blob: 52a75a6111487316faa41e8b9f12db11b8353be4 [file] [log] [blame]
Mike Marciniszyn77241052015-07-30 15:17:43 -04001/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51/*
52 * This file contains all of the code that is specific to the HFI chip
53 */
54
55#include <linux/pci.h>
56#include <linux/delay.h>
57#include <linux/interrupt.h>
58#include <linux/module.h>
59
60#include "hfi.h"
61#include "trace.h"
62#include "mad.h"
63#include "pio.h"
64#include "sdma.h"
65#include "eprom.h"
66
67#define NUM_IB_PORTS 1
68
69uint kdeth_qp;
70module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
71MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
72
73uint num_vls = HFI1_MAX_VLS_SUPPORTED;
74module_param(num_vls, uint, S_IRUGO);
75MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
76
77/*
78 * Default time to aggregate two 10K packets from the idle state
79 * (timer not running). The timer starts at the end of the first packet,
80 * so only the time for one 10K packet and header plus a bit extra is needed.
81 * 10 * 1024 + 64 header byte = 10304 byte
82 * 10304 byte / 12.5 GB/s = 824.32ns
83 */
84uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
85module_param(rcv_intr_timeout, uint, S_IRUGO);
86MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
87
88uint rcv_intr_count = 16; /* same as qib */
89module_param(rcv_intr_count, uint, S_IRUGO);
90MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
91
92ushort link_crc_mask = SUPPORTED_CRCS;
93module_param(link_crc_mask, ushort, S_IRUGO);
94MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
95
96uint loopback;
97module_param_named(loopback, loopback, uint, S_IRUGO);
98MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
99
100/* Other driver tunables */
101uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
102static ushort crc_14b_sideband = 1;
103static uint use_flr = 1;
104uint quick_linkup; /* skip LNI */
105
106struct flag_table {
107 u64 flag; /* the flag */
108 char *str; /* description string */
109 u16 extra; /* extra information */
110 u16 unused0;
111 u32 unused1;
112};
113
114/* str must be a string constant */
115#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
116#define FLAG_ENTRY0(str, flag) {flag, str, 0}
117
118/* Send Error Consequences */
119#define SEC_WRITE_DROPPED 0x1
120#define SEC_PACKET_DROPPED 0x2
121#define SEC_SC_HALTED 0x4 /* per-context only */
122#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
123
124#define VL15CTXT 1
125#define MIN_KERNEL_KCTXTS 2
126#define NUM_MAP_REGS 32
127
128/* Bit offset into the GUID which carries HFI id information */
129#define GUID_HFI_INDEX_SHIFT 39
130
131/* extract the emulation revision */
132#define emulator_rev(dd) ((dd)->irev >> 8)
133/* parallel and serial emulation versions are 3 and 4 respectively */
134#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
135#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
136
137/* RSM fields */
138
139/* packet type */
140#define IB_PACKET_TYPE 2ull
141#define QW_SHIFT 6ull
142/* QPN[7..1] */
143#define QPN_WIDTH 7ull
144
145/* LRH.BTH: QW 0, OFFSET 48 - for match */
146#define LRH_BTH_QW 0ull
147#define LRH_BTH_BIT_OFFSET 48ull
148#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
149#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
150#define LRH_BTH_SELECT
151#define LRH_BTH_MASK 3ull
152#define LRH_BTH_VALUE 2ull
153
154/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
155#define LRH_SC_QW 0ull
156#define LRH_SC_BIT_OFFSET 56ull
157#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
158#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
159#define LRH_SC_MASK 128ull
160#define LRH_SC_VALUE 0ull
161
162/* SC[n..0] QW 0, OFFSET 60 - for select */
163#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
164
165/* QPN[m+n:1] QW 1, OFFSET 1 */
166#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
167
168/* defines to build power on SC2VL table */
169#define SC2VL_VAL( \
170 num, \
171 sc0, sc0val, \
172 sc1, sc1val, \
173 sc2, sc2val, \
174 sc3, sc3val, \
175 sc4, sc4val, \
176 sc5, sc5val, \
177 sc6, sc6val, \
178 sc7, sc7val) \
179( \
180 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
181 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
182 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
183 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
184 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
185 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
186 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
187 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
188)
189
190#define DC_SC_VL_VAL( \
191 range, \
192 e0, e0val, \
193 e1, e1val, \
194 e2, e2val, \
195 e3, e3val, \
196 e4, e4val, \
197 e5, e5val, \
198 e6, e6val, \
199 e7, e7val, \
200 e8, e8val, \
201 e9, e9val, \
202 e10, e10val, \
203 e11, e11val, \
204 e12, e12val, \
205 e13, e13val, \
206 e14, e14val, \
207 e15, e15val) \
208( \
209 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
210 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
211 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
212 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
213 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
214 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
215 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
216 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
217 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
218 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
219 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
220 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
221 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
222 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
223 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
224 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
225)
226
227/* all CceStatus sub-block freeze bits */
228#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
229 | CCE_STATUS_RXE_FROZE_SMASK \
230 | CCE_STATUS_TXE_FROZE_SMASK \
231 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
232/* all CceStatus sub-block TXE pause bits */
233#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
234 | CCE_STATUS_TXE_PAUSED_SMASK \
235 | CCE_STATUS_SDMA_PAUSED_SMASK)
236/* all CceStatus sub-block RXE pause bits */
237#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
238
239/*
240 * CCE Error flags.
241 */
242static struct flag_table cce_err_status_flags[] = {
243/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
244 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
245/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
246 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
247/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
248 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
249/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
250 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
251/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
252 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
253/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
254 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
255/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
256 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
257/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
258 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
259/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
260 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
261/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
262 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
263/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
264 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
265/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
266 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
267/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
268 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
269/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
270 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
271/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
272 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
273/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
274 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
275/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
276 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
277/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
278 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
279/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
280 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
281/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
282 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
283/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
284 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
285/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
286 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
287/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
288 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
289/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
290 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
291/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
292 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
293/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
294 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
295/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
296 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
297/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
298 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
299/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
300 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
301/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
302 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
303/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
304 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
305/*31*/ FLAG_ENTRY0("LATriggered",
306 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
307/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
308 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
309/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
310 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
311/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
312 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
313/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
314 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
315/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
316 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
317/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
318 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
319/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
320 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
321/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
322 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
323/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
324 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
325/*41-63 reserved*/
326};
327
328/*
329 * Misc Error flags
330 */
331#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
332static struct flag_table misc_err_status_flags[] = {
333/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
334/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
335/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
336/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
337/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
338/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
339/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
340/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
341/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
342/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
343/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
344/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
345/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
346};
347
348/*
349 * TXE PIO Error flags and consequences
350 */
351static struct flag_table pio_err_status_flags[] = {
352/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
353 SEC_WRITE_DROPPED,
354 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
355/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
356 SEC_SPC_FREEZE,
357 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
358/* 2*/ FLAG_ENTRY("PioCsrParity",
359 SEC_SPC_FREEZE,
360 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
361/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
362 SEC_SPC_FREEZE,
363 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
364/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
365 SEC_SPC_FREEZE,
366 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
367/* 5*/ FLAG_ENTRY("PioPccFifoParity",
368 SEC_SPC_FREEZE,
369 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
370/* 6*/ FLAG_ENTRY("PioPecFifoParity",
371 SEC_SPC_FREEZE,
372 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
373/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
374 SEC_SPC_FREEZE,
375 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
376/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
377 SEC_SPC_FREEZE,
378 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
379/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
380 SEC_SPC_FREEZE,
381 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
382/*10*/ FLAG_ENTRY("PioSmPktResetParity",
383 SEC_SPC_FREEZE,
384 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
385/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
386 SEC_SPC_FREEZE,
387 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
388/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
389 SEC_SPC_FREEZE,
390 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
391/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
392 0,
393 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
394/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
395 0,
396 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
397/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
398 SEC_SPC_FREEZE,
399 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
400/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
403/*17*/ FLAG_ENTRY("PioInitSmIn",
404 0,
405 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
406/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
407 SEC_SPC_FREEZE,
408 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
409/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
412/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
413 0,
414 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
415/*21*/ FLAG_ENTRY("PioWriteDataParity",
416 SEC_SPC_FREEZE,
417 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
418/*22*/ FLAG_ENTRY("PioStateMachine",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
421/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
422 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
423 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
424/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
425 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
426 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
427/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
428 SEC_SPC_FREEZE,
429 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
430/*26*/ FLAG_ENTRY("PioVlfSopParity",
431 SEC_SPC_FREEZE,
432 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
433/*27*/ FLAG_ENTRY("PioVlFifoParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
436/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
439/*29*/ FLAG_ENTRY("PioPpmcSopLen",
440 SEC_SPC_FREEZE,
441 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
442/*30-31 reserved*/
443/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
444 SEC_SPC_FREEZE,
445 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
446/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
447 SEC_SPC_FREEZE,
448 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
449/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
450 SEC_SPC_FREEZE,
451 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
452/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
453 SEC_SPC_FREEZE,
454 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
455/*36-63 reserved*/
456};
457
458/* TXE PIO errors that cause an SPC freeze */
459#define ALL_PIO_FREEZE_ERR \
460 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
461 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
462 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
463 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
464 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
465 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
466 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
467 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
489
490/*
491 * TXE SDMA Error flags
492 */
493static struct flag_table sdma_err_status_flags[] = {
494/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
495 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
496/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
497 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
498/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
499 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
500/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
501 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
502/*04-63 reserved*/
503};
504
505/* TXE SDMA errors that cause an SPC freeze */
506#define ALL_SDMA_FREEZE_ERR \
507 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
508 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
509 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
510
511/*
512 * TXE Egress Error flags
513 */
514#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
515static struct flag_table egress_err_status_flags[] = {
516/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
517/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
518/* 2 reserved */
519/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
520 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
521/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
522/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
523/* 6 reserved */
524/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
525 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
526/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
527 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
528/* 9-10 reserved */
529/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
530 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
531/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
532/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
533/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
534/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
535/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
536 SEES(TX_SDMA0_DISALLOWED_PACKET)),
537/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
538 SEES(TX_SDMA1_DISALLOWED_PACKET)),
539/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
540 SEES(TX_SDMA2_DISALLOWED_PACKET)),
541/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
542 SEES(TX_SDMA3_DISALLOWED_PACKET)),
543/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
544 SEES(TX_SDMA4_DISALLOWED_PACKET)),
545/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
546 SEES(TX_SDMA5_DISALLOWED_PACKET)),
547/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
548 SEES(TX_SDMA6_DISALLOWED_PACKET)),
549/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
550 SEES(TX_SDMA7_DISALLOWED_PACKET)),
551/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
552 SEES(TX_SDMA8_DISALLOWED_PACKET)),
553/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
554 SEES(TX_SDMA9_DISALLOWED_PACKET)),
555/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
556 SEES(TX_SDMA10_DISALLOWED_PACKET)),
557/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
558 SEES(TX_SDMA11_DISALLOWED_PACKET)),
559/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
560 SEES(TX_SDMA12_DISALLOWED_PACKET)),
561/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
562 SEES(TX_SDMA13_DISALLOWED_PACKET)),
563/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
564 SEES(TX_SDMA14_DISALLOWED_PACKET)),
565/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
566 SEES(TX_SDMA15_DISALLOWED_PACKET)),
567/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
568 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
569/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
570 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
571/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
572 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
573/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
574 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
575/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
576 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
577/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
578 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
579/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
580 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
581/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
582 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
583/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
584 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
585/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
586/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
587/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
588/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
589/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
590/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
591/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
592/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
593/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
594/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
595/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
596/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
597/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
598/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
599/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
600/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
601/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
602/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
603/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
604/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
605/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
606/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
607 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
608/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
609 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
610};
611
612/*
613 * TXE Egress Error Info flags
614 */
615#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
616static struct flag_table egress_err_info_flags[] = {
617/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
618/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
619/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
620/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
621/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
622/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
623/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
624/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
625/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
626/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
627/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
628/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
629/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
630/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
631/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
632/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
633/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
634/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
635/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
636/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
637/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
638/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
639};
640
641/* TXE Egress errors that cause an SPC freeze */
642#define ALL_TXE_EGRESS_FREEZE_ERR \
643 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
644 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
645 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
646 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
647 | SEES(TX_LAUNCH_CSR_PARITY) \
648 | SEES(TX_SBRD_CTL_CSR_PARITY) \
649 | SEES(TX_CONFIG_PARITY) \
650 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
651 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
652 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
653 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
654 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
655 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
656 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
657 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
658 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
659 | SEES(TX_CREDIT_RETURN_PARITY))
660
661/*
662 * TXE Send error flags
663 */
664#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
665static struct flag_table send_err_status_flags[] = {
666/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", SES(CSR_PARITY)),
667/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
668/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
669};
670
671/*
672 * TXE Send Context Error flags and consequences
673 */
674static struct flag_table sc_err_status_flags[] = {
675/* 0*/ FLAG_ENTRY("InconsistentSop",
676 SEC_PACKET_DROPPED | SEC_SC_HALTED,
677 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
678/* 1*/ FLAG_ENTRY("DisallowedPacket",
679 SEC_PACKET_DROPPED | SEC_SC_HALTED,
680 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
681/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
682 SEC_WRITE_DROPPED | SEC_SC_HALTED,
683 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
684/* 3*/ FLAG_ENTRY("WriteOverflow",
685 SEC_WRITE_DROPPED | SEC_SC_HALTED,
686 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
687/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
688 SEC_WRITE_DROPPED | SEC_SC_HALTED,
689 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
690/* 5-63 reserved*/
691};
692
693/*
694 * RXE Receive Error flags
695 */
696#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
697static struct flag_table rxe_err_status_flags[] = {
698/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
699/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
700/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
701/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
702/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
703/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
704/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
705/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
706/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
707/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
708/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
709/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
710/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
711/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
712/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
713/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
714/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
715 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
716/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
717/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
718/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
719 RXES(RBUF_BLOCK_LIST_READ_UNC)),
720/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
721 RXES(RBUF_BLOCK_LIST_READ_COR)),
722/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
723 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
724/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
725 RXES(RBUF_CSR_QENT_CNT_PARITY)),
726/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
727 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
728/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
729 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
730/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
731/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
732/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
733 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
734/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
735/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
736/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
737/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
738/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
739/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
740/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
741/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
742 RXES(RBUF_FL_INITDONE_PARITY)),
743/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
744 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
745/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
746/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
747/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
748/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
749 RXES(LOOKUP_DES_PART1_UNC_COR)),
750/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
751 RXES(LOOKUP_DES_PART2_PARITY)),
752/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
753/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
754/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
755/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
756/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
757/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
758/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
759/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
760/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
761/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
762/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
763/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
764/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
765/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
766/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
767/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
768/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
769/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
770/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
771/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
772/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
773/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
774};
775
776/* RXE errors that will trigger an SPC freeze */
777#define ALL_RXE_FREEZE_ERR \
778 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
779 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
780 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
781 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
782 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
783 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
784 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
785 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
786 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
787 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
788 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
789 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
790 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
791 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
822
823#define RXE_FREEZE_ABORT_MASK \
824 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
825 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
826 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
827
828/*
829 * DCC Error Flags
830 */
831#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
832static struct flag_table dcc_err_flags[] = {
833 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
834 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
835 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
836 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
837 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
838 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
839 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
840 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
841 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
842 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
843 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
844 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
845 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
846 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
847 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
848 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
849 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
850 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
851 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
852 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
853 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
854 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
855 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
856 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
857 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
858 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
859 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
860 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
861 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
862 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
863 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
864 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
865 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
866 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
867 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
868 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
869 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
870 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
871 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
872 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
873 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
874 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
875 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
876 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
877 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
878 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
879};
880
881/*
882 * LCB error flags
883 */
884#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
885static struct flag_table lcb_err_flags[] = {
886/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
887/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
888/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
889/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
890 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
891/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
892/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
893/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
894/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
895/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
896/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
897/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
898/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
899/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
900/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
901 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
902/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
903/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
904/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
905/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
906/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
907/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
908 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
909/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
910/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
911/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
912/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
913/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
914/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
915/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
916 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
917/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
918/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
919 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
920/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
921 LCBE(REDUNDANT_FLIT_PARITY_ERR))
922};
923
924/*
925 * DC8051 Error Flags
926 */
927#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
928static struct flag_table dc8051_err_flags[] = {
929 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
930 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
931 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
932 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
933 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
934 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
935 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
936 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
937 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
938 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
939 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
940};
941
942/*
943 * DC8051 Information Error flags
944 *
945 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
946 */
947static struct flag_table dc8051_info_err_flags[] = {
948 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
949 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
950 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
951 FLAG_ENTRY0("Serdes internal loopback failure",
952 FAILED_SERDES_INTERNAL_LOOPBACK),
953 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
954 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
955 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
956 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
957 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
958 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
959 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
960 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT)
961};
962
963/*
964 * DC8051 Information Host Information flags
965 *
966 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
967 */
968static struct flag_table dc8051_info_host_msg_flags[] = {
969 FLAG_ENTRY0("Host request done", 0x0001),
970 FLAG_ENTRY0("BC SMA message", 0x0002),
971 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
972 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
973 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
974 FLAG_ENTRY0("External device config request", 0x0020),
975 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
976 FLAG_ENTRY0("LinkUp achieved", 0x0080),
977 FLAG_ENTRY0("Link going down", 0x0100),
978};
979
980
981static u32 encoded_size(u32 size);
982static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
983static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
984static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
985 u8 *continuous);
986static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
987 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
988static void read_vc_remote_link_width(struct hfi1_devdata *dd,
989 u8 *remote_tx_rate, u16 *link_widths);
990static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
991 u8 *flag_bits, u16 *link_widths);
992static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
993 u8 *device_rev);
994static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
995static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
996static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
997 u8 *tx_polarity_inversion,
998 u8 *rx_polarity_inversion, u8 *max_rate);
999static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1000 unsigned int context, u64 err_status);
1001static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1002static void handle_dcc_err(struct hfi1_devdata *dd,
1003 unsigned int context, u64 err_status);
1004static void handle_lcb_err(struct hfi1_devdata *dd,
1005 unsigned int context, u64 err_status);
1006static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1007static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1008static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1009static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1010static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1011static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1012static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1013static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1014static void set_partition_keys(struct hfi1_pportdata *);
1015static const char *link_state_name(u32 state);
1016static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1017 u32 state);
1018static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1019 u64 *out_data);
1020static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1021static int thermal_init(struct hfi1_devdata *dd);
1022
1023static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1024 int msecs);
1025static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1026static void handle_temp_err(struct hfi1_devdata *);
1027static void dc_shutdown(struct hfi1_devdata *);
1028static void dc_start(struct hfi1_devdata *);
1029
1030/*
1031 * Error interrupt table entry. This is used as input to the interrupt
1032 * "clear down" routine used for all second tier error interrupt register.
