Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of version 2 of the GNU General Public License as |
| 6 | * published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it would be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| 11 | * |
| 12 | * Further, this software is distributed without any warranty that it is |
| 13 | * free of the rightful claim of any third person regarding infringement |
| 14 | * or the like. Any license provided herein, whether implied or |
| 15 | * otherwise, applies only to this software file. Patent licenses, if |
| 16 | * any, provided herein do not apply to combinations of this program with |
| 17 | * other software, or any other product whatsoever. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License along |
| 20 | * with this program; if not, write the Free Software Foundation, Inc., 59 |
| 21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| 22 | * |
| 23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, |
| 24 | * Mountain View, CA 94043, or: |
| 25 | * |
| 26 | * http://www.sgi.com |
| 27 | * |
| 28 | * For further information regarding this notice, see: |
| 29 | * |
| 30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ |
| 31 | */ |
| 32 | /* |
| 33 | * fs/xfs/linux/xfs_lrw.c (Linux Read Write stuff) |
| 34 | * |
| 35 | */ |
| 36 | |
| 37 | #include "xfs.h" |
| 38 | |
| 39 | #include "xfs_fs.h" |
| 40 | #include "xfs_inum.h" |
| 41 | #include "xfs_log.h" |
| 42 | #include "xfs_trans.h" |
| 43 | #include "xfs_sb.h" |
| 44 | #include "xfs_ag.h" |
| 45 | #include "xfs_dir.h" |
| 46 | #include "xfs_dir2.h" |
| 47 | #include "xfs_alloc.h" |
| 48 | #include "xfs_dmapi.h" |
| 49 | #include "xfs_quota.h" |
| 50 | #include "xfs_mount.h" |
| 51 | #include "xfs_alloc_btree.h" |
| 52 | #include "xfs_bmap_btree.h" |
| 53 | #include "xfs_ialloc_btree.h" |
| 54 | #include "xfs_btree.h" |
| 55 | #include "xfs_ialloc.h" |
| 56 | #include "xfs_attr_sf.h" |
| 57 | #include "xfs_dir_sf.h" |
| 58 | #include "xfs_dir2_sf.h" |
| 59 | #include "xfs_dinode.h" |
| 60 | #include "xfs_inode.h" |
| 61 | #include "xfs_bmap.h" |
| 62 | #include "xfs_bit.h" |
| 63 | #include "xfs_rtalloc.h" |
| 64 | #include "xfs_error.h" |
| 65 | #include "xfs_itable.h" |
| 66 | #include "xfs_rw.h" |
| 67 | #include "xfs_acl.h" |
| 68 | #include "xfs_cap.h" |
| 69 | #include "xfs_mac.h" |
| 70 | #include "xfs_attr.h" |
| 71 | #include "xfs_inode_item.h" |
| 72 | #include "xfs_buf_item.h" |
| 73 | #include "xfs_utils.h" |
| 74 | #include "xfs_iomap.h" |
| 75 | |
| 76 | #include <linux/capability.h> |
| 77 | #include <linux/writeback.h> |
| 78 | |
| 79 | |
| 80 | #if defined(XFS_RW_TRACE) |
| 81 | void |
| 82 | xfs_rw_enter_trace( |
| 83 | int tag, |
| 84 | xfs_iocore_t *io, |
| 85 | void *data, |
| 86 | size_t segs, |
| 87 | loff_t offset, |
| 88 | int ioflags) |
| 89 | { |
| 90 | xfs_inode_t *ip = XFS_IO_INODE(io); |
| 91 | |
| 92 | if (ip->i_rwtrace == NULL) |
| 93 | return; |
| 94 | ktrace_enter(ip->i_rwtrace, |
| 95 | (void *)(unsigned long)tag, |
| 96 | (void *)ip, |
| 97 | (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)), |
| 98 | (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)), |
| 99 | (void *)data, |
| 100 | (void *)((unsigned long)segs), |
| 101 | (void *)((unsigned long)((offset >> 32) & 0xffffffff)), |
| 102 | (void *)((unsigned long)(offset & 0xffffffff)), |
| 103 | (void *)((unsigned long)ioflags), |
| 104 | (void *)((unsigned long)((io->io_new_size >> 32) & 0xffffffff)), |
| 105 | (void *)((unsigned long)(io->io_new_size & 0xffffffff)), |
| 106 | (void *)NULL, |
| 107 | (void *)NULL, |
| 108 | (void *)NULL, |
| 109 | (void *)NULL, |
| 110 | (void *)NULL); |
| 111 | } |
| 112 | |
| 113 | void |
| 114 | xfs_inval_cached_trace( |
| 115 | xfs_iocore_t *io, |
| 116 | xfs_off_t offset, |
| 117 | xfs_off_t len, |
| 118 | xfs_off_t first, |
| 119 | xfs_off_t last) |
| 120 | { |
| 121 | xfs_inode_t *ip = XFS_IO_INODE(io); |
| 122 | |
| 123 | if (ip->i_rwtrace == NULL) |
| 124 | return; |
| 125 | ktrace_enter(ip->i_rwtrace, |
| 126 | (void *)(__psint_t)XFS_INVAL_CACHED, |
| 127 | (void *)ip, |
| 128 | (void *)((unsigned long)((offset >> 32) & 0xffffffff)), |
| 129 | (void *)((unsigned long)(offset & 0xffffffff)), |
| 130 | (void *)((unsigned long)((len >> 32) & 0xffffffff)), |
| 131 | (void *)((unsigned long)(len & 0xffffffff)), |
| 132 | (void *)((unsigned long)((first >> 32) & 0xffffffff)), |
| 133 | (void *)((unsigned long)(first & 0xffffffff)), |
| 134 | (void *)((unsigned long)((last >> 32) & 0xffffffff)), |
| 135 | (void *)((unsigned long)(last & 0xffffffff)), |
