */
620static int read_eeprom(int cpu, struct mpu_data *out)
621{
622 struct device_node *np;
623 char nodename[64];
624 u8 *data;
625 int len;
626
627 /* prom.c routine for finding a node by path is a bit brain dead
628 * and requires exact @xxx unit numbers. This is a bit ugly but
629 * will work for these machines
630 */
631 sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
632 np = of_find_node_by_path(nodename);
633 if (np == NULL) {
634 printk(KERN_ERR "therm_pm72: Failed to retreive cpuid node from device-tree\n");
635 return -ENODEV;
636 }
637 data = (u8 *)get_property(np, "cpuid", &len);
638 if (data == NULL) {
639 printk(KERN_ERR "therm_pm72: Failed to retreive cpuid property from device-tree\n");
640 of_node_put(np);
641 return -ENODEV;
642 }
643 memcpy(out, data, sizeof(struct mpu_data));
644 of_node_put(np);
645
646 return 0;
647}
648
649static void fetch_cpu_pumps_minmax(void)
650{
651 struct cpu_pid_state *state0 = &cpu_state[0];
652 struct cpu_pid_state *state1 = &cpu_state[1];
653 u16 pump_min = 0, pump_max = 0xffff;
654 u16 tmp[4];
655
656 /* Try to fetch pumps min/max infos from eeprom */
657
658 memcpy(&tmp, &state0->mpu.processor_part_num, 8);
659 if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
660 pump_min = max(pump_min, tmp[0]);
661 pump_max = min(pump_max, tmp[1]);
662 }
663 if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
664 pump_min = max(pump_min, tmp[2]);
665 pump_max = min(pump_max, tmp[3]);
666 }
667
668 /* Double check the values, this _IS_ needed as the EEPROM on
669 * some dual 2.5Ghz G5s seem, at least, to have both min & max
670 * same to the same value ... (grrrr)
671 */
672 if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
673 pump_min = CPU_PUMP_OUTPUT_MIN;
674 pump_max = CPU_PUMP_OUTPUT_MAX;
675 }
676
677 state0->pump_min = state1->pump_min = pump_min;
678 state0->pump_max = state1->pump_max = pump_max;
679}
680
681/*
682 * Now, unfortunately, sysfs doesn't give us a nice void * we could
683 * pass around to the attribute functions, so we don't really have
684 * choice but implement a bunch of them...
685 *
686 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
687 * the input twice... I accept patches :)
688 */
689#define BUILD_SHOW_FUNC_FIX(name, data) \
Yani Ioannoue404e272005-05-17 06:42:58 -0400690static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700691{ \
692 ssize_t r; \
693 down(&driver_lock); \
694 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
695 up(&driver_lock); \
696 return r; \
697}
698#define BUILD_SHOW_FUNC_INT(name, data) \
Yani Ioannoue404e272005-05-17 06:42:58 -0400699static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700700{ \
701 return sprintf(buf, "%d", data); \
702}
703
704BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
705BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
706BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
707BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
708BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
709
710BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
711BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
712BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
713BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
714BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
715
716BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
717BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
718
719BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
720BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
721
722BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
723
724static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
725static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
726static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
727static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
728static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
729
730static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
731static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
732static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
733static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
734static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
735
736static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
737static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
738
739static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
740static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
741
742static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
743
744/*
745 * CPUs fans control loop
746 */
747
748static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
749{
750 s32 ltemp, volts, amps;
751 int index, rc = 0;
752
753 /* Default (in case of error) */
754 *temp = state->cur_temp;
755 *power = state->cur_power;
756
757 if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
758 index = (state->index == 0) ?
759 CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
760 else
761 index = (state->index == 0) ?
762 CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
763
764 /* Read current fan status */
765 rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
766 if (rc < 0) {
767 /* XXX What do we do now ? Nothing for now, keep old value, but
768 * return error upstream
769 */
770 DBG(" cpu %d, fan reading error !\n", state->index);
771 } else {
772 state->rpm = rc;
773 DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
774 }
775
776 /* Get some sensor readings and scale it */
777 ltemp = read_smon_adc(state, 1);
778 if (ltemp == -1) {
779 /* XXX What do we do now ? */
780 state->overtemp++;
781 if (rc == 0)
782 rc = -EIO;
783 DBG(" cpu %d, temp reading error !\n", state->index);
784 } else {
785 /* Fixup temperature according to diode calibration
786 */
787 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
788 state->index,
789 ltemp, state->mpu.mdiode, state->mpu.bdiode);
790 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
791 state->last_temp = *temp;
792 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp)));
793 }
794
795 /*
796 * Read voltage & current and calculate power
797 */
798 volts = read_smon_adc(state, 3);
799 amps = read_smon_adc(state, 4);
800
801 /* Scale voltage and current raw sensor values according to fixed scales
802 * obtained in Darwin and calculate power from I and V
803 */
804 volts *= ADC_CPU_VOLTAGE_SCALE;
805 amps *= ADC_CPU_CURRENT_SCALE;
806 *power = (((u64)volts) * ((u64)amps)) >> 16;
807 state->voltage = volts;
808 state->current_a = amps;
809 state->last_power = *power;
810
811 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
812 state->index, FIX32TOPRINT(state->current_a),
813 FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
814
815 return 0;
816}
817
818static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
819{
820 s32 power_target, integral, derivative, proportional, adj_in_target, sval;
821 s64 integ_p, deriv_p, prop_p, sum;
822 int i;
823
824 /* Calculate power target value (could be done once for all)
825 * and convert to a 16.16 fp number
826 */
827 power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
828 DBG(" power target: %d.%03d, error: %d.%03d\n",
829 FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
830
831 /* Store temperature and power in history array */
832 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
833 state->temp_history[state->cur_temp] = temp;
834 state->cur_power = (state->cur_power + 1) % state->count_power;
835 state->power_history[state->cur_power] = power;
836 state->error_history[state->cur_power] = power_target - power;
837
838 /* If first loop, fill the history table */
839 if (state->first) {
840 for (i = 0; i < (state->count_power - 1); i++) {
841 state->cur_power = (state->cur_power + 1) % state->count_power;
842 state->power_history[state->cur_power] = power;
843 state->error_history[state->cur_power] = power_target - power;
844 }
845 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
846 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
847 state->temp_history[state->cur_temp] = temp;
848 }
849 state->first = 0;
850 }
851
852 /* Calculate the integral term normally based on the "power" values */
853 sum = 0;
854 integral = 0;
855 for (i = 0; i < state->count_power; i++)
856 integral += state->error_history[i];
857 integral *= CPU_PID_INTERVAL;
858 DBG(" integral: %08x\n", integral);
859
860 /* Calculate the adjusted input (sense value).