1033 * Second tier interrupt registers have a single bit representing them
1034 * in the top-level CceIntStatus.
1035 */
1036struct err_reg_info {
1037 u32 status; /* status CSR offset */
1038 u32 clear; /* clear CSR offset */
1039 u32 mask; /* mask CSR offset */
1040 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1041 const char *desc;
1042};
1043
1044#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1045#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1046#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1047
1048/*
1049 * Helpers for building HFI and DC error interrupt table entries. Different
1050 * helpers are needed because of inconsistent register names.
1051 */
1052#define EE(reg, handler, desc) \
1053 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1054 handler, desc }
1055#define DC_EE1(reg, handler, desc) \
1056 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1057#define DC_EE2(reg, handler, desc) \
1058 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1059
1060/*
1061 * Table of the "misc" grouping of error interrupts. Each entry refers to
1062 * another register containing more information.
1063 */
1064static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1065/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1066/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1067/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1068/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1069/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1070/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1071/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1072/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1073 /* the rest are reserved */
1074};
1075
1076/*
1077 * Index into the Various section of the interrupt sources
1078 * corresponding to the Critical Temperature interrupt.
1079 */
1080#define TCRIT_INT_SOURCE 4
1081
1082/*
1083 * SDMA error interrupt entry - refers to another register containing more
1084 * information.
1085 */
1086static const struct err_reg_info sdma_eng_err =
1087 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1088
1089static const struct err_reg_info various_err[NUM_VARIOUS] = {
1090/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1091/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1092/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1093/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1094/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1095 /* rest are reserved */
1096};
1097
1098/*
1099 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1100 * register can not be derived from the MTU value because 10K is not
1101 * a power of 2. Therefore, we need a constant. Everything else can
1102 * be calculated.
1103 */
1104#define DCC_CFG_PORT_MTU_CAP_10240 7
1105
1106/*
1107 * Table of the DC grouping of error interrupts. Each entry refers to
1108 * another register containing more information.
1109 */
1110static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1111/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1112/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1113/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1114/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1115 /* the rest are reserved */
1116};
1117
1118struct cntr_entry {
1119 /*
1120 * counter name
1121 */
1122 char *name;
1123
1124 /*
1125 * csr to read for name (if applicable)
1126 */
1127 u64 csr;
1128
1129 /*
1130 * offset into dd or ppd to store the counter's value
1131 */
1132 int offset;
1133
1134 /*
1135 * flags
1136 */
1137 u8 flags;
1138
1139 /*
1140 * accessor for stat element, context either dd or ppd
1141 */
1142 u64 (*rw_cntr)(const struct cntr_entry *,
1143 void *context,
1144 int vl,
1145 int mode,
1146 u64 data);
1147};
1148
1149#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1150#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1151
1152#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1153{ \
1154 name, \
1155 csr, \
1156 offset, \
1157 flags, \
1158 accessor \
1159}
1160
1161/* 32bit RXE */
1162#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1163CNTR_ELEM(#name, \
1164 (counter * 8 + RCV_COUNTER_ARRAY32), \
1165 0, flags | CNTR_32BIT, \
1166 port_access_u32_csr)
1167
1168#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1169CNTR_ELEM(#name, \
1170 (counter * 8 + RCV_COUNTER_ARRAY32), \
1171 0, flags | CNTR_32BIT, \
1172 dev_access_u32_csr)
1173
1174/* 64bit RXE */
1175#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1176CNTR_ELEM(#name, \
1177 (counter * 8 + RCV_COUNTER_ARRAY64), \
1178 0, flags, \
1179 port_access_u64_csr)
1180
1181#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1182CNTR_ELEM(#name, \
1183 (counter * 8 + RCV_COUNTER_ARRAY64), \
1184 0, flags, \
1185 dev_access_u64_csr)
1186
1187#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1188#define OVR_ELM(ctx) \
1189CNTR_ELEM("RcvHdrOvr" #ctx, \
1190 (RCV_HDR_OVFL_CNT + ctx*0x100), \
1191 0, CNTR_NORMAL, port_access_u64_csr)
1192
1193/* 32bit TXE */
1194#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1195CNTR_ELEM(#name, \
1196 (counter * 8 + SEND_COUNTER_ARRAY32), \
1197 0, flags | CNTR_32BIT, \
1198 port_access_u32_csr)
1199
1200/* 64bit TXE */
1201#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1202CNTR_ELEM(#name, \
1203 (counter * 8 + SEND_COUNTER_ARRAY64), \
1204 0, flags, \
1205 port_access_u64_csr)
1206
1207# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1208CNTR_ELEM(#name,\
1209 counter * 8 + SEND_COUNTER_ARRAY64, \
1210 0, \
1211 flags, \
1212 dev_access_u64_csr)
1213
1214/* CCE */
1215#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1216CNTR_ELEM(#name, \
1217 (counter * 8 + CCE_COUNTER_ARRAY32), \
1218 0, flags | CNTR_32BIT, \
1219 dev_access_u32_csr)
1220
1221#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1222CNTR_ELEM(#name, \
1223 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1224 0, flags | CNTR_32BIT, \
1225 dev_access_u32_csr)
1226
1227/* DC */
1228#define DC_PERF_CNTR(name, counter, flags) \
1229CNTR_ELEM(#name, \
1230 counter, \
1231 0, \
1232 flags, \
1233 dev_access_u64_csr)
1234
1235#define DC_PERF_CNTR_LCB(name, counter, flags) \
1236CNTR_ELEM(#name, \
1237 counter, \
1238 0, \
1239 flags, \
1240 dc_access_lcb_cntr)
1241
1242/* ibp counters */
1243#define SW_IBP_CNTR(name, cntr) \
1244CNTR_ELEM(#name, \
1245 0, \
1246 0, \
1247 CNTR_SYNTH, \
1248 access_ibp_##cntr)
1249
1250u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1251{
1252 u64 val;
1253
1254 if (dd->flags & HFI1_PRESENT) {
1255 val = readq((void __iomem *)dd->kregbase + offset);
1256 return val;
1257 }
1258 return -1;
1259}
1260
1261void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1262{
1263 if (dd->flags & HFI1_PRESENT)
1264 writeq(value, (void __iomem *)dd->kregbase + offset);
1265}
1266
1267void __iomem *get_csr_addr(
1268 struct hfi1_devdata *dd,
1269 u32 offset)
1270{
1271 return (void __iomem *)dd->kregbase + offset;
1272}
1273
1274static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1275 int mode, u64 value)
1276{
1277 u64 ret;
1278
1279
1280 if (mode == CNTR_MODE_R) {
1281 ret = read_csr(dd, csr);
1282 } else if (mode == CNTR_MODE_W) {
1283 write_csr(dd, csr, value);
1284 ret = value;
1285 } else {
1286 dd_dev_err(dd, "Invalid cntr register access mode");
1287 return 0;
1288 }
1289
1290 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1291 return ret;
1292}
1293
1294/* Dev Access */
1295static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1296 void *context, int vl, int mode, u64 data)
1297{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301298 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001299
1300 if (vl != CNTR_INVALID_VL)
1301 return 0;
1302 return read_write_csr(dd, entry->csr, mode, data);
1303}
1304
1305static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1306 int vl, int mode, u64 data)
1307{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301308 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001309
1310 u64 val = 0;
1311 u64 csr = entry->csr;
1312
1313 if (entry->flags & CNTR_VL) {
1314 if (vl == CNTR_INVALID_VL)
1315 return 0;
1316 csr += 8 * vl;
1317 } else {
1318 if (vl != CNTR_INVALID_VL)
1319 return 0;
1320 }
1321
1322 val = read_write_csr(dd, csr, mode, data);
1323 return val;
1324}
1325
1326static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1327 int vl, int mode, u64 data)
1328{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301329 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001330 u32 csr = entry->csr;
1331 int ret = 0;
1332
1333 if (vl != CNTR_INVALID_VL)
1334 return 0;
1335 if (mode == CNTR_MODE_R)
1336 ret = read_lcb_csr(dd, csr, &data);
1337 else if (mode == CNTR_MODE_W)
1338 ret = write_lcb_csr(dd, csr, data);
1339
1340 if (ret) {
1341 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1342 return 0;
1343 }
1344
1345 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1346 return data;
1347}
1348
1349/* Port Access */
1350static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1351 int vl, int mode, u64 data)
1352{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301353 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001354
1355 if (vl != CNTR_INVALID_VL)
1356 return 0;
1357 return read_write_csr(ppd->dd, entry->csr, mode, data);
1358}
1359
1360static u64 port_access_u64_csr(const struct cntr_entry *entry,
1361 void *context, int vl, int mode, u64 data)
1362{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301363 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001364 u64 val;
1365 u64 csr = entry->csr;
1366
1367 if (entry->flags & CNTR_VL) {
1368 if (vl == CNTR_INVALID_VL)
1369 return 0;
1370 csr += 8 * vl;
1371 } else {
1372 if (vl != CNTR_INVALID_VL)
1373 return 0;
1374 }
1375 val = read_write_csr(ppd->dd, csr, mode, data);
1376 return val;
1377}
1378
1379/* Software defined */
1380static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1381 u64 data)
1382{
1383 u64 ret;
1384
1385 if (mode == CNTR_MODE_R) {
1386 ret = *cntr;
1387 } else if (mode == CNTR_MODE_W) {
1388 *cntr = data;
1389 ret = data;
1390 } else {
1391 dd_dev_err(dd, "Invalid cntr sw access mode");
1392 return 0;
1393 }
1394
1395 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1396
1397 return ret;
1398}
1399
1400static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1401 int vl, int mode, u64 data)
1402{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301403 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001404
1405 if (vl != CNTR_INVALID_VL)
1406 return 0;
1407 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1408}
1409
1410static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1411 int vl, int mode, u64 data)
1412{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301413 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001414
1415 if (vl != CNTR_INVALID_VL)
1416 return 0;
1417 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1418}
1419
1420static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1421 void *context, int vl, int mode, u64 data)
1422{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301423 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001424
1425 if (vl != CNTR_INVALID_VL)
1426 return 0;
1427
1428 return read_write_sw(ppd->dd, &ppd->port_xmit_discards, mode, data);
1429}
1430
1431static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1432 void *context, int vl, int mode, u64 data)
1433{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301434 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001435
1436 if (vl != CNTR_INVALID_VL)
1437 return 0;
1438
1439 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1440 mode, data);
1441}
1442
1443static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1444 void *context, int vl, int mode, u64 data)
1445{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301446 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001447
1448 if (vl != CNTR_INVALID_VL)
1449 return 0;
1450
1451 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1452 mode, data);
1453}
1454
1455u64 get_all_cpu_total(u64 __percpu *cntr)
1456{
1457 int cpu;
1458 u64 counter = 0;
1459
1460 for_each_possible_cpu(cpu)
1461 counter += *per_cpu_ptr(cntr, cpu);
1462 return counter;
1463}
1464
1465static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1466 u64 __percpu *cntr,
1467 int vl, int mode, u64 data)
1468{
1469
1470 u64 ret = 0;
1471
1472 if (vl != CNTR_INVALID_VL)
1473 return 0;
1474
1475 if (mode == CNTR_MODE_R) {
1476 ret = get_all_cpu_total(cntr) - *z_val;
1477 } else if (mode == CNTR_MODE_W) {
1478 /* A write can only zero the counter */
1479 if (data == 0)
1480 *z_val = get_all_cpu_total(cntr);
1481 else
1482 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1483 } else {
1484 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1485 return 0;
1486 }
1487
1488 return ret;
1489}
1490
1491static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1492 void *context, int vl, int mode, u64 data)
1493{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301494 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001495
1496 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1497 mode, data);
1498}
1499
1500static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1501 void *context, int vl, int mode, u64 data)
1502{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301503 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001504
1505 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1506 mode, data);
1507}
1508
1509static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1510 void *context, int vl, int mode, u64 data)
1511{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301512 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001513
1514 return dd->verbs_dev.n_piowait;
1515}
1516
1517static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1518 void *context, int vl, int mode, u64 data)
1519{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301520 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001521
1522 return dd->verbs_dev.n_txwait;
1523}
1524
1525static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1526 void *context, int vl, int mode, u64 data)
1527{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301528 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001529
1530 return dd->verbs_dev.n_kmem_wait;
1531}
1532
Dean Luickb4219222015-10-26 10:28:35 -04001533static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1534 void *context, int vl, int mode, u64 data)
1535{
1536 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1537
1538 return dd->verbs_dev.n_send_schedule;
1539}
1540
Mike Marciniszyn77241052015-07-30 15:17:43 -04001541#define def_access_sw_cpu(cntr) \
1542static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
1543 void *context, int vl, int mode, u64 data) \
1544{ \
1545 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
1546 return read_write_cpu(ppd->dd, &ppd->ibport_data.z_ ##cntr, \
1547 ppd->ibport_data.cntr, vl, \
1548 mode, data); \
1549}
1550
1551def_access_sw_cpu(rc_acks);
1552def_access_sw_cpu(rc_qacks);
1553def_access_sw_cpu(rc_delayed_comp);
1554
1555#define def_access_ibp_counter(cntr) \
1556static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
1557 void *context, int vl, int mode, u64 data) \
1558{ \
1559 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
1560 \
1561 if (vl != CNTR_INVALID_VL) \
1562 return 0; \
1563 \
1564 return read_write_sw(ppd->dd, &ppd->ibport_data.n_ ##cntr, \
1565 mode, data); \
1566}
1567
1568def_access_ibp_counter(loop_pkts);
1569def_access_ibp_counter(rc_resends);
1570def_access_ibp_counter(rnr_naks);
1571def_access_ibp_counter(other_naks);
1572def_access_ibp_counter(rc_timeouts);
1573def_access_ibp_counter(pkt_drops);
1574def_access_ibp_counter(dmawait);
1575def_access_ibp_counter(rc_seqnak);
1576def_access_ibp_counter(rc_dupreq);
1577def_access_ibp_counter(rdma_seq);
1578def_access_ibp_counter(unaligned);
1579def_access_ibp_counter(seq_naks);
1580
1581static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
1582[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
1583[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
1584 CNTR_NORMAL),
1585[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
1586 CNTR_NORMAL),
1587[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
1588 RCV_TID_FLOW_GEN_MISMATCH_CNT,
1589 CNTR_NORMAL),
1590[C_RX_CTX_RHQS] = RXE32_DEV_CNTR_ELEM(RxCtxRHQS, RCV_CONTEXT_RHQ_STALL,
1591 CNTR_NORMAL),
1592[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
1593 CNTR_NORMAL),
1594[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
1595 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
1596[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
1597 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
1598[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
1599 CNTR_NORMAL),
1600[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
1601 CNTR_NORMAL),
1602[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
1603 CNTR_NORMAL),
1604[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
1605 CNTR_NORMAL),
1606[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
1607 CNTR_NORMAL),
1608[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
1609 CNTR_NORMAL),
1610[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
1611 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
1612[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
1613 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
1614[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
1615 CNTR_SYNTH),
1616[C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
1617[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
1618 CNTR_SYNTH),
1619[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
1620 CNTR_SYNTH),
1621[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
1622 CNTR_SYNTH),
1623[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
1624 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
1625[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
1626 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
1627 CNTR_SYNTH),
1628[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
1629 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
1630[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
1631 CNTR_SYNTH),
1632[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
1633 CNTR_SYNTH),
1634[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
1635 CNTR_SYNTH),
1636[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
1637 CNTR_SYNTH),
1638[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
1639 CNTR_SYNTH),
1640[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
1641 CNTR_SYNTH),
1642[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
1643 CNTR_SYNTH),
1644[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
1645 CNTR_SYNTH | CNTR_VL),
1646[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
1647 CNTR_SYNTH | CNTR_VL),
1648[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