| 136 | (void *)NULL, |
| 137 | (void *)NULL, |
| 138 | (void *)NULL, |
| 139 | (void *)NULL, |
| 140 | (void *)NULL, |
| 141 | (void *)NULL); |
| 142 | } |
| 143 | #endif |
| 144 | |
| 145 | /* |
| 146 | * xfs_iozero |
| 147 | * |
| 148 | * xfs_iozero clears the specified range of buffer supplied, |
| 149 | * and marks all the affected blocks as valid and modified. If |
| 150 | * an affected block is not allocated, it will be allocated. If |
| 151 | * an affected block is not completely overwritten, and is not |
| 152 | * valid before the operation, it will be read from disk before |
| 153 | * being partially zeroed. |
| 154 | */ |
| 155 | STATIC int |
| 156 | xfs_iozero( |
| 157 | struct inode *ip, /* inode */ |
| 158 | loff_t pos, /* offset in file */ |
| 159 | size_t count, /* size of data to zero */ |
| 160 | loff_t end_size) /* max file size to set */ |
| 161 | { |
| 162 | unsigned bytes; |
| 163 | struct page *page; |
| 164 | struct address_space *mapping; |
| 165 | char *kaddr; |
| 166 | int status; |
| 167 | |
| 168 | mapping = ip->i_mapping; |
| 169 | do { |
| 170 | unsigned long index, offset; |
| 171 | |
| 172 | offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ |
| 173 | index = pos >> PAGE_CACHE_SHIFT; |
| 174 | bytes = PAGE_CACHE_SIZE - offset; |
| 175 | if (bytes > count) |
| 176 | bytes = count; |
| 177 | |
| 178 | status = -ENOMEM; |
| 179 | page = grab_cache_page(mapping, index); |
| 180 | if (!page) |
| 181 | break; |
| 182 | |
| 183 | kaddr = kmap(page); |
| 184 | status = mapping->a_ops->prepare_write(NULL, page, offset, |
| 185 | offset + bytes); |
| 186 | if (status) { |
| 187 | goto unlock; |
| 188 | } |
| 189 | |
| 190 | memset((void *) (kaddr + offset), 0, bytes); |
| 191 | flush_dcache_page(page); |
| 192 | status = mapping->a_ops->commit_write(NULL, page, offset, |
| 193 | offset + bytes); |
| 194 | if (!status) { |
| 195 | pos += bytes; |
| 196 | count -= bytes; |
| 197 | if (pos > i_size_read(ip)) |
| 198 | i_size_write(ip, pos < end_size ? pos : end_size); |
| 199 | } |
| 200 | |
| 201 | unlock: |
| 202 | kunmap(page); |
| 203 | unlock_page(page); |
| 204 | page_cache_release(page); |
| 205 | if (status) |
| 206 | break; |
| 207 | } while (count); |
| 208 | |
| 209 | return (-status); |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * xfs_inval_cached_pages |
| 214 | * |
| 215 | * This routine is responsible for keeping direct I/O and buffered I/O |
| 216 | * somewhat coherent. From here we make sure that we're at least |
| 217 | * temporarily holding the inode I/O lock exclusively and then call |
| 218 | * the page cache to flush and invalidate any cached pages. If there |
| 219 | * are no cached pages this routine will be very quick. |
| 220 | */ |
| 221 | void |
| 222 | xfs_inval_cached_pages( |
| 223 | vnode_t *vp, |
| 224 | xfs_iocore_t *io, |
| 225 | xfs_off_t offset, |
| 226 | int write, |
| 227 | int relock) |
| 228 | { |
| 229 | if (VN_CACHED(vp)) { |
| 230 | xfs_inval_cached_trace(io, offset, -1, ctooff(offtoct(offset)), -1); |
| 231 | VOP_FLUSHINVAL_PAGES(vp, ctooff(offtoct(offset)), -1, FI_REMAPF_LOCKED); |
| 232 | } |
| 233 | |
| 234 | } |
| 235 | |
| 236 | ssize_t /* bytes read, or (-) error */ |
| 237 | xfs_read( |
| 238 | bhv_desc_t *bdp, |
| 239 | struct kiocb *iocb, |
| 240 | const struct iovec *iovp, |
| 241 | unsigned int segs, |
| 242 | loff_t *offset, |
| 243 | int ioflags, |
| 244 | cred_t *credp) |
| 245 | { |
| 246 | struct file *file = iocb->ki_filp; |
| 247 | struct inode *inode = file->f_mapping->host; |
| 248 | size_t size = 0; |
| 249 | ssize_t ret; |
| 250 | xfs_fsize_t n; |
| 251 | xfs_inode_t *ip; |
| 252 | xfs_mount_t *mp; |
| 253 | vnode_t *vp; |
| 254 | unsigned long seg; |
| 255 | |
| 256 | ip = XFS_BHVTOI(bdp); |
| 257 | vp = BHV_TO_VNODE(bdp); |
| 258 | mp = ip->i_mount; |
| 259 | |
| 260 | XFS_STATS_INC(xs_read_calls); |
| 261 | |
| 262 | /* START copy & waste from filemap.c */ |
| 263 | for (seg = 0; seg < segs; seg++) { |
| 264 | const struct iovec *iv = &iovp[seg]; |
| 265 | |
| 266 | /* |
| 267 | * If any segment has a negative length, or the cumulative |
| 268 | * length ever wraps negative then return -EINVAL. |
| 269 | */ |
| 270 | size += iv->iov_len; |
| 271 | if (unlikely((ssize_t)(size|iv->iov_len) < 0)) |
| 272 | return XFS_ERROR(-EINVAL); |
| 273 | } |
| 274 | /* END copy & waste from filemap.c */ |
| 275 | |
| 276 | if (unlikely(ioflags & IO_ISDIRECT)) { |
| 277 | xfs_buftarg_t *target = |
| 278 | (ip->i_d.di_flags & XFS_DIFLAG_REALTIME) ? |
| 279 | mp->m_rtdev_targp : mp->m_ddev_targp; |
