blob: d7f179cc2e984ae17d3888db194b309edfa2bb21 [file] [log] [blame]
Kent Yoderae0222b2012-05-14 10:59:38 +00001/**
2 * Routines supporting the Power 7+ Nest Accelerators driver
3 *
4 * Copyright (C) 2011-2012 International Business Machines Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 only.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 *
19 * Author: Kent Yoder <yoder1@us.ibm.com>
20 */
21
22#include <crypto/internal/hash.h>
23#include <crypto/hash.h>
24#include <crypto/aes.h>
25#include <crypto/sha.h>
26#include <crypto/algapi.h>
27#include <crypto/scatterwalk.h>
28#include <linux/module.h>
29#include <linux/moduleparam.h>
30#include <linux/types.h>
31#include <linux/mm.h>
32#include <linux/crypto.h>
33#include <linux/scatterlist.h>
34#include <linux/device.h>
35#include <linux/of.h>
36#include <asm/pSeries_reconfig.h>
37#include <asm/abs_addr.h>
38#include <asm/hvcall.h>
39#include <asm/vio.h>
40
41#include "nx_csbcpb.h"
42#include "nx.h"
43
44
45/**
46 * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
47 *
48 * @nx_ctx: the crypto context handle
49 * @op: PFO operation struct to pass in
50 * @may_sleep: flag indicating the request can sleep
51 *
52 * Make the hcall, retrying while the hardware is busy. If we cannot yield
53 * the thread, limit the number of retries to 10 here.
54 */
55int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
56 struct vio_pfo_op *op,
57 u32 may_sleep)
58{
59 int rc, retries = 10;
60 struct vio_dev *viodev = nx_driver.viodev;
61
62 atomic_inc(&(nx_ctx->stats->sync_ops));
63
64 do {
65 rc = vio_h_cop_sync(viodev, op);
66 } while ((rc == -EBUSY && !may_sleep && retries--) ||
67 (rc == -EBUSY && may_sleep && cond_resched()));
68
69 if (rc) {
70 dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
71 "hcall rc: %ld\n", rc, op->hcall_err);
72 atomic_inc(&(nx_ctx->stats->errors));
73 atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
74 atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
75 }
76
77 return rc;
78}
79
80/**
81 * nx_build_sg_list - build an NX scatter list describing a single buffer
82 *
83 * @sg_head: pointer to the first scatter list element to build
84 * @start_addr: pointer to the linear buffer
85 * @len: length of the data at @start_addr
86 * @sgmax: the largest number of scatter list elements we're allowed to create
87 *
88 * This function will start writing nx_sg elements at @sg_head and keep
89 * writing them until all of the data from @start_addr is described or
90 * until sgmax elements have been written. Scatter list elements will be
91 * created such that none of the elements describes a buffer that crosses a 4K
92 * boundary.
93 */
94struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
95 u8 *start_addr,
96 unsigned int len,
97 u32 sgmax)
98{
99 unsigned int sg_len = 0;
100 struct nx_sg *sg;
101 u64 sg_addr = (u64)start_addr;
102 u64 end_addr;
103
104 /* determine the start and end for this address range - slightly
105 * different if this is in VMALLOC_REGION */
106 if (is_vmalloc_addr(start_addr))
107 sg_addr = phys_to_abs(page_to_phys(vmalloc_to_page(start_addr)))
108 + offset_in_page(sg_addr);
109 else
110 sg_addr = virt_to_abs(sg_addr);
111
112 end_addr = sg_addr + len;
113
114 /* each iteration will write one struct nx_sg element and add the
115 * length of data described by that element to sg_len. Once @len bytes
116 * have been described (or @sgmax elements have been written), the
117 * loop ends. min_t is used to ensure @end_addr falls on the same page
118 * as sg_addr, if not, we need to create another nx_sg element for the
119 * data on the next page */
120 for (sg = sg_head; sg_len < len; sg++) {
121 sg->addr = sg_addr;
122 sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), end_addr);
123 sg->len = sg_addr - sg->addr;
124 sg_len += sg->len;
125
126 if ((sg - sg_head) == sgmax) {
127 pr_err("nx: scatter/gather list overflow, pid: %d\n",
128 current->pid);
129 return NULL;
130 }
131 }
132
133 /* return the moved sg_head pointer */
134 return sg;
135}
136
137/**
138 * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