1649[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
1650 CNTR_SYNTH | CNTR_VL),
1651[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
1652[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
1653 CNTR_SYNTH | CNTR_VL),
1654[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
1655 CNTR_SYNTH),
1656[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
1657 CNTR_SYNTH | CNTR_VL),
1658[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
1659 CNTR_SYNTH),
1660[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
1661 CNTR_SYNTH | CNTR_VL),
1662[C_DC_TOTAL_CRC] =
1663 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
1664 CNTR_SYNTH),
1665[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
1666 CNTR_SYNTH),
1667[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
1668 CNTR_SYNTH),
1669[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
1670 CNTR_SYNTH),
1671[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
1672 CNTR_SYNTH),
1673[C_DC_CRC_MULT_LN] =
1674 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
1675 CNTR_SYNTH),
1676[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
1677 CNTR_SYNTH),
1678[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
1679 CNTR_SYNTH),
1680[C_DC_SEQ_CRC_CNT] =
1681 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
1682 CNTR_SYNTH),
1683[C_DC_ESC0_ONLY_CNT] =
1684 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
1685 CNTR_SYNTH),
1686[C_DC_ESC0_PLUS1_CNT] =
1687 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
1688 CNTR_SYNTH),
1689[C_DC_ESC0_PLUS2_CNT] =
1690 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
1691 CNTR_SYNTH),
1692[C_DC_REINIT_FROM_PEER_CNT] =
1693 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
1694 CNTR_SYNTH),
1695[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
1696 CNTR_SYNTH),
1697[C_DC_MISC_FLG_CNT] =
1698 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
1699 CNTR_SYNTH),
1700[C_DC_PRF_GOOD_LTP_CNT] =
1701 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
1702[C_DC_PRF_ACCEPTED_LTP_CNT] =
1703 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
1704 CNTR_SYNTH),
1705[C_DC_PRF_RX_FLIT_CNT] =
1706 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
1707[C_DC_PRF_TX_FLIT_CNT] =
1708 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
1709[C_DC_PRF_CLK_CNTR] =
1710 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
1711[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
1712 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
1713[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
1714 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
1715 CNTR_SYNTH),
1716[C_DC_PG_STS_TX_SBE_CNT] =
1717 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
1718[C_DC_PG_STS_TX_MBE_CNT] =
1719 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
1720 CNTR_SYNTH),
1721[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
1722 access_sw_cpu_intr),
1723[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
1724 access_sw_cpu_rcv_limit),
1725[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
1726 access_sw_vtx_wait),
1727[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
1728 access_sw_pio_wait),
1729[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
1730 access_sw_kmem_wait),
Dean Luickb4219222015-10-26 10:28:35 -04001731[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
1732 access_sw_send_schedule),
Mike Marciniszyn77241052015-07-30 15:17:43 -04001733};
1734
1735static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
1736[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
1737 CNTR_NORMAL),
1738[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
1739 CNTR_NORMAL),
1740[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
1741 CNTR_NORMAL),
1742[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
1743 CNTR_NORMAL),
1744[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
1745 CNTR_NORMAL),
1746[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
1747 CNTR_NORMAL),
1748[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
1749 CNTR_NORMAL),
1750[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
1751[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
1752[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
1753[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
1754 CNTR_SYNTH | CNTR_VL),
1755[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
1756 CNTR_SYNTH | CNTR_VL),
1757[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
1758 CNTR_SYNTH | CNTR_VL),
1759[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
1760[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
1761[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1762 access_sw_link_dn_cnt),
1763[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1764 access_sw_link_up_cnt),
1765[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
1766 access_sw_xmit_discards),
1767[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
1768 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
1769 access_sw_xmit_discards),
1770[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
1771 access_xmit_constraint_errs),
1772[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
1773 access_rcv_constraint_errs),
1774[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
1775[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
1776[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
1777[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
1778[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
1779[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
1780[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
1781[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
1782[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
1783[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
1784[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
1785[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
1786[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
1787 access_sw_cpu_rc_acks),
1788[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
1789 access_sw_cpu_rc_qacks),
1790[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
1791 access_sw_cpu_rc_delayed_comp),
1792[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
1793[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
1794[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
1795[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
1796[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
1797[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
1798[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
1799[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
1800[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
1801[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
1802[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
1803[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
1804[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
1805[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
1806[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
1807[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
1808[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
1809[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
1810[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
1811[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
1812[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
1813[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
1814[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
1815[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
1816[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
1817[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
1818[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
1819[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
1820[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
1821[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
1822[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
1823[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
1824[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
1825[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
1826[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
1827[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
1828[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
1829[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
1830[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
1831[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
1832[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
1833[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
1834[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
1835[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
1836[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
1837[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
1838[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
1839[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
1840[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
1841[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
1842[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
1843[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
1844[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
1845[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
1846[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
1847[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
1848[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
1849[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
1850[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
1851[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
1852[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
1853[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
1854[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
1855[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
1856[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
1857[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
1858[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
1859[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
1860[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
1861[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
1862[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
1863[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
1864[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
1865[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
1866[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
1867[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
1868[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
1869[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
1870[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
1871[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
1872};
1873
1874/* ======================================================================== */
1875
1876/* return true if this is chip revision revision a0 */
1877int is_a0(struct hfi1_devdata *dd)
1878{
1879 return ((dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
1880 & CCE_REVISION_CHIP_REV_MINOR_MASK) == 0;
1881}
1882
1883/* return true if this is chip revision revision a */
1884int is_ax(struct hfi1_devdata *dd)
1885{
1886 u8 chip_rev_minor =
1887 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
1888 & CCE_REVISION_CHIP_REV_MINOR_MASK;
1889 return (chip_rev_minor & 0xf0) == 0;
1890}
1891
1892/* return true if this is chip revision revision b */
1893int is_bx(struct hfi1_devdata *dd)
1894{
1895 u8 chip_rev_minor =
1896 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
1897 & CCE_REVISION_CHIP_REV_MINOR_MASK;
1898 return !!(chip_rev_minor & 0x10);
1899}
1900
1901/*
1902 * Append string s to buffer buf. Arguments curp and len are the current
1903 * position and remaining length, respectively.
1904 *
1905 * return 0 on success, 1 on out of room
1906 */
1907static int append_str(char *buf, char **curp, int *lenp, const char *s)
1908{
1909 char *p = *curp;
1910 int len = *lenp;
1911 int result = 0; /* success */
1912 char c;
1913
1914 /* add a comma, if first in the buffer */
1915 if (p != buf) {
1916 if (len == 0) {
1917 result = 1; /* out of room */
1918 goto done;
1919 }
1920 *p++ = ',';
1921 len--;
1922 }
1923
1924 /* copy the string */
1925 while ((c = *s++) != 0) {
1926 if (len == 0) {
1927 result = 1; /* out of room */
1928 goto done;
1929 }
1930 *p++ = c;
1931 len--;
1932 }
1933
1934done:
1935 /* write return values */
1936 *curp = p;
1937 *lenp = len;
1938
1939 return result;
1940}
1941
1942/*
1943 * Using the given flag table, print a comma separated string into
1944 * the buffer. End in '*' if the buffer is too short.
1945 */
1946static char *flag_string(char *buf, int buf_len, u64 flags,
1947 struct flag_table *table, int table_size)
1948{
1949 char extra[32];
1950 char *p = buf;
1951 int len = buf_len;
1952 int no_room = 0;
1953 int i;
1954
1955 /* make sure there is at least 2 so we can form "*" */
1956 if (len < 2)
1957 return "";
1958
1959 len--; /* leave room for a nul */
1960 for (i = 0; i < table_size; i++) {
1961 if (flags & table[i].flag) {
1962 no_room = append_str(buf, &p, &len, table[i].str);
1963 if (no_room)
1964 break;
1965 flags &= ~table[i].flag;
1966 }
1967 }
1968
1969 /* any undocumented bits left? */
1970 if (!no_room && flags) {
1971 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
1972 no_room = append_str(buf, &p, &len, extra);
1973 }
1974
1975 /* add * if ran out of room */
1976 if (no_room) {
1977 /* may need to back up to add space for a '*' */
1978 if (len == 0)
1979 --p;
1980 *p++ = '*';
1981 }
1982
1983 /* add final nul - space already allocated above */
1984 *p = 0;
1985 return buf;
1986}
1987
1988/* first 8 CCE error interrupt source names */
1989static const char * const cce_misc_names[] = {
1990 "CceErrInt", /* 0 */
1991 "RxeErrInt", /* 1 */
1992 "MiscErrInt", /* 2 */
1993 "Reserved3", /* 3 */
1994 "PioErrInt", /* 4 */
1995 "SDmaErrInt", /* 5 */
1996 "EgressErrInt", /* 6 */
1997 "TxeErrInt" /* 7 */
1998};
1999
2000/*
2001 * Return the miscellaneous error interrupt name.
2002 */
2003static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
2004{
2005 if (source < ARRAY_SIZE(cce_misc_names))
2006 strncpy(buf, cce_misc_names[source], bsize);
2007 else
2008 snprintf(buf,
2009 bsize,
2010 "Reserved%u",
2011 source + IS_GENERAL_ERR_START);
2012
2013 return buf;
2014}
2015
2016/*
2017 * Return the SDMA engine error interrupt name.
2018 */
2019static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
2020{
2021 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
2022 return buf;
2023}
2024
2025/*
2026 * Return the send context error interrupt name.
2027 */
2028static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
2029{
2030 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
2031 return buf;
2032}
2033
2034static const char * const various_names[] = {
2035 "PbcInt",
2036 "GpioAssertInt",
2037 "Qsfp1Int",
2038 "Qsfp2Int",
2039 "TCritInt"
2040};
2041
2042/*
2043 * Return the various interrupt name.
2044 */
2045static char *is_various_name(char *buf, size_t bsize, unsigned int source)
2046{
2047 if (source < ARRAY_SIZE(various_names))
2048 strncpy(buf, various_names[source], bsize);
2049 else
2050 snprintf(buf, bsize, "Reserved%u", source+IS_VARIOUS_START);
2051 return buf;
2052}
2053
2054/*
2055 * Return the DC interrupt name.
2056 */
2057static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
2058{
2059 static const char * const dc_int_names[] = {
2060 "common",
2061 "lcb",
2062 "8051",
2063 "lbm" /* local block merge */
2064 };
2065
2066 if (source < ARRAY_SIZE(dc_int_names))
2067 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
2068 else
2069 snprintf(buf, bsize, "DCInt%u", source);
2070 return buf;
2071}
2072
2073static const char * const sdma_int_names[] = {
2074 "SDmaInt",
2075 "SdmaIdleInt",
2076 "SdmaProgressInt",
2077};
2078
2079/*
2080 * Return the SDMA engine interrupt name.
2081 */
2082static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
2083{
2084 /* what interrupt */
2085 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
2086 /* which engine */
2087 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
2088
2089 if (likely(what < 3))
2090 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
2091 else
2092 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
2093 return buf;
2094}
2095
2096/*
2097 * Return the receive available interrupt name.
2098 */
2099static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
2100{
2101 snprintf(buf, bsize, "RcvAvailInt%u", source);
2102 return buf;
2103}
2104
2105/*
2106 * Return the receive urgent interrupt name.
2107 */
2108static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
2109{
2110 snprintf(buf, bsize, "RcvUrgentInt%u", source);
2111 return buf;
2112}
2113
2114/*
2115 * Return the send credit interrupt name.
2116 */
2117static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
2118{
2119 snprintf(buf, bsize, "SendCreditInt%u", source);
2120 return buf;
2121}
2122
2123/*
2124 * Return the reserved interrupt name.
2125 */
2126static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
2127{
2128 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
2129 return buf;
2130}
2131
2132static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
2133{
2134 return flag_string(buf, buf_len, flags,
2135 cce_err_status_flags, ARRAY_SIZE(cce_err_status_flags));
2136}
2137
2138static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
2139{
2140 return flag_string(buf, buf_len, flags,
2141 rxe_err_status_flags, ARRAY_SIZE(rxe_err_status_flags));
2142}
2143
2144static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
2145{
2146 return flag_string(buf, buf_len, flags, misc_err_status_flags,
2147 ARRAY_SIZE(misc_err_status_flags));
2148}
2149
2150static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
2151{
2152 return flag_string(buf, buf_len, flags,
2153 pio_err_status_flags, ARRAY_SIZE(pio_err_status_flags));
2154}
2155
2156static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
2157{
2158 return flag_string(buf, buf_len, flags,
2159 sdma_err_status_flags,
2160 ARRAY_SIZE(sdma_err_status_flags));
2161}
2162
2163static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
2164{
2165 return flag_string(buf, buf_len, flags,
2166 egress_err_status_flags, ARRAY_SIZE(egress_err_status_flags));
2167}
2168
2169static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
2170{
2171 return flag_string(buf, buf_len, flags,
2172 egress_err_info_flags, ARRAY_SIZE(egress_err_info_flags));
2173}
2174
2175static char *send_err_status_string(char *buf, int buf_len, u64 flags)
2176{
2177 return flag_string(buf, buf_len, flags,
2178 send_err_status_flags,
2179 ARRAY_SIZE(send_err_status_flags));
2180}
2181
2182static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2183{
2184 char buf[96];
2185
2186 /*
2187 * For most these errors, there is nothing that can be done except
2188 * report or record it.