| 280 | if ((*offset & target->pbr_smask) || |
| 281 | (size & target->pbr_smask)) { |
| 282 | if (*offset == ip->i_d.di_size) { |
| 283 | return (0); |
| 284 | } |
| 285 | return -XFS_ERROR(EINVAL); |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | n = XFS_MAXIOFFSET(mp) - *offset; |
| 290 | if ((n <= 0) || (size == 0)) |
| 291 | return 0; |
| 292 | |
| 293 | if (n < size) |
| 294 | size = n; |
| 295 | |
| 296 | if (XFS_FORCED_SHUTDOWN(mp)) { |
| 297 | return -EIO; |
| 298 | } |
| 299 | |
| 300 | if (unlikely(ioflags & IO_ISDIRECT)) |
| 301 | down(&inode->i_sem); |
| 302 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| 303 | |
| 304 | if (DM_EVENT_ENABLED(vp->v_vfsp, ip, DM_EVENT_READ) && |
| 305 | !(ioflags & IO_INVIS)) { |
| 306 | vrwlock_t locktype = VRWLOCK_READ; |
| 307 | |
| 308 | ret = -XFS_SEND_DATA(mp, DM_EVENT_READ, |
| 309 | BHV_TO_VNODE(bdp), *offset, size, |
| 310 | FILP_DELAY_FLAG(file), &locktype); |
| 311 | if (ret) { |
| 312 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 313 | goto unlock_isem; |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | xfs_rw_enter_trace(XFS_READ_ENTER, &ip->i_iocore, |
| 318 | (void *)iovp, segs, *offset, ioflags); |
| 319 | ret = __generic_file_aio_read(iocb, iovp, segs, offset); |
| 320 | if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO)) |
| 321 | ret = wait_on_sync_kiocb(iocb); |
| 322 | if (ret > 0) |
| 323 | XFS_STATS_ADD(xs_read_bytes, ret); |
| 324 | |
| 325 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 326 | |
| 327 | if (likely(!(ioflags & IO_INVIS))) |
| 328 | xfs_ichgtime(ip, XFS_ICHGTIME_ACC); |
| 329 | |
| 330 | unlock_isem: |
| 331 | if (unlikely(ioflags & IO_ISDIRECT)) |
| 332 | up(&inode->i_sem); |
| 333 | return ret; |
| 334 | } |
| 335 | |
| 336 | ssize_t |
| 337 | xfs_sendfile( |
| 338 | bhv_desc_t *bdp, |
| 339 | struct file *filp, |
| 340 | loff_t *offset, |
| 341 | int ioflags, |
| 342 | size_t count, |
| 343 | read_actor_t actor, |
| 344 | void *target, |
| 345 | cred_t *credp) |
| 346 | { |
| 347 | ssize_t ret; |
| 348 | xfs_fsize_t n; |
| 349 | xfs_inode_t *ip; |
| 350 | xfs_mount_t *mp; |
| 351 | vnode_t *vp; |
| 352 | |
| 353 | ip = XFS_BHVTOI(bdp); |
| 354 | vp = BHV_TO_VNODE(bdp); |
| 355 | mp = ip->i_mount; |
| 356 | |
| 357 | XFS_STATS_INC(xs_read_calls); |
| 358 | |
| 359 | n = XFS_MAXIOFFSET(mp) - *offset; |
| 360 | if ((n <= 0) || (count == 0)) |
| 361 | return 0; |
| 362 | |
| 363 | if (n < count) |
| 364 | count = n; |
| 365 | |
| 366 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| 367 | return -EIO; |
| 368 | |
| 369 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| 370 | |
| 371 | if (DM_EVENT_ENABLED(vp->v_vfsp, ip, DM_EVENT_READ) && |
| 372 | (!(ioflags & IO_INVIS))) { |
| 373 | vrwlock_t locktype = VRWLOCK_READ; |
| 374 | int error; |
| 375 | |
| 376 | error = XFS_SEND_DATA(mp, DM_EVENT_READ, BHV_TO_VNODE(bdp), *offset, count, |
| 377 | FILP_DELAY_FLAG(filp), &locktype); |
| 378 | if (error) { |
| 379 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 380 | return -error; |
| 381 | } |
| 382 | } |
| 383 | xfs_rw_enter_trace(XFS_SENDFILE_ENTER, &ip->i_iocore, |
| 384 | (void *)(unsigned long)target, count, *offset, ioflags); |
| 385 | ret = generic_file_sendfile(filp, offset, count, actor, target); |
| 386 | |
| 387 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 388 | |
| 389 | if (ret > 0) |
| 390 | XFS_STATS_ADD(xs_read_bytes, ret); |
| 391 | |
| 392 | if (likely(!(ioflags & IO_INVIS))) |
| 393 | xfs_ichgtime(ip, XFS_ICHGTIME_ACC); |
| 394 | |
| 395 | return ret; |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * This routine is called to handle zeroing any space in the last |
| 400 | * block of the file that is beyond the EOF. We do this since the |
| 401 | * size is being increased without writing anything to that block |
| 402 | * and we don't want anyone to read the garbage on the disk. |
| 403 | */ |
| 404 | STATIC int /* error (positive) */ |
| 405 | xfs_zero_last_block( |
| 406 | struct inode *ip, |
| 407 | xfs_iocore_t *io, |
| 408 | xfs_off_t offset, |
| 409 | xfs_fsize_t isize, |
| 410 | xfs_fsize_t end_size) |
| 411 | { |
| 412 | xfs_fileoff_t last_fsb; |
| 413 | xfs_mount_t *mp; |
| 414 | int nimaps; |
| 415 | int zero_offset; |
| 416 | int zero_len; |
| 417 | int isize_fsb_offset; |
| 418 | int error = 0; |
| 419 | xfs_bmbt_irec_t imap; |
| 420 | loff_t loff; |
| 421 | size_t lsize; |
| 422 | |
| 423 | ASSERT(ismrlocked(io->io_lock, MR_UPDATE) != 0); |
| 424 | ASSERT(offset > isize); |
| 425 | |
| 426 | mp = io->io_mount; |
| 427 | |
