Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net> |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation; either version 2 |
| 7 | * of the License, or (at your option) any later version. |
| 8 | * |
| 9 | * 2003-10-17 - Ported from altq |
| 10 | */ |
| 11 | /* |
| 12 | * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved. |
| 13 | * |
| 14 | * Permission to use, copy, modify, and distribute this software and |
| 15 | * its documentation is hereby granted (including for commercial or |
| 16 | * for-profit use), provided that both the copyright notice and this |
| 17 | * permission notice appear in all copies of the software, derivative |
| 18 | * works, or modified versions, and any portions thereof. |
| 19 | * |
| 20 | * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF |
| 21 | * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS |
| 22 | * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED |
| 23 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 24 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 25 | * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE |
| 26 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 27 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
| 28 | * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| 29 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 30 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 31 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
| 32 | * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH |
| 33 | * DAMAGE. |
| 34 | * |
| 35 | * Carnegie Mellon encourages (but does not require) users of this |
| 36 | * software to return any improvements or extensions that they make, |
| 37 | * and to grant Carnegie Mellon the rights to redistribute these |
| 38 | * changes without encumbrance. |
| 39 | */ |
| 40 | /* |
| 41 | * H-FSC is described in Proceedings of SIGCOMM'97, |
| 42 | * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing, |
| 43 | * Real-Time and Priority Service" |
| 44 | * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng. |
| 45 | * |
| 46 | * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing. |
| 47 | * when a class has an upperlimit, the fit-time is computed from the |
| 48 | * upperlimit service curve. the link-sharing scheduler does not schedule |
| 49 | * a class whose fit-time exceeds the current time. |
| 50 | */ |
| 51 | |
| 52 | #include <linux/kernel.h> |
| 53 | #include <linux/config.h> |
| 54 | #include <linux/module.h> |
| 55 | #include <linux/types.h> |
| 56 | #include <linux/errno.h> |
| 57 | #include <linux/jiffies.h> |
| 58 | #include <linux/compiler.h> |
| 59 | #include <linux/spinlock.h> |
| 60 | #include <linux/skbuff.h> |
| 61 | #include <linux/string.h> |
| 62 | #include <linux/slab.h> |
| 63 | #include <linux/timer.h> |
| 64 | #include <linux/list.h> |
| 65 | #include <linux/rbtree.h> |
| 66 | #include <linux/init.h> |
| 67 | #include <linux/netdevice.h> |
| 68 | #include <linux/rtnetlink.h> |
| 69 | #include <linux/pkt_sched.h> |
| 70 | #include <net/pkt_sched.h> |
| 71 | #include <net/pkt_cls.h> |
| 72 | #include <asm/system.h> |
| 73 | #include <asm/div64.h> |
| 74 | |
| 75 | #define HFSC_DEBUG 1 |
| 76 | |
| 77 | /* |
| 78 | * kernel internal service curve representation: |
| 79 | * coordinates are given by 64 bit unsigned integers. |
| 80 | * x-axis: unit is clock count. |
| 81 | * y-axis: unit is byte. |
| 82 | * |
| 83 | * The service curve parameters are converted to the internal |
| 84 | * representation. The slope values are scaled to avoid overflow. |
| 85 | * the inverse slope values as well as the y-projection of the 1st |
| 86 | * segment are kept in order to to avoid 64-bit divide operations |
| 87 | * that are expensive on 32-bit architectures. |
| 88 | */ |
| 89 | |
| 90 | struct internal_sc |
| 91 | { |
| 92 | u64 sm1; /* scaled slope of the 1st segment */ |
| 93 | u64 ism1; /* scaled inverse-slope of the 1st segment */ |
| 94 | u64 dx; /* the x-projection of the 1st segment */ |
| 95 | u64 dy; /* the y-projection of the 1st segment */ |
| 96 | u64 sm2; /* scaled slope of the 2nd segment */ |
| 97 | u64 ism2; /* scaled inverse-slope of the 2nd segment */ |
| 98 | }; |
| 99 | |
| 100 | /* runtime service curve */ |
| 101 | struct runtime_sc |
| 102 | { |
| 103 | u64 x; /* current starting position on x-axis */ |
| 104 | u64 y; /* current starting position on y-axis */ |
| 105 | u64 sm1; /* scaled slope of the 1st segment */ |
| 106 | u64 ism1; /* scaled inverse-slope of the 1st segment */ |
| 107 | u64 dx; /* the x-projection of the 1st segment */ |
| 108 | u64 dy; /* the y-projection of the 1st segment */ |
| 109 | u64 sm2; /* scaled slope of the 2nd segment */ |
| 110 | u64 ism2; /* scaled inverse-slope of the 2nd segment */ |
| 111 | }; |
| 112 | |
| 113 | enum hfsc_class_flags |
| 114 | { |
| 115 | HFSC_RSC = 0x1, |
| 116 | HFSC_FSC = 0x2, |
| 117 | HFSC_USC = 0x4 |
| 118 | }; |
| 119 | |
| 120 | struct hfsc_class |
| 121 | { |
| 122 | u32 classid; /* class id */ |
| 123 | unsigned int refcnt; /* usage count */ |
| 124 | |
| 125 | struct gnet_stats_basic bstats; |
| 126 | struct gnet_stats_queue qstats; |
| 127 | struct gnet_stats_rate_est rate_est; |
| 128 | spinlock_t *stats_lock; |
| 129 | unsigned int level; /* class level in hierarchy */ |
| 130 | struct tcf_proto *filter_list; /* filter list */ |
| 131 | unsigned int filter_cnt; /* filter count */ |
| 132 | |
| 133 | struct hfsc_sched *sched; /* scheduler data */ |
| 134 | struct hfsc_class *cl_parent; /* parent class */ |
| 135 | struct list_head siblings; /* sibling classes */ |
| 136 | struct list_head children; /* child classes */ |
| 137 | struct Qdisc *qdisc; /* leaf qdisc */ |
| 138 | |
| 139 | struct rb_node el_node; /* qdisc's eligible tree member */ |
| 140 | struct rb_root vt_tree; /* active children sorted by cl_vt */ |
| 141 | struct rb_node vt_node; /* parent's vt_tree member */ |
| 142 | struct rb_root cf_tree; /* active children sorted by cl_f */ |
| 143 | struct rb_node cf_node; /* parent's cf_heap member */ |
| 144 | struct list_head hlist; /* hash list member */ |
| 145 | struct list_head dlist; /* drop list member */ |
| 146 | |
| 147 | u64 cl_total; /* total work in bytes */ |
| 148 | u64 cl_cumul; /* cumulative work in bytes done by |
| 149 | real-time criteria */ |
| 150 | |
| 151 | u64 cl_d; /* deadline*/ |
| 152 | u64 cl_e; /* eligible time */ |
| 153 | u64 cl_vt; /* virtual time */ |
| 154 | u64 cl_f; /* time when this class will fit for |
| 155 | link-sharing, max(myf, cfmin) */ |
| 156 | u64 cl_myf; /* my fit-time (calculated from this |
| 157 | class's own upperlimit curve) */ |
| 158 | u64 cl_myfadj; /* my fit-time adjustment (to cancel |
| 159 | history dependence) */ |
| 160 | u64 cl_cfmin; /* earliest children's fit-time (used |
| 161 | with cl_myf to obtain cl_f) */ |
| 162 | u64 cl_cvtmin; /* minimal virtual time among the |
| 163 | children fit for link-sharing |
| 164 | (monotonic within a period) */ |
| 165 | u64 cl_vtadj; /* intra-period cumulative vt |
| 166 | adjustment */ |
| 167 | u64 cl_vtoff; /* inter-period cumulative vt offset */ |
| 168 | u64 cl_cvtmax; /* max child's vt in the last period */ |
| 169 | u64 cl_cvtoff; /* cumulative cvtmax of all periods */ |
| 170 | u64 cl_pcvtoff; /* parent's cvtoff at initalization |
| 171 | time */ |
| 172 | |
| 173 | struct internal_sc cl_rsc; /* internal real-time service curve */ |