2189 */
2190 dd_dev_info(dd, "CCE Error: %s\n",
2191 cce_err_status_string(buf, sizeof(buf), reg));
2192
2193 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK)
2194 && is_a0(dd)
2195 && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
2196 /* this error requires a manual drop into SPC freeze mode */
2197 /* then a fix up */
2198 start_freeze_handling(dd->pport, FREEZE_SELF);
2199 }
2200}
2201
2202/*
2203 * Check counters for receive errors that do not have an interrupt
2204 * associated with them.
2205 */
2206#define RCVERR_CHECK_TIME 10
2207static void update_rcverr_timer(unsigned long opaque)
2208{
2209 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
2210 struct hfi1_pportdata *ppd = dd->pport;
2211 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
2212
2213 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
2214 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
2215 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
2216 set_link_down_reason(ppd,
2217 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
2218 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
2219 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
2220 }
2221 dd->rcv_ovfl_cnt = (u32) cur_ovfl_cnt;
2222
2223 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
2224}
2225
2226static int init_rcverr(struct hfi1_devdata *dd)
2227{
Muhammad Falak R Wani24523a92015-10-25 16:13:23 +05302228 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04002229 /* Assume the hardware counter has been reset */
2230 dd->rcv_ovfl_cnt = 0;
2231 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
2232}
2233
2234static void free_rcverr(struct hfi1_devdata *dd)
2235{
2236 if (dd->rcverr_timer.data)
2237 del_timer_sync(&dd->rcverr_timer);
2238 dd->rcverr_timer.data = 0;
2239}
2240
2241static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2242{
2243 char buf[96];
2244
2245 dd_dev_info(dd, "Receive Error: %s\n",
2246 rxe_err_status_string(buf, sizeof(buf), reg));
2247
2248 if (reg & ALL_RXE_FREEZE_ERR) {
2249 int flags = 0;
2250
2251 /*
2252 * Freeze mode recovery is disabled for the errors
2253 * in RXE_FREEZE_ABORT_MASK
2254 */
2255 if (is_a0(dd) && (reg & RXE_FREEZE_ABORT_MASK))
2256 flags = FREEZE_ABORT;
2257
2258 start_freeze_handling(dd->pport, flags);
2259 }
2260}
2261
2262static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2263{
2264 char buf[96];
2265
2266 dd_dev_info(dd, "Misc Error: %s",
2267 misc_err_status_string(buf, sizeof(buf), reg));
2268}
2269
2270static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2271{
2272 char buf[96];
2273
2274 dd_dev_info(dd, "PIO Error: %s\n",
2275 pio_err_status_string(buf, sizeof(buf), reg));
2276
2277 if (reg & ALL_PIO_FREEZE_ERR)
2278 start_freeze_handling(dd->pport, 0);
2279}
2280
2281static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2282{
2283 char buf[96];
2284
2285 dd_dev_info(dd, "SDMA Error: %s\n",
2286 sdma_err_status_string(buf, sizeof(buf), reg));
2287
2288 if (reg & ALL_SDMA_FREEZE_ERR)
2289 start_freeze_handling(dd->pport, 0);
2290}
2291
2292static void count_port_inactive(struct hfi1_devdata *dd)
2293{
2294 struct hfi1_pportdata *ppd = dd->pport;
2295
2296 if (ppd->port_xmit_discards < ~(u64)0)
2297 ppd->port_xmit_discards++;
2298}
2299
2300/*
2301 * We have had a "disallowed packet" error during egress. Determine the
2302 * integrity check which failed, and update relevant error counter, etc.
2303 *
2304 * Note that the SEND_EGRESS_ERR_INFO register has only a single
2305 * bit of state per integrity check, and so we can miss the reason for an
2306 * egress error if more than one packet fails the same integrity check
2307 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
2308 */
2309static void handle_send_egress_err_info(struct hfi1_devdata *dd)
2310{
2311 struct hfi1_pportdata *ppd = dd->pport;
2312 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
2313 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
2314 char buf[96];
2315
2316 /* clear down all observed info as quickly as possible after read */
2317 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
2318
2319 dd_dev_info(dd,
2320 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
2321 info, egress_err_info_string(buf, sizeof(buf), info), src);
2322
2323 /* Eventually add other counters for each bit */
2324
2325 if (info & SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK) {
2326 if (ppd->port_xmit_discards < ~(u64)0)
2327 ppd->port_xmit_discards++;
2328 }
2329}
2330
2331/*
2332 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
2333 * register. Does it represent a 'port inactive' error?
2334 */
2335static inline int port_inactive_err(u64 posn)
2336{
2337 return (posn >= SEES(TX_LINKDOWN) &&
2338 posn <= SEES(TX_INCORRECT_LINK_STATE));
2339}
2340
2341/*
2342 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
2343 * register. Does it represent a 'disallowed packet' error?
2344 */
2345static inline int disallowed_pkt_err(u64 posn)
2346{
2347 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
2348 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
2349}
2350
2351static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2352{
2353 u64 reg_copy = reg, handled = 0;
2354 char buf[96];
2355
2356 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
2357 start_freeze_handling(dd->pport, 0);
2358 if (is_a0(dd) && (reg &
2359 SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK)
2360 && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
2361 start_freeze_handling(dd->pport, 0);
2362
2363 while (reg_copy) {
2364 int posn = fls64(reg_copy);
2365 /*
2366 * fls64() returns a 1-based offset, but we generally
2367 * want 0-based offsets.
2368 */
2369 int shift = posn - 1;
2370
2371 if (port_inactive_err(shift)) {
2372 count_port_inactive(dd);
2373 handled |= (1ULL << shift);
2374 } else if (disallowed_pkt_err(shift)) {
2375 handle_send_egress_err_info(dd);
2376 handled |= (1ULL << shift);
2377 }
2378 clear_bit(shift, (unsigned long *)&reg_copy);
2379 }
2380
2381 reg &= ~handled;
2382
2383 if (reg)
2384 dd_dev_info(dd, "Egress Error: %s\n",
2385 egress_err_status_string(buf, sizeof(buf), reg));
2386}
2387
2388static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
2389{
2390 char buf[96];
2391
2392 dd_dev_info(dd, "Send Error: %s\n",
2393 send_err_status_string(buf, sizeof(buf), reg));
2394
2395}
2396
2397/*
2398 * The maximum number of times the error clear down will loop before
2399 * blocking a repeating error. This value is arbitrary.
2400 */
2401#define MAX_CLEAR_COUNT 20
2402
2403/*
2404 * Clear and handle an error register. All error interrupts are funneled
2405 * through here to have a central location to correctly handle single-
2406 * or multi-shot errors.
2407 *
2408 * For non per-context registers, call this routine with a context value
2409 * of 0 so the per-context offset is zero.
2410 *
2411 * If the handler loops too many times, assume that something is wrong
2412 * and can't be fixed, so mask the error bits.
2413 */
2414static void interrupt_clear_down(struct hfi1_devdata *dd,
2415 u32 context,
2416 const struct err_reg_info *eri)
2417{
2418 u64 reg;
2419 u32 count;
2420
2421 /* read in a loop until no more errors are seen */
2422 count = 0;
2423 while (1) {
2424 reg = read_kctxt_csr(dd, context, eri->status);
2425 if (reg == 0)
2426 break;
2427 write_kctxt_csr(dd, context, eri->clear, reg);
2428 if (likely(eri->handler))
2429 eri->handler(dd, context, reg);
2430 count++;
2431 if (count > MAX_CLEAR_COUNT) {
2432 u64 mask;
2433
2434 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
2435 eri->desc, reg);
2436 /*
2437 * Read-modify-write so any other masked bits
2438 * remain masked.
2439 */
2440 mask = read_kctxt_csr(dd, context, eri->mask);
2441 mask &= ~reg;
2442 write_kctxt_csr(dd, context, eri->mask, mask);
2443 break;
2444 }
2445 }
2446}
2447
2448/*
2449 * CCE block "misc" interrupt. Source is < 16.
2450 */
2451static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
2452{
2453 const struct err_reg_info *eri = &misc_errs[source];
2454
2455 if (eri->handler) {
2456 interrupt_clear_down(dd, 0, eri);
2457 } else {
2458 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
2459 source);
2460 }
2461}
2462
2463static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
2464{
2465 return flag_string(buf, buf_len, flags,
2466 sc_err_status_flags, ARRAY_SIZE(sc_err_status_flags));
2467}
2468
2469/*
2470 * Send context error interrupt. Source (hw_context) is < 160.
2471 *
2472 * All send context errors cause the send context to halt. The normal
2473 * clear-down mechanism cannot be used because we cannot clear the
2474 * error bits until several other long-running items are done first.
2475 * This is OK because with the context halted, nothing else is going
2476 * to happen on it anyway.
2477 */
2478static void is_sendctxt_err_int(struct hfi1_devdata *dd,
2479 unsigned int hw_context)
2480{
2481 struct send_context_info *sci;
2482 struct send_context *sc;
2483 char flags[96];
2484 u64 status;
2485 u32 sw_index;
2486
2487 sw_index = dd->hw_to_sw[hw_context];
2488 if (sw_index >= dd->num_send_contexts) {
2489 dd_dev_err(dd,
2490 "out of range sw index %u for send context %u\n",
2491 sw_index, hw_context);
2492 return;
2493 }
2494 sci = &dd->send_contexts[sw_index];
2495 sc = sci->sc;
2496 if (!sc) {
2497 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
2498 sw_index, hw_context);
2499 return;
2500 }
2501
2502 /* tell the software that a halt has begun */
2503 sc_stop(sc, SCF_HALTED);
2504
2505 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
2506
2507 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
2508 send_context_err_status_string(flags, sizeof(flags), status));
2509
2510 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
2511 handle_send_egress_err_info(dd);
2512
2513 /*
2514 * Automatically restart halted kernel contexts out of interrupt
2515 * context. User contexts must ask the driver to restart the context.
2516 */
2517 if (sc->type != SC_USER)
2518 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
2519}
2520
2521static void handle_sdma_eng_err(struct hfi1_devdata *dd,
2522 unsigned int source, u64 status)
2523{
2524 struct sdma_engine *sde;
2525
2526 sde = &dd->per_sdma[source];
2527#ifdef CONFIG_SDMA_VERBOSITY
2528 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
2529 slashstrip(__FILE__), __LINE__, __func__);
2530 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
2531 sde->this_idx, source, (unsigned long long)status);
2532#endif
2533 sdma_engine_error(sde, status);
2534}
2535
2536/*
2537 * CCE block SDMA error interrupt. Source is < 16.
2538 */
2539static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
2540{
2541#ifdef CONFIG_SDMA_VERBOSITY
2542 struct sdma_engine *sde = &dd->per_sdma[source];
2543
2544 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
2545 slashstrip(__FILE__), __LINE__, __func__);
2546 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
2547 source);
2548 sdma_dumpstate(sde);
2549#endif
2550 interrupt_clear_down(dd, source, &sdma_eng_err);
2551}
2552
2553/*
2554 * CCE block "various" interrupt. Source is < 8.
2555 */
2556static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
2557{
2558 const struct err_reg_info *eri = &various_err[source];
2559
2560 /*
2561 * TCritInt cannot go through interrupt_clear_down()
2562 * because it is not a second tier interrupt. The handler
2563 * should be called directly.
2564 */
2565 if (source == TCRIT_INT_SOURCE)
2566 handle_temp_err(dd);
2567 else if (eri->handler)
2568 interrupt_clear_down(dd, 0, eri);
2569 else
2570 dd_dev_info(dd,
2571 "%s: Unimplemented/reserved interrupt %d\n",
2572 __func__, source);
2573}
2574
2575static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
2576{
2577 /* source is always zero */
2578 struct hfi1_pportdata *ppd = dd->pport;
2579 unsigned long flags;
2580 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
2581
2582 if (reg & QSFP_HFI0_MODPRST_N) {
2583
2584 dd_dev_info(dd, "%s: ModPresent triggered QSFP interrupt\n",
2585 __func__);
2586
2587 if (!qsfp_mod_present(ppd)) {
2588 ppd->driver_link_ready = 0;
2589 /*
2590 * Cable removed, reset all our information about the
2591 * cache and cable capabilities
2592 */
2593
2594 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2595 /*
2596 * We don't set cache_refresh_required here as we expect
2597 * an interrupt when a cable is inserted
2598 */
2599 ppd->qsfp_info.cache_valid = 0;
2600 ppd->qsfp_info.qsfp_interrupt_functional = 0;
2601 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
2602 flags);
2603 write_csr(dd,
2604 dd->hfi1_id ?
2605 ASIC_QSFP2_INVERT :
2606 ASIC_QSFP1_INVERT,
2607 qsfp_int_mgmt);
2608 if (ppd->host_link_state == HLS_DN_POLL) {
2609 /*
2610 * The link is still in POLL. This means
2611 * that the normal link down processing
2612 * will not happen. We have to do it here
2613 * before turning the DC off.
2614 */
2615 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
2616 }
2617 } else {
2618 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2619 ppd->qsfp_info.cache_valid = 0;
2620 ppd->qsfp_info.cache_refresh_required = 1;
2621 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
2622 flags);
2623
2624 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
2625 write_csr(dd,
2626 dd->hfi1_id ?
2627 ASIC_QSFP2_INVERT :
2628 ASIC_QSFP1_INVERT,
2629 qsfp_int_mgmt);
2630 }
2631 }
2632
2633 if (reg & QSFP_HFI0_INT_N) {
2634
2635 dd_dev_info(dd, "%s: IntN triggered QSFP interrupt\n",
2636 __func__);
2637 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
2638 ppd->qsfp_info.check_interrupt_flags = 1;
2639 ppd->qsfp_info.qsfp_interrupt_functional = 1;
2640 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
2641 }
2642
2643 /* Schedule the QSFP work only if there is a cable attached. */
2644 if (qsfp_mod_present(ppd))
2645 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
2646}
2647
2648static int request_host_lcb_access(struct hfi1_devdata *dd)
2649{
2650 int ret;
2651
2652 ret = do_8051_command(dd, HCMD_MISC,
2653 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
2654 NULL);
2655 if (ret != HCMD_SUCCESS) {
2656 dd_dev_err(dd, "%s: command failed with error %d\n",
2657 __func__, ret);
2658 }
2659 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
2660}
2661
2662static int request_8051_lcb_access(struct hfi1_devdata *dd)
2663{
2664 int ret;
2665
2666 ret = do_8051_command(dd, HCMD_MISC,
2667 (u64)HCMD_MISC_GRANT_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
2668 NULL);
2669 if (ret != HCMD_SUCCESS) {
2670 dd_dev_err(dd, "%s: command failed with error %d\n",
2671 __func__, ret);
2672 }
2673 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
2674}
2675
2676/*
2677 * Set the LCB selector - allow host access. The DCC selector always
2678 * points to the host.
2679 */
2680static inline void set_host_lcb_access(struct hfi1_devdata *dd)
2681{
2682 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
2683 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK
2684 | DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
2685}
2686
2687/*
2688 * Clear the LCB selector - allow 8051 access. The DCC selector always
2689 * points to the host.
2690 */
2691static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
2692{
2693 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
2694 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
2695}
2696
2697/*
2698 * Acquire LCB access from the 8051. If the host already has access,
2699 * just increment a counter. Otherwise, inform the 8051 that the
2700 * host is taking access.