861 * G_r is 12.20
862 * integ is 16.16
863 * so the result is 28.36
864 *
865 * input target is mpu.ttarget, input max is mpu.tmax
866 */
867 integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
868 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
869 sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
870 adj_in_target = (state->mpu.ttarget << 16);
871 if (adj_in_target > sval)
872 adj_in_target = sval;
873 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
874 state->mpu.ttarget);
875
876 /* Calculate the derivative term */
877 derivative = state->temp_history[state->cur_temp] -
878 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
879 % CPU_TEMP_HISTORY_SIZE];
880 derivative /= CPU_PID_INTERVAL;
881 deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
882 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
883 sum += deriv_p;
884
885 /* Calculate the proportional term */
886 proportional = temp - adj_in_target;
887 prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
888 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
889 sum += prop_p;
890
891 /* Scale sum */
892 sum >>= 36;
893
894 DBG(" sum: %d\n", (int)sum);
895 state->rpm += (s32)sum;
896}
897
898static void do_monitor_cpu_combined(void)
899{
900 struct cpu_pid_state *state0 = &cpu_state[0];
901 struct cpu_pid_state *state1 = &cpu_state[1];
902 s32 temp0, power0, temp1, power1;
903 s32 temp_combi, power_combi;
904 int rc, intake, pump;
905
906 rc = do_read_one_cpu_values(state0, &temp0, &power0);
907 if (rc < 0) {
908 /* XXX What do we do now ? */
909 }
910 state1->overtemp = 0;
911 rc = do_read_one_cpu_values(state1, &temp1, &power1);
912 if (rc < 0) {
913 /* XXX What do we do now ? */
914 }
915 if (state1->overtemp)
916 state0->overtemp++;
917
918 temp_combi = max(temp0, temp1);
919 power_combi = max(power0, power1);
920
921 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
922 * full blown immediately and try to trigger a shutdown
923 */
924 if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
925 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
926 temp_combi >> 16);
Benjamin Herrenschmidtf12f4d92006-01-02 13:04:44 +1100927 state0->overtemp += CPU_MAX_OVERTEMP / 4;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700928 } else if (temp_combi > (state0->mpu.tmax << 16))
929 state0->overtemp++;
930 else
931 state0->overtemp = 0;
932 if (state0->overtemp >= CPU_MAX_OVERTEMP)
933 critical_state = 1;
934 if (state0->overtemp > 0) {
935 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
936 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
Benjamin Herrenschmidt6ee7fb72005-12-19 11:24:53 +1100937 pump = state0->pump_max;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700938 goto do_set_fans;
939 }
940
941 /* Do the PID */
942 do_cpu_pid(state0, temp_combi, power_combi);
943
944 /* Range check */
945 state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
946 state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
947
948 /* Calculate intake fan speed */
949 intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
950 intake = max(intake, (int)state0->mpu.rminn_intake_fan);
951 intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
952 state0->intake_rpm = intake;
953
954 /* Calculate pump speed */
955 pump = (state0->rpm * state0->pump_max) /
956 state0->mpu.rmaxn_exhaust_fan;
957 pump = min(pump, state0->pump_max);
958 pump = max(pump, state0->pump_min);
959
960 do_set_fans:
961 /* We copy values from state 0 to state 1 for /sysfs */
962 state1->rpm = state0->rpm;
963 state1->intake_rpm = state0->intake_rpm;
964
965 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
966 state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
967
968 /* We should check for errors, shouldn't we ? But then, what
969 * do we do once the error occurs ? For FCU notified fan
970 * failures (-EFAULT) we probably want to notify userland
971 * some way...