| 174 | struct internal_sc cl_fsc; /* internal fair service curve */ |
| 175 | struct internal_sc cl_usc; /* internal upperlimit service curve */ |
| 176 | struct runtime_sc cl_deadline; /* deadline curve */ |
| 177 | struct runtime_sc cl_eligible; /* eligible curve */ |
| 178 | struct runtime_sc cl_virtual; /* virtual curve */ |
| 179 | struct runtime_sc cl_ulimit; /* upperlimit curve */ |
| 180 | |
| 181 | unsigned long cl_flags; /* which curves are valid */ |
| 182 | unsigned long cl_vtperiod; /* vt period sequence number */ |
| 183 | unsigned long cl_parentperiod;/* parent's vt period sequence number*/ |
| 184 | unsigned long cl_nactive; /* number of active children */ |
| 185 | }; |
| 186 | |
| 187 | #define HFSC_HSIZE 16 |
| 188 | |
| 189 | struct hfsc_sched |
| 190 | { |
| 191 | u16 defcls; /* default class id */ |
| 192 | struct hfsc_class root; /* root class */ |
| 193 | struct list_head clhash[HFSC_HSIZE]; /* class hash */ |
| 194 | struct rb_root eligible; /* eligible tree */ |
| 195 | struct list_head droplist; /* active leaf class list (for |
| 196 | dropping) */ |
| 197 | struct sk_buff_head requeue; /* requeued packet */ |
| 198 | struct timer_list wd_timer; /* watchdog timer */ |
| 199 | }; |
| 200 | |
| 201 | /* |
| 202 | * macros |
| 203 | */ |
| 204 | #ifdef CONFIG_NET_SCH_CLK_GETTIMEOFDAY |
| 205 | #include <linux/time.h> |
| 206 | #undef PSCHED_GET_TIME |
| 207 | #define PSCHED_GET_TIME(stamp) \ |
| 208 | do { \ |
| 209 | struct timeval tv; \ |
| 210 | do_gettimeofday(&tv); \ |
| 211 | (stamp) = 1000000ULL * tv.tv_sec + tv.tv_usec; \ |
| 212 | } while (0) |
| 213 | #endif |
| 214 | |
| 215 | #if HFSC_DEBUG |
| 216 | #define ASSERT(cond) \ |
| 217 | do { \ |
| 218 | if (unlikely(!(cond))) \ |
| 219 | printk("assertion %s failed at %s:%i (%s)\n", \ |
| 220 | #cond, __FILE__, __LINE__, __FUNCTION__); \ |
| 221 | } while (0) |
| 222 | #else |
| 223 | #define ASSERT(cond) |
| 224 | #endif /* HFSC_DEBUG */ |
| 225 | |
| 226 | #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */ |
| 227 | |
| 228 | |
| 229 | /* |
| 230 | * eligible tree holds backlogged classes being sorted by their eligible times. |
| 231 | * there is one eligible tree per hfsc instance. |
| 232 | */ |
| 233 | |
| 234 | static void |
| 235 | eltree_insert(struct hfsc_class *cl) |
| 236 | { |
| 237 | struct rb_node **p = &cl->sched->eligible.rb_node; |
| 238 | struct rb_node *parent = NULL; |
| 239 | struct hfsc_class *cl1; |
| 240 | |
| 241 | while (*p != NULL) { |
| 242 | parent = *p; |
| 243 | cl1 = rb_entry(parent, struct hfsc_class, el_node); |
| 244 | if (cl->cl_e >= cl1->cl_e) |
| 245 | p = &parent->rb_right; |
| 246 | else |
| 247 | p = &parent->rb_left; |
| 248 | } |
| 249 | rb_link_node(&cl->el_node, parent, p); |
| 250 | rb_insert_color(&cl->el_node, &cl->sched->eligible); |
| 251 | } |
| 252 | |
| 253 | static inline void |
| 254 | eltree_remove(struct hfsc_class *cl) |
| 255 | { |
| 256 | rb_erase(&cl->el_node, &cl->sched->eligible); |
| 257 | } |
| 258 | |
| 259 | static inline void |
| 260 | eltree_update(struct hfsc_class *cl) |
| 261 | { |
| 262 | eltree_remove(cl); |
| 263 | eltree_insert(cl); |
| 264 | } |
| 265 | |
| 266 | /* find the class with the minimum deadline among the eligible classes */ |
| 267 | static inline struct hfsc_class * |
| 268 | eltree_get_mindl(struct hfsc_sched *q, u64 cur_time) |
| 269 | { |
| 270 | struct hfsc_class *p, *cl = NULL; |
| 271 | struct rb_node *n; |
| 272 | |
| 273 | for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) { |
| 274 | p = rb_entry(n, struct hfsc_class, el_node); |
| 275 | if (p->cl_e > cur_time) |
| 276 | break; |
| 277 | if (cl == NULL || p->cl_d < cl->cl_d) |
| 278 | cl = p; |
| 279 | } |
| 280 | return cl; |
| 281 | } |
| 282 | |
| 283 | /* find the class with minimum eligible time among the eligible classes */ |
| 284 | static inline struct hfsc_class * |
| 285 | eltree_get_minel(struct hfsc_sched *q) |
| 286 | { |
| 287 | struct rb_node *n; |
| 288 | |
| 289 | n = rb_first(&q->eligible); |
| 290 | if (n == NULL) |
| 291 | return NULL; |
| 292 | return rb_entry(n, struct hfsc_class, el_node); |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * vttree holds holds backlogged child classes being sorted by their virtual |
| 297 | * time. each intermediate class has one vttree. |
| 298 | */ |
| 299 | static void |
| 300 | vttree_insert(struct hfsc_class *cl) |
| 301 | { |
| 302 | struct rb_node **p = &cl->cl_parent->vt_tree.rb_node; |
| 303 | struct rb_node *parent = NULL; |
| 304 | struct hfsc_class *cl1; |
| 305 | |
| 306 | while (*p != NULL) { |
| 307 | parent = *p; |
| 308 | cl1 = rb_entry(parent, struct hfsc_class, vt_node); |
| 309 | if (cl->cl_vt >= cl1->cl_vt) |
| 310 | p = &parent->rb_right; |
| 311 | else |
| 312 | p = &parent->rb_left; |
| 313 | } |
| 314 | rb_link_node(&cl->vt_node, parent, p); |
| 315 | rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree); |
| 316 | } |
| 317 | |
| 318 | static inline void |
| 319 | vttree_remove(struct hfsc_class *cl) |
| 320 | { |
| 321 | rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree); |
| 322 | } |
| 323 | |
| 324 | static inline void |
| 325 | vttree_update(struct hfsc_class *cl) |
| 326 | { |
| 327 | vttree_remove(cl); |
| 328 | vttree_insert(cl); |
| 329 | } |
| 330 | |
| 331 | static inline struct hfsc_class * |
| 332 | vttree_firstfit(struct hfsc_class *cl, u64 cur_time) |
| 333 | { |
| 334 | struct hfsc_class *p; |
| 335 | struct rb_node *n; |
| 336 | |
| 337 | for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) { |
| 338 | p = rb_entry(n, struct hfsc_class, vt_node); |
| 339 | if (p->cl_f <= cur_time) |
| 340 | return p; |
| 341 | } |
| 342 | return NULL; |
| 343 | } |
| 344 | |
| 345 | /* |
| 346 | * get the leaf class with the minimum vt in the hierarchy |
| 347 | */ |
| 348 | static struct hfsc_class * |
| 349 | vttree_get_minvt(struct hfsc_class *cl, u64 cur_time) |
| 350 | { |
| 351 | /* if root-class's cfmin is bigger than cur_time nothing to do */ |
| 352 | if (cl->cl_cfmin > cur_time) |
| 353 | return NULL; |
| 354 | |
| 355 | while (cl->level > 0) { |
| 356 | cl = vttree_firstfit(cl, cur_time); |
| 357 | if (cl == NULL) |
| 358 | return NULL; |
| 359 | /* |
| 360 | * update parent's cl_cvtmin. |
| 361 | */ |
| 362 | if (cl->cl_parent->cl_cvtmin < cl->cl_vt) |
| 363 | cl->cl_parent->cl_cvtmin = cl->cl_vt; |
| 364 | } |
| 365 | return cl; |
| 366 | } |
| 367 | |
| 368 | static void |
| 369 | cftree_insert(struct hfsc_class *cl) |
| 370 | { |
| 371 | struct rb_node **p = &cl->cl_parent->cf_tree.rb_node; |
| 372 | struct rb_node *parent = NULL; |
| 373 | struct hfsc_class *cl1; |
| 374 | |
| 375 | while (*p != NULL) { |
| 376 | parent = *p; |
| 377 | cl1 = rb_entry(parent, struct hfsc_class, cf_node); |
| 378 | if (cl->cl_f >= cl1->cl_f) |
| 379 | p = &parent->rb_right; |
| 380 | else |
| 381 | p = &parent->rb_left; |
| 382 | } |
| 383 | rb_link_node(&cl->cf_node, parent, p); |
| 384 | rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree); |
| 385 | } |
| 386 | |
| 387 | static inline void |
| 388 | cftree_remove(struct hfsc_class *cl) |
| 389 | { |
| 390 | rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree); |
| 391 | } |
| 392 | |
| 393 | static inline void |
| 394 | cftree_update(struct hfsc_class *cl) |
| 395 | { |
| 396 | cftree_remove(cl); |