| 428 | isize_fsb_offset = XFS_B_FSB_OFFSET(mp, isize); |
| 429 | if (isize_fsb_offset == 0) { |
| 430 | /* |
| 431 | * There are no extra bytes in the last block on disk to |
| 432 | * zero, so return. |
| 433 | */ |
| 434 | return 0; |
| 435 | } |
| 436 | |
| 437 | last_fsb = XFS_B_TO_FSBT(mp, isize); |
| 438 | nimaps = 1; |
| 439 | error = XFS_BMAPI(mp, NULL, io, last_fsb, 1, 0, NULL, 0, &imap, |
| 440 | &nimaps, NULL); |
| 441 | if (error) { |
| 442 | return error; |
| 443 | } |
| 444 | ASSERT(nimaps > 0); |
| 445 | /* |
| 446 | * If the block underlying isize is just a hole, then there |
| 447 | * is nothing to zero. |
| 448 | */ |
| 449 | if (imap.br_startblock == HOLESTARTBLOCK) { |
| 450 | return 0; |
| 451 | } |
| 452 | /* |
| 453 | * Zero the part of the last block beyond the EOF, and write it |
| 454 | * out sync. We need to drop the ilock while we do this so we |
| 455 | * don't deadlock when the buffer cache calls back to us. |
| 456 | */ |
| 457 | XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL| XFS_EXTSIZE_RD); |
| 458 | loff = XFS_FSB_TO_B(mp, last_fsb); |
| 459 | lsize = XFS_FSB_TO_B(mp, 1); |
| 460 | |
| 461 | zero_offset = isize_fsb_offset; |
| 462 | zero_len = mp->m_sb.sb_blocksize - isize_fsb_offset; |
| 463 | |
| 464 | error = xfs_iozero(ip, loff + zero_offset, zero_len, end_size); |
| 465 | |
| 466 | XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD); |
| 467 | ASSERT(error >= 0); |
| 468 | return error; |
| 469 | } |
| 470 | |
| 471 | /* |
| 472 | * Zero any on disk space between the current EOF and the new, |
| 473 | * larger EOF. This handles the normal case of zeroing the remainder |
| 474 | * of the last block in the file and the unusual case of zeroing blocks |
| 475 | * out beyond the size of the file. This second case only happens |
| 476 | * with fixed size extents and when the system crashes before the inode |
| 477 | * size was updated but after blocks were allocated. If fill is set, |
| 478 | * then any holes in the range are filled and zeroed. If not, the holes |
| 479 | * are left alone as holes. |
| 480 | */ |
| 481 | |
| 482 | int /* error (positive) */ |
| 483 | xfs_zero_eof( |
| 484 | vnode_t *vp, |
| 485 | xfs_iocore_t *io, |
| 486 | xfs_off_t offset, /* starting I/O offset */ |
| 487 | xfs_fsize_t isize, /* current inode size */ |
| 488 | xfs_fsize_t end_size) /* terminal inode size */ |
| 489 | { |
| 490 | struct inode *ip = LINVFS_GET_IP(vp); |
| 491 | xfs_fileoff_t start_zero_fsb; |
| 492 | xfs_fileoff_t end_zero_fsb; |
| 493 | xfs_fileoff_t prev_zero_fsb; |
| 494 | xfs_fileoff_t zero_count_fsb; |
| 495 | xfs_fileoff_t last_fsb; |
| 496 | xfs_extlen_t buf_len_fsb; |
| 497 | xfs_extlen_t prev_zero_count; |
| 498 | xfs_mount_t *mp; |
| 499 | int nimaps; |
| 500 | int error = 0; |
| 501 | xfs_bmbt_irec_t imap; |
| 502 | loff_t loff; |
| 503 | size_t lsize; |
| 504 | |
| 505 | ASSERT(ismrlocked(io->io_lock, MR_UPDATE)); |
| 506 | ASSERT(ismrlocked(io->io_iolock, MR_UPDATE)); |
| 507 | |
| 508 | mp = io->io_mount; |
| 509 | |
| 510 | /* |
| 511 | * First handle zeroing the block on which isize resides. |
| 512 | * We only zero a part of that block so it is handled specially. |
| 513 | */ |
| 514 | error = xfs_zero_last_block(ip, io, offset, isize, end_size); |
| 515 | if (error) { |
| 516 | ASSERT(ismrlocked(io->io_lock, MR_UPDATE)); |
| 517 | ASSERT(ismrlocked(io->io_iolock, MR_UPDATE)); |
| 518 | return error; |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * Calculate the range between the new size and the old |
| 523 | * where blocks needing to be zeroed may exist. To get the |
| 524 | * block where the last byte in the file currently resides, |
| 525 | * we need to subtract one from the size and truncate back |
| 526 | * to a block boundary. We subtract 1 in case the size is |
| 527 | * exactly on a block boundary. |
| 528 | */ |
| 529 | last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; |
| 530 | start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); |
| 531 | end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); |
| 532 | ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); |
| 533 | if (last_fsb == end_zero_fsb) { |
| 534 | /* |
| 535 | * The size was only incremented on its last block. |
| 536 | * We took care of that above, so just return. |
| 537 | */ |
| 538 | return 0; |
| 539 | } |
| 540 | |
| 541 | ASSERT(start_zero_fsb <= end_zero_fsb); |
| 542 | prev_zero_fsb = NULLFILEOFF; |
| 543 | prev_zero_count = 0; |
| 544 | while (start_zero_fsb <= end_zero_fsb) { |
| 545 | nimaps = 1; |