2701 *
2702 * Returns:
2703 * 0 on success
2704 * -EBUSY if the 8051 has control and cannot be disturbed
2705 * -errno if unable to acquire access from the 8051
2706 */
2707int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
2708{
2709 struct hfi1_pportdata *ppd = dd->pport;
2710 int ret = 0;
2711
2712 /*
2713 * Use the host link state lock so the operation of this routine
2714 * { link state check, selector change, count increment } can occur
2715 * as a unit against a link state change. Otherwise there is a
2716 * race between the state change and the count increment.
2717 */
2718 if (sleep_ok) {
2719 mutex_lock(&ppd->hls_lock);
2720 } else {
Dan Carpenter951842b2015-09-16 09:22:51 +03002721 while (!mutex_trylock(&ppd->hls_lock))
Mike Marciniszyn77241052015-07-30 15:17:43 -04002722 udelay(1);
2723 }
2724
2725 /* this access is valid only when the link is up */
2726 if ((ppd->host_link_state & HLS_UP) == 0) {
2727 dd_dev_info(dd, "%s: link state %s not up\n",
2728 __func__, link_state_name(ppd->host_link_state));
2729 ret = -EBUSY;
2730 goto done;
2731 }
2732
2733 if (dd->lcb_access_count == 0) {
2734 ret = request_host_lcb_access(dd);
2735 if (ret) {
2736 dd_dev_err(dd,
2737 "%s: unable to acquire LCB access, err %d\n",
2738 __func__, ret);
2739 goto done;
2740 }
2741 set_host_lcb_access(dd);
2742 }
2743 dd->lcb_access_count++;
2744done:
2745 mutex_unlock(&ppd->hls_lock);
2746 return ret;
2747}
2748
2749/*
2750 * Release LCB access by decrementing the use count. If the count is moving
2751 * from 1 to 0, inform 8051 that it has control back.
2752 *
2753 * Returns:
2754 * 0 on success
2755 * -errno if unable to release access to the 8051
2756 */
2757int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
2758{
2759 int ret = 0;
2760
2761 /*
2762 * Use the host link state lock because the acquire needed it.
2763 * Here, we only need to keep { selector change, count decrement }
2764 * as a unit.
2765 */
2766 if (sleep_ok) {
2767 mutex_lock(&dd->pport->hls_lock);
2768 } else {
Dan Carpenter951842b2015-09-16 09:22:51 +03002769 while (!mutex_trylock(&dd->pport->hls_lock))
Mike Marciniszyn77241052015-07-30 15:17:43 -04002770 udelay(1);
2771 }
2772
2773 if (dd->lcb_access_count == 0) {
2774 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
2775 __func__);
2776 goto done;
2777 }
2778
2779 if (dd->lcb_access_count == 1) {
2780 set_8051_lcb_access(dd);
2781 ret = request_8051_lcb_access(dd);
2782 if (ret) {
2783 dd_dev_err(dd,
2784 "%s: unable to release LCB access, err %d\n",
2785 __func__, ret);
2786 /* restore host access if the grant didn't work */
2787 set_host_lcb_access(dd);
2788 goto done;
2789 }
2790 }
2791 dd->lcb_access_count--;
2792done:
2793 mutex_unlock(&dd->pport->hls_lock);
2794 return ret;
2795}
2796
2797/*
2798 * Initialize LCB access variables and state. Called during driver load,
2799 * after most of the initialization is finished.
2800 *
2801 * The DC default is LCB access on for the host. The driver defaults to
2802 * leaving access to the 8051. Assign access now - this constrains the call
2803 * to this routine to be after all LCB set-up is done. In particular, after
2804 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
2805 */
2806static void init_lcb_access(struct hfi1_devdata *dd)
2807{
2808 dd->lcb_access_count = 0;
2809}
2810
2811/*
2812 * Write a response back to a 8051 request.
2813 */
2814static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
2815{
2816 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
2817 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK
2818 | (u64)return_code << DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT
2819 | (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
2820}
2821
2822/*
2823 * Handle requests from the 8051.
2824 */
2825static void handle_8051_request(struct hfi1_devdata *dd)
2826{
2827 u64 reg;
2828 u16 data;
2829 u8 type;
2830
2831 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
2832 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
2833 return; /* no request */
2834
2835 /* zero out COMPLETED so the response is seen */
2836 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
2837
2838 /* extract request details */
2839 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
2840 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
2841 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
2842 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
2843
2844 switch (type) {
2845 case HREQ_LOAD_CONFIG:
2846 case HREQ_SAVE_CONFIG:
2847 case HREQ_READ_CONFIG:
2848 case HREQ_SET_TX_EQ_ABS:
2849 case HREQ_SET_TX_EQ_REL:
2850 case HREQ_ENABLE:
2851 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
2852 type);
2853 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
2854 break;
2855
2856 case HREQ_CONFIG_DONE:
2857 hreq_response(dd, HREQ_SUCCESS, 0);
2858 break;
2859
2860 case HREQ_INTERFACE_TEST:
2861 hreq_response(dd, HREQ_SUCCESS, data);
2862 break;
2863
2864 default:
2865 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
2866 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
2867 break;
2868 }
2869}
2870
2871static void write_global_credit(struct hfi1_devdata *dd,
2872 u8 vau, u16 total, u16 shared)
2873{
2874 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
2875 ((u64)total
2876 << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
2877 | ((u64)shared
2878 << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
2879 | ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
2880}
2881
2882/*
2883 * Set up initial VL15 credits of the remote. Assumes the rest of
2884 * the CM credit registers are zero from a previous global or credit reset .
2885 */
2886void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
2887{
2888 /* leave shared count at zero for both global and VL15 */
2889 write_global_credit(dd, vau, vl15buf, 0);
2890
2891 /* We may need some credits for another VL when sending packets
2892 * with the snoop interface. Dividing it down the middle for VL15
2893 * and VL0 should suffice.
2894 */
2895 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
2896 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
2897 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
2898 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
2899 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
2900 } else {
2901 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
2902 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
2903 }
2904}
2905
2906/*
2907 * Zero all credit details from the previous connection and
2908 * reset the CM manager's internal counters.
2909 */
2910void reset_link_credits(struct hfi1_devdata *dd)
2911{
2912 int i;
2913
2914 /* remove all previous VL credit limits */
2915 for (i = 0; i < TXE_NUM_DATA_VL; i++)
2916 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
2917 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
2918 write_global_credit(dd, 0, 0, 0);
2919 /* reset the CM block */
2920 pio_send_control(dd, PSC_CM_RESET);
2921}
2922
2923/* convert a vCU to a CU */
2924static u32 vcu_to_cu(u8 vcu)
2925{
2926 return 1 << vcu;
2927}
2928
2929/* convert a CU to a vCU */
2930static u8 cu_to_vcu(u32 cu)
2931{
2932 return ilog2(cu);
2933}
2934
2935/* convert a vAU to an AU */
2936static u32 vau_to_au(u8 vau)
2937{
2938 return 8 * (1 << vau);
2939}
2940
2941static void set_linkup_defaults(struct hfi1_pportdata *ppd)
2942{
2943 ppd->sm_trap_qp = 0x0;
2944 ppd->sa_qp = 0x1;
2945}
2946
2947/*
2948 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
2949 */
2950static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
2951{
2952 u64 reg;
2953
2954 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
2955 write_csr(dd, DC_LCB_CFG_RUN, 0);
2956 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
2957 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
2958 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
2959 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
2960 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
2961 reg = read_csr(dd, DCC_CFG_RESET);
2962 write_csr(dd, DCC_CFG_RESET,
2963 reg
2964 | (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT)
2965 | (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
2966 (void) read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
2967 if (!abort) {
2968 udelay(1); /* must hold for the longer of 16cclks or 20ns */
2969 write_csr(dd, DCC_CFG_RESET, reg);
2970 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
2971 }
2972}
2973
2974/*
2975 * This routine should be called after the link has been transitioned to
2976 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
2977 * reset).
2978 *
2979 * The expectation is that the caller of this routine would have taken
2980 * care of properly transitioning the link into the correct state.
2981 */
2982static void dc_shutdown(struct hfi1_devdata *dd)
2983{
2984 unsigned long flags;
2985
2986 spin_lock_irqsave(&dd->dc8051_lock, flags);
2987 if (dd->dc_shutdown) {
2988 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
2989 return;
2990 }
2991 dd->dc_shutdown = 1;
2992 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
2993 /* Shutdown the LCB */
2994 lcb_shutdown(dd, 1);
2995 /* Going to OFFLINE would have causes the 8051 to put the
2996 * SerDes into reset already. Just need to shut down the 8051,
2997 * itself. */
2998 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
2999}
3000
3001/* Calling this after the DC has been brought out of reset should not
3002 * do any damage. */
3003static void dc_start(struct hfi1_devdata *dd)
3004{
3005 unsigned long flags;
3006 int ret;
3007
3008 spin_lock_irqsave(&dd->dc8051_lock, flags);
3009 if (!dd->dc_shutdown)
3010 goto done;
3011 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
3012 /* Take the 8051 out of reset */
3013 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
3014 /* Wait until 8051 is ready */
3015 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
3016 if (ret) {
3017 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
3018 __func__);
3019 }
3020 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
3021 write_csr(dd, DCC_CFG_RESET, 0x10);
3022 /* lcb_shutdown() with abort=1 does not restore these */
3023 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
3024 spin_lock_irqsave(&dd->dc8051_lock, flags);
3025 dd->dc_shutdown = 0;
3026done:
3027 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
3028}
3029
3030/*
3031 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
3032 */
3033static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
3034{
3035 u64 rx_radr, tx_radr;
3036 u32 version;
3037
3038 if (dd->icode != ICODE_FPGA_EMULATION)
3039 return;
3040
3041 /*
3042 * These LCB defaults on emulator _s are good, nothing to do here:
3043 * LCB_CFG_TX_FIFOS_RADR
3044 * LCB_CFG_RX_FIFOS_RADR
3045 * LCB_CFG_LN_DCLK
3046 * LCB_CFG_IGNORE_LOST_RCLK
3047 */
3048 if (is_emulator_s(dd))
3049 return;
3050 /* else this is _p */
3051
3052 version = emulator_rev(dd);
3053 if (!is_a0(dd))
3054 version = 0x2d; /* all B0 use 0x2d or higher settings */
3055
3056 if (version <= 0x12) {
3057 /* release 0x12 and below */
3058
3059 /*
3060 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
3061 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
3062 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
3063 */
3064 rx_radr =
3065 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3066 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3067 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3068 /*
3069 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
3070 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
3071 */
3072 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3073 } else if (version <= 0x18) {
3074 /* release 0x13 up to 0x18 */
3075 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
3076 rx_radr =
3077 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3078 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3079 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3080 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3081 } else if (version == 0x19) {
3082 /* release 0x19 */
3083 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
3084 rx_radr =
3085 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3086 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3087 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3088 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3089 } else if (version == 0x1a) {
3090 /* release 0x1a */
3091 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
3092 rx_radr =
3093 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3094 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3095 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3096 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3097 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
3098 } else {
3099 /* release 0x1b and higher */
3100 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
3101 rx_radr =
3102 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
3103 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
3104 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
3105 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
3106 }
3107
3108 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
3109 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
3110 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
3111 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
3112 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
3113}
3114
3115/*
3116 * Handle a SMA idle message
3117 *
3118 * This is a work-queue function outside of the interrupt.
3119 */
3120void handle_sma_message(struct work_struct *work)
3121{
3122 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3123 sma_message_work);
3124 struct hfi1_devdata *dd = ppd->dd;
3125 u64 msg;
3126 int ret;
3127
3128 /* msg is bytes 1-4 of the 40-bit idle message - the command code
3129 is stripped off */
3130 ret = read_idle_sma(dd, &msg);
3131 if (ret)
3132 return;
3133 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
3134 /*
3135 * React to the SMA message. Byte[1] (0 for us) is the command.
3136 */
3137 switch (msg & 0xff) {
3138 case SMA_IDLE_ARM:
3139 /*
3140 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
3141 * State Transitions
3142 *
3143 * Only expected in INIT or ARMED, discard otherwise.
3144 */
3145 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
3146 ppd->neighbor_normal = 1;
3147 break;
3148 case SMA_IDLE_ACTIVE:
3149 /*
3150 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
3151 * State Transitions
3152 *
3153 * Can activate the node. Discard otherwise.
3154 */
3155 if (ppd->host_link_state == HLS_UP_ARMED
3156 && ppd->is_active_optimize_enabled) {
3157 ppd->neighbor_normal = 1;
3158 ret = set_link_state(ppd, HLS_UP_ACTIVE);
3159 if (ret)
3160 dd_dev_err(
3161 dd,
3162 "%s: received Active SMA idle message, couldn't set link to Active\n",
3163 __func__);
3164 }
3165 break;
3166 default:
3167 dd_dev_err(dd,
3168 "%s: received unexpected SMA idle message 0x%llx\n",
3169 __func__, msg);
3170 break;
3171 }
3172}
3173
3174static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
3175{
3176 u64 rcvctrl;
3177 unsigned long flags;
3178
3179 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
3180 rcvctrl = read_csr(dd, RCV_CTRL);
3181 rcvctrl |= add;
3182 rcvctrl &= ~clear;
3183 write_csr(dd, RCV_CTRL, rcvctrl);
3184 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
3185}
3186
3187static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
3188{
3189 adjust_rcvctrl(dd, add, 0);
3190}
3191
3192static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
3193{
3194 adjust_rcvctrl(dd, 0, clear);
3195}
3196
3197/*
3198 * Called from all interrupt handlers to start handling an SPC freeze.
3199 */
3200void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
3201{
3202 struct hfi1_devdata *dd = ppd->dd;
3203 struct send_context *sc;
3204 int i;
3205
3206 if (flags & FREEZE_SELF)
3207 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
3208
3209 /* enter frozen mode */
3210 dd->flags |= HFI1_FROZEN;
3211
3212 /* notify all SDMA engines that they are going into a freeze */
3213 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
3214
3215 /* do halt pre-handling on all enabled send contexts */
3216 for (i = 0; i < dd->num_send_contexts; i++) {
3217 sc = dd->send_contexts[i].sc;
3218 if (sc && (sc->flags & SCF_ENABLED))
3219 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
3220 }
3221
3222 /* Send context are frozen. Notify user space */
3223 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
3224
3225 if (flags & FREEZE_ABORT) {
3226 dd_dev_err(dd,
3227 "Aborted freeze recovery. Please REBOOT system\n");
3228 return;
3229 }
3230 /* queue non-interrupt handler */
3231 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
3232}
3233
3234/*
3235 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
3236 * depending on the "freeze" parameter.
3237 *
3238 * No need to return an error if it times out, our only option
3239 * is to proceed anyway.
3240 */
3241static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
3242{
3243 unsigned long timeout;
3244 u64 reg;
3245
3246 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
3247 while (1) {
3248 reg = read_csr(dd, CCE_STATUS);
3249 if (freeze) {
3250 /* waiting until all indicators are set */
3251 if ((reg & ALL_FROZE) == ALL_FROZE)
3252 return; /* all done */
3253 } else {
3254 /* waiting until all indicators are clear */
3255 if ((reg & ALL_FROZE) == 0)
3256 return; /* all done */
3257 }
3258
3259 if (time_after(jiffies, timeout)) {
3260 dd_dev_err(dd,
3261 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
3262 freeze ? "" : "un",
3263 reg & ALL_FROZE,
3264 freeze ? ALL_FROZE : 0ull);
3265 return;
3266 }
3267 usleep_range(80, 120);
3268 }
3269}
3270
3271/*
3272 * Do all freeze handling for the RXE block.
3273 */
3274static void rxe_freeze(struct hfi1_devdata *dd)
3275{
3276 int i;
3277
3278 /* disable port */
3279 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3280
3281 /* disable all receive contexts */
3282 for (i = 0; i < dd->num_rcv_contexts; i++)
3283 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
3284}
3285
3286/*
3287 * Unfreeze handling for the RXE block - kernel contexts only.