| 397 | cftree_insert(cl); |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * service curve support functions |
| 402 | * |
| 403 | * external service curve parameters |
| 404 | * m: bps |
| 405 | * d: us |
| 406 | * internal service curve parameters |
| 407 | * sm: (bytes/psched_us) << SM_SHIFT |
| 408 | * ism: (psched_us/byte) << ISM_SHIFT |
| 409 | * dx: psched_us |
| 410 | * |
| 411 | * Clock source resolution (CONFIG_NET_SCH_CLK_*) |
| 412 | * JIFFIES: for 48<=HZ<=1534 resolution is between 0.63us and 1.27us. |
| 413 | * CPU: resolution is between 0.5us and 1us. |
| 414 | * GETTIMEOFDAY: resolution is exactly 1us. |
| 415 | * |
| 416 | * sm and ism are scaled in order to keep effective digits. |
| 417 | * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective |
| 418 | * digits in decimal using the following table. |
| 419 | * |
| 420 | * Note: We can afford the additional accuracy (altq hfsc keeps at most |
| 421 | * 3 effective digits) thanks to the fact that linux clock is bounded |
| 422 | * much more tightly. |
| 423 | * |
| 424 | * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps |
| 425 | * ------------+------------------------------------------------------- |
| 426 | * bytes/0.5us 6.25e-3 62.5e-3 625e-3 6250e-e 62500e-3 |
| 427 | * bytes/us 12.5e-3 125e-3 1250e-3 12500e-3 125000e-3 |
| 428 | * bytes/1.27us 15.875e-3 158.75e-3 1587.5e-3 15875e-3 158750e-3 |
| 429 | * |
| 430 | * 0.5us/byte 160 16 1.6 0.16 0.016 |
| 431 | * us/byte 80 8 0.8 0.08 0.008 |
| 432 | * 1.27us/byte 63 6.3 0.63 0.063 0.0063 |
| 433 | */ |
| 434 | #define SM_SHIFT 20 |
| 435 | #define ISM_SHIFT 18 |
| 436 | |
| 437 | #define SM_MASK ((1ULL << SM_SHIFT) - 1) |
| 438 | #define ISM_MASK ((1ULL << ISM_SHIFT) - 1) |
| 439 | |
| 440 | static inline u64 |
| 441 | seg_x2y(u64 x, u64 sm) |
| 442 | { |
| 443 | u64 y; |
| 444 | |
| 445 | /* |
| 446 | * compute |
| 447 | * y = x * sm >> SM_SHIFT |
| 448 | * but divide it for the upper and lower bits to avoid overflow |
| 449 | */ |
| 450 | y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT); |
| 451 | return y; |
| 452 | } |
| 453 | |
| 454 | static inline u64 |
| 455 | seg_y2x(u64 y, u64 ism) |
| 456 | { |
| 457 | u64 x; |
| 458 | |
| 459 | if (y == 0) |
| 460 | x = 0; |
| 461 | else if (ism == HT_INFINITY) |
| 462 | x = HT_INFINITY; |
| 463 | else { |
| 464 | x = (y >> ISM_SHIFT) * ism |
| 465 | + (((y & ISM_MASK) * ism) >> ISM_SHIFT); |
| 466 | } |
| 467 | return x; |
| 468 | } |
| 469 | |
| 470 | /* Convert m (bps) into sm (bytes/psched us) */ |
| 471 | static u64 |
| 472 | m2sm(u32 m) |
| 473 | { |
| 474 | u64 sm; |
| 475 | |
| 476 | sm = ((u64)m << SM_SHIFT); |
| 477 | sm += PSCHED_JIFFIE2US(HZ) - 1; |
| 478 | do_div(sm, PSCHED_JIFFIE2US(HZ)); |
| 479 | return sm; |
| 480 | } |
| 481 | |
| 482 | /* convert m (bps) into ism (psched us/byte) */ |
| 483 | static u64 |
| 484 | m2ism(u32 m) |
| 485 | { |
| 486 | u64 ism; |
| 487 | |
| 488 | if (m == 0) |
| 489 | ism = HT_INFINITY; |
| 490 | else { |
| 491 | ism = ((u64)PSCHED_JIFFIE2US(HZ) << ISM_SHIFT); |
| 492 | ism += m - 1; |
| 493 | do_div(ism, m); |
| 494 | } |
| 495 | return ism; |
| 496 | } |
| 497 | |
| 498 | /* convert d (us) into dx (psched us) */ |
| 499 | static u64 |
| 500 | d2dx(u32 d) |
| 501 | { |
| 502 | u64 dx; |
| 503 | |
| 504 | dx = ((u64)d * PSCHED_JIFFIE2US(HZ)); |
| 505 | dx += 1000000 - 1; |
| 506 | do_div(dx, 1000000); |
| 507 | return dx; |
| 508 | } |
| 509 | |
| 510 | /* convert sm (bytes/psched us) into m (bps) */ |
| 511 | static u32 |
| 512 | sm2m(u64 sm) |
| 513 | { |
| 514 | u64 m; |
| 515 | |
| 516 | m = (sm * PSCHED_JIFFIE2US(HZ)) >> SM_SHIFT; |
| 517 | return (u32)m; |
| 518 | } |
| 519 | |
| 520 | /* convert dx (psched us) into d (us) */ |
| 521 | static u32 |
| 522 | dx2d(u64 dx) |
| 523 | { |
| 524 | u64 d; |
| 525 | |
| 526 | d = dx * 1000000; |
| 527 | do_div(d, PSCHED_JIFFIE2US(HZ)); |
| 528 | return (u32)d; |
| 529 | } |
| 530 | |
| 531 | static void |
| 532 | sc2isc(struct tc_service_curve *sc, struct internal_sc *isc) |
| 533 | { |
| 534 | isc->sm1 = m2sm(sc->m1); |
| 535 | isc->ism1 = m2ism(sc->m1); |
| 536 | isc->dx = d2dx(sc->d); |
| 537 | isc->dy = seg_x2y(isc->dx, isc->sm1); |
| 538 | isc->sm2 = m2sm(sc->m2); |
| 539 | isc->ism2 = m2ism(sc->m2); |
| 540 | } |
| 541 | |
| 542 | /* |
| 543 | * initialize the runtime service curve with the given internal |
| 544 | * service curve starting at (x, y). |
| 545 | */ |
| 546 | static void |
| 547 | rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) |
| 548 | { |
| 549 | rtsc->x = x; |
| 550 | rtsc->y = y; |
| 551 | rtsc->sm1 = isc->sm1; |
| 552 | rtsc->ism1 = isc->ism1; |
| 553 | rtsc->dx = isc->dx; |
| 554 | rtsc->dy = isc->dy; |
| 555 | rtsc->sm2 = isc->sm2; |
| 556 | rtsc->ism2 = isc->ism2; |
| 557 | } |
| 558 | |
| 559 | /* |
| 560 | * calculate the y-projection of the runtime service curve by the |
| 561 | * given x-projection value |
| 562 | */ |
| 563 | static u64 |
| 564 | rtsc_y2x(struct runtime_sc *rtsc, u64 y) |
| 565 | { |
| 566 | u64 x; |
| 567 | |
| 568 | if (y < rtsc->y) |
| 569 | x = rtsc->x; |
| 570 | else if (y <= rtsc->y + rtsc->dy) { |
| 571 | /* x belongs to the 1st segment */ |
| 572 | if (rtsc->dy == 0) |
| 573 | x = rtsc->x + rtsc->dx; |
| 574 | else |
| 575 | x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1); |
| 576 | } else { |
| 577 | /* x belongs to the 2nd segment */ |
| 578 | x = rtsc->x + rtsc->dx |
| 579 | + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2); |
| 580 | } |
| 581 | return x; |
| 582 | } |
| 583 | |
| 584 | static u64 |
| 585 | rtsc_x2y(struct runtime_sc *rtsc, u64 x) |
| 586 | { |
| 587 | u64 y; |
| 588 | |
| 589 | if (x <= rtsc->x) |
| 590 | y = rtsc->y; |
| 591 | else if (x <= rtsc->x + rtsc->dx) |
| 592 | /* y belongs to the 1st segment */ |
| 593 | y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1); |
| 594 | else |
| 595 | /* y belongs to the 2nd segment */ |
| 596 | y = rtsc->y + rtsc->dy |
| 597 | + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2); |
| 598 | return y; |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * update the runtime service curve by taking the minimum of the current |
| 603 | * runtime service curve and the service curve starting at (x, y). |
| 604 | */ |
| 605 | static void |
| 606 | rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) |
| 607 | { |
| 608 | u64 y1, y2, dx, dy; |
| 609 | u32 dsm; |
| 610 | |
| 611 | if (isc->sm1 <= isc->sm2) { |
| 612 | /* service curve is convex */ |
| 613 | y1 = rtsc_x2y(rtsc, x); |
| 614 | if (y1 < y) |
| 615 | /* the current rtsc is smaller */ |
| 616 | return; |
| 617 | rtsc->x = x; |
| 618 | rtsc->y = y; |
| 619 | return; |
| 620 | } |
| 621 | |
| 622 | /* |
| 623 | * service curve is concave |
| 624 | * compute the two y values of the current rtsc |
| 625 | * y1: at x |
| 626 | * y2: at (x + dx) |
| 627 | */ |
| 628 | y1 = rtsc_x2y(rtsc, x); |
| 629 | if (y1 <= y) { |
| 630 | /* rtsc is below isc, no change to rtsc */ |
| 631 | return; |
| 632 | } |
| 633 | |
| 634 | y2 = rtsc_x2y(rtsc, x + isc->dx); |
| 635 | if (y2 >= y + isc->dy) { |
| 636 | /* rtsc is above isc, replace rtsc by isc */ |
| 637 | rtsc->x = x; |
| 638 | rtsc->y = y; |
| 639 | rtsc->dx = isc->dx; |
| 640 | rtsc->dy = isc->dy; |
| 641 | return; |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * the two curves intersect |
| 646 | * compute the offsets (dx, dy) using the reverse |