| 546 | zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; |
| 547 | error = XFS_BMAPI(mp, NULL, io, start_zero_fsb, zero_count_fsb, |
| 548 | 0, NULL, 0, &imap, &nimaps, NULL); |
| 549 | if (error) { |
| 550 | ASSERT(ismrlocked(io->io_lock, MR_UPDATE)); |
| 551 | ASSERT(ismrlocked(io->io_iolock, MR_UPDATE)); |
| 552 | return error; |
| 553 | } |
| 554 | ASSERT(nimaps > 0); |
| 555 | |
| 556 | if (imap.br_state == XFS_EXT_UNWRITTEN || |
| 557 | imap.br_startblock == HOLESTARTBLOCK) { |
| 558 | /* |
| 559 | * This loop handles initializing pages that were |
| 560 | * partially initialized by the code below this |
| 561 | * loop. It basically zeroes the part of the page |
| 562 | * that sits on a hole and sets the page as P_HOLE |
| 563 | * and calls remapf if it is a mapped file. |
| 564 | */ |
| 565 | prev_zero_fsb = NULLFILEOFF; |
| 566 | prev_zero_count = 0; |
| 567 | start_zero_fsb = imap.br_startoff + |
| 568 | imap.br_blockcount; |
| 569 | ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); |
| 570 | continue; |
| 571 | } |
| 572 | |
| 573 | /* |
| 574 | * There are blocks in the range requested. |
| 575 | * Zero them a single write at a time. We actually |
| 576 | * don't zero the entire range returned if it is |
| 577 | * too big and simply loop around to get the rest. |
| 578 | * That is not the most efficient thing to do, but it |
| 579 | * is simple and this path should not be exercised often. |
| 580 | */ |
| 581 | buf_len_fsb = XFS_FILBLKS_MIN(imap.br_blockcount, |
| 582 | mp->m_writeio_blocks << 8); |
| 583 | /* |
| 584 | * Drop the inode lock while we're doing the I/O. |
| 585 | * We'll still have the iolock to protect us. |
| 586 | */ |
| 587 | XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD); |
| 588 | |
| 589 | loff = XFS_FSB_TO_B(mp, start_zero_fsb); |
| 590 | lsize = XFS_FSB_TO_B(mp, buf_len_fsb); |
| 591 | |
| 592 | error = xfs_iozero(ip, loff, lsize, end_size); |
| 593 | |
| 594 | if (error) { |
| 595 | goto out_lock; |
| 596 | } |
| 597 | |
| 598 | prev_zero_fsb = start_zero_fsb; |
| 599 | prev_zero_count = buf_len_fsb; |
| 600 | start_zero_fsb = imap.br_startoff + buf_len_fsb; |
| 601 | ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); |
| 602 | |
| 603 | XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD); |
| 604 | } |
| 605 | |
| 606 | return 0; |
| 607 | |
| 608 | out_lock: |
| 609 | |
| 610 | XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD); |
| 611 | ASSERT(error >= 0); |
| 612 | return error; |
| 613 | } |
| 614 | |
| 615 | ssize_t /* bytes written, or (-) error */ |
| 616 | xfs_write( |
| 617 | bhv_desc_t *bdp, |
| 618 | struct kiocb *iocb, |
| 619 | const struct iovec *iovp, |
| 620 | unsigned int nsegs, |
| 621 | loff_t *offset, |
| 622 | int ioflags, |
| 623 | cred_t *credp) |
| 624 | { |
| 625 | struct file *file = iocb->ki_filp; |
| 626 | struct address_space *mapping = file->f_mapping; |
| 627 | struct inode *inode = mapping->host; |
| 628 | unsigned long segs = nsegs; |
| 629 | xfs_inode_t *xip; |
| 630 | xfs_mount_t *mp; |
| 631 | ssize_t ret = 0, error = 0; |
| 632 | xfs_fsize_t isize, new_size; |
| 633 | xfs_iocore_t *io; |
| 634 | vnode_t *vp; |
| 635 | unsigned long seg; |
| 636 | int iolock; |
| 637 | int eventsent = 0; |
| 638 | vrwlock_t locktype; |
| 639 | size_t ocount = 0, count; |
| 640 | loff_t pos; |
| 641 | int need_isem = 1, need_flush = 0; |
| 642 | |
| 643 | XFS_STATS_INC(xs_write_calls); |
| 644 | |
| 645 | vp = BHV_TO_VNODE(bdp); |
| 646 | xip = XFS_BHVTOI(bdp); |
| 647 | |
| 648 | for (seg = 0; seg < segs; seg++) { |
| 649 | const struct iovec *iv = &iovp[seg]; |
| 650 | |
| 651 | /* |
| 652 | * If any segment has a negative length, or the cumulative |
| 653 | * length ever wraps negative then return -EINVAL. |
| 654 | */ |
| 655 | ocount += iv->iov_len; |
| 656 | if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) |
| 657 | return -EINVAL; |
| 658 | if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) |
| 659 | continue; |
| 660 | if (seg == 0) |
| 661 | return -EFAULT; |
| 662 | segs = seg; |
| 663 | ocount -= iv->iov_len; /* This segment is no good */ |
| 664 | break; |
| 665 | } |
| 666 | |
| 667 | count = ocount; |
| 668 | pos = *offset; |
| 669 | |
| 670 | if (count == 0) |
| 671 | return 0; |
| 672 | |
| 673 | io = &xip->i_iocore; |
| 674 | mp = io->io_mount; |
| 675 | |
| 676 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 677 | return -EIO; |
| 678 | |
| 679 | fs_check_frozen(vp->v_vfsp, SB_FREEZE_WRITE); |
| 680 | |
| 681 | if (ioflags & IO_ISDIRECT) { |
| 682 | xfs_buftarg_t *target = |