3288 * This will also enable the port. User contexts will do unfreeze
3289 * handling on a per-context basis as they call into the driver.
3290 *
3291 */
3292static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
3293{
3294 int i;
3295
3296 /* enable all kernel contexts */
3297 for (i = 0; i < dd->n_krcv_queues; i++)
3298 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, i);
3299
3300 /* enable port */
3301 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3302}
3303
3304/*
3305 * Non-interrupt SPC freeze handling.
3306 *
3307 * This is a work-queue function outside of the triggering interrupt.
3308 */
3309void handle_freeze(struct work_struct *work)
3310{
3311 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3312 freeze_work);
3313 struct hfi1_devdata *dd = ppd->dd;
3314
3315 /* wait for freeze indicators on all affected blocks */
3316 dd_dev_info(dd, "Entering SPC freeze\n");
3317 wait_for_freeze_status(dd, 1);
3318
3319 /* SPC is now frozen */
3320
3321 /* do send PIO freeze steps */
3322 pio_freeze(dd);
3323
3324 /* do send DMA freeze steps */
3325 sdma_freeze(dd);
3326
3327 /* do send egress freeze steps - nothing to do */
3328
3329 /* do receive freeze steps */
3330 rxe_freeze(dd);
3331
3332 /*
3333 * Unfreeze the hardware - clear the freeze, wait for each
3334 * block's frozen bit to clear, then clear the frozen flag.
3335 */
3336 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
3337 wait_for_freeze_status(dd, 0);
3338
3339 if (is_a0(dd)) {
3340 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
3341 wait_for_freeze_status(dd, 1);
3342 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
3343 wait_for_freeze_status(dd, 0);
3344 }
3345
3346 /* do send PIO unfreeze steps for kernel contexts */
3347 pio_kernel_unfreeze(dd);
3348
3349 /* do send DMA unfreeze steps */
3350 sdma_unfreeze(dd);
3351
3352 /* do send egress unfreeze steps - nothing to do */
3353
3354 /* do receive unfreeze steps for kernel contexts */
3355 rxe_kernel_unfreeze(dd);
3356
3357 /*
3358 * The unfreeze procedure touches global device registers when
3359 * it disables and re-enables RXE. Mark the device unfrozen
3360 * after all that is done so other parts of the driver waiting
3361 * for the device to unfreeze don't do things out of order.
3362 *
3363 * The above implies that the meaning of HFI1_FROZEN flag is
3364 * "Device has gone into freeze mode and freeze mode handling
3365 * is still in progress."
3366 *
3367 * The flag will be removed when freeze mode processing has
3368 * completed.
3369 */
3370 dd->flags &= ~HFI1_FROZEN;
3371 wake_up(&dd->event_queue);
3372
3373 /* no longer frozen */
3374 dd_dev_err(dd, "Exiting SPC freeze\n");
3375}
3376
3377/*
3378 * Handle a link up interrupt from the 8051.
3379 *
3380 * This is a work-queue function outside of the interrupt.
3381 */
3382void handle_link_up(struct work_struct *work)
3383{
3384 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3385 link_up_work);
3386 set_link_state(ppd, HLS_UP_INIT);
3387
3388 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
3389 read_ltp_rtt(ppd->dd);
3390 /*
3391 * OPA specifies that certain counters are cleared on a transition
3392 * to link up, so do that.
3393 */
3394 clear_linkup_counters(ppd->dd);
3395 /*
3396 * And (re)set link up default values.
3397 */
3398 set_linkup_defaults(ppd);
3399
3400 /* enforce link speed enabled */
3401 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
3402 /* oops - current speed is not enabled, bounce */
3403 dd_dev_err(ppd->dd,
3404 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
3405 ppd->link_speed_active, ppd->link_speed_enabled);
3406 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
3407 OPA_LINKDOWN_REASON_SPEED_POLICY);
3408 set_link_state(ppd, HLS_DN_OFFLINE);
3409 start_link(ppd);
3410 }
3411}
3412
3413/* Several pieces of LNI information were cached for SMA in ppd.
3414 * Reset these on link down */
3415static void reset_neighbor_info(struct hfi1_pportdata *ppd)
3416{
3417 ppd->neighbor_guid = 0;
3418 ppd->neighbor_port_number = 0;
3419 ppd->neighbor_type = 0;
3420 ppd->neighbor_fm_security = 0;
3421}
3422
3423/*
3424 * Handle a link down interrupt from the 8051.
3425 *
3426 * This is a work-queue function outside of the interrupt.
3427 */
3428void handle_link_down(struct work_struct *work)
3429{
3430 u8 lcl_reason, neigh_reason = 0;
3431 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3432 link_down_work);
3433
3434 /* go offline first, then deal with reasons */
3435 set_link_state(ppd, HLS_DN_OFFLINE);
3436
3437 lcl_reason = 0;
3438 read_planned_down_reason_code(ppd->dd, &neigh_reason);
3439
3440 /*
3441 * If no reason, assume peer-initiated but missed
3442 * LinkGoingDown idle flits.
3443 */
3444 if (neigh_reason == 0)
3445 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
3446
3447 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
3448
3449 reset_neighbor_info(ppd);
3450
3451 /* disable the port */
3452 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
3453
3454 /* If there is no cable attached, turn the DC off. Otherwise,
3455 * start the link bring up. */
3456 if (!qsfp_mod_present(ppd))
3457 dc_shutdown(ppd->dd);
3458 else
3459 start_link(ppd);
3460}
3461
3462void handle_link_bounce(struct work_struct *work)
3463{
3464 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3465 link_bounce_work);
3466
3467 /*
3468 * Only do something if the link is currently up.
3469 */
3470 if (ppd->host_link_state & HLS_UP) {
3471 set_link_state(ppd, HLS_DN_OFFLINE);
3472 start_link(ppd);
3473 } else {
3474 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
3475 __func__, link_state_name(ppd->host_link_state));
3476 }
3477}
3478
3479/*
3480 * Mask conversion: Capability exchange to Port LTP. The capability
3481 * exchange has an implicit 16b CRC that is mandatory.
3482 */
3483static int cap_to_port_ltp(int cap)
3484{
3485 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
3486
3487 if (cap & CAP_CRC_14B)
3488 port_ltp |= PORT_LTP_CRC_MODE_14;
3489 if (cap & CAP_CRC_48B)
3490 port_ltp |= PORT_LTP_CRC_MODE_48;
3491 if (cap & CAP_CRC_12B_16B_PER_LANE)
3492 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
3493
3494 return port_ltp;
3495}
3496
3497/*
3498 * Convert an OPA Port LTP mask to capability mask
3499 */
3500int port_ltp_to_cap(int port_ltp)
3501{
3502 int cap_mask = 0;
3503
3504 if (port_ltp & PORT_LTP_CRC_MODE_14)
3505 cap_mask |= CAP_CRC_14B;
3506 if (port_ltp & PORT_LTP_CRC_MODE_48)
3507 cap_mask |= CAP_CRC_48B;
3508 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
3509 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
3510
3511 return cap_mask;
3512}
3513
3514/*
3515 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
3516 */
3517static int lcb_to_port_ltp(int lcb_crc)
3518{
3519 int port_ltp = 0;
3520
3521 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
3522 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
3523 else if (lcb_crc == LCB_CRC_48B)
3524 port_ltp = PORT_LTP_CRC_MODE_48;
3525 else if (lcb_crc == LCB_CRC_14B)
3526 port_ltp = PORT_LTP_CRC_MODE_14;
3527 else
3528 port_ltp = PORT_LTP_CRC_MODE_16;
3529
3530 return port_ltp;
3531}
3532
3533/*
3534 * Our neighbor has indicated that we are allowed to act as a fabric
3535 * manager, so place the full management partition key in the second
3536 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
3537 * that we should already have the limited management partition key in
3538 * array element 1, and also that the port is not yet up when
3539 * add_full_mgmt_pkey() is invoked.
3540 */
3541static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
3542{
3543 struct hfi1_devdata *dd = ppd->dd;
3544
3545 /* Sanity check - ppd->pkeys[2] should be 0 */
3546 if (ppd->pkeys[2] != 0)
3547 dd_dev_err(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
3548 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
3549 ppd->pkeys[2] = FULL_MGMT_P_KEY;
3550 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
3551}
3552
3553/*
3554 * Convert the given link width to the OPA link width bitmask.
3555 */
3556static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
3557{
3558 switch (width) {
3559 case 0:
3560 /*
3561 * Simulator and quick linkup do not set the width.
3562 * Just set it to 4x without complaint.
3563 */
3564 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
3565 return OPA_LINK_WIDTH_4X;
3566 return 0; /* no lanes up */
3567 case 1: return OPA_LINK_WIDTH_1X;
3568 case 2: return OPA_LINK_WIDTH_2X;
3569 case 3: return OPA_LINK_WIDTH_3X;
3570 default:
3571 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
3572 __func__, width);
3573 /* fall through */
3574 case 4: return OPA_LINK_WIDTH_4X;
3575 }
3576}
3577
3578/*
3579 * Do a population count on the bottom nibble.
3580 */
3581static const u8 bit_counts[16] = {
3582 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
3583};
3584static inline u8 nibble_to_count(u8 nibble)
3585{
3586 return bit_counts[nibble & 0xf];
3587}
3588
3589/*
3590 * Read the active lane information from the 8051 registers and return
3591 * their widths.
3592 *
3593 * Active lane information is found in these 8051 registers:
3594 * enable_lane_tx
3595 * enable_lane_rx
3596 */
3597static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
3598 u16 *rx_width)
3599{
3600 u16 tx, rx;
3601 u8 enable_lane_rx;
3602 u8 enable_lane_tx;
3603 u8 tx_polarity_inversion;
3604 u8 rx_polarity_inversion;
3605 u8 max_rate;
3606
3607 /* read the active lanes */
3608 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
3609 &rx_polarity_inversion, &max_rate);
3610 read_local_lni(dd, &enable_lane_rx);
3611
3612 /* convert to counts */
3613 tx = nibble_to_count(enable_lane_tx);
3614 rx = nibble_to_count(enable_lane_rx);
3615
3616 /*
3617 * Set link_speed_active here, overriding what was set in
3618 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
3619 * set the max_rate field in handle_verify_cap until v0.19.
3620 */
3621 if ((dd->icode == ICODE_RTL_SILICON)
3622 && (dd->dc8051_ver < dc8051_ver(0, 19))) {
3623 /* max_rate: 0 = 12.5G, 1 = 25G */
3624 switch (max_rate) {
3625 case 0:
3626 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
3627 break;
3628 default:
3629 dd_dev_err(dd,
3630 "%s: unexpected max rate %d, using 25Gb\n",
3631 __func__, (int)max_rate);
3632 /* fall through */
3633 case 1:
3634 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
3635 break;
3636 }
3637 }
3638
3639 dd_dev_info(dd,
3640 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
3641 enable_lane_tx, tx, enable_lane_rx, rx);
3642 *tx_width = link_width_to_bits(dd, tx);
3643 *rx_width = link_width_to_bits(dd, rx);
3644}
3645
3646/*
3647 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
3648 * Valid after the end of VerifyCap and during LinkUp. Does not change
3649 * after link up. I.e. look elsewhere for downgrade information.
3650 *
3651 * Bits are:
3652 * + bits [7:4] contain the number of active transmitters
3653 * + bits [3:0] contain the number of active receivers
3654 * These are numbers 1 through 4 and can be different values if the
3655 * link is asymmetric.
3656 *
3657 * verify_cap_local_fm_link_width[0] retains its original value.
3658 */
3659static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
3660 u16 *rx_width)
3661{
3662 u16 widths, tx, rx;
3663 u8 misc_bits, local_flags;
3664 u16 active_tx, active_rx;
3665
3666 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
3667 tx = widths >> 12;
3668 rx = (widths >> 8) & 0xf;
3669
3670 *tx_width = link_width_to_bits(dd, tx);
3671 *rx_width = link_width_to_bits(dd, rx);
3672
3673 /* print the active widths */
3674 get_link_widths(dd, &active_tx, &active_rx);
3675}
3676
3677/*
3678 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
3679 * hardware information when the link first comes up.
3680 *
3681 * The link width is not available until after VerifyCap.AllFramesReceived
3682 * (the trigger for handle_verify_cap), so this is outside that routine
3683 * and should be called when the 8051 signals linkup.
3684 */
3685void get_linkup_link_widths(struct hfi1_pportdata *ppd)
3686{
3687 u16 tx_width, rx_width;
3688
3689 /* get end-of-LNI link widths */
3690 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
3691
3692 /* use tx_width as the link is supposed to be symmetric on link up */
3693 ppd->link_width_active = tx_width;
3694 /* link width downgrade active (LWD.A) starts out matching LW.A */
3695 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
3696 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
3697 /* per OPA spec, on link up LWD.E resets to LWD.S */
3698 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
3699 /* cache the active egress rate (units {10^6 bits/sec]) */
3700 ppd->current_egress_rate = active_egress_rate(ppd);
3701}
3702
3703/*
3704 * Handle a verify capabilities interrupt from the 8051.
3705 *
3706 * This is a work-queue function outside of the interrupt.
3707 */
3708void handle_verify_cap(struct work_struct *work)
3709{
3710 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3711 link_vc_work);
3712 struct hfi1_devdata *dd = ppd->dd;
3713 u64 reg;
3714 u8 power_management;
3715 u8 continious;
3716 u8 vcu;
3717 u8 vau;
3718 u8 z;
3719 u16 vl15buf;
3720 u16 link_widths;
3721 u16 crc_mask;
3722 u16 crc_val;
3723 u16 device_id;
3724 u16 active_tx, active_rx;
3725 u8 partner_supported_crc;
3726 u8 remote_tx_rate;
3727 u8 device_rev;
3728
3729 set_link_state(ppd, HLS_VERIFY_CAP);
3730
3731 lcb_shutdown(dd, 0);
3732 adjust_lcb_for_fpga_serdes(dd);
3733
3734 /*
3735 * These are now valid:
3736 * remote VerifyCap fields in the general LNI config
3737 * CSR DC8051_STS_REMOTE_GUID
3738 * CSR DC8051_STS_REMOTE_NODE_TYPE
3739 * CSR DC8051_STS_REMOTE_FM_SECURITY
3740 * CSR DC8051_STS_REMOTE_PORT_NO
3741 */
3742
3743 read_vc_remote_phy(dd, &power_management, &continious);
3744 read_vc_remote_fabric(
3745 dd,
3746 &vau,
3747 &z,
3748 &vcu,
3749 &vl15buf,
3750 &partner_supported_crc);
3751 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
3752 read_remote_device_id(dd, &device_id, &device_rev);
3753 /*
3754 * And the 'MgmtAllowed' information, which is exchanged during
3755 * LNI, is also be available at this point.
3756 */
3757 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
3758 /* print the active widths */
3759 get_link_widths(dd, &active_tx, &active_rx);
3760 dd_dev_info(dd,
3761 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
3762 (int)power_management, (int)continious);
3763 dd_dev_info(dd,
3764 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
3765 (int)vau,
3766 (int)z,
3767 (int)vcu,
3768 (int)vl15buf,
3769 (int)partner_supported_crc);
3770 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
3771 (u32)remote_tx_rate, (u32)link_widths);
3772 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
3773 (u32)device_id, (u32)device_rev);
3774 /*
3775 * The peer vAU value just read is the peer receiver value. HFI does
3776 * not support a transmit vAU of 0 (AU == 8). We advertised that
3777 * with Z=1 in the fabric capabilities sent to the peer. The peer
3778 * will see our Z=1, and, if it advertised a vAU of 0, will move its
3779 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
3780 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
3781 * subject to the Z value exception.