| 647 | * function of seg_x2y() |
| 648 | * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y) |
| 649 | */ |
| 650 | dx = (y1 - y) << SM_SHIFT; |
| 651 | dsm = isc->sm1 - isc->sm2; |
| 652 | do_div(dx, dsm); |
| 653 | /* |
| 654 | * check if (x, y1) belongs to the 1st segment of rtsc. |
| 655 | * if so, add the offset. |
| 656 | */ |
| 657 | if (rtsc->x + rtsc->dx > x) |
| 658 | dx += rtsc->x + rtsc->dx - x; |
| 659 | dy = seg_x2y(dx, isc->sm1); |
| 660 | |
| 661 | rtsc->x = x; |
| 662 | rtsc->y = y; |
| 663 | rtsc->dx = dx; |
| 664 | rtsc->dy = dy; |
| 665 | return; |
| 666 | } |
| 667 | |
| 668 | static void |
| 669 | init_ed(struct hfsc_class *cl, unsigned int next_len) |
| 670 | { |
| 671 | u64 cur_time; |
| 672 | |
| 673 | PSCHED_GET_TIME(cur_time); |
| 674 | |
| 675 | /* update the deadline curve */ |
| 676 | rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); |
| 677 | |
| 678 | /* |
| 679 | * update the eligible curve. |
| 680 | * for concave, it is equal to the deadline curve. |
| 681 | * for convex, it is a linear curve with slope m2. |
| 682 | */ |
| 683 | cl->cl_eligible = cl->cl_deadline; |
| 684 | if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { |
| 685 | cl->cl_eligible.dx = 0; |
| 686 | cl->cl_eligible.dy = 0; |
| 687 | } |
| 688 | |
| 689 | /* compute e and d */ |
| 690 | cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); |
| 691 | cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); |
| 692 | |
| 693 | eltree_insert(cl); |
| 694 | } |
| 695 | |
| 696 | static void |
| 697 | update_ed(struct hfsc_class *cl, unsigned int next_len) |
| 698 | { |
| 699 | cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); |
| 700 | cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); |
| 701 | |
| 702 | eltree_update(cl); |
| 703 | } |
| 704 | |
| 705 | static inline void |
| 706 | update_d(struct hfsc_class *cl, unsigned int next_len) |
| 707 | { |
| 708 | cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); |
| 709 | } |
| 710 | |
| 711 | static inline void |
| 712 | update_cfmin(struct hfsc_class *cl) |
| 713 | { |
| 714 | struct rb_node *n = rb_first(&cl->cf_tree); |
| 715 | struct hfsc_class *p; |
| 716 | |
| 717 | if (n == NULL) { |
| 718 | cl->cl_cfmin = 0; |
| 719 | return; |
| 720 | } |
| 721 | p = rb_entry(n, struct hfsc_class, cf_node); |
| 722 | cl->cl_cfmin = p->cl_f; |
| 723 | } |
| 724 | |
| 725 | static void |
| 726 | init_vf(struct hfsc_class *cl, unsigned int len) |
| 727 | { |
| 728 | struct hfsc_class *max_cl; |
| 729 | struct rb_node *n; |
| 730 | u64 vt, f, cur_time; |
| 731 | int go_active; |
| 732 | |
| 733 | cur_time = 0; |
| 734 | go_active = 1; |
| 735 | for (; cl->cl_parent != NULL; cl = cl->cl_parent) { |
| 736 | if (go_active && cl->cl_nactive++ == 0) |
| 737 | go_active = 1; |
| 738 | else |
| 739 | go_active = 0; |
| 740 | |
| 741 | if (go_active) { |
| 742 | n = rb_last(&cl->cl_parent->vt_tree); |
| 743 | if (n != NULL) { |
| 744 | max_cl = rb_entry(n, struct hfsc_class,vt_node); |
| 745 | /* |
| 746 | * set vt to the average of the min and max |
| 747 | * classes. if the parent's period didn't |
| 748 | * change, don't decrease vt of the class. |
| 749 | */ |
| 750 | vt = max_cl->cl_vt; |
| 751 | if (cl->cl_parent->cl_cvtmin != 0) |
| 752 | vt = (cl->cl_parent->cl_cvtmin + vt)/2; |
| 753 | |
| 754 | if (cl->cl_parent->cl_vtperiod != |
| 755 | cl->cl_parentperiod || vt > cl->cl_vt) |
| 756 | cl->cl_vt = vt; |
| 757 | } else { |
| 758 | /* |
| 759 | * first child for a new parent backlog period. |
| 760 | * add parent's cvtmax to cvtoff to make a new |
| 761 | * vt (vtoff + vt) larger than the vt in the |
| 762 | * last period for all children. |
| 763 | */ |
| 764 | vt = cl->cl_parent->cl_cvtmax; |
| 765 | cl->cl_parent->cl_cvtoff += vt; |
| 766 | cl->cl_parent->cl_cvtmax = 0; |
| 767 | cl->cl_parent->cl_cvtmin = 0; |
| 768 | cl->cl_vt = 0; |
| 769 | } |
| 770 | |
| 771 | cl->cl_vtoff = cl->cl_parent->cl_cvtoff - |
| 772 | cl->cl_pcvtoff; |
| 773 | |
| 774 | /* update the virtual curve */ |
| 775 | vt = cl->cl_vt + cl->cl_vtoff; |
| 776 | rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt, |
| 777 | cl->cl_total); |
| 778 | if (cl->cl_virtual.x == vt) { |
| 779 | cl->cl_virtual.x -= cl->cl_vtoff; |
| 780 | cl->cl_vtoff = 0; |
| 781 | } |
| 782 | cl->cl_vtadj = 0; |
| 783 | |
| 784 | cl->cl_vtperiod++; /* increment vt period */ |
| 785 | cl->cl_parentperiod = cl->cl_parent->cl_vtperiod; |
| 786 | if (cl->cl_parent->cl_nactive == 0) |
| 787 | cl->cl_parentperiod++; |
| 788 | cl->cl_f = 0; |
| 789 | |
| 790 | vttree_insert(cl); |
| 791 | cftree_insert(cl); |
| 792 | |
| 793 | if (cl->cl_flags & HFSC_USC) { |
| 794 | /* class has upper limit curve */ |
| 795 | if (cur_time == 0) |
| 796 | PSCHED_GET_TIME(cur_time); |
| 797 | |
| 798 | /* update the ulimit curve */ |
| 799 | rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time, |
| 800 | cl->cl_total); |
| 801 | /* compute myf */ |
| 802 | cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, |
| 803 | cl->cl_total); |
| 804 | cl->cl_myfadj = 0; |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | f = max(cl->cl_myf, cl->cl_cfmin); |
| 809 | if (f != cl->cl_f) { |
| 810 | cl->cl_f = f; |
| 811 | cftree_update(cl); |
| 812 | update_cfmin(cl->cl_parent); |
| 813 | } |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | static void |
| 818 | update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time) |
| 819 | { |
| 820 | u64 f; /* , myf_bound, delta; */ |
| 821 | int go_passive = 0; |
| 822 | |
| 823 | if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC) |
| 824 | go_passive = 1; |
| 825 | |
| 826 | for (; cl->cl_parent != NULL; cl = cl->cl_parent) { |
| 827 | cl->cl_total += len; |
| 828 | |
| 829 | if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0) |
| 830 | continue; |
| 831 | |
| 832 | if (go_passive && --cl->cl_nactive == 0) |
| 833 | go_passive = 1; |
| 834 | else |
| 835 | go_passive = 0; |
| 836 | |
| 837 | if (go_passive) { |
| 838 | /* no more active child, going passive */ |
| 839 | |
| 840 | /* update cvtmax of the parent class */ |
| 841 | if (cl->cl_vt > cl->cl_parent->cl_cvtmax) |
| 842 | cl->cl_parent->cl_cvtmax = cl->cl_vt; |
| 843 | |
| 844 | /* remove this class from the vt tree */ |
| 845 | vttree_remove(cl); |
| 846 | |
| 847 | cftree_remove(cl); |
| 848 | update_cfmin(cl->cl_parent); |
| 849 | |
| 850 | continue; |
| 851 | } |
| 852 | |
| 853 | /* |
| 854 | * update vt and f |
| 855 | */ |
| 856 | cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) |
| 857 | - cl->cl_vtoff + cl->cl_vtadj; |
| 858 | |
| 859 | /* |
| 860 | * if vt of the class is smaller than cvtmin, |
| 861 | * the class was skipped in the past due to non-fit. |
| 862 | * if so, we need to adjust vtadj. |
| 863 | */ |
| 864 | if (cl->cl_vt < cl->cl_parent->cl_cvtmin) { |
| 865 | cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt; |
| 866 | cl->cl_vt = cl->cl_parent->cl_cvtmin; |
| 867 | } |
| 868 | |
| 869 | /* update the vt tree */ |
| 870 | vttree_update(cl); |
| 871 | |
| 872 | if (cl->cl_flags & HFSC_USC) { |
| 873 | cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit, |
| 874 | cl->cl_total); |
| 875 | #if 0 |
| 876 | /* |
| 877 | * This code causes classes to stay way under their |
| 878 | * limit when multiple classes are used at gigabit |
| 879 | * speed. needs investigation. -kaber |
| 880 | */ |