| 683 | (xip->i_d.di_flags & XFS_DIFLAG_REALTIME) ? |
| 684 | mp->m_rtdev_targp : mp->m_ddev_targp; |
| 685 | |
| 686 | if ((pos & target->pbr_smask) || (count & target->pbr_smask)) |
| 687 | return XFS_ERROR(-EINVAL); |
| 688 | |
| 689 | if (!VN_CACHED(vp) && pos < i_size_read(inode)) |
| 690 | need_isem = 0; |
| 691 | |
| 692 | if (VN_CACHED(vp)) |
| 693 | need_flush = 1; |
| 694 | } |
| 695 | |
| 696 | relock: |
| 697 | if (need_isem) { |
| 698 | iolock = XFS_IOLOCK_EXCL; |
| 699 | locktype = VRWLOCK_WRITE; |
| 700 | |
| 701 | down(&inode->i_sem); |
| 702 | } else { |
| 703 | iolock = XFS_IOLOCK_SHARED; |
| 704 | locktype = VRWLOCK_WRITE_DIRECT; |
| 705 | } |
| 706 | |
| 707 | xfs_ilock(xip, XFS_ILOCK_EXCL|iolock); |
| 708 | |
| 709 | isize = i_size_read(inode); |
| 710 | |
| 711 | if (file->f_flags & O_APPEND) |
| 712 | *offset = isize; |
| 713 | |
| 714 | start: |
| 715 | error = -generic_write_checks(file, &pos, &count, |
| 716 | S_ISBLK(inode->i_mode)); |
| 717 | if (error) { |
| 718 | xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock); |
| 719 | goto out_unlock_isem; |
| 720 | } |
| 721 | |
| 722 | new_size = pos + count; |
| 723 | if (new_size > isize) |
| 724 | io->io_new_size = new_size; |
| 725 | |
| 726 | if ((DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_WRITE) && |
| 727 | !(ioflags & IO_INVIS) && !eventsent)) { |
| 728 | loff_t savedsize = pos; |
| 729 | int dmflags = FILP_DELAY_FLAG(file); |
| 730 | |
| 731 | if (need_isem) |
| 732 | dmflags |= DM_FLAGS_ISEM; |
| 733 | |
| 734 | xfs_iunlock(xip, XFS_ILOCK_EXCL); |
| 735 | error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp, |
| 736 | pos, count, |
| 737 | dmflags, &locktype); |
| 738 | if (error) { |
| 739 | xfs_iunlock(xip, iolock); |
| 740 | goto out_unlock_isem; |
| 741 | } |
| 742 | xfs_ilock(xip, XFS_ILOCK_EXCL); |
| 743 | eventsent = 1; |
| 744 | |
| 745 | /* |
| 746 | * The iolock was dropped and reaquired in XFS_SEND_DATA |
| 747 | * so we have to recheck the size when appending. |
| 748 | * We will only "goto start;" once, since having sent the |
| 749 | * event prevents another call to XFS_SEND_DATA, which is |
| 750 | * what allows the size to change in the first place. |
| 751 | */ |
| 752 | if ((file->f_flags & O_APPEND) && savedsize != isize) { |
| 753 | pos = isize = xip->i_d.di_size; |
| 754 | goto start; |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | /* |
| 759 | * On Linux, generic_file_write updates the times even if |
| 760 | * no data is copied in so long as the write had a size. |
| 761 | * |
| 762 | * We must update xfs' times since revalidate will overcopy xfs. |
| 763 | */ |
| 764 | if (!(ioflags & IO_INVIS)) { |
| 765 | xfs_ichgtime(xip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 766 | inode_update_time(inode, 1); |
| 767 | } |
| 768 | |
| 769 | /* |
| 770 | * If the offset is beyond the size of the file, we have a couple |
| 771 | * of things to do. First, if there is already space allocated |
| 772 | * we need to either create holes or zero the disk or ... |
| 773 | * |
| 774 | * If there is a page where the previous size lands, we need |
| 775 | * to zero it out up to the new size. |
| 776 | */ |
| 777 | |
| 778 | if (pos > isize) { |
| 779 | error = xfs_zero_eof(BHV_TO_VNODE(bdp), io, pos, |
| 780 | isize, pos + count); |
| 781 | if (error) { |
| 782 | xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock); |
| 783 | goto out_unlock_isem; |
| 784 | } |
| 785 | } |
| 786 | xfs_iunlock(xip, XFS_ILOCK_EXCL); |
| 787 | |
| 788 | /* |
| 789 | * If we're writing the file then make sure to clear the |
| 790 | * setuid and setgid bits if the process is not being run |
| 791 | * by root. This keeps people from modifying setuid and |
| 792 | * setgid binaries. |
| 793 | */ |
| 794 | |
| 795 | if (((xip->i_d.di_mode & S_ISUID) || |
| 796 | ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) == |
| 797 | (S_ISGID | S_IXGRP))) && |
| 798 | !capable(CAP_FSETID)) { |
| 799 | error = xfs_write_clear_setuid(xip); |
| 800 | if (likely(!error)) |
| 801 | error = -remove_suid(file->f_dentry); |
| 802 | if (unlikely(error)) { |
| 803 | xfs_iunlock(xip, iolock); |
| 804 | goto out_unlock_isem; |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | retry: |
| 809 | /* We can write back this queue in page reclaim */ |
| 810 | current->backing_dev_info = mapping->backing_dev_info; |
| 811 | |
| 812 | if ((ioflags & IO_ISDIRECT)) { |
| 813 | if (need_flush) { |
| 814 | xfs_inval_cached_trace(io, pos, -1, |
| 815 | ctooff(offtoct(pos)), -1); |
| 816 | VOP_FLUSHINVAL_PAGES(vp, ctooff(offtoct(pos)), |
