blob: f3dec45ef874d2d40ff883380201eb8d1e540f42 [file] [log] [blame]
Thomas Gleixner97fc79f2006-01-09 20:52:31 -08001/*
2 * include/linux/ktime.h
3 *
4 * ktime_t - nanosecond-resolution time format.
5 *
6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8 *
9 * data type definitions, declarations, prototypes and macros.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
Thomas Gleixner66188fa2006-02-01 03:05:13 -080013 * Credits:
14 *
15 * Roman Zippel provided the ideas and primary code snippets of
16 * the ktime_t union and further simplifications of the original
17 * code.
18 *
Thomas Gleixner97fc79f2006-01-09 20:52:31 -080019 * For licencing details see kernel-base/COPYING
20 */
21#ifndef _LINUX_KTIME_H
22#define _LINUX_KTIME_H
23
24#include <linux/time.h>
25#include <linux/jiffies.h>
26
27/*
28 * ktime_t:
29 *
30 * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
31 * internal representation of time values in scalar nanoseconds. The
32 * design plays out best on 64-bit CPUs, where most conversions are
33 * NOPs and most arithmetic ktime_t operations are plain arithmetic
34 * operations.
35 *
36 * On 32-bit CPUs an optimized representation of the timespec structure
37 * is used to avoid expensive conversions from and to timespecs. The
38 * endian-aware order of the tv struct members is choosen to allow
39 * mathematical operations on the tv64 member of the union too, which
40 * for certain operations produces better code.
41 *
42 * For architectures with efficient support for 64/32-bit conversions the
43 * plain scalar nanosecond based representation can be selected by the
44 * config switch CONFIG_KTIME_SCALAR.
45 */
46typedef union {
47 s64 tv64;
48#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
49 struct {
50# ifdef __BIG_ENDIAN
51 s32 sec, nsec;
52# else
53 s32 nsec, sec;
54# endif
55 } tv;
56#endif
57} ktime_t;
58
59#define KTIME_MAX (~((u64)1 << 63))
60
61/*
62 * ktime_t definitions when using the 64-bit scalar representation:
63 */
64
65#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
66
67/* Define a ktime_t variable and initialize it to zero: */
68#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 }
69
70/**
71 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
72 *
73 * @secs: seconds to set
74 * @nsecs: nanoseconds to set
75 *
76 * Return the ktime_t representation of the value
77 */
78static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
79{
80 return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
81}
82
83/* Subtract two ktime_t variables. rem = lhs -rhs: */
84#define ktime_sub(lhs, rhs) \
85 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
86
87/* Add two ktime_t variables. res = lhs + rhs: */
88#define ktime_add(lhs, rhs) \
89 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
90
91/*
92 * Add a ktime_t variable and a scalar nanosecond value.
93 * res = kt + nsval:
94 */
95#define ktime_add_ns(kt, nsval) \
96 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
97
98/* convert a timespec to ktime_t format: */
Roman Zippelb2ee9db2006-02-15 15:17:40 -080099static inline ktime_t timespec_to_ktime(struct timespec ts)
100{
101 return ktime_set(ts.tv_sec, ts.tv_nsec);
102}
Thomas Gleixner97fc79f2006-01-09 20:52:31 -0800103
104/* convert a timeval to ktime_t format: */
Roman Zippelb2ee9db2006-02-15 15:17:40 -0800105static inline ktime_t timeval_to_ktime(struct timeval tv)
106{
107 return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
108}
Thomas Gleixner97fc79f2006-01-09 20:52:31 -0800109
110/* Map the ktime_t to timespec conversion to ns_to_timespec function */
111#define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
112
113/* Map the ktime_t to timeval conversion to ns_to_timeval function */
114#define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
115
116/* Map the ktime_t to clock_t conversion to the inline in jiffies.h: */
117#define ktime_to_clock_t(kt) nsec_to_clock_t((kt).tv64)
118
119/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
120#define ktime_to_ns(kt) ((kt).tv64)
121
122#else
123
124/*
125 * Helper macros/inlines to get the ktime_t math right in the timespec
126 * representation. The macros are sometimes ugly - their actual use is
127 * pretty okay-ish, given the circumstances. We do all this for
128 * performance reasons. The pure scalar nsec_t based code was nice and
129 * simple, but created too many 64-bit / 32-bit conversions and divisions.
130 *
131 * Be especially aware that negative values are represented in a way
132 * that the tv.sec field is negative and the tv.nsec field is greater
133 * or equal to zero but less than nanoseconds per second. This is the
134 * same representation which is used by timespecs.