972 */
973 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
974 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
975 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
976 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
977
978 if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
979 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
980 if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
981 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
982}
983
984static void do_monitor_cpu_split(struct cpu_pid_state *state)
985{
986 s32 temp, power;
987 int rc, intake;
988
989 /* Read current fan status */
990 rc = do_read_one_cpu_values(state, &temp, &power);
991 if (rc < 0) {
992 /* XXX What do we do now ? */
993 }
994
995 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
996 * full blown immediately and try to trigger a shutdown
997 */
998 if (temp >= ((state->mpu.tmax + 8) << 16)) {
999 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1000 " (%d) !\n",
1001 state->index, temp >> 16);
Benjamin Herrenschmidtf12f4d92006-01-02 13:04:44 +11001002 state->overtemp += CPU_MAX_OVERTEMP / 4;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001003 } else if (temp > (state->mpu.tmax << 16))
1004 state->overtemp++;
1005 else
1006 state->overtemp = 0;
1007 if (state->overtemp >= CPU_MAX_OVERTEMP)
1008 critical_state = 1;
1009 if (state->overtemp > 0) {
1010 state->rpm = state->mpu.rmaxn_exhaust_fan;
1011 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1012 goto do_set_fans;
1013 }
1014
1015 /* Do the PID */
1016 do_cpu_pid(state, temp, power);
1017
1018 /* Range check */
1019 state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1020 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1021
1022 /* Calculate intake fan */
1023 intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1024 intake = max(intake, (int)state->mpu.rminn_intake_fan);
1025 intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1026 state->intake_rpm = intake;
1027
1028 do_set_fans:
1029 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1030 state->index, (int)state->rpm, intake, state->overtemp);
1031
1032 /* We should check for errors, shouldn't we ? But then, what
1033 * do we do once the error occurs ? For FCU notified fan
1034 * failures (-EFAULT) we probably want to notify userland
1035 * some way...
1036 */
1037 if (state->index == 0) {
1038 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1039 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1040 } else {
1041 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1042 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1043 }
1044}
1045
1046static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1047{
1048 s32 temp, power, fan_min;
1049 int rc;
1050
1051 /* Read current fan status */
1052 rc = do_read_one_cpu_values(state, &temp, &power);
1053 if (rc < 0) {
1054 /* XXX What do we do now ? */
1055 }
1056
1057 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1058 * full blown immediately and try to trigger a shutdown
1059 */
1060 if (temp >= ((state->mpu.tmax + 8) << 16)) {
1061 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1062 " (%d) !\n",
1063 state->index, temp >> 16);
Benjamin Herrenschmidtf12f4d92006-01-02 13:04:44 +11001064 state->overtemp = CPU_MAX_OVERTEMP / 4;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065 } else if (temp > (state->mpu.tmax << 16))
1066 state->overtemp++;
1067 else
1068 state->overtemp = 0;
1069 if (state->overtemp >= CPU_MAX_OVERTEMP)
1070 critical_state = 1;
1071 if (state->overtemp > 0) {
1072 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1073 goto do_set_fans;
1074 }
1075
1076 /* Do the PID */
1077 do_cpu_pid(state, temp, power);
1078
1079 /* Check clamp from dimms */
1080 fan_min = dimm_output_clamp;
1081 fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1082
1083 state->rpm = max(state->rpm, (int)fan_min);
1084 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1085 state->intake_rpm = state->rpm;
1086
1087 do_set_fans:
1088 DBG("** CPU %d RPM: %d overtemp: %d\n",
1089 state->index, (int)state->rpm, state->overtemp);
1090
1091 /* We should check for errors, shouldn't we ? But then, what
1092 * do we do once the error occurs ? For FCU notified fan
1093 * failures (-EFAULT) we probably want to notify userland
1094 * some way...
1095 */
1096 if (state->index == 0) {
1097 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1098 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1099 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1100 } else {
1101 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1102 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1103 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1104 }
1105}
1106
1107/*
1108 * Initialize the state structure for one CPU control loop
1109 */
1110static int init_cpu_state(struct cpu_pid_state *state, int index)
1111{
1112 state->index = index;
1113 state->first = 1;
1114 state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1115 state->overtemp = 0;
1116 state->adc_config = 0x00;
1117
1118
1119 if (index == 0)
1120 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1121 else if (index == 1)
1122 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1123 if (state->monitor == NULL)
1124 goto fail;
1125
1126 if (read_eeprom(index, &state->mpu))
1127 goto fail;
1128
1129 state->count_power = state->mpu.tguardband;
1130 if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1131 printk(KERN_WARNING "Warning ! too many power history slots\n");
1132 state->count_power = CPU_POWER_HISTORY_SIZE;
1133 }
1134 DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1135
1136 if (index == 0) {