| 817 | -1, FI_REMAPF_LOCKED); |
| 818 | } |
| 819 | |
| 820 | if (need_isem) { |
| 821 | /* demote the lock now the cached pages are gone */ |
| 822 | XFS_ILOCK_DEMOTE(mp, io, XFS_IOLOCK_EXCL); |
| 823 | up(&inode->i_sem); |
| 824 | |
| 825 | iolock = XFS_IOLOCK_SHARED; |
| 826 | locktype = VRWLOCK_WRITE_DIRECT; |
| 827 | need_isem = 0; |
| 828 | } |
| 829 | |
| 830 | xfs_rw_enter_trace(XFS_DIOWR_ENTER, io, (void *)iovp, segs, |
| 831 | *offset, ioflags); |
| 832 | ret = generic_file_direct_write(iocb, iovp, |
| 833 | &segs, pos, offset, count, ocount); |
| 834 | |
| 835 | /* |
| 836 | * direct-io write to a hole: fall through to buffered I/O |
| 837 | * for completing the rest of the request. |
| 838 | */ |
| 839 | if (ret >= 0 && ret != count) { |
| 840 | XFS_STATS_ADD(xs_write_bytes, ret); |
| 841 | |
| 842 | pos += ret; |
| 843 | count -= ret; |
| 844 | |
| 845 | need_isem = 1; |
| 846 | ioflags &= ~IO_ISDIRECT; |
| 847 | xfs_iunlock(xip, iolock); |
| 848 | goto relock; |
| 849 | } |
| 850 | } else { |
| 851 | xfs_rw_enter_trace(XFS_WRITE_ENTER, io, (void *)iovp, segs, |
| 852 | *offset, ioflags); |
| 853 | ret = generic_file_buffered_write(iocb, iovp, segs, |
| 854 | pos, offset, count, ret); |
| 855 | } |
| 856 | |
| 857 | current->backing_dev_info = NULL; |
| 858 | |
| 859 | if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO)) |
| 860 | ret = wait_on_sync_kiocb(iocb); |
| 861 | |
| 862 | if ((ret == -ENOSPC) && |
| 863 | DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_NOSPACE) && |
| 864 | !(ioflags & IO_INVIS)) { |
| 865 | |
| 866 | xfs_rwunlock(bdp, locktype); |
| 867 | error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, vp, |
| 868 | DM_RIGHT_NULL, vp, DM_RIGHT_NULL, NULL, NULL, |
| 869 | 0, 0, 0); /* Delay flag intentionally unused */ |
| 870 | if (error) |
| 871 | goto out_unlock_isem; |
| 872 | xfs_rwlock(bdp, locktype); |
| 873 | pos = xip->i_d.di_size; |
| 874 | ret = 0; |
| 875 | goto retry; |
| 876 | } |
| 877 | |
| 878 | if (*offset > xip->i_d.di_size) { |
| 879 | xfs_ilock(xip, XFS_ILOCK_EXCL); |
| 880 | if (*offset > xip->i_d.di_size) { |
| 881 | xip->i_d.di_size = *offset; |
| 882 | i_size_write(inode, *offset); |
| 883 | xip->i_update_core = 1; |
| 884 | xip->i_update_size = 1; |
| 885 | } |
| 886 | xfs_iunlock(xip, XFS_ILOCK_EXCL); |
| 887 | } |
| 888 | |
| 889 | error = -ret; |
| 890 | if (ret <= 0) |
| 891 | goto out_unlock_internal; |
| 892 | |
| 893 | XFS_STATS_ADD(xs_write_bytes, ret); |
| 894 | |
| 895 | /* Handle various SYNC-type writes */ |
| 896 | if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) { |
| 897 | /* |
| 898 | * If we're treating this as O_DSYNC and we have not updated the |
| 899 | * size, force the log. |
| 900 | */ |
| 901 | if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC) && |
| 902 | !(xip->i_update_size)) { |
| 903 | xfs_inode_log_item_t *iip = xip->i_itemp; |
| 904 | |
| 905 | /* |
| 906 | * If an allocation transaction occurred |
| 907 | * without extending the size, then we have to force |
| 908 | * the log up the proper point to ensure that the |
| 909 | * allocation is permanent. We can't count on |
| 910 | * the fact that buffered writes lock out direct I/O |
| 911 | * writes - the direct I/O write could have extended |
| 912 | * the size nontransactionally, then finished before |
| 913 | * we started. xfs_write_file will think that the file |
| 914 | * didn't grow but the update isn't safe unless the |
| 915 | * size change is logged. |
| 916 | * |
| 917 | * Force the log if we've committed a transaction |
| 918 | * against the inode or if someone else has and |
| 919 | * the commit record hasn't gone to disk (e.g. |
| 920 | * the inode is pinned). This guarantees that |
| 921 | * all changes affecting the inode are permanent |
| 922 | * when we return. |
| 923 | */ |
| 924 | if (iip && iip->ili_last_lsn) { |
| 925 | xfs_log_force(mp, iip->ili_last_lsn, |
| 926 | XFS_LOG_FORCE | XFS_LOG_SYNC); |
| 927 | } else if (xfs_ipincount(xip) > 0) { |
| 928 | xfs_log_force(mp, (xfs_lsn_t)0, |
| 929 | XFS_LOG_FORCE | XFS_LOG_SYNC); |
| 930 | } |
| 931 | |
| 932 | } else { |
| 933 | xfs_trans_t *tp; |
| 934 | |
| 935 | /* |
| 936 | * O_SYNC or O_DSYNC _with_ a size update are handled |
| 937 | * the same way. |
| 938 | * |
| 939 | * If the write was synchronous then we need to make |
| 940 | * sure that the inode modification time is permanent. |
| 941 | * We'll have updated the timestamp above, so here |
| 942 | * we use a synchronous transaction to log the inode. |
| 943 | * It's not fast, but it's necessary. |