135 *
136 * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
137 */
138
139/* Define a ktime_t variable and initialize it to zero: */
140#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 }
141
142/* Set a ktime_t variable to a value in sec/nsec representation: */
143static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
144{
145 return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
146}
147
148/**
149 * ktime_sub - subtract two ktime_t variables
150 *
151 * @lhs: minuend
152 * @rhs: subtrahend
153 *
154 * Returns the remainder of the substraction
155 */
156static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
157{
158 ktime_t res;
159
160 res.tv64 = lhs.tv64 - rhs.tv64;
161 if (res.tv.nsec < 0)
162 res.tv.nsec += NSEC_PER_SEC;
163
164 return res;
165}
166
167/**
168 * ktime_add - add two ktime_t variables
169 *
170 * @add1: addend1
171 * @add2: addend2
172 *
173 * Returns the sum of addend1 and addend2
174 */
175static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
176{
177 ktime_t res;
178
179 res.tv64 = add1.tv64 + add2.tv64;
180 /*
181 * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
182 * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
183 *
184 * it's equivalent to:
185 * tv.nsec -= NSEC_PER_SEC
186 * tv.sec ++;
187 */
188 if (res.tv.nsec >= NSEC_PER_SEC)
189 res.tv64 += (u32)-NSEC_PER_SEC;
190
191 return res;
192}
193
194/**
195 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
196 *
197 * @kt: addend
198 * @nsec: the scalar nsec value to add
199 *
200 * Returns the sum of kt and nsec in ktime_t format
201 */
202extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
203
204/**
205 * timespec_to_ktime - convert a timespec to ktime_t format
206 *
207 * @ts: the timespec variable to convert
208 *
209 * Returns a ktime_t variable with the converted timespec value
210 */
211static inline ktime_t timespec_to_ktime(const struct timespec ts)
212{
213 return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
214 .nsec = (s32)ts.tv_nsec } };
215}
216
217/**
218 * timeval_to_ktime - convert a timeval to ktime_t format
219 *
220 * @tv: the timeval variable to convert
221 *
222 * Returns a ktime_t variable with the converted timeval value
223 */
224static inline ktime_t timeval_to_ktime(const struct timeval tv)
225{
226 return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
227 .nsec = (s32)tv.tv_usec * 1000 } };
228}
229
230/**
231 * ktime_to_timespec - convert a ktime_t variable to timespec format
232 *
233 * @kt: the ktime_t variable to convert
234 *
235 * Returns the timespec representation of the ktime value
236 */
237static inline struct timespec ktime_to_timespec(const ktime_t kt)
238{
239 return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
240 .tv_nsec = (long) kt.tv.nsec };
241}
242
243/**
244 * ktime_to_timeval - convert a ktime_t variable to timeval format
245 *
246 * @kt: the ktime_t variable to convert
247 *
248 * Returns the timeval representation of the ktime value
249 */
250static inline struct timeval ktime_to_timeval(const ktime_t kt)
251{
252 return (struct timeval) {
253 .tv_sec = (time_t) kt.tv.sec,
254 .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
255}
256
257/**
258 * ktime_to_clock_t - convert a ktime_t variable to clock_t format
259 * @kt: the ktime_t variable to convert
260 *
261 * Returns a clock_t variable with the converted value
262 */
263static inline clock_t ktime_to_clock_t(const ktime_t kt)
264{
265 return nsec_to_clock_t( (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec);
266}
267
268/**
269 * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
270 * @kt: the ktime_t variable to convert
271 *
272 * Returns the scalar nanoseconds representation of kt
273 */
274static inline u64 ktime_to_ns(const ktime_t kt)
275{
276 return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
277}
278
279#endif
280
Thomas Gleixnerc0a31322006-01-09 20:52:32 -0800281/*
282 * The resolution of the clocks. The resolution value is returned in
283 * the clock_getres() system call to give application programmers an
284 * idea of the (in)accuracy of timers. Timer values are rounded up to
285 * this resolution values.
286 */
Thomas Gleixnere2787632006-01-12 11:36:14 +0100287#define KTIME_REALTIME_RES (ktime_t){ .tv64 = TICK_NSEC }
288#define KTIME_MONOTONIC_RES (ktime_t){ .tv64 = TICK_NSEC }
Thomas Gleixnerc0a31322006-01-09 20:52:32 -0800289
290/* Get the monotonic time in timespec format: */
291extern void ktime_get_ts(struct timespec *ts);
292
293/* Get the real (wall-) time in timespec format: */
294#define ktime_get_real_ts(ts) getnstimeofday(ts)
295
Thomas Gleixner97fc79f2006-01-09 20:52:31 -0800296#endif