1137 device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1138 device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1139 device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1140 device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1141 device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1142 } else {
1143 device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1144 device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1145 device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1146 device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1147 device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1148 }
1149
1150 return 0;
1151 fail:
1152 if (state->monitor)
1153 detach_i2c_chip(state->monitor);
1154 state->monitor = NULL;
1155
1156 return -ENODEV;
1157}
1158
1159/*
1160 * Dispose of the state data for one CPU control loop
1161 */
1162static void dispose_cpu_state(struct cpu_pid_state *state)
1163{
1164 if (state->monitor == NULL)
1165 return;
1166
1167 if (state->index == 0) {
1168 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1169 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1170 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1171 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1172 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1173 } else {
1174 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1175 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1176 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1177 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1178 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1179 }
1180
1181 detach_i2c_chip(state->monitor);
1182 state->monitor = NULL;
1183}
1184
1185/*
1186 * Motherboard backside & U3 heatsink fan control loop
1187 */
1188static void do_monitor_backside(struct backside_pid_state *state)
1189{
1190 s32 temp, integral, derivative, fan_min;
1191 s64 integ_p, deriv_p, prop_p, sum;
1192 int i, rc;
1193
1194 if (--state->ticks != 0)
1195 return;
1196 state->ticks = backside_params.interval;
1197
1198 DBG("backside:\n");
1199
1200 /* Check fan status */
1201 rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1202 if (rc < 0) {
1203 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1204 /* XXX What do we do now ? */
1205 } else
1206 state->pwm = rc;
1207 DBG(" current pwm: %d\n", state->pwm);
1208
1209 /* Get some sensor readings */
1210 temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1211 state->last_temp = temp;
1212 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1213 FIX32TOPRINT(backside_params.input_target));
1214
1215 /* Store temperature and error in history array */
1216 state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1217 state->sample_history[state->cur_sample] = temp;
1218 state->error_history[state->cur_sample] = temp - backside_params.input_target;
1219
1220 /* If first loop, fill the history table */
1221 if (state->first) {
1222 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1223 state->cur_sample = (state->cur_sample + 1) %
1224 BACKSIDE_PID_HISTORY_SIZE;
1225 state->sample_history[state->cur_sample] = temp;
1226 state->error_history[state->cur_sample] =
1227 temp - backside_params.input_target;
1228 }
1229 state->first = 0;
1230 }
1231
1232 /* Calculate the integral term */
1233 sum = 0;
1234 integral = 0;
1235 for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1236 integral += state->error_history[i];
1237 integral *= backside_params.interval;
1238 DBG(" integral: %08x\n", integral);
1239 integ_p = ((s64)backside_params.G_r) * (s64)integral;
1240 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1241 sum += integ_p;
1242
1243 /* Calculate the derivative term */
1244 derivative = state->error_history[state->cur_sample] -
1245 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1246 % BACKSIDE_PID_HISTORY_SIZE];
1247 derivative /= backside_params.interval;
1248 deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1249 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1250 sum += deriv_p;
1251
1252 /* Calculate the proportional term */
1253 prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1254 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1255 sum += prop_p;
1256
1257 /* Scale sum */
1258 sum >>= 36;
1259
1260 DBG(" sum: %d\n", (int)sum);
1261 if (backside_params.additive)
1262 state->pwm += (s32)sum;
1263 else
1264 state->pwm = sum;
1265
1266 /* Check for clamp */
1267 fan_min = (dimm_output_clamp * 100) / 14000;
1268 fan_min = max(fan_min, backside_params.output_min);
1269
1270 state->pwm = max(state->pwm, fan_min);
1271 state->pwm = min(state->pwm, backside_params.output_max);
1272
1273 DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1274 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1275}
1276
1277/*
1278 * Initialize the state structure for the backside fan control loop
1279 */
1280static int init_backside_state(struct backside_pid_state *state)
1281{
1282 struct device_node *u3;
1283 int u3h = 1; /* conservative by default */
1284
1285 /*
1286 * There are different PID params for machines with U3 and machines
1287 * with U3H, pick the right ones now
1288 */
1289 u3 = of_find_node_by_path("/u3@0,f8000000");
1290 if (u3 != NULL) {
1291 u32 *vers = (u32 *)get_property(u3, "device-rev", NULL);
1292 if (vers)
1293 if (((*vers) & 0x3f) < 0x34)
1294 u3h = 0;
1295 of_node_put(u3);
1296 }
1297
1298 if (rackmac) {
1299 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1300 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1301 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1302 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1303 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1304 backside_params.G_r = BACKSIDE_PID_G_r;