| 944 | * |
| 945 | * If this a dsync write and the size got changed |
| 946 | * non-transactionally, then we need to ensure that |
| 947 | * the size change gets logged in a synchronous |
| 948 | * transaction. |
| 949 | */ |
| 950 | |
| 951 | tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC); |
| 952 | if ((error = xfs_trans_reserve(tp, 0, |
| 953 | XFS_SWRITE_LOG_RES(mp), |
| 954 | 0, 0, 0))) { |
| 955 | /* Transaction reserve failed */ |
| 956 | xfs_trans_cancel(tp, 0); |
| 957 | } else { |
| 958 | /* Transaction reserve successful */ |
| 959 | xfs_ilock(xip, XFS_ILOCK_EXCL); |
| 960 | xfs_trans_ijoin(tp, xip, XFS_ILOCK_EXCL); |
| 961 | xfs_trans_ihold(tp, xip); |
| 962 | xfs_trans_log_inode(tp, xip, XFS_ILOG_CORE); |
| 963 | xfs_trans_set_sync(tp); |
| 964 | error = xfs_trans_commit(tp, 0, NULL); |
| 965 | xfs_iunlock(xip, XFS_ILOCK_EXCL); |
| 966 | } |
| 967 | if (error) |
| 968 | goto out_unlock_internal; |
| 969 | } |
| 970 | |
| 971 | xfs_rwunlock(bdp, locktype); |
| 972 | if (need_isem) |
| 973 | up(&inode->i_sem); |
| 974 | |
| 975 | error = sync_page_range(inode, mapping, pos, ret); |
| 976 | if (!error) |
| 977 | error = ret; |
| 978 | return error; |
| 979 | } |
| 980 | |
| 981 | out_unlock_internal: |
| 982 | xfs_rwunlock(bdp, locktype); |
| 983 | out_unlock_isem: |
| 984 | if (need_isem) |
| 985 | up(&inode->i_sem); |
| 986 | return -error; |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * All xfs metadata buffers except log state machine buffers |
| 991 | * get this attached as their b_bdstrat callback function. |
| 992 | * This is so that we can catch a buffer |
| 993 | * after prematurely unpinning it to forcibly shutdown the filesystem. |
| 994 | */ |
| 995 | int |
| 996 | xfs_bdstrat_cb(struct xfs_buf *bp) |
| 997 | { |
| 998 | xfs_mount_t *mp; |
| 999 | |
| 1000 | mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *); |
| 1001 | if (!XFS_FORCED_SHUTDOWN(mp)) { |
| 1002 | pagebuf_iorequest(bp); |
| 1003 | return 0; |
| 1004 | } else { |
| 1005 | xfs_buftrace("XFS__BDSTRAT IOERROR", bp); |
| 1006 | /* |
| 1007 | * Metadata write that didn't get logged but |
| 1008 | * written delayed anyway. These aren't associated |
| 1009 | * with a transaction, and can be ignored. |
| 1010 | */ |
| 1011 | if (XFS_BUF_IODONE_FUNC(bp) == NULL && |
| 1012 | (XFS_BUF_ISREAD(bp)) == 0) |
| 1013 | return (xfs_bioerror_relse(bp)); |
| 1014 | else |
| 1015 | return (xfs_bioerror(bp)); |
| 1016 | } |
| 1017 | } |
| 1018 | |
| 1019 | |
| 1020 | int |
| 1021 | xfs_bmap(bhv_desc_t *bdp, |
| 1022 | xfs_off_t offset, |
| 1023 | ssize_t count, |
| 1024 | int flags, |
| 1025 | xfs_iomap_t *iomapp, |
| 1026 | int *niomaps) |
| 1027 | { |
| 1028 | xfs_inode_t *ip = XFS_BHVTOI(bdp); |
| 1029 | xfs_iocore_t *io = &ip->i_iocore; |
| 1030 | |
| 1031 | ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG); |
| 1032 | ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) == |
| 1033 | ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0)); |
| 1034 | |
| 1035 | return xfs_iomap(io, offset, count, flags, iomapp, niomaps); |
| 1036 | } |
| 1037 | |
| 1038 | /* |
| 1039 | * Wrapper around bdstrat so that we can stop data |
| 1040 | * from going to disk in case we are shutting down the filesystem. |
| 1041 | * Typically user data goes thru this path; one of the exceptions |
| 1042 | * is the superblock. |
| 1043 | */ |
| 1044 | int |
| 1045 | xfsbdstrat( |
| 1046 | struct xfs_mount *mp, |
| 1047 | struct xfs_buf *bp) |
| 1048 | { |
| 1049 | ASSERT(mp); |
| 1050 | if (!XFS_FORCED_SHUTDOWN(mp)) { |
| 1051 | /* Grio redirection would go here |
| 1052 | * if (XFS_BUF_IS_GRIO(bp)) { |
| 1053 | */ |
| 1054 | |
| 1055 | pagebuf_iorequest(bp); |
| 1056 | return 0; |
| 1057 | } |
| 1058 | |
| 1059 | xfs_buftrace("XFSBDSTRAT IOERROR", bp); |
| 1060 | return (xfs_bioerror_relse(bp)); |
| 1061 | } |
| 1062 | |
| 1063 | /* |
| 1064 | * If the underlying (data/log/rt) device is readonly, there are some |
| 1065 | * operations that cannot proceed. |
| 1066 | */ |
| 1067 | int |
| 1068 | xfs_dev_is_read_only( |
| 1069 | xfs_mount_t *mp, |
| 1070 | char *message) |
| 1071 | { |
| 1072 | if (xfs_readonly_buftarg(mp->m_ddev_targp) || |
| 1073 | xfs_readonly_buftarg(mp->m_logdev_targp) || |
| 1074 | (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { |
| 1075 | cmn_err(CE_NOTE, |
| 1076 | "XFS: %s required on read-only device.", message); |
| 1077 | cmn_err(CE_NOTE, |
| 1078 | "XFS: write access unavailable, cannot proceed."); |
| 1079 | return EROFS; |
| 1080 | } |
| 1081 | return 0; |
| 1082 | } |