| 881 | /* |
| 882 | * if myf lags behind by more than one clock tick |
| 883 | * from the current time, adjust myfadj to prevent |
| 884 | * a rate-limited class from going greedy. |
| 885 | * in a steady state under rate-limiting, myf |
| 886 | * fluctuates within one clock tick. |
| 887 | */ |
| 888 | myf_bound = cur_time - PSCHED_JIFFIE2US(1); |
| 889 | if (cl->cl_myf < myf_bound) { |
| 890 | delta = cur_time - cl->cl_myf; |
| 891 | cl->cl_myfadj += delta; |
| 892 | cl->cl_myf += delta; |
| 893 | } |
| 894 | #endif |
| 895 | } |
| 896 | |
| 897 | f = max(cl->cl_myf, cl->cl_cfmin); |
| 898 | if (f != cl->cl_f) { |
| 899 | cl->cl_f = f; |
| 900 | cftree_update(cl); |
| 901 | update_cfmin(cl->cl_parent); |
| 902 | } |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | static void |
| 907 | set_active(struct hfsc_class *cl, unsigned int len) |
| 908 | { |
| 909 | if (cl->cl_flags & HFSC_RSC) |
| 910 | init_ed(cl, len); |
| 911 | if (cl->cl_flags & HFSC_FSC) |
| 912 | init_vf(cl, len); |
| 913 | |
| 914 | list_add_tail(&cl->dlist, &cl->sched->droplist); |
| 915 | } |
| 916 | |
| 917 | static void |
| 918 | set_passive(struct hfsc_class *cl) |
| 919 | { |
| 920 | if (cl->cl_flags & HFSC_RSC) |
| 921 | eltree_remove(cl); |
| 922 | |
| 923 | list_del(&cl->dlist); |
| 924 | |
| 925 | /* |
| 926 | * vttree is now handled in update_vf() so that update_vf(cl, 0, 0) |
| 927 | * needs to be called explicitly to remove a class from vttree. |
| 928 | */ |
| 929 | } |
| 930 | |
| 931 | /* |
| 932 | * hack to get length of first packet in queue. |
| 933 | */ |
| 934 | static unsigned int |
| 935 | qdisc_peek_len(struct Qdisc *sch) |
| 936 | { |
| 937 | struct sk_buff *skb; |
| 938 | unsigned int len; |
| 939 | |
| 940 | skb = sch->dequeue(sch); |
| 941 | if (skb == NULL) { |
| 942 | if (net_ratelimit()) |
| 943 | printk("qdisc_peek_len: non work-conserving qdisc ?\n"); |
| 944 | return 0; |
| 945 | } |
| 946 | len = skb->len; |
| 947 | if (unlikely(sch->ops->requeue(skb, sch) != NET_XMIT_SUCCESS)) { |
| 948 | if (net_ratelimit()) |
| 949 | printk("qdisc_peek_len: failed to requeue\n"); |
| 950 | return 0; |
| 951 | } |
| 952 | return len; |
| 953 | } |
| 954 | |
| 955 | static void |
| 956 | hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl) |
| 957 | { |
| 958 | unsigned int len = cl->qdisc->q.qlen; |
| 959 | |
| 960 | qdisc_reset(cl->qdisc); |
| 961 | if (len > 0) { |
| 962 | update_vf(cl, 0, 0); |
| 963 | set_passive(cl); |
| 964 | sch->q.qlen -= len; |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | static void |
| 969 | hfsc_adjust_levels(struct hfsc_class *cl) |
| 970 | { |
| 971 | struct hfsc_class *p; |
| 972 | unsigned int level; |
| 973 | |
| 974 | do { |
| 975 | level = 0; |
| 976 | list_for_each_entry(p, &cl->children, siblings) { |
| 977 | if (p->level > level) |
| 978 | level = p->level; |
| 979 | } |
| 980 | cl->level = level + 1; |
| 981 | } while ((cl = cl->cl_parent) != NULL); |
| 982 | } |
| 983 | |
| 984 | static inline unsigned int |
| 985 | hfsc_hash(u32 h) |
| 986 | { |
| 987 | h ^= h >> 8; |
| 988 | h ^= h >> 4; |
| 989 | |
| 990 | return h & (HFSC_HSIZE - 1); |
| 991 | } |
| 992 | |
| 993 | static inline struct hfsc_class * |
| 994 | hfsc_find_class(u32 classid, struct Qdisc *sch) |
| 995 | { |
| 996 | struct hfsc_sched *q = qdisc_priv(sch); |
| 997 | struct hfsc_class *cl; |
| 998 | |
| 999 | list_for_each_entry(cl, &q->clhash[hfsc_hash(classid)], hlist) { |
| 1000 | if (cl->classid == classid) |
| 1001 | return cl; |
| 1002 | } |
| 1003 | return NULL; |
| 1004 | } |
| 1005 | |
| 1006 | static void |
| 1007 | hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc, |
| 1008 | u64 cur_time) |
| 1009 | { |
| 1010 | sc2isc(rsc, &cl->cl_rsc); |
| 1011 | rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); |
| 1012 | cl->cl_eligible = cl->cl_deadline; |
| 1013 | if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { |
| 1014 | cl->cl_eligible.dx = 0; |
| 1015 | cl->cl_eligible.dy = 0; |
| 1016 | } |
| 1017 | cl->cl_flags |= HFSC_RSC; |
| 1018 | } |
| 1019 | |
| 1020 | static void |
| 1021 | hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc) |
| 1022 | { |
| 1023 | sc2isc(fsc, &cl->cl_fsc); |
| 1024 | rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total); |
| 1025 | cl->cl_flags |= HFSC_FSC; |
| 1026 | } |
| 1027 | |
| 1028 | static void |
| 1029 | hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc, |
| 1030 | u64 cur_time) |
| 1031 | { |
| 1032 | sc2isc(usc, &cl->cl_usc); |
| 1033 | rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total); |
| 1034 | cl->cl_flags |= HFSC_USC; |
| 1035 | } |
| 1036 | |
| 1037 | static int |
| 1038 | hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid, |
| 1039 | struct rtattr **tca, unsigned long *arg) |
| 1040 | { |
| 1041 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1042 | struct hfsc_class *cl = (struct hfsc_class *)*arg; |
| 1043 | struct hfsc_class *parent = NULL; |
| 1044 | struct rtattr *opt = tca[TCA_OPTIONS-1]; |
| 1045 | struct rtattr *tb[TCA_HFSC_MAX]; |
| 1046 | struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL; |
| 1047 | u64 cur_time; |
| 1048 | |
| 1049 | if (opt == NULL || rtattr_parse_nested(tb, TCA_HFSC_MAX, opt)) |
| 1050 | return -EINVAL; |
| 1051 | |
| 1052 | if (tb[TCA_HFSC_RSC-1]) { |
| 1053 | if (RTA_PAYLOAD(tb[TCA_HFSC_RSC-1]) < sizeof(*rsc)) |
| 1054 | return -EINVAL; |
| 1055 | rsc = RTA_DATA(tb[TCA_HFSC_RSC-1]); |
| 1056 | if (rsc->m1 == 0 && rsc->m2 == 0) |
| 1057 | rsc = NULL; |
| 1058 | } |
| 1059 | |
| 1060 | if (tb[TCA_HFSC_FSC-1]) { |
| 1061 | if (RTA_PAYLOAD(tb[TCA_HFSC_FSC-1]) < sizeof(*fsc)) |
| 1062 | return -EINVAL; |
| 1063 | fsc = RTA_DATA(tb[TCA_HFSC_FSC-1]); |
| 1064 | if (fsc->m1 == 0 && fsc->m2 == 0) |
| 1065 | fsc = NULL; |
| 1066 | } |
| 1067 | |
| 1068 | if (tb[TCA_HFSC_USC-1]) { |
| 1069 | if (RTA_PAYLOAD(tb[TCA_HFSC_USC-1]) < sizeof(*usc)) |
| 1070 | return -EINVAL; |
| 1071 | usc = RTA_DATA(tb[TCA_HFSC_USC-1]); |
| 1072 | if (usc->m1 == 0 && usc->m2 == 0) |
| 1073 | usc = NULL; |
| 1074 | } |
| 1075 | |
| 1076 | if (cl != NULL) { |
| 1077 | if (parentid) { |
| 1078 | if (cl->cl_parent && cl->cl_parent->classid != parentid) |
| 1079 | return -EINVAL; |
| 1080 | if (cl->cl_parent == NULL && parentid != TC_H_ROOT) |
| 1081 | return -EINVAL; |
| 1082 | } |
| 1083 | PSCHED_GET_TIME(cur_time); |
| 1084 | |
| 1085 | sch_tree_lock(sch); |
| 1086 | if (rsc != NULL) |
| 1087 | hfsc_change_rsc(cl, rsc, cur_time); |
| 1088 | if (fsc != NULL) |
| 1089 | hfsc_change_fsc(cl, fsc); |
| 1090 | if (usc != NULL) |
| 1091 | hfsc_change_usc(cl, usc, cur_time); |
| 1092 | |
| 1093 | if (cl->qdisc->q.qlen != 0) { |
| 1094 | if (cl->cl_flags & HFSC_RSC) |
| 1095 | update_ed(cl, qdisc_peek_len(cl->qdisc)); |
| 1096 | if (cl->cl_flags & HFSC_FSC) |
| 1097 | update_vf(cl, 0, cur_time); |
| 1098 | } |
| 1099 | sch_tree_unlock(sch); |
| 1100 | |
| 1101 | #ifdef CONFIG_NET_ESTIMATOR |
| 1102 | if (tca[TCA_RATE-1]) |
| 1103 | gen_replace_estimator(&cl->bstats, &cl->rate_est, |
| 1104 | cl->stats_lock, tca[TCA_RATE-1]); |
| 1105 | #endif |
| 1106 | return 0; |
| 1107 | } |
| 1108 | |
| 1109 | if (parentid == TC_H_ROOT) |
| 1110 | return -EEXIST; |
| 1111 | |
| 1112 | parent = &q->root; |
| 1113 | if (parentid) { |
| 1114 | parent = hfsc_find_class(parentid, sch); |
| 1115 | if (parent == NULL) |
| 1116 | return -ENOENT; |
| 1117 | } |
| 1118 | |