1305 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1306 backside_params.additive = 0;
1307 } else if (u3h) {
1308 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1309 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1310 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1311 backside_params.interval = BACKSIDE_PID_INTERVAL;
1312 backside_params.G_p = BACKSIDE_PID_G_p;
1313 backside_params.G_r = BACKSIDE_PID_G_r;
1314 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1315 backside_params.additive = 1;
1316 } else {
1317 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1318 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1319 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1320 backside_params.interval = BACKSIDE_PID_INTERVAL;
1321 backside_params.G_p = BACKSIDE_PID_G_p;
1322 backside_params.G_r = BACKSIDE_PID_G_r;
1323 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1324 backside_params.additive = 1;
1325 }
1326
1327 state->ticks = 1;
1328 state->first = 1;
1329 state->pwm = 50;
1330
1331 state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1332 if (state->monitor == NULL)
1333 return -ENODEV;
1334
1335 device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1336 device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1337
1338 return 0;
1339}
1340
1341/*
1342 * Dispose of the state data for the backside control loop
1343 */
1344static void dispose_backside_state(struct backside_pid_state *state)
1345{
1346 if (state->monitor == NULL)
1347 return;
1348
1349 device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1350 device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1351
1352 detach_i2c_chip(state->monitor);
1353 state->monitor = NULL;
1354}
1355
1356/*
1357 * Drives bay fan control loop
1358 */
1359static void do_monitor_drives(struct drives_pid_state *state)
1360{
1361 s32 temp, integral, derivative;
1362 s64 integ_p, deriv_p, prop_p, sum;
1363 int i, rc;
1364
1365 if (--state->ticks != 0)
1366 return;
1367 state->ticks = DRIVES_PID_INTERVAL;
1368
1369 DBG("drives:\n");
1370
1371 /* Check fan status */
1372 rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1373 if (rc < 0) {
1374 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1375 /* XXX What do we do now ? */
1376 } else
1377 state->rpm = rc;
1378 DBG(" current rpm: %d\n", state->rpm);
1379
1380 /* Get some sensor readings */
1381 temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, DS1775_TEMP)) << 8;
1382 state->last_temp = temp;
1383 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1384 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1385
1386 /* Store temperature and error in history array */
1387 state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1388 state->sample_history[state->cur_sample] = temp;
1389 state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1390
1391 /* If first loop, fill the history table */
1392 if (state->first) {
1393 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1394 state->cur_sample = (state->cur_sample + 1) %
1395 DRIVES_PID_HISTORY_SIZE;
1396 state->sample_history[state->cur_sample] = temp;
1397 state->error_history[state->cur_sample] =
1398 temp - DRIVES_PID_INPUT_TARGET;
1399 }
1400 state->first = 0;
1401 }
1402
1403 /* Calculate the integral term */
1404 sum = 0;
1405 integral = 0;
1406 for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1407 integral += state->error_history[i];
1408 integral *= DRIVES_PID_INTERVAL;
1409 DBG(" integral: %08x\n", integral);
1410 integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1411 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1412 sum += integ_p;
1413
1414 /* Calculate the derivative term */
1415 derivative = state->error_history[state->cur_sample] -
1416 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1417 % DRIVES_PID_HISTORY_SIZE];
1418 derivative /= DRIVES_PID_INTERVAL;
1419 deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1420 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1421 sum += deriv_p;
1422
1423 /* Calculate the proportional term */
1424 prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1425 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1426 sum += prop_p;
1427
1428 /* Scale sum */
1429 sum >>= 36;
1430
1431 DBG(" sum: %d\n", (int)sum);
1432 state->rpm += (s32)sum;
1433
1434 state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1435 state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1436
1437 DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1438 set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1439}
1440
1441/*
1442 * Initialize the state structure for the drives bay fan control loop
1443 */
1444static int init_drives_state(struct drives_pid_state *state)
1445{
1446 state->ticks = 1;
1447 state->first = 1;
1448 state->rpm = 1000;
1449
1450 state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1451 if (state->monitor == NULL)
1452 return -ENODEV;
1453
1454 device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1455 device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1456
1457 return 0;
1458}
1459
1460/*
1461 * Dispose of the state data for the drives control loop
1462 */
1463static void dispose_drives_state(struct drives_pid_state *state)
1464{
1465 if (state->monitor == NULL)
1466 return;
1467
1468 device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1469 device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1470
1471 detach_i2c_chip(state->monitor);
1472 state->monitor = NULL;
1473}
1474
1475/*
1476 * DIMMs temp control loop
1477 */