3782 */
3783 if (vau == 0)
3784 vau = 1;
3785 set_up_vl15(dd, vau, vl15buf);
3786
3787 /* set up the LCB CRC mode */
3788 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
3789
3790 /* order is important: use the lowest bit in common */
3791 if (crc_mask & CAP_CRC_14B)
3792 crc_val = LCB_CRC_14B;
3793 else if (crc_mask & CAP_CRC_48B)
3794 crc_val = LCB_CRC_48B;
3795 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
3796 crc_val = LCB_CRC_12B_16B_PER_LANE;
3797 else
3798 crc_val = LCB_CRC_16B;
3799
3800 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
3801 write_csr(dd, DC_LCB_CFG_CRC_MODE,
3802 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
3803
3804 /* set (14b only) or clear sideband credit */
3805 reg = read_csr(dd, SEND_CM_CTRL);
3806 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
3807 write_csr(dd, SEND_CM_CTRL,
3808 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
3809 } else {
3810 write_csr(dd, SEND_CM_CTRL,
3811 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
3812 }
3813
3814 ppd->link_speed_active = 0; /* invalid value */
3815 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
3816 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
3817 switch (remote_tx_rate) {
3818 case 0:
3819 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
3820 break;
3821 case 1:
3822 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3823 break;
3824 }
3825 } else {
3826 /* actual rate is highest bit of the ANDed rates */
3827 u8 rate = remote_tx_rate & ppd->local_tx_rate;
3828
3829 if (rate & 2)
3830 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3831 else if (rate & 1)
3832 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
3833 }
3834 if (ppd->link_speed_active == 0) {
3835 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
3836 __func__, (int)remote_tx_rate);
3837 ppd->link_speed_active = OPA_LINK_SPEED_25G;
3838 }
3839
3840 /*
3841 * Cache the values of the supported, enabled, and active
3842 * LTP CRC modes to return in 'portinfo' queries. But the bit
3843 * flags that are returned in the portinfo query differ from
3844 * what's in the link_crc_mask, crc_sizes, and crc_val
3845 * variables. Convert these here.
3846 */
3847 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
3848 /* supported crc modes */
3849 ppd->port_ltp_crc_mode |=
3850 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
3851 /* enabled crc modes */
3852 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
3853 /* active crc mode */
3854
3855 /* set up the remote credit return table */
3856 assign_remote_cm_au_table(dd, vcu);
3857
3858 /*
3859 * The LCB is reset on entry to handle_verify_cap(), so this must
3860 * be applied on every link up.
3861 *
3862 * Adjust LCB error kill enable to kill the link if
3863 * these RBUF errors are seen:
3864 * REPLAY_BUF_MBE_SMASK
3865 * FLIT_INPUT_BUF_MBE_SMASK
3866 */
3867 if (is_a0(dd)) { /* fixed in B0 */
3868 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
3869 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
3870 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
3871 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
3872 }
3873
3874 /* pull LCB fifos out of reset - all fifo clocks must be stable */
3875 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
3876
3877 /* give 8051 access to the LCB CSRs */
3878 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
3879 set_8051_lcb_access(dd);
3880
3881 ppd->neighbor_guid =
3882 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
3883 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
3884 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
3885 ppd->neighbor_type =
3886 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
3887 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
3888 ppd->neighbor_fm_security =
3889 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
3890 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
3891 dd_dev_info(dd,
3892 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
3893 ppd->neighbor_guid, ppd->neighbor_type,
3894 ppd->mgmt_allowed, ppd->neighbor_fm_security);
3895 if (ppd->mgmt_allowed)
3896 add_full_mgmt_pkey(ppd);
3897
3898 /* tell the 8051 to go to LinkUp */
3899 set_link_state(ppd, HLS_GOING_UP);
3900}
3901
3902/*
3903 * Apply the link width downgrade enabled policy against the current active
3904 * link widths.
3905 *
3906 * Called when the enabled policy changes or the active link widths change.
3907 */
3908void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
3909{
3910 int skip = 1;
3911 int do_bounce = 0;
3912 u16 lwde = ppd->link_width_downgrade_enabled;
3913 u16 tx, rx;
3914
3915 mutex_lock(&ppd->hls_lock);
3916 /* only apply if the link is up */
3917 if (ppd->host_link_state & HLS_UP)
3918 skip = 0;
3919 mutex_unlock(&ppd->hls_lock);
3920 if (skip)
3921 return;
3922
3923 if (refresh_widths) {
3924 get_link_widths(ppd->dd, &tx, &rx);
3925 ppd->link_width_downgrade_tx_active = tx;
3926 ppd->link_width_downgrade_rx_active = rx;
3927 }
3928
3929 if (lwde == 0) {
3930 /* downgrade is disabled */
3931
3932 /* bounce if not at starting active width */
3933 if ((ppd->link_width_active !=
3934 ppd->link_width_downgrade_tx_active)
3935 || (ppd->link_width_active !=
3936 ppd->link_width_downgrade_rx_active)) {
3937 dd_dev_err(ppd->dd,
3938 "Link downgrade is disabled and link has downgraded, downing link\n");
3939 dd_dev_err(ppd->dd,
3940 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
3941 ppd->link_width_active,
3942 ppd->link_width_downgrade_tx_active,
3943 ppd->link_width_downgrade_rx_active);
3944 do_bounce = 1;
3945 }
3946 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0
3947 || (lwde & ppd->link_width_downgrade_rx_active) == 0) {
3948 /* Tx or Rx is outside the enabled policy */
3949 dd_dev_err(ppd->dd,
3950 "Link is outside of downgrade allowed, downing link\n");
3951 dd_dev_err(ppd->dd,
3952 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
3953 lwde,
3954 ppd->link_width_downgrade_tx_active,
3955 ppd->link_width_downgrade_rx_active);
3956 do_bounce = 1;
3957 }
3958
3959 if (do_bounce) {
3960 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
3961 OPA_LINKDOWN_REASON_WIDTH_POLICY);
3962 set_link_state(ppd, HLS_DN_OFFLINE);
3963 start_link(ppd);
3964 }
3965}
3966
3967/*
3968 * Handle a link downgrade interrupt from the 8051.
3969 *
3970 * This is a work-queue function outside of the interrupt.
3971 */
3972void handle_link_downgrade(struct work_struct *work)
3973{
3974 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
3975 link_downgrade_work);
3976
3977 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
3978 apply_link_downgrade_policy(ppd, 1);
3979}
3980
3981static char *dcc_err_string(char *buf, int buf_len, u64 flags)
3982{
3983 return flag_string(buf, buf_len, flags, dcc_err_flags,
3984 ARRAY_SIZE(dcc_err_flags));
3985}
3986
3987static char *lcb_err_string(char *buf, int buf_len, u64 flags)
3988{
3989 return flag_string(buf, buf_len, flags, lcb_err_flags,
3990 ARRAY_SIZE(lcb_err_flags));
3991}
3992
3993static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
3994{
3995 return flag_string(buf, buf_len, flags, dc8051_err_flags,
3996 ARRAY_SIZE(dc8051_err_flags));
3997}
3998
3999static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
4000{
4001 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
4002 ARRAY_SIZE(dc8051_info_err_flags));
4003}
4004
4005static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
4006{
4007 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
4008 ARRAY_SIZE(dc8051_info_host_msg_flags));
4009}
4010
4011static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
4012{
4013 struct hfi1_pportdata *ppd = dd->pport;
4014 u64 info, err, host_msg;
4015 int queue_link_down = 0;
4016 char buf[96];
4017
4018 /* look at the flags */
4019 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
4020 /* 8051 information set by firmware */
4021 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
4022 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
4023 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
4024 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
4025 host_msg = (info >>
4026 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
4027 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
4028
4029 /*
4030 * Handle error flags.
4031 */
4032 if (err & FAILED_LNI) {
4033 /*
4034 * LNI error indications are cleared by the 8051
4035 * only when starting polling. Only pay attention
4036 * to them when in the states that occur during
4037 * LNI.
4038 */
4039 if (ppd->host_link_state
4040 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
4041 queue_link_down = 1;
4042 dd_dev_info(dd, "Link error: %s\n",
4043 dc8051_info_err_string(buf,
4044 sizeof(buf),
4045 err & FAILED_LNI));
4046 }
4047 err &= ~(u64)FAILED_LNI;
4048 }
4049 if (err) {
4050 /* report remaining errors, but do not do anything */
4051 dd_dev_err(dd, "8051 info error: %s\n",
4052 dc8051_info_err_string(buf, sizeof(buf), err));
4053 }
4054
4055 /*
4056 * Handle host message flags.
4057 */
4058 if (host_msg & HOST_REQ_DONE) {
4059 /*
4060 * Presently, the driver does a busy wait for
4061 * host requests to complete. This is only an
4062 * informational message.
4063 * NOTE: The 8051 clears the host message
4064 * information *on the next 8051 command*.
4065 * Therefore, when linkup is achieved,
4066 * this flag will still be set.
4067 */
4068 host_msg &= ~(u64)HOST_REQ_DONE;
4069 }
4070 if (host_msg & BC_SMA_MSG) {
4071 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
4072 host_msg &= ~(u64)BC_SMA_MSG;
4073 }
4074 if (host_msg & LINKUP_ACHIEVED) {
4075 dd_dev_info(dd, "8051: Link up\n");
4076 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
4077 host_msg &= ~(u64)LINKUP_ACHIEVED;
4078 }
4079 if (host_msg & EXT_DEVICE_CFG_REQ) {
4080 handle_8051_request(dd);
4081 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
4082 }
4083 if (host_msg & VERIFY_CAP_FRAME) {
4084 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
4085 host_msg &= ~(u64)VERIFY_CAP_FRAME;
4086 }
4087 if (host_msg & LINK_GOING_DOWN) {
4088 const char *extra = "";
4089 /* no downgrade action needed if going down */
4090 if (host_msg & LINK_WIDTH_DOWNGRADED) {
4091 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
4092 extra = " (ignoring downgrade)";
4093 }
4094 dd_dev_info(dd, "8051: Link down%s\n", extra);
4095 queue_link_down = 1;
4096 host_msg &= ~(u64)LINK_GOING_DOWN;
4097 }
4098 if (host_msg & LINK_WIDTH_DOWNGRADED) {
4099 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
4100 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
4101 }
4102 if (host_msg) {
4103 /* report remaining messages, but do not do anything */
4104 dd_dev_info(dd, "8051 info host message: %s\n",
4105 dc8051_info_host_msg_string(buf, sizeof(buf),
4106 host_msg));
4107 }
4108
4109 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
4110 }
4111 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
4112 /*
4113 * Lost the 8051 heartbeat. If this happens, we
4114 * receive constant interrupts about it. Disable
4115 * the interrupt after the first.
4116 */
4117 dd_dev_err(dd, "Lost 8051 heartbeat\n");
4118 write_csr(dd, DC_DC8051_ERR_EN,
4119 read_csr(dd, DC_DC8051_ERR_EN)
4120 & ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
4121
4122 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
4123 }
4124 if (reg) {
4125 /* report the error, but do not do anything */
4126 dd_dev_err(dd, "8051 error: %s\n",
4127 dc8051_err_string(buf, sizeof(buf), reg));
4128 }
4129
4130 if (queue_link_down) {
4131 /* if the link is already going down or disabled, do not
4132 * queue another */
4133 if ((ppd->host_link_state
4134 & (HLS_GOING_OFFLINE|HLS_LINK_COOLDOWN))
4135 || ppd->link_enabled == 0) {
4136 dd_dev_info(dd, "%s: not queuing link down\n",
4137 __func__);
4138 } else {
4139 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
4140 }
4141 }
4142}
4143
4144static const char * const fm_config_txt[] = {
4145[0] =
4146 "BadHeadDist: Distance violation between two head flits",
4147[1] =
4148 "BadTailDist: Distance violation between two tail flits",
4149[2] =
4150 "BadCtrlDist: Distance violation between two credit control flits",
4151[3] =
4152 "BadCrdAck: Credits return for unsupported VL",
4153[4] =
4154 "UnsupportedVLMarker: Received VL Marker",
4155[5] =
4156 "BadPreempt: Exceeded the preemption nesting level",
4157[6] =
4158 "BadControlFlit: Received unsupported control flit",
4159/* no 7 */
4160[8] =
4161 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
4162};
4163
4164static const char * const port_rcv_txt[] = {
4165[1] =
4166 "BadPktLen: Illegal PktLen",
4167[2] =
4168 "PktLenTooLong: Packet longer than PktLen",
4169[3] =
4170 "PktLenTooShort: Packet shorter than PktLen",
4171[4] =
4172 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
4173[5] =
4174 "BadDLID: Illegal DLID (0, doesn't match HFI)",
4175[6] =
4176 "BadL2: Illegal L2 opcode",
4177[7] =
4178 "BadSC: Unsupported SC",
4179[9] =
4180 "BadRC: Illegal RC",
4181[11] =
4182 "PreemptError: Preempting with same VL",
4183[12] =
4184 "PreemptVL15: Preempting a VL15 packet",
4185};
4186
4187#define OPA_LDR_FMCONFIG_OFFSET 16
4188#define OPA_LDR_PORTRCV_OFFSET 0
4189static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
4190{
4191 u64 info, hdr0, hdr1;
4192 const char *extra;
4193 char buf[96];
4194 struct hfi1_pportdata *ppd = dd->pport;
4195 u8 lcl_reason = 0;
4196 int do_bounce = 0;
4197
4198 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
4199 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
4200 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
4201 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
4202 /* set status bit */
4203 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
4204 }
4205 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
4206 }
4207
4208 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
4209 struct hfi1_pportdata *ppd = dd->pport;
4210 /* this counter saturates at (2^32) - 1 */
4211 if (ppd->link_downed < (u32)UINT_MAX)
4212 ppd->link_downed++;
4213 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
4214 }
4215
4216 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
4217 u8 reason_valid = 1;
4218
4219 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
4220 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
4221 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
4222 /* set status bit */
4223 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
4224 }
4225 switch (info) {
4226 case 0:
4227 case 1:
4228 case 2:
4229 case 3:
4230 case 4:
4231 case 5:
4232 case 6:
4233 extra = fm_config_txt[info];
4234 break;
4235 case 8:
4236 extra = fm_config_txt[info];
4237 if (ppd->port_error_action &
4238 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
4239 do_bounce = 1;
4240 /*
4241 * lcl_reason cannot be derived from info
4242 * for this error
4243 */
4244 lcl_reason =
4245 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
4246 }
4247 break;
4248 default:
4249 reason_valid = 0;
4250 snprintf(buf, sizeof(buf), "reserved%lld", info);
4251 extra = buf;
4252 break;
4253 }
4254
4255 if (reason_valid && !do_bounce) {
4256 do_bounce = ppd->port_error_action &
4257 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
4258 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
4259 }
4260
4261 /* just report this */
4262 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
4263 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
4264 }
4265
4266 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
4267 u8 reason_valid = 1;
4268
4269 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
4270 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
4271 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
4272 if (!(dd->err_info_rcvport.status_and_code &
4273 OPA_EI_STATUS_SMASK)) {
4274 dd->err_info_rcvport.status_and_code =
4275 info & OPA_EI_CODE_SMASK;
4276 /* set status bit */
4277 dd->err_info_rcvport.status_and_code |=
4278 OPA_EI_STATUS_SMASK;
4279 /* save first 2 flits in the packet that caused
4280 * the error */
4281 dd->err_info_rcvport.packet_flit1 = hdr0;
4282 dd->err_info_rcvport.packet_flit2 = hdr1;
4283 }
4284 switch (info) {
4285 case 1:
4286 case 2:
4287 case 3:
4288 case 4:
4289 case 5:
4290 case 6:
4291 case 7:
4292 case 9:
4293 case 11:
4294 case 12:
4295 extra = port_rcv_txt[info];
4296 break;
4297 default:
4298 reason_valid = 0;
4299 snprintf(buf, sizeof(buf), "reserved%lld", info);
4300 extra = buf;
4301 break;
4302 }
4303
4304 if (reason_valid && !do_bounce) {
4305 do_bounce = ppd->port_error_action &
4306 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
4307 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
4308 }
4309
4310 /* just report this */
4311 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
4312 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
4313 hdr0, hdr1);
4314
4315 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
4316 }
4317
4318 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
4319 /* informative only */
4320 dd_dev_info(dd, "8051 access to LCB blocked\n");
4321 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
4322 }
4323 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
4324 /* informative only */
4325 dd_dev_info(dd, "host access to LCB blocked\n");
4326 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
4327 }
4328
4329 /* report any remaining errors */
4330 if (reg)
4331 dd_dev_info(dd, "DCC Error: %s\n",
4332 dcc_err_string(buf, sizeof(buf), reg));
4333
4334 if (lcl_reason == 0)
4335 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
4336
4337 if (do_bounce) {
4338 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
4339 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
4340 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
4341 }
4342}
4343
4344static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
4345{
4346 char buf[96];
4347
4348 dd_dev_info(dd, "LCB Error: %s\n",
4349 lcb_err_string(buf, sizeof(buf), reg));
4350}
4351
4352/*
4353 * CCE block DC interrupt. Source is < 8.