| 1119 | if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0) |
| 1120 | return -EINVAL; |
| 1121 | if (hfsc_find_class(classid, sch)) |
| 1122 | return -EEXIST; |
| 1123 | |
| 1124 | if (rsc == NULL && fsc == NULL) |
| 1125 | return -EINVAL; |
| 1126 | |
| 1127 | cl = kmalloc(sizeof(struct hfsc_class), GFP_KERNEL); |
| 1128 | if (cl == NULL) |
| 1129 | return -ENOBUFS; |
| 1130 | memset(cl, 0, sizeof(struct hfsc_class)); |
| 1131 | |
| 1132 | if (rsc != NULL) |
| 1133 | hfsc_change_rsc(cl, rsc, 0); |
| 1134 | if (fsc != NULL) |
| 1135 | hfsc_change_fsc(cl, fsc); |
| 1136 | if (usc != NULL) |
| 1137 | hfsc_change_usc(cl, usc, 0); |
| 1138 | |
| 1139 | cl->refcnt = 1; |
| 1140 | cl->classid = classid; |
| 1141 | cl->sched = q; |
| 1142 | cl->cl_parent = parent; |
| 1143 | cl->qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops); |
| 1144 | if (cl->qdisc == NULL) |
| 1145 | cl->qdisc = &noop_qdisc; |
| 1146 | cl->stats_lock = &sch->dev->queue_lock; |
| 1147 | INIT_LIST_HEAD(&cl->children); |
| 1148 | cl->vt_tree = RB_ROOT; |
| 1149 | cl->cf_tree = RB_ROOT; |
| 1150 | |
| 1151 | sch_tree_lock(sch); |
| 1152 | list_add_tail(&cl->hlist, &q->clhash[hfsc_hash(classid)]); |
| 1153 | list_add_tail(&cl->siblings, &parent->children); |
| 1154 | if (parent->level == 0) |
| 1155 | hfsc_purge_queue(sch, parent); |
| 1156 | hfsc_adjust_levels(parent); |
| 1157 | cl->cl_pcvtoff = parent->cl_cvtoff; |
| 1158 | sch_tree_unlock(sch); |
| 1159 | |
| 1160 | #ifdef CONFIG_NET_ESTIMATOR |
| 1161 | if (tca[TCA_RATE-1]) |
| 1162 | gen_new_estimator(&cl->bstats, &cl->rate_est, |
| 1163 | cl->stats_lock, tca[TCA_RATE-1]); |
| 1164 | #endif |
| 1165 | *arg = (unsigned long)cl; |
| 1166 | return 0; |
| 1167 | } |
| 1168 | |
| 1169 | static void |
| 1170 | hfsc_destroy_filters(struct tcf_proto **fl) |
| 1171 | { |
| 1172 | struct tcf_proto *tp; |
| 1173 | |
| 1174 | while ((tp = *fl) != NULL) { |
| 1175 | *fl = tp->next; |
| 1176 | tcf_destroy(tp); |
| 1177 | } |
| 1178 | } |
| 1179 | |
| 1180 | static void |
| 1181 | hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl) |
| 1182 | { |
| 1183 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1184 | |
| 1185 | hfsc_destroy_filters(&cl->filter_list); |
| 1186 | qdisc_destroy(cl->qdisc); |
| 1187 | #ifdef CONFIG_NET_ESTIMATOR |
| 1188 | gen_kill_estimator(&cl->bstats, &cl->rate_est); |
| 1189 | #endif |
| 1190 | if (cl != &q->root) |
| 1191 | kfree(cl); |
| 1192 | } |
| 1193 | |
| 1194 | static int |
| 1195 | hfsc_delete_class(struct Qdisc *sch, unsigned long arg) |
| 1196 | { |
| 1197 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1198 | struct hfsc_class *cl = (struct hfsc_class *)arg; |
| 1199 | |
| 1200 | if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root) |
| 1201 | return -EBUSY; |
| 1202 | |
| 1203 | sch_tree_lock(sch); |
| 1204 | |
| 1205 | list_del(&cl->hlist); |
| 1206 | list_del(&cl->siblings); |
| 1207 | hfsc_adjust_levels(cl->cl_parent); |
| 1208 | hfsc_purge_queue(sch, cl); |
| 1209 | if (--cl->refcnt == 0) |
| 1210 | hfsc_destroy_class(sch, cl); |
| 1211 | |
| 1212 | sch_tree_unlock(sch); |
| 1213 | return 0; |
| 1214 | } |
| 1215 | |
| 1216 | static struct hfsc_class * |
| 1217 | hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) |
| 1218 | { |
| 1219 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1220 | struct hfsc_class *cl; |
| 1221 | struct tcf_result res; |
| 1222 | struct tcf_proto *tcf; |
| 1223 | int result; |
| 1224 | |
| 1225 | if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 && |
| 1226 | (cl = hfsc_find_class(skb->priority, sch)) != NULL) |
| 1227 | if (cl->level == 0) |
| 1228 | return cl; |
| 1229 | |
| 1230 | *qerr = NET_XMIT_DROP; |
| 1231 | tcf = q->root.filter_list; |
| 1232 | while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) { |
| 1233 | #ifdef CONFIG_NET_CLS_ACT |
| 1234 | switch (result) { |
| 1235 | case TC_ACT_QUEUED: |
| 1236 | case TC_ACT_STOLEN: |
| 1237 | *qerr = NET_XMIT_SUCCESS; |
| 1238 | case TC_ACT_SHOT: |
| 1239 | return NULL; |
| 1240 | } |
| 1241 | #elif defined(CONFIG_NET_CLS_POLICE) |
| 1242 | if (result == TC_POLICE_SHOT) |
| 1243 | return NULL; |
| 1244 | #endif |
| 1245 | if ((cl = (struct hfsc_class *)res.class) == NULL) { |
| 1246 | if ((cl = hfsc_find_class(res.classid, sch)) == NULL) |
| 1247 | break; /* filter selected invalid classid */ |
| 1248 | } |
| 1249 | |
| 1250 | if (cl->level == 0) |
| 1251 | return cl; /* hit leaf class */ |
| 1252 | |
| 1253 | /* apply inner filter chain */ |
| 1254 | tcf = cl->filter_list; |
| 1255 | } |
| 1256 | |
| 1257 | /* classification failed, try default class */ |
| 1258 | cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch); |
| 1259 | if (cl == NULL || cl->level > 0) |
| 1260 | return NULL; |
| 1261 | |
| 1262 | return cl; |
| 1263 | } |
| 1264 | |
| 1265 | static int |
| 1266 | hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, |
| 1267 | struct Qdisc **old) |
| 1268 | { |
| 1269 | struct hfsc_class *cl = (struct hfsc_class *)arg; |
| 1270 | |
| 1271 | if (cl == NULL) |
| 1272 | return -ENOENT; |
| 1273 | if (cl->level > 0) |
| 1274 | return -EINVAL; |
| 1275 | if (new == NULL) { |
| 1276 | new = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops); |
| 1277 | if (new == NULL) |
| 1278 | new = &noop_qdisc; |
| 1279 | } |
| 1280 | |
| 1281 | sch_tree_lock(sch); |
| 1282 | hfsc_purge_queue(sch, cl); |
| 1283 | *old = xchg(&cl->qdisc, new); |
| 1284 | sch_tree_unlock(sch); |
| 1285 | return 0; |
| 1286 | } |
| 1287 | |
| 1288 | static struct Qdisc * |
| 1289 | hfsc_class_leaf(struct Qdisc *sch, unsigned long arg) |
| 1290 | { |
| 1291 | struct hfsc_class *cl = (struct hfsc_class *)arg; |
| 1292 | |
| 1293 | if (cl != NULL && cl->level == 0) |
| 1294 | return cl->qdisc; |
| 1295 | |
| 1296 | return NULL; |
| 1297 | } |
| 1298 | |
| 1299 | static unsigned long |
| 1300 | hfsc_get_class(struct Qdisc *sch, u32 classid) |
| 1301 | { |
| 1302 | struct hfsc_class *cl = hfsc_find_class(classid, sch); |
| 1303 | |
| 1304 | if (cl != NULL) |
| 1305 | cl->refcnt++; |
| 1306 | |
| 1307 | return (unsigned long)cl; |
| 1308 | } |
| 1309 | |
| 1310 | static void |
| 1311 | hfsc_put_class(struct Qdisc *sch, unsigned long arg) |
| 1312 | { |
| 1313 | struct hfsc_class *cl = (struct hfsc_class *)arg; |
| 1314 | |
| 1315 | if (--cl->refcnt == 0) |
| 1316 | hfsc_destroy_class(sch, cl); |
| 1317 | } |
| 1318 | |
| 1319 | static unsigned long |
| 1320 | hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid) |
| 1321 | { |
| 1322 | struct hfsc_class *p = (struct hfsc_class *)parent; |
| 1323 | struct hfsc_class *cl = hfsc_find_class(classid, sch); |
| 1324 | |
| 1325 | if (cl != NULL) { |
| 1326 | if (p != NULL && p->level <= cl->level) |
| 1327 | return 0; |
| 1328 | cl->filter_cnt++; |
| 1329 | } |
| 1330 | |
| 1331 | return (unsigned long)cl; |
| 1332 | } |
| 1333 | |
| 1334 | static void |
| 1335 | hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg) |
| 1336 | { |
| 1337 | struct hfsc_class *cl = (struct hfsc_class *)arg; |
| 1338 | |
| 1339 | cl->filter_cnt--; |
| 1340 | } |
| 1341 | |
| 1342 | static struct tcf_proto ** |
| 1343 | hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg) |
| 1344 | { |
| 1345 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1346 | struct hfsc_class *cl = (struct hfsc_class *)arg; |
| 1347 | |
| 1348 | if (cl == NULL) |
| 1349 | cl = &q->root; |