139 *
140 * @nx_dst: pointer to the first nx_sg element to write
141 * @sglen: max number of nx_sg entries we're allowed to write
142 * @sg_src: pointer to the source linux scatterlist to walk
143 * @start: number of bytes to fast-forward past at the beginning of @sg_src
144 * @src_len: number of bytes to walk in @sg_src
145 */
146struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst,
147 unsigned int sglen,
148 struct scatterlist *sg_src,
149 unsigned int start,
150 unsigned int src_len)
151{
152 struct scatter_walk walk;
153 struct nx_sg *nx_sg = nx_dst;
154 unsigned int n, offset = 0, len = src_len;
155 char *dst;
156
157 /* we need to fast forward through @start bytes first */
158 for (;;) {
159 scatterwalk_start(&walk, sg_src);
160
161 if (start < offset + sg_src->length)
162 break;
163
164 offset += sg_src->length;
165 sg_src = scatterwalk_sg_next(sg_src);
166 }
167
168 /* start - offset is the number of bytes to advance in the scatterlist
169 * element we're currently looking at */
170 scatterwalk_advance(&walk, start - offset);
171
172 while (len && nx_sg) {
173 n = scatterwalk_clamp(&walk, len);
174 if (!n) {
175 scatterwalk_start(&walk, sg_next(walk.sg));
176 n = scatterwalk_clamp(&walk, len);
177 }
178 dst = scatterwalk_map(&walk);
179
180 nx_sg = nx_build_sg_list(nx_sg, dst, n, sglen);
181 len -= n;
182
183 scatterwalk_unmap(dst);
184 scatterwalk_advance(&walk, n);
185 scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
186 }
187
188 /* return the moved destination pointer */
189 return nx_sg;
190}
191
192/**
193 * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
194 * scatterlists based on them.
195 *
196 * @nx_ctx: NX crypto context for the lists we're building
197 * @desc: the block cipher descriptor for the operation
198 * @dst: destination scatterlist
199 * @src: source scatterlist
200 * @nbytes: length of data described in the scatterlists
201 * @iv: destination for the iv data, if the algorithm requires it
202 *
203 * This is common code shared by all the AES algorithms. It uses the block
204 * cipher walk routines to traverse input and output scatterlists, building
205 * corresponding NX scatterlists
206 */
207int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx,
208 struct blkcipher_desc *desc,
209 struct scatterlist *dst,
210 struct scatterlist *src,
211 unsigned int nbytes,
212 u8 *iv)
213{
214 struct nx_sg *nx_insg = nx_ctx->in_sg;
215 struct nx_sg *nx_outsg = nx_ctx->out_sg;
216 struct blkcipher_walk walk;
217 int rc;
218
219 blkcipher_walk_init(&walk, dst, src, nbytes);
220 rc = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
221 if (rc)
222 goto out;
223
224 if (iv)
225 memcpy(iv, walk.iv, AES_BLOCK_SIZE);
226
227 while (walk.nbytes) {
228 nx_insg = nx_build_sg_list(nx_insg, walk.src.virt.addr,
229 walk.nbytes, nx_ctx->ap->sglen);
230 nx_outsg = nx_build_sg_list(nx_outsg, walk.dst.virt.addr,
231 walk.nbytes, nx_ctx->ap->sglen);
232
233 rc = blkcipher_walk_done(desc, &walk, 0);
234 if (rc)
235 break;
236 }
237
238 if (walk.nbytes) {
239 nx_insg = nx_build_sg_list(nx_insg, walk.src.virt.addr,
240 walk.nbytes, nx_ctx->ap->sglen);
241 nx_outsg = nx_build_sg_list(nx_outsg, walk.dst.virt.addr,
242 walk.nbytes, nx_ctx->ap->sglen);
243
244 rc = 0;
245 }
246
247 /* these lengths should be negative, which will indicate to phyp that
248 * the input and output parameters are scatterlists, not linear
249 * buffers */
250 nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg);
251 nx_ctx->op.outlen = (nx_ctx->out_sg - nx_outsg) * sizeof(struct nx_sg);
252out:
253 return rc;
254}
255
256/**
257 * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
258 *
259 * @nx_ctx: the nx context to initialize
260 * @function: the function code for the op
261 */
262void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
263{
264 memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
265 nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
266
267 nx_ctx->op.flags = function;
268 nx_ctx->op.csbcpb = virt_to_abs(nx_ctx->csbcpb);
269 nx_ctx->op.in = virt_to_abs(nx_ctx->in_sg);