1478static void do_monitor_dimms(struct dimm_pid_state *state)
1479{
1480 s32 temp, integral, derivative, fan_min;
1481 s64 integ_p, deriv_p, prop_p, sum;
1482 int i;
1483
1484 if (--state->ticks != 0)
1485 return;
1486 state->ticks = DIMM_PID_INTERVAL;
1487
1488 DBG("DIMM:\n");
1489
1490 DBG(" current value: %d\n", state->output);
1491
1492 temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1493 if (temp < 0)
1494 return;
1495 temp <<= 16;
1496 state->last_temp = temp;
1497 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1498 FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1499
1500 /* Store temperature and error in history array */
1501 state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1502 state->sample_history[state->cur_sample] = temp;
1503 state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1504
1505 /* If first loop, fill the history table */
1506 if (state->first) {
1507 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1508 state->cur_sample = (state->cur_sample + 1) %
1509 DIMM_PID_HISTORY_SIZE;
1510 state->sample_history[state->cur_sample] = temp;
1511 state->error_history[state->cur_sample] =
1512 temp - DIMM_PID_INPUT_TARGET;
1513 }
1514 state->first = 0;
1515 }
1516
1517 /* Calculate the integral term */
1518 sum = 0;
1519 integral = 0;
1520 for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1521 integral += state->error_history[i];
1522 integral *= DIMM_PID_INTERVAL;
1523 DBG(" integral: %08x\n", integral);
1524 integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1525 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1526 sum += integ_p;
1527
1528 /* Calculate the derivative term */
1529 derivative = state->error_history[state->cur_sample] -
1530 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1531 % DIMM_PID_HISTORY_SIZE];
1532 derivative /= DIMM_PID_INTERVAL;
1533 deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1534 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1535 sum += deriv_p;
1536
1537 /* Calculate the proportional term */
1538 prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1539 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1540 sum += prop_p;
1541
1542 /* Scale sum */
1543 sum >>= 36;
1544
1545 DBG(" sum: %d\n", (int)sum);
1546 state->output = (s32)sum;
1547 state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1548 state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1549 dimm_output_clamp = state->output;
1550
1551 DBG("** DIMM clamp value: %d\n", (int)state->output);
1552
1553 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1554 fan_min = (dimm_output_clamp * 100) / 14000;
1555 fan_min = max(fan_min, backside_params.output_min);
1556 if (backside_state.pwm < fan_min) {
1557 backside_state.pwm = fan_min;
1558 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min);
1559 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1560 }
1561}
1562
1563/*
1564 * Initialize the state structure for the DIMM temp control loop
1565 */
1566static int init_dimms_state(struct dimm_pid_state *state)
1567{
1568 state->ticks = 1;
1569 state->first = 1;
1570 state->output = 4000;
1571
1572 state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1573 if (state->monitor == NULL)
1574 return -ENODEV;
1575
1576 device_create_file(&of_dev->dev, &dev_attr_dimms_temperature);
1577
1578 return 0;
1579}
1580
1581/*
1582 * Dispose of the state data for the drives control loop
1583 */
1584static void dispose_dimms_state(struct dimm_pid_state *state)
1585{
1586 if (state->monitor == NULL)
1587 return;
1588
1589 device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1590
1591 detach_i2c_chip(state->monitor);
1592 state->monitor = NULL;
1593}
1594
1595static int call_critical_overtemp(void)
1596{
1597 char *argv[] = { critical_overtemp_path, NULL };
1598 static char *envp[] = { "HOME=/",
1599 "TERM=linux",
1600 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1601 NULL };
1602
1603 return call_usermodehelper(critical_overtemp_path, argv, envp, 0);
1604}
1605
1606
1607/*
1608 * Here's the kernel thread that calls the various control loops
1609 */
1610static int main_control_loop(void *x)
1611{
1612 daemonize("kfand");
1613
1614 DBG("main_control_loop started\n");
1615
1616 down(&driver_lock);
1617
1618 if (start_fcu() < 0) {
1619 printk(KERN_ERR "kfand: failed to start FCU\n");
1620 up(&driver_lock);
1621 goto out;
1622 }
1623
1624 /* Set the PCI fan once for now */
1625 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1626
1627 /* Initialize ADCs */
1628 initialize_adc(&cpu_state[0]);
1629 if (cpu_state[1].monitor != NULL)
1630 initialize_adc(&cpu_state[1]);
1631
1632 up(&driver_lock);
1633
1634 while (state == state_attached) {
1635 unsigned long elapsed, start;
1636
1637 start = jiffies;
1638
1639 down(&driver_lock);
1640
1641 /* First, we always calculate the new DIMMs state on an Xserve */
1642 if (rackmac)
1643 do_monitor_dimms(&dimms_state);
1644
1645 /* Then, the CPUs */
1646 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1647 do_monitor_cpu_combined();
1648 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1649 do_monitor_cpu_rack(&cpu_state[0]);
1650 if (cpu_state[1].monitor != NULL)
1651 do_monitor_cpu_rack(&cpu_state[1]);
1652 // better deal with UP
1653 } else {
1654 do_monitor_cpu_split(&cpu_state[0]);
1655 if (cpu_state[1].monitor != NULL)
1656 do_monitor_cpu_split(&cpu_state[1]);
1657 // better deal with UP
1658 }
1659 /* Then, the rest */
1660 do_monitor_backside(&backside_state);
1661 if (!rackmac)
1662 do_monitor_drives(&drives_state);
1663 up(&driver_lock);
1664
1665 if (critical_state == 1) {
1666 printk(KERN_WARNING "Temperature control detected a critical condition\n");