| 1350 | |
| 1351 | return &cl->filter_list; |
| 1352 | } |
| 1353 | |
| 1354 | static int |
| 1355 | hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc) |
| 1356 | { |
| 1357 | struct tc_service_curve tsc; |
| 1358 | |
| 1359 | tsc.m1 = sm2m(sc->sm1); |
| 1360 | tsc.d = dx2d(sc->dx); |
| 1361 | tsc.m2 = sm2m(sc->sm2); |
| 1362 | RTA_PUT(skb, attr, sizeof(tsc), &tsc); |
| 1363 | |
| 1364 | return skb->len; |
| 1365 | |
| 1366 | rtattr_failure: |
| 1367 | return -1; |
| 1368 | } |
| 1369 | |
| 1370 | static inline int |
| 1371 | hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl) |
| 1372 | { |
| 1373 | if ((cl->cl_flags & HFSC_RSC) && |
| 1374 | (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0)) |
| 1375 | goto rtattr_failure; |
| 1376 | |
| 1377 | if ((cl->cl_flags & HFSC_FSC) && |
| 1378 | (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0)) |
| 1379 | goto rtattr_failure; |
| 1380 | |
| 1381 | if ((cl->cl_flags & HFSC_USC) && |
| 1382 | (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0)) |
| 1383 | goto rtattr_failure; |
| 1384 | |
| 1385 | return skb->len; |
| 1386 | |
| 1387 | rtattr_failure: |
| 1388 | return -1; |
| 1389 | } |
| 1390 | |
| 1391 | static int |
| 1392 | hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb, |
| 1393 | struct tcmsg *tcm) |
| 1394 | { |
| 1395 | struct hfsc_class *cl = (struct hfsc_class *)arg; |
| 1396 | unsigned char *b = skb->tail; |
| 1397 | struct rtattr *rta = (struct rtattr *)b; |
| 1398 | |
| 1399 | tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->classid : TC_H_ROOT; |
| 1400 | tcm->tcm_handle = cl->classid; |
| 1401 | if (cl->level == 0) |
| 1402 | tcm->tcm_info = cl->qdisc->handle; |
| 1403 | |
| 1404 | RTA_PUT(skb, TCA_OPTIONS, 0, NULL); |
| 1405 | if (hfsc_dump_curves(skb, cl) < 0) |
| 1406 | goto rtattr_failure; |
| 1407 | rta->rta_len = skb->tail - b; |
| 1408 | return skb->len; |
| 1409 | |
| 1410 | rtattr_failure: |
| 1411 | skb_trim(skb, b - skb->data); |
| 1412 | return -1; |
| 1413 | } |
| 1414 | |
| 1415 | static int |
| 1416 | hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg, |
| 1417 | struct gnet_dump *d) |
| 1418 | { |
| 1419 | struct hfsc_class *cl = (struct hfsc_class *)arg; |
| 1420 | struct tc_hfsc_stats xstats; |
| 1421 | |
| 1422 | cl->qstats.qlen = cl->qdisc->q.qlen; |
| 1423 | xstats.level = cl->level; |
| 1424 | xstats.period = cl->cl_vtperiod; |
| 1425 | xstats.work = cl->cl_total; |
| 1426 | xstats.rtwork = cl->cl_cumul; |
| 1427 | |
| 1428 | if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || |
| 1429 | #ifdef CONFIG_NET_ESTIMATOR |
| 1430 | gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || |
| 1431 | #endif |
| 1432 | gnet_stats_copy_queue(d, &cl->qstats) < 0) |
| 1433 | return -1; |
| 1434 | |
| 1435 | return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); |
| 1436 | } |
| 1437 | |
| 1438 | |
| 1439 | |
| 1440 | static void |
| 1441 | hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg) |
| 1442 | { |
| 1443 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1444 | struct hfsc_class *cl; |
| 1445 | unsigned int i; |
| 1446 | |
| 1447 | if (arg->stop) |
| 1448 | return; |
| 1449 | |
| 1450 | for (i = 0; i < HFSC_HSIZE; i++) { |
| 1451 | list_for_each_entry(cl, &q->clhash[i], hlist) { |
| 1452 | if (arg->count < arg->skip) { |
| 1453 | arg->count++; |
| 1454 | continue; |
| 1455 | } |
| 1456 | if (arg->fn(sch, (unsigned long)cl, arg) < 0) { |
| 1457 | arg->stop = 1; |
| 1458 | return; |
| 1459 | } |
| 1460 | arg->count++; |
| 1461 | } |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | static void |
| 1466 | hfsc_watchdog(unsigned long arg) |
| 1467 | { |
| 1468 | struct Qdisc *sch = (struct Qdisc *)arg; |
| 1469 | |
| 1470 | sch->flags &= ~TCQ_F_THROTTLED; |
| 1471 | netif_schedule(sch->dev); |
| 1472 | } |
| 1473 | |
| 1474 | static void |
| 1475 | hfsc_schedule_watchdog(struct Qdisc *sch, u64 cur_time) |
| 1476 | { |
| 1477 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1478 | struct hfsc_class *cl; |
| 1479 | u64 next_time = 0; |
| 1480 | long delay; |
| 1481 | |
| 1482 | if ((cl = eltree_get_minel(q)) != NULL) |
| 1483 | next_time = cl->cl_e; |
| 1484 | if (q->root.cl_cfmin != 0) { |
| 1485 | if (next_time == 0 || next_time > q->root.cl_cfmin) |
| 1486 | next_time = q->root.cl_cfmin; |
| 1487 | } |
| 1488 | ASSERT(next_time != 0); |
| 1489 | delay = next_time - cur_time; |
| 1490 | delay = PSCHED_US2JIFFIE(delay); |
| 1491 | |
| 1492 | sch->flags |= TCQ_F_THROTTLED; |
| 1493 | mod_timer(&q->wd_timer, jiffies + delay); |
| 1494 | } |
| 1495 | |
| 1496 | static int |
| 1497 | hfsc_init_qdisc(struct Qdisc *sch, struct rtattr *opt) |
| 1498 | { |
| 1499 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1500 | struct tc_hfsc_qopt *qopt; |
| 1501 | unsigned int i; |
| 1502 | |
| 1503 | if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt)) |
| 1504 | return -EINVAL; |
| 1505 | qopt = RTA_DATA(opt); |
| 1506 | |
| 1507 | sch->stats_lock = &sch->dev->queue_lock; |
| 1508 | |
| 1509 | q->defcls = qopt->defcls; |
| 1510 | for (i = 0; i < HFSC_HSIZE; i++) |
| 1511 | INIT_LIST_HEAD(&q->clhash[i]); |
| 1512 | q->eligible = RB_ROOT; |
| 1513 | INIT_LIST_HEAD(&q->droplist); |
| 1514 | skb_queue_head_init(&q->requeue); |
| 1515 | |
| 1516 | q->root.refcnt = 1; |
| 1517 | q->root.classid = sch->handle; |
| 1518 | q->root.sched = q; |
| 1519 | q->root.qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops); |
| 1520 | if (q->root.qdisc == NULL) |
| 1521 | q->root.qdisc = &noop_qdisc; |
| 1522 | q->root.stats_lock = &sch->dev->queue_lock; |
| 1523 | INIT_LIST_HEAD(&q->root.children); |
| 1524 | q->root.vt_tree = RB_ROOT; |
| 1525 | q->root.cf_tree = RB_ROOT; |
| 1526 | |
| 1527 | list_add(&q->root.hlist, &q->clhash[hfsc_hash(q->root.classid)]); |
| 1528 | |
| 1529 | init_timer(&q->wd_timer); |
| 1530 | q->wd_timer.function = hfsc_watchdog; |
| 1531 | q->wd_timer.data = (unsigned long)sch; |
| 1532 | |
| 1533 | return 0; |
| 1534 | } |
| 1535 | |
| 1536 | static int |
| 1537 | hfsc_change_qdisc(struct Qdisc *sch, struct rtattr *opt) |
| 1538 | { |
| 1539 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1540 | struct tc_hfsc_qopt *qopt; |
| 1541 | |
| 1542 | if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt)) |
| 1543 | return -EINVAL; |
| 1544 | qopt = RTA_DATA(opt); |
| 1545 | |
| 1546 | sch_tree_lock(sch); |
| 1547 | q->defcls = qopt->defcls; |
| 1548 | sch_tree_unlock(sch); |
| 1549 | |
| 1550 | return 0; |
| 1551 | } |
| 1552 | |
| 1553 | static void |
| 1554 | hfsc_reset_class(struct hfsc_class *cl) |
| 1555 | { |
| 1556 | cl->cl_total = 0; |
| 1557 | cl->cl_cumul = 0; |
| 1558 | cl->cl_d = 0; |
| 1559 | cl->cl_e = 0; |
| 1560 | cl->cl_vt = 0; |
| 1561 | cl->cl_vtadj = 0; |
| 1562 | cl->cl_vtoff = 0; |
| 1563 | cl->cl_cvtmin = 0; |
| 1564 | cl->cl_cvtmax = 0; |
| 1565 | cl->cl_cvtoff = 0; |
| 1566 | cl->cl_pcvtoff = 0; |
| 1567 | cl->cl_vtperiod = 0; |
| 1568 | cl->cl_parentperiod = 0; |
| 1569 | cl->cl_f = 0; |
| 1570 | cl->cl_myf = 0; |
| 1571 | cl->cl_myfadj = 0; |
| 1572 | cl->cl_cfmin = 0; |
| 1573 | cl->cl_nactive = 0; |
| 1574 | |
| 1575 | cl->vt_tree = RB_ROOT; |
| 1576 | cl->cf_tree = RB_ROOT; |
| 1577 | qdisc_reset(cl->qdisc); |
| 1578 | |
| 1579 | if (cl->cl_flags & HFSC_RSC) |
| 1580 | rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0); |
| 1581 | if (cl->cl_flags & HFSC_FSC) |