270 nx_ctx->op.out = virt_to_abs(nx_ctx->out_sg);
271
272 if (nx_ctx->csbcpb_aead) {
273 nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
274
275 nx_ctx->op_aead.flags = function;
276 nx_ctx->op_aead.csbcpb = virt_to_abs(nx_ctx->csbcpb_aead);
277 nx_ctx->op_aead.in = virt_to_abs(nx_ctx->in_sg);
278 nx_ctx->op_aead.out = virt_to_abs(nx_ctx->out_sg);
279 }
280}
281
282static void nx_of_update_status(struct device *dev,
283 struct property *p,
284 struct nx_of *props)
285{
286 if (!strncmp(p->value, "okay", p->length)) {
287 props->status = NX_WAITING;
288 props->flags |= NX_OF_FLAG_STATUS_SET;
289 } else {
290 dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
291 (char *)p->value);
292 }
293}
294
295static void nx_of_update_sglen(struct device *dev,
296 struct property *p,
297 struct nx_of *props)
298{
299 if (p->length != sizeof(props->max_sg_len)) {
300 dev_err(dev, "%s: unexpected format for "
301 "ibm,max-sg-len property\n", __func__);
302 dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
303 "long, expected %zd bytes\n", __func__,
304 p->length, sizeof(props->max_sg_len));
305 return;
306 }
307
308 props->max_sg_len = *(u32 *)p->value;
309 props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
310}
311
312static void nx_of_update_msc(struct device *dev,
313 struct property *p,
314 struct nx_of *props)
315{
316 struct msc_triplet *trip;
317 struct max_sync_cop *msc;
318 unsigned int bytes_so_far, i, lenp;
319
320 msc = (struct max_sync_cop *)p->value;
321 lenp = p->length;
322
323 /* You can't tell if the data read in for this property is sane by its
324 * size alone. This is because there are sizes embedded in the data
325 * structure. The best we can do is check lengths as we parse and bail
326 * as soon as a length error is detected. */
327 bytes_so_far = 0;
328
329 while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
330 bytes_so_far += sizeof(struct max_sync_cop);
331
332 trip = msc->trip;
333
334 for (i = 0;
335 ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
336 i < msc->triplets;
337 i++) {
338 if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) {
339 dev_err(dev, "unknown function code/mode "
340 "combo: %d/%d (ignored)\n", msc->fc,
341 msc->mode);
342 goto next_loop;
343 }
344
345 switch (trip->keybitlen) {
346 case 128:
347 case 160:
348 props->ap[msc->fc][msc->mode][0].databytelen =
349 trip->databytelen;
350 props->ap[msc->fc][msc->mode][0].sglen =
351 trip->sglen;
352 break;
353 case 192:
354 props->ap[msc->fc][msc->mode][1].databytelen =
355 trip->databytelen;
356 props->ap[msc->fc][msc->mode][1].sglen =
357 trip->sglen;
358 break;
359 case 256:
360 if (msc->fc == NX_FC_AES) {
361 props->ap[msc->fc][msc->mode][2].
362 databytelen = trip->databytelen;
363 props->ap[msc->fc][msc->mode][2].sglen =
364 trip->sglen;
365 } else if (msc->fc == NX_FC_AES_HMAC ||
366 msc->fc == NX_FC_SHA) {
367 props->ap[msc->fc][msc->mode][1].
368 databytelen = trip->databytelen;
369 props->ap[msc->fc][msc->mode][1].sglen =
370 trip->sglen;
371 } else {
372 dev_warn(dev, "unknown function "
373 "code/key bit len combo"
374 ": (%u/256)\n", msc->fc);
375 }
376 break;
377 case 512:
378 props->ap[msc->fc][msc->mode][2].databytelen =
379 trip->databytelen;
380 props->ap[msc->fc][msc->mode][2].sglen =
381 trip->sglen;
382 break;
383 default:
384 dev_warn(dev, "unknown function code/key bit "
385 "len combo: (%u/%u)\n", msc->fc,
386 trip->keybitlen);
387 break;
388 }
389next_loop:
390 bytes_so_far += sizeof(struct msc_triplet);
391 trip++;
392 }
393
394 msc = (struct max_sync_cop *)trip;
395 }
396
397 props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
398}
399
400/**
401 * nx_of_init - read openFirmware values from the device tree
402 *
403 * @dev: device handle
404 * @props: pointer to struct to hold the properties values
405 *
406 * Called once at driver probe time, this function will read out the
407 * openFirmware properties we use at runtime. If all the OF properties are
408 * acceptable, when we exit this function props->flags will indicate that
409 * we're ready to register our crypto algorithms.