1667 printk(KERN_WARNING "Attempting to shut down...\n");
1668 if (call_critical_overtemp()) {
1669 printk(KERN_WARNING "Can't call %s, power off now!\n",
1670 critical_overtemp_path);
1671 machine_power_off();
1672 }
1673 }
1674 if (critical_state > 0)
1675 critical_state++;
1676 if (critical_state > MAX_CRITICAL_STATE) {
1677 printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1678 machine_power_off();
1679 }
1680
1681 // FIXME: Deal with signals
Linus Torvalds1da177e2005-04-16 15:20:36 -07001682 elapsed = jiffies - start;
1683 if (elapsed < HZ)
Nishanth Aravamudan12621a12005-11-07 01:01:17 -08001684 schedule_timeout_interruptible(HZ - elapsed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001685 }
1686
1687 out:
1688 DBG("main_control_loop ended\n");
1689
1690 ctrl_task = 0;
1691 complete_and_exit(&ctrl_complete, 0);
1692}
1693
1694/*
1695 * Dispose the control loops when tearing down
1696 */
1697static void dispose_control_loops(void)
1698{
1699 dispose_cpu_state(&cpu_state[0]);
1700 dispose_cpu_state(&cpu_state[1]);
1701 dispose_backside_state(&backside_state);
1702 dispose_drives_state(&drives_state);
1703 dispose_dimms_state(&dimms_state);
1704}
1705
1706/*
1707 * Create the control loops. U3-0 i2c bus is up, so we can now
1708 * get to the various sensors
1709 */
1710static int create_control_loops(void)
1711{
1712 struct device_node *np;
1713
1714 /* Count CPUs from the device-tree, we don't care how many are
1715 * actually used by Linux
1716 */
1717 cpu_count = 0;
1718 for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1719 cpu_count++;
1720
1721 DBG("counted %d CPUs in the device-tree\n", cpu_count);
1722
1723 /* Decide the type of PID algorithm to use based on the presence of
1724 * the pumps, though that may not be the best way, that is good enough
1725 * for now
1726 */
1727 if (rackmac)
1728 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1729 else if (machine_is_compatible("PowerMac7,3")
1730 && (cpu_count > 1)
1731 && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1732 && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1733 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1734 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1735 } else
1736 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1737
1738 /* Create control loops for everything. If any fail, everything
1739 * fails
1740 */
1741 if (init_cpu_state(&cpu_state[0], 0))
1742 goto fail;
1743 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1744 fetch_cpu_pumps_minmax();
1745
1746 if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1747 goto fail;
1748 if (init_backside_state(&backside_state))
1749 goto fail;
1750 if (rackmac && init_dimms_state(&dimms_state))
1751 goto fail;
1752 if (!rackmac && init_drives_state(&drives_state))
1753 goto fail;
1754
1755 DBG("all control loops up !\n");
1756
1757 return 0;
1758
1759 fail:
1760 DBG("failure creating control loops, disposing\n");
1761
1762 dispose_control_loops();
1763
1764 return -ENODEV;
1765}
1766
1767/*
1768 * Start the control loops after everything is up, that is create
1769 * the thread that will make them run
1770 */
1771static void start_control_loops(void)
1772{
1773 init_completion(&ctrl_complete);
1774
1775 ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
1776}
1777
1778/*
1779 * Stop the control loops when tearing down
1780 */
1781static void stop_control_loops(void)
1782{
1783 if (ctrl_task != 0)
1784 wait_for_completion(&ctrl_complete);
1785}
1786
1787/*
1788 * Attach to the i2c FCU after detecting U3-1 bus
1789 */
1790static int attach_fcu(void)
1791{
1792 fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1793 if (fcu == NULL)
1794 return -ENODEV;
1795
1796 DBG("FCU attached\n");
1797
1798 return 0;
1799}
1800
1801/*
1802 * Detach from the i2c FCU when tearing down
1803 */
1804static void detach_fcu(void)
1805{
1806 if (fcu)
1807 detach_i2c_chip(fcu);
1808 fcu = NULL;
1809}
1810
1811/*
1812 * Attach to the i2c controller. We probe the various chips based
1813 * on the device-tree nodes and build everything for the driver to
1814 * run, we then kick the driver monitoring thread
1815 */
1816static int therm_pm72_attach(struct i2c_adapter *adapter)
1817{
1818 down(&driver_lock);
1819
1820 /* Check state */
1821 if (state == state_detached)
1822 state = state_attaching;
1823 if (state != state_attaching) {
1824 up(&driver_lock);
1825 return 0;
1826 }
1827
1828 /* Check if we are looking for one of these */
1829 if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
1830 u3_0 = adapter;
1831 DBG("found U3-0\n");
1832 if (k2 || !rackmac)
1833 if (create_control_loops())
1834 u3_0 = NULL;
1835 } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
1836 u3_1 = adapter;
1837 DBG("found U3-1, attaching FCU\n");
1838 if (attach_fcu())
1839 u3_1 = NULL;
1840 } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
1841 k2 = adapter;
1842 DBG("Found K2\n");
1843 if (u3_0 && rackmac)
1844 if (create_control_loops())
1845 k2 = NULL;
1846 }
1847 /* We got all we need, start control loops */
1848 if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
1849 DBG("everything up, starting control loops\n");
1850 state = state_attached;
1851 start_control_loops();
1852 }
1853 up(&driver_lock);
1854
1855 return 0;
1856}
1857
1858/*
1859 * Called on every adapter when the driver or the i2c controller
1860 * is going away.
1861 */
1862static int therm_pm72_detach(struct i2c_adapter *adapter)
1863{
1864 down(&driver_lock);
1865
1866 if (state != state_detached)
1867 state = state_detaching;
1868
1869 /* Stop control loops if any */
1870 DBG("stopping control loops\n");
1871 up(&driver_lock);
1872 stop_control_loops();
1873 down(&driver_lock);