| 1582 | rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0); |
| 1583 | if (cl->cl_flags & HFSC_USC) |
| 1584 | rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0); |
| 1585 | } |
| 1586 | |
| 1587 | static void |
| 1588 | hfsc_reset_qdisc(struct Qdisc *sch) |
| 1589 | { |
| 1590 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1591 | struct hfsc_class *cl; |
| 1592 | unsigned int i; |
| 1593 | |
| 1594 | for (i = 0; i < HFSC_HSIZE; i++) { |
| 1595 | list_for_each_entry(cl, &q->clhash[i], hlist) |
| 1596 | hfsc_reset_class(cl); |
| 1597 | } |
| 1598 | __skb_queue_purge(&q->requeue); |
| 1599 | q->eligible = RB_ROOT; |
| 1600 | INIT_LIST_HEAD(&q->droplist); |
| 1601 | del_timer(&q->wd_timer); |
| 1602 | sch->flags &= ~TCQ_F_THROTTLED; |
| 1603 | sch->q.qlen = 0; |
| 1604 | } |
| 1605 | |
| 1606 | static void |
| 1607 | hfsc_destroy_qdisc(struct Qdisc *sch) |
| 1608 | { |
| 1609 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1610 | struct hfsc_class *cl, *next; |
| 1611 | unsigned int i; |
| 1612 | |
| 1613 | for (i = 0; i < HFSC_HSIZE; i++) { |
| 1614 | list_for_each_entry_safe(cl, next, &q->clhash[i], hlist) |
| 1615 | hfsc_destroy_class(sch, cl); |
| 1616 | } |
| 1617 | __skb_queue_purge(&q->requeue); |
| 1618 | del_timer(&q->wd_timer); |
| 1619 | } |
| 1620 | |
| 1621 | static int |
| 1622 | hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb) |
| 1623 | { |
| 1624 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1625 | unsigned char *b = skb->tail; |
| 1626 | struct tc_hfsc_qopt qopt; |
| 1627 | |
| 1628 | qopt.defcls = q->defcls; |
| 1629 | RTA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt); |
| 1630 | return skb->len; |
| 1631 | |
| 1632 | rtattr_failure: |
| 1633 | skb_trim(skb, b - skb->data); |
| 1634 | return -1; |
| 1635 | } |
| 1636 | |
| 1637 | static int |
| 1638 | hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch) |
| 1639 | { |
| 1640 | struct hfsc_class *cl; |
| 1641 | unsigned int len; |
| 1642 | int err; |
| 1643 | |
| 1644 | cl = hfsc_classify(skb, sch, &err); |
| 1645 | if (cl == NULL) { |
| 1646 | if (err == NET_XMIT_DROP) |
| 1647 | sch->qstats.drops++; |
| 1648 | kfree_skb(skb); |
| 1649 | return err; |
| 1650 | } |
| 1651 | |
| 1652 | len = skb->len; |
| 1653 | err = cl->qdisc->enqueue(skb, cl->qdisc); |
| 1654 | if (unlikely(err != NET_XMIT_SUCCESS)) { |
| 1655 | cl->qstats.drops++; |
| 1656 | sch->qstats.drops++; |
| 1657 | return err; |
| 1658 | } |
| 1659 | |
| 1660 | if (cl->qdisc->q.qlen == 1) |
| 1661 | set_active(cl, len); |
| 1662 | |
| 1663 | cl->bstats.packets++; |
| 1664 | cl->bstats.bytes += len; |
| 1665 | sch->bstats.packets++; |
| 1666 | sch->bstats.bytes += len; |
| 1667 | sch->q.qlen++; |
| 1668 | |
| 1669 | return NET_XMIT_SUCCESS; |
| 1670 | } |
| 1671 | |
| 1672 | static struct sk_buff * |
| 1673 | hfsc_dequeue(struct Qdisc *sch) |
| 1674 | { |
| 1675 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1676 | struct hfsc_class *cl; |
| 1677 | struct sk_buff *skb; |
| 1678 | u64 cur_time; |
| 1679 | unsigned int next_len; |
| 1680 | int realtime = 0; |
| 1681 | |
| 1682 | if (sch->q.qlen == 0) |
| 1683 | return NULL; |
| 1684 | if ((skb = __skb_dequeue(&q->requeue))) |
| 1685 | goto out; |
| 1686 | |
| 1687 | PSCHED_GET_TIME(cur_time); |
| 1688 | |
| 1689 | /* |
| 1690 | * if there are eligible classes, use real-time criteria. |
| 1691 | * find the class with the minimum deadline among |
| 1692 | * the eligible classes. |
| 1693 | */ |
| 1694 | if ((cl = eltree_get_mindl(q, cur_time)) != NULL) { |
| 1695 | realtime = 1; |
| 1696 | } else { |
| 1697 | /* |
| 1698 | * use link-sharing criteria |
| 1699 | * get the class with the minimum vt in the hierarchy |
| 1700 | */ |
| 1701 | cl = vttree_get_minvt(&q->root, cur_time); |
| 1702 | if (cl == NULL) { |
| 1703 | sch->qstats.overlimits++; |
| 1704 | hfsc_schedule_watchdog(sch, cur_time); |
| 1705 | return NULL; |
| 1706 | } |
| 1707 | } |
| 1708 | |
| 1709 | skb = cl->qdisc->dequeue(cl->qdisc); |
| 1710 | if (skb == NULL) { |
| 1711 | if (net_ratelimit()) |
| 1712 | printk("HFSC: Non-work-conserving qdisc ?\n"); |
| 1713 | return NULL; |
| 1714 | } |
| 1715 | |
| 1716 | update_vf(cl, skb->len, cur_time); |
| 1717 | if (realtime) |
| 1718 | cl->cl_cumul += skb->len; |
| 1719 | |
| 1720 | if (cl->qdisc->q.qlen != 0) { |
| 1721 | if (cl->cl_flags & HFSC_RSC) { |
| 1722 | /* update ed */ |
| 1723 | next_len = qdisc_peek_len(cl->qdisc); |
| 1724 | if (realtime) |
| 1725 | update_ed(cl, next_len); |
| 1726 | else |
| 1727 | update_d(cl, next_len); |
| 1728 | } |
| 1729 | } else { |
| 1730 | /* the class becomes passive */ |
| 1731 | set_passive(cl); |
| 1732 | } |
| 1733 | |
| 1734 | out: |
| 1735 | sch->flags &= ~TCQ_F_THROTTLED; |
| 1736 | sch->q.qlen--; |
| 1737 | |
| 1738 | return skb; |
| 1739 | } |
| 1740 | |
| 1741 | static int |
| 1742 | hfsc_requeue(struct sk_buff *skb, struct Qdisc *sch) |
| 1743 | { |
| 1744 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1745 | |
| 1746 | __skb_queue_head(&q->requeue, skb); |
| 1747 | sch->q.qlen++; |
| 1748 | sch->qstats.requeues++; |
| 1749 | return NET_XMIT_SUCCESS; |
| 1750 | } |
| 1751 | |
| 1752 | static unsigned int |
| 1753 | hfsc_drop(struct Qdisc *sch) |
| 1754 | { |
| 1755 | struct hfsc_sched *q = qdisc_priv(sch); |
| 1756 | struct hfsc_class *cl; |
| 1757 | unsigned int len; |
| 1758 | |
| 1759 | list_for_each_entry(cl, &q->droplist, dlist) { |
| 1760 | if (cl->qdisc->ops->drop != NULL && |
| 1761 | (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) { |
| 1762 | if (cl->qdisc->q.qlen == 0) { |
| 1763 | update_vf(cl, 0, 0); |
| 1764 | set_passive(cl); |
| 1765 | } else { |
| 1766 | list_move_tail(&cl->dlist, &q->droplist); |
| 1767 | } |
| 1768 | cl->qstats.drops++; |
| 1769 | sch->qstats.drops++; |
| 1770 | sch->q.qlen--; |
| 1771 | return len; |
| 1772 | } |
| 1773 | } |
| 1774 | return 0; |
| 1775 | } |
| 1776 | |
| 1777 | static struct Qdisc_class_ops hfsc_class_ops = { |
| 1778 | .change = hfsc_change_class, |
| 1779 | .delete = hfsc_delete_class, |
| 1780 | .graft = hfsc_graft_class, |
| 1781 | .leaf = hfsc_class_leaf, |
| 1782 | .get = hfsc_get_class, |
| 1783 | .put = hfsc_put_class, |
| 1784 | .bind_tcf = hfsc_bind_tcf, |
| 1785 | .unbind_tcf = hfsc_unbind_tcf, |
| 1786 | .tcf_chain = hfsc_tcf_chain, |
| 1787 | .dump = hfsc_dump_class, |
| 1788 | .dump_stats = hfsc_dump_class_stats, |
| 1789 | .walk = hfsc_walk |
| 1790 | }; |
| 1791 | |
| 1792 | static struct Qdisc_ops hfsc_qdisc_ops = { |
| 1793 | .id = "hfsc", |
| 1794 | .init = hfsc_init_qdisc, |
| 1795 | .change = hfsc_change_qdisc, |
| 1796 | .reset = hfsc_reset_qdisc, |
| 1797 | .destroy = hfsc_destroy_qdisc, |
| 1798 | .dump = hfsc_dump_qdisc, |
| 1799 | .enqueue = hfsc_enqueue, |
| 1800 | .dequeue = hfsc_dequeue, |
| 1801 | .requeue = hfsc_requeue, |
| 1802 | .drop = hfsc_drop, |
| 1803 | .cl_ops = &hfsc_class_ops, |
| 1804 | .priv_size = sizeof(struct hfsc_sched), |
| 1805 | .owner = THIS_MODULE |
| 1806 | }; |
| 1807 | |
| 1808 | static int __init |
| 1809 | hfsc_init(void) |
| 1810 | { |
| 1811 | return register_qdisc(&hfsc_qdisc_ops); |
| 1812 | } |
| 1813 | |
| 1814 | static void __exit |
| 1815 | hfsc_cleanup(void) |
| 1816 | { |
| 1817 | unregister_qdisc(&hfsc_qdisc_ops); |
| 1818 | } |
| 1819 | |
| 1820 | MODULE_LICENSE("GPL"); |
| 1821 | module_init(hfsc_init); |
| 1822 | module_exit(hfsc_cleanup); |