410 */
411static void nx_of_init(struct device *dev, struct nx_of *props)
412{
413 struct device_node *base_node = dev->of_node;
414 struct property *p;
415
416 p = of_find_property(base_node, "status", NULL);
417 if (!p)
418 dev_info(dev, "%s: property 'status' not found\n", __func__);
419 else
420 nx_of_update_status(dev, p, props);
421
422 p = of_find_property(base_node, "ibm,max-sg-len", NULL);
423 if (!p)
424 dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
425 __func__);
426 else
427 nx_of_update_sglen(dev, p, props);
428
429 p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
430 if (!p)
431 dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
432 __func__);
433 else
434 nx_of_update_msc(dev, p, props);
435}
436
437/**
438 * nx_register_algs - register algorithms with the crypto API
439 *
440 * Called from nx_probe()
441 *
442 * If all OF properties are in an acceptable state, the driver flags will
443 * indicate that we're ready and we'll create our debugfs files and register
444 * out crypto algorithms.
445 */
446static int nx_register_algs(void)
447{
448 int rc = -1;
449
450 if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
451 goto out;
452
453 memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
454
455 rc = NX_DEBUGFS_INIT(&nx_driver);
456 if (rc)
457 goto out;
458
459 rc = crypto_register_alg(&nx_ecb_aes_alg);
460 if (rc)
461 goto out;
462
463 rc = crypto_register_alg(&nx_cbc_aes_alg);
464 if (rc)
465 goto out_unreg_ecb;
466
467 rc = crypto_register_alg(&nx_ctr_aes_alg);
468 if (rc)
469 goto out_unreg_cbc;
470
471 rc = crypto_register_alg(&nx_ctr3686_aes_alg);
472 if (rc)
473 goto out_unreg_ctr;
474
475 rc = crypto_register_alg(&nx_gcm_aes_alg);
476 if (rc)
477 goto out_unreg_ctr3686;
478
479 rc = crypto_register_alg(&nx_gcm4106_aes_alg);
480 if (rc)
481 goto out_unreg_gcm;
482
483 rc = crypto_register_alg(&nx_ccm_aes_alg);
484 if (rc)
485 goto out_unreg_gcm4106;
486
487 rc = crypto_register_alg(&nx_ccm4309_aes_alg);
488 if (rc)
489 goto out_unreg_ccm;
490
491 rc = crypto_register_shash(&nx_shash_sha256_alg);
492 if (rc)
493 goto out_unreg_ccm4309;
494
495 rc = crypto_register_shash(&nx_shash_sha512_alg);
496 if (rc)
497 goto out_unreg_s256;
498
499 rc = crypto_register_shash(&nx_shash_aes_xcbc_alg);
500 if (rc)
501 goto out_unreg_s512;
502
503 nx_driver.of.status = NX_OKAY;
504
505 goto out;
506
507out_unreg_s512:
508 crypto_unregister_shash(&nx_shash_sha512_alg);
509out_unreg_s256:
510 crypto_unregister_shash(&nx_shash_sha256_alg);
511out_unreg_ccm4309:
512 crypto_unregister_alg(&nx_ccm4309_aes_alg);
513out_unreg_ccm:
514 crypto_unregister_alg(&nx_ccm_aes_alg);
515out_unreg_gcm4106:
516 crypto_unregister_alg(&nx_gcm4106_aes_alg);
517out_unreg_gcm:
518 crypto_unregister_alg(&nx_gcm_aes_alg);
519out_unreg_ctr3686:
520 crypto_unregister_alg(&nx_ctr3686_aes_alg);
521out_unreg_ctr:
522 crypto_unregister_alg(&nx_ctr_aes_alg);
523out_unreg_cbc:
524 crypto_unregister_alg(&nx_cbc_aes_alg);
525out_unreg_ecb:
526 crypto_unregister_alg(&nx_ecb_aes_alg);
527out:
528 return rc;
529}
530
531/**
532 * nx_crypto_ctx_init - create and initialize a crypto api context
533 *
534 * @nx_ctx: the crypto api context
535 * @fc: function code for the context
536 * @mode: the function code specific mode for this context
537 */
538static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
539{
540 if (nx_driver.of.status != NX_OKAY) {
541 pr_err("Attempt to initialize NX crypto context while device "
542 "is not available!\n");
543 return -ENODEV;
544 }
545
546 /* we need an extra page for csbcpb_aead for these modes */
547 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
548 nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
549 sizeof(struct nx_csbcpb);
550 else
551 nx_ctx->kmem_len = (3 * NX_PAGE_SIZE) +
552 sizeof(struct nx_csbcpb);
553
554 nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
555 if (!nx_ctx->kmem)
556 return -ENOMEM;
557
558 /* the csbcpb and scatterlists must be 4K aligned pages */
559 nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
560 (u64)NX_PAGE_SIZE));
561 nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
562 nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
563