1874
1875 if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
1876 DBG("lost U3-0, disposing control loops\n");
1877 dispose_control_loops();
1878 u3_0 = NULL;
1879 }
1880
1881 if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
1882 DBG("lost U3-1, detaching FCU\n");
1883 detach_fcu();
1884 u3_1 = NULL;
1885 }
1886 if (u3_0 == NULL && u3_1 == NULL)
1887 state = state_detached;
1888
1889 up(&driver_lock);
1890
1891 return 0;
1892}
1893
1894static int fan_check_loc_match(const char *loc, int fan)
1895{
1896 char tmp[64];
1897 char *c, *e;
1898
1899 strlcpy(tmp, fcu_fans[fan].loc, 64);
1900
1901 c = tmp;
1902 for (;;) {
1903 e = strchr(c, ',');
1904 if (e)
1905 *e = 0;
1906 if (strcmp(loc, c) == 0)
1907 return 1;
1908 if (e == NULL)
1909 break;
1910 c = e + 1;
1911 }
1912 return 0;
1913}
1914
1915static void fcu_lookup_fans(struct device_node *fcu_node)
1916{
1917 struct device_node *np = NULL;
1918 int i;
1919
1920 /* The table is filled by default with values that are suitable
1921 * for the old machines without device-tree informations. We scan
1922 * the device-tree and override those values with whatever is
1923 * there
1924 */
1925
1926 DBG("Looking up FCU controls in device-tree...\n");
1927
1928 while ((np = of_get_next_child(fcu_node, np)) != NULL) {
1929 int type = -1;
1930 char *loc;
1931 u32 *reg;
1932
1933 DBG(" control: %s, type: %s\n", np->name, np->type);
1934
1935 /* Detect control type */
1936 if (!strcmp(np->type, "fan-rpm-control") ||
1937 !strcmp(np->type, "fan-rpm"))
1938 type = FCU_FAN_RPM;
1939 if (!strcmp(np->type, "fan-pwm-control") ||
1940 !strcmp(np->type, "fan-pwm"))
1941 type = FCU_FAN_PWM;
1942 /* Only care about fans for now */
1943 if (type == -1)
1944 continue;
1945
1946 /* Lookup for a matching location */
1947 loc = (char *)get_property(np, "location", NULL);
1948 reg = (u32 *)get_property(np, "reg", NULL);
1949 if (loc == NULL || reg == NULL)
1950 continue;
1951 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
1952
1953 for (i = 0; i < FCU_FAN_COUNT; i++) {
1954 int fan_id;
1955
1956 if (!fan_check_loc_match(loc, i))
1957 continue;
1958 DBG(" location match, index: %d\n", i);
1959 fcu_fans[i].id = FCU_FAN_ABSENT_ID;
1960 if (type != fcu_fans[i].type) {
1961 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
1962 "in device-tree for %s\n", np->full_name);
1963 break;
1964 }
1965 if (type == FCU_FAN_RPM)
1966 fan_id = ((*reg) - 0x10) / 2;
1967 else
1968 fan_id = ((*reg) - 0x30) / 2;
1969 if (fan_id > 7) {
1970 printk(KERN_WARNING "therm_pm72: Can't parse "
1971 "fan ID in device-tree for %s\n", np->full_name);
1972 break;
1973 }
1974 DBG(" fan id -> %d, type -> %d\n", fan_id, type);
1975 fcu_fans[i].id = fan_id;
1976 }
1977 }
1978
1979 /* Now dump the array */
1980 printk(KERN_INFO "Detected fan controls:\n");
1981 for (i = 0; i < FCU_FAN_COUNT; i++) {
1982 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
1983 continue;
1984 printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i,
1985 fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
1986 fcu_fans[i].id, fcu_fans[i].loc);
1987 }
1988}
1989
Jeff Mahoney5e655772005-07-06 15:44:41 -04001990static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001991{
1992 int rc;
1993
1994 state = state_detached;
1995
1996 /* Lookup the fans in the device tree */
1997 fcu_lookup_fans(dev->node);
1998
1999 /* Add the driver */
2000 rc = i2c_add_driver(&therm_pm72_driver);
2001 if (rc < 0)
2002 return rc;
2003 return 0;
2004}
2005
2006static int fcu_of_remove(struct of_device* dev)
2007{
2008 i2c_del_driver(&therm_pm72_driver);
2009
2010 return 0;
2011}
2012
Jeff Mahoney5e655772005-07-06 15:44:41 -04002013static struct of_device_id fcu_match[] =
Linus Torvalds1da177e2005-04-16 15:20:36 -07002014{
2015 {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016 .type = "fcu",
Linus Torvalds1da177e2005-04-16 15:20:36 -07002017 },
2018 {},
2019};
2020
2021static struct of_platform_driver fcu_of_platform_driver =
2022{
2023 .name = "temperature",
Jeff Mahoney5e655772005-07-06 15:44:41 -04002024 .match_table = fcu_match,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002025 .probe = fcu_of_probe,
2026 .remove = fcu_of_remove
2027};
2028
2029/*
2030 * Check machine type, attach to i2c controller
2031 */
2032static int __init therm_pm72_init(void)
2033{
2034 struct device_node *np;
2035
2036 rackmac = machine_is_compatible("RackMac3,1");
2037
2038 if (!machine_is_compatible("PowerMac7,2") &&
2039 !machine_is_compatible("PowerMac7,3") &&
2040 !rackmac)
2041 return -ENODEV;
2042
2043 printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2044
2045 np = of_find_node_by_type(NULL, "fcu");
2046 if (np == NULL) {
2047 /* Some machines have strangely broken device-tree */
2048 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2049 if (np == NULL) {
2050 printk(KERN_ERR "Can't find FCU in device-tree !\n");
2051 return -ENODEV;
2052 }
2053 }
Benjamin Herrenschmidt0365ba72005-09-22 21:44:06 -07002054 of_dev = of_platform_device_create(np, "temperature", NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002055 if (of_dev == NULL) {
2056 printk(KERN_ERR "Can't register FCU platform device !\n");
2057 return -ENODEV;
2058 }
2059
2060 of_register_driver(&fcu_of_platform_driver);
2061
2062 return 0;
2063}
2064
2065static void __exit therm_pm72_exit(void)
2066{
2067 of_unregister_driver(&fcu_of_platform_driver);
2068
2069 if (of_dev)
2070 of_device_unregister(of_dev);
2071}
2072
2073module_init(therm_pm72_init);
2074module_exit(therm_pm72_exit);
2075
2076MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2077MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2078MODULE_LICENSE("GPL");
2079