564 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
565 nx_ctx->csbcpb_aead =
566 (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
567 NX_PAGE_SIZE);
568
569 /* give each context a pointer to global stats and their OF
570 * properties */
571 nx_ctx->stats = &nx_driver.stats;
572 memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
573 sizeof(struct alg_props) * 3);
574
575 return 0;
576}
577
578/* entry points from the crypto tfm initializers */
579int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm)
580{
581 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
582 NX_MODE_AES_CCM);
583}
584
585int nx_crypto_ctx_aes_gcm_init(struct crypto_tfm *tfm)
586{
587 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
588 NX_MODE_AES_GCM);
589}
590
591int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
592{
593 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
594 NX_MODE_AES_CTR);
595}
596
597int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
598{
599 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
600 NX_MODE_AES_CBC);
601}
602
603int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
604{
605 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
606 NX_MODE_AES_ECB);
607}
608
609int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
610{
611 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
612}
613
614int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
615{
616 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
617 NX_MODE_AES_XCBC_MAC);
618}
619
620/**
621 * nx_crypto_ctx_exit - destroy a crypto api context
622 *
623 * @tfm: the crypto transform pointer for the context
624 *
625 * As crypto API contexts are destroyed, this exit hook is called to free the
626 * memory associated with it.
627 */
628void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
629{
630 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
631
632 kzfree(nx_ctx->kmem);
633 nx_ctx->csbcpb = NULL;
634 nx_ctx->csbcpb_aead = NULL;
635 nx_ctx->in_sg = NULL;
636 nx_ctx->out_sg = NULL;
637}
638
639static int __devinit nx_probe(struct vio_dev *viodev,
640 const struct vio_device_id *id)
641{
642 dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
643 viodev->name, viodev->resource_id);
644
645 if (nx_driver.viodev) {
646 dev_err(&viodev->dev, "%s: Attempt to register more than one "
647 "instance of the hardware\n", __func__);
648 return -EINVAL;
649 }
650
651 nx_driver.viodev = viodev;
652
653 nx_of_init(&viodev->dev, &nx_driver.of);
654
655 return nx_register_algs();
656}
657
658static int __devexit nx_remove(struct vio_dev *viodev)
659{
660 dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
661 viodev->unit_address);
662
663 if (nx_driver.of.status == NX_OKAY) {
664 NX_DEBUGFS_FINI(&nx_driver);
665
666 crypto_unregister_alg(&nx_ccm_aes_alg);
667 crypto_unregister_alg(&nx_ccm4309_aes_alg);
668 crypto_unregister_alg(&nx_gcm_aes_alg);
669 crypto_unregister_alg(&nx_gcm4106_aes_alg);
670 crypto_unregister_alg(&nx_ctr_aes_alg);
671 crypto_unregister_alg(&nx_ctr3686_aes_alg);
672 crypto_unregister_alg(&nx_cbc_aes_alg);
673 crypto_unregister_alg(&nx_ecb_aes_alg);
674 crypto_unregister_shash(&nx_shash_sha256_alg);
675 crypto_unregister_shash(&nx_shash_sha512_alg);
676 crypto_unregister_shash(&nx_shash_aes_xcbc_alg);
677 }
678
679 return 0;
680}
681
682
683/* module wide initialization/cleanup */
684static int __init nx_init(void)
685{
686 return vio_register_driver(&nx_driver.viodriver);
687}
688
689static void __exit nx_fini(void)
690{
691 vio_unregister_driver(&nx_driver.viodriver);
692}
693
694static struct vio_device_id nx_crypto_driver_ids[] __devinitdata = {
695 { "ibm,sym-encryption-v1", "ibm,sym-encryption" },
696 { "", "" }
697};
698MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
699
700/* driver state structure */
701struct nx_crypto_driver nx_driver = {
702 .viodriver = {
703 .id_table = nx_crypto_driver_ids,
704 .probe = nx_probe,
705 .remove = nx_remove,
706 .name = NX_NAME,
707 },
708};
709
710module_init(nx_init);
711module_exit(nx_fini);
712
713MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
714MODULE_DESCRIPTION(NX_STRING);
715MODULE_LICENSE("GPL");
716MODULE_VERSION(NX_VERSION);