4354 */
4355static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
4356{
4357 const struct err_reg_info *eri = &dc_errs[source];
4358
4359 if (eri->handler) {
4360 interrupt_clear_down(dd, 0, eri);
4361 } else if (source == 3 /* dc_lbm_int */) {
4362 /*
4363 * This indicates that a parity error has occurred on the
4364 * address/control lines presented to the LBM. The error
4365 * is a single pulse, there is no associated error flag,
4366 * and it is non-maskable. This is because if a parity
4367 * error occurs on the request the request is dropped.
4368 * This should never occur, but it is nice to know if it
4369 * ever does.
4370 */
4371 dd_dev_err(dd, "Parity error in DC LBM block\n");
4372 } else {
4373 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
4374 }
4375}
4376
4377/*
4378 * TX block send credit interrupt. Source is < 160.
4379 */
4380static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
4381{
4382 sc_group_release_update(dd, source);
4383}
4384
4385/*
4386 * TX block SDMA interrupt. Source is < 48.
4387 *
4388 * SDMA interrupts are grouped by type:
4389 *
4390 * 0 - N-1 = SDma
4391 * N - 2N-1 = SDmaProgress
4392 * 2N - 3N-1 = SDmaIdle
4393 */
4394static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
4395{
4396 /* what interrupt */
4397 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
4398 /* which engine */
4399 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
4400
4401#ifdef CONFIG_SDMA_VERBOSITY
4402 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
4403 slashstrip(__FILE__), __LINE__, __func__);
4404 sdma_dumpstate(&dd->per_sdma[which]);
4405#endif
4406
4407 if (likely(what < 3 && which < dd->num_sdma)) {
4408 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
4409 } else {
4410 /* should not happen */
4411 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
4412 }
4413}
4414
4415/*
4416 * RX block receive available interrupt. Source is < 160.
4417 */
4418static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
4419{
4420 struct hfi1_ctxtdata *rcd;
4421 char *err_detail;
4422
4423 if (likely(source < dd->num_rcv_contexts)) {
4424 rcd = dd->rcd[source];
4425 if (rcd) {
4426 if (source < dd->first_user_ctxt)
4427 rcd->do_interrupt(rcd);
4428 else
4429 handle_user_interrupt(rcd);
4430 return; /* OK */
4431 }
4432 /* received an interrupt, but no rcd */
4433 err_detail = "dataless";
4434 } else {
4435 /* received an interrupt, but are not using that context */
4436 err_detail = "out of range";
4437 }
4438 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
4439 err_detail, source);
4440}
4441
4442/*
4443 * RX block receive urgent interrupt. Source is < 160.
4444 */
4445static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
4446{
4447 struct hfi1_ctxtdata *rcd;
4448 char *err_detail;
4449
4450 if (likely(source < dd->num_rcv_contexts)) {
4451 rcd = dd->rcd[source];
4452 if (rcd) {
4453 /* only pay attention to user urgent interrupts */
4454 if (source >= dd->first_user_ctxt)
4455 handle_user_interrupt(rcd);
4456 return; /* OK */
4457 }
4458 /* received an interrupt, but no rcd */
4459 err_detail = "dataless";
4460 } else {
4461 /* received an interrupt, but are not using that context */
4462 err_detail = "out of range";
4463 }
4464 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
4465 err_detail, source);
4466}
4467
4468/*
4469 * Reserved range interrupt. Should not be called in normal operation.
4470 */
4471static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
4472{
4473 char name[64];
4474
4475 dd_dev_err(dd, "unexpected %s interrupt\n",
4476 is_reserved_name(name, sizeof(name), source));
4477}
4478
4479static const struct is_table is_table[] = {
4480/* start end
4481 name func interrupt func */
4482{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
4483 is_misc_err_name, is_misc_err_int },
4484{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
4485 is_sdma_eng_err_name, is_sdma_eng_err_int },
4486{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
4487 is_sendctxt_err_name, is_sendctxt_err_int },
4488{ IS_SDMA_START, IS_SDMA_END,
4489 is_sdma_eng_name, is_sdma_eng_int },
4490{ IS_VARIOUS_START, IS_VARIOUS_END,
4491 is_various_name, is_various_int },
4492{ IS_DC_START, IS_DC_END,
4493 is_dc_name, is_dc_int },
4494{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
4495 is_rcv_avail_name, is_rcv_avail_int },
4496{ IS_RCVURGENT_START, IS_RCVURGENT_END,
4497 is_rcv_urgent_name, is_rcv_urgent_int },
4498{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
4499 is_send_credit_name, is_send_credit_int},
4500{ IS_RESERVED_START, IS_RESERVED_END,
4501 is_reserved_name, is_reserved_int},
4502};
4503
4504/*
4505 * Interrupt source interrupt - called when the given source has an interrupt.
4506 * Source is a bit index into an array of 64-bit integers.
4507 */
4508static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
4509{
4510 const struct is_table *entry;
4511
4512 /* avoids a double compare by walking the table in-order */
4513 for (entry = &is_table[0]; entry->is_name; entry++) {
4514 if (source < entry->end) {
4515 trace_hfi1_interrupt(dd, entry, source);
4516 entry->is_int(dd, source - entry->start);
4517 return;
4518 }
4519 }
4520 /* fell off the end */
4521 dd_dev_err(dd, "invalid interrupt source %u\n", source);
4522}
4523
4524/*
4525 * General interrupt handler. This is able to correctly handle
4526 * all interrupts in case INTx is used.
4527 */
4528static irqreturn_t general_interrupt(int irq, void *data)
4529{
4530 struct hfi1_devdata *dd = data;
4531 u64 regs[CCE_NUM_INT_CSRS];
4532 u32 bit;
4533 int i;
4534
4535 this_cpu_inc(*dd->int_counter);
4536
4537 /* phase 1: scan and clear all handled interrupts */
4538 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
4539 if (dd->gi_mask[i] == 0) {
4540 regs[i] = 0; /* used later */
4541 continue;
4542 }
4543 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
4544 dd->gi_mask[i];
4545 /* only clear if anything is set */
4546 if (regs[i])
4547 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
4548 }
4549
4550 /* phase 2: call the appropriate handler */
4551 for_each_set_bit(bit, (unsigned long *)&regs[0],
4552 CCE_NUM_INT_CSRS*64) {
4553 is_interrupt(dd, bit);
4554 }
4555
4556 return IRQ_HANDLED;
4557}
4558
4559static irqreturn_t sdma_interrupt(int irq, void *data)
4560{
4561 struct sdma_engine *sde = data;
4562 struct hfi1_devdata *dd = sde->dd;
4563 u64 status;
4564
4565#ifdef CONFIG_SDMA_VERBOSITY
4566 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
4567 slashstrip(__FILE__), __LINE__, __func__);
4568 sdma_dumpstate(sde);
4569#endif
4570
4571 this_cpu_inc(*dd->int_counter);
4572
4573 /* This read_csr is really bad in the hot path */
4574 status = read_csr(dd,
4575 CCE_INT_STATUS + (8*(IS_SDMA_START/64)))
4576 & sde->imask;
4577 if (likely(status)) {
4578 /* clear the interrupt(s) */
4579 write_csr(dd,
4580 CCE_INT_CLEAR + (8*(IS_SDMA_START/64)),
4581 status);
4582
4583 /* handle the interrupt(s) */
4584 sdma_engine_interrupt(sde, status);
4585 } else
4586 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
4587 sde->this_idx);
4588
4589 return IRQ_HANDLED;
4590}
4591
4592/*
4593 * NOTE: this routine expects to be on its own MSI-X interrupt. If
4594 * multiple receive contexts share the same MSI-X interrupt, then this
4595 * routine must check for who received it.
4596 */
4597static irqreturn_t receive_context_interrupt(int irq, void *data)
4598{
4599 struct hfi1_ctxtdata *rcd = data;
4600 struct hfi1_devdata *dd = rcd->dd;
4601
4602 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
4603 this_cpu_inc(*dd->int_counter);
4604
4605 /* clear the interrupt */
4606 write_csr(rcd->dd, CCE_INT_CLEAR + (8*rcd->ireg), rcd->imask);
4607
4608 /* handle the interrupt */
4609 rcd->do_interrupt(rcd);
4610
4611 return IRQ_HANDLED;
4612}
4613
4614/* ========================================================================= */
4615
4616u32 read_physical_state(struct hfi1_devdata *dd)
4617{
4618 u64 reg;
4619
4620 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
4621 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
4622 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
4623}
4624
4625static u32 read_logical_state(struct hfi1_devdata *dd)
4626{
4627 u64 reg;
4628
4629 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
4630 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
4631 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
4632}
4633
4634static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
4635{
4636 u64 reg;
4637
4638 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
4639 /* clear current state, set new state */
4640 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
4641 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
4642 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
4643}
4644
4645/*
4646 * Use the 8051 to read a LCB CSR.
4647 */
4648static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
4649{
4650 u32 regno;
4651 int ret;
4652
4653 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
4654 if (acquire_lcb_access(dd, 0) == 0) {
4655 *data = read_csr(dd, addr);
4656 release_lcb_access(dd, 0);
4657 return 0;
4658 }
4659 return -EBUSY;
4660 }
4661
4662 /* register is an index of LCB registers: (offset - base) / 8 */
4663 regno = (addr - DC_LCB_CFG_RUN) >> 3;
4664 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
4665 if (ret != HCMD_SUCCESS)
4666 return -EBUSY;
4667 return 0;
4668}
4669
4670/*
4671 * Read an LCB CSR. Access may not be in host control, so check.
4672 * Return 0 on success, -EBUSY on failure.
4673 */
4674int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
4675{
4676 struct hfi1_pportdata *ppd = dd->pport;
4677
4678 /* if up, go through the 8051 for the value */
4679 if (ppd->host_link_state & HLS_UP)
4680 return read_lcb_via_8051(dd, addr, data);
4681 /* if going up or down, no access */
4682 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
4683 return -EBUSY;
4684 /* otherwise, host has access */
4685 *data = read_csr(dd, addr);
4686 return 0;
4687}
4688
4689/*
4690 * Use the 8051 to write a LCB CSR.
4691 */
4692static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
4693{
4694
4695 if (acquire_lcb_access(dd, 0) == 0) {
4696 write_csr(dd, addr, data);
4697 release_lcb_access(dd, 0);
4698 return 0;
4699 }
4700 return -EBUSY;
4701}
4702
4703/*
4704 * Write an LCB CSR. Access may not be in host control, so check.
4705 * Return 0 on success, -EBUSY on failure.
4706 */
4707int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
4708{
4709 struct hfi1_pportdata *ppd = dd->pport;
4710
4711 /* if up, go through the 8051 for the value */
4712 if (ppd->host_link_state & HLS_UP)
4713 return write_lcb_via_8051(dd, addr, data);
4714 /* if going up or down, no access */
4715 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
4716 return -EBUSY;
4717 /* otherwise, host has access */
4718 write_csr(dd, addr, data);
4719 return 0;
4720}
4721
4722/*
4723 * Returns:
4724 * < 0 = Linux error, not able to get access
4725 * > 0 = 8051 command RETURN_CODE
4726 */
4727static int do_8051_command(
4728 struct hfi1_devdata *dd,
4729 u32 type,
4730 u64 in_data,
4731 u64 *out_data)
4732{
4733 u64 reg, completed;
4734 int return_code;
4735 unsigned long flags;
4736 unsigned long timeout;
4737
4738 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
4739
4740 /*
4741 * Alternative to holding the lock for a long time:
4742 * - keep busy wait - have other users bounce off
4743 */
4744 spin_lock_irqsave(&dd->dc8051_lock, flags);
4745
4746 /* We can't send any commands to the 8051 if it's in reset */
4747 if (dd->dc_shutdown) {
4748 return_code = -ENODEV;
4749 goto fail;
4750 }
4751
4752 /*
4753 * If an 8051 host command timed out previously, then the 8051 is
4754 * stuck.
4755 *
4756 * On first timeout, attempt to reset and restart the entire DC
4757 * block (including 8051). (Is this too big of a hammer?)
4758 *
4759 * If the 8051 times out a second time, the reset did not bring it
4760 * back to healthy life. In that case, fail any subsequent commands.
4761 */
4762 if (dd->dc8051_timed_out) {
4763 if (dd->dc8051_timed_out > 1) {
4764 dd_dev_err(dd,
4765 "Previous 8051 host command timed out, skipping command %u\n",
4766 type);
4767 return_code = -ENXIO;
4768 goto fail;
4769 }
4770 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
4771 dc_shutdown(dd);
4772 dc_start(dd);
4773 spin_lock_irqsave(&dd->dc8051_lock, flags);
4774 }
4775
4776 /*
4777 * If there is no timeout, then the 8051 command interface is
4778 * waiting for a command.
4779 */
4780
4781 /*
4782 * Do two writes: the first to stabilize the type and req_data, the
4783 * second to activate.
4784 */
4785 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
4786 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
4787 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
4788 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
4789 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
4790 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
4791 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
4792
4793 /* wait for completion, alternate: interrupt */
4794 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
4795 while (1) {
4796 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
4797 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
4798 if (completed)
4799 break;
4800 if (time_after(jiffies, timeout)) {
4801 dd->dc8051_timed_out++;
4802 dd_dev_err(dd, "8051 host command %u timeout\n", type);
4803 if (out_data)
4804 *out_data = 0;
4805 return_code = -ETIMEDOUT;
4806 goto fail;
4807 }
4808 udelay(2);
4809 }
4810
4811 if (out_data) {
4812 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
4813 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
4814 if (type == HCMD_READ_LCB_CSR) {
4815 /* top 16 bits are in a different register */
4816 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
4817 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
4818 << (48
4819 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
4820 }
4821 }
4822 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
4823 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
4824 dd->dc8051_timed_out = 0;
4825 /*
4826 * Clear command for next user.
4827 */
4828 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
4829
4830fail:
4831 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
4832
4833 return return_code;
4834}
4835
4836static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
4837{
4838 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
4839}
4840
4841static int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
4842 u8 lane_id, u32 config_data)
4843{
4844 u64 data;
4845 int ret;
4846
4847 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
4848 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
4849 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
4850 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
4851 if (ret != HCMD_SUCCESS) {
4852 dd_dev_err(dd,
4853 "load 8051 config: field id %d, lane %d, err %d\n",
4854 (int)field_id, (int)lane_id, ret);
4855 }
4856 return ret;
4857}
4858
4859/*
4860 * Read the 8051 firmware "registers". Use the RAM directly. Always
4861 * set the result, even on error.
4862 * Return 0 on success, -errno on failure
4863 */
4864static int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
4865 u32 *result)
4866{
4867 u64 big_data;
4868 u32 addr;
4869 int ret;
4870
4871 /* address start depends on the lane_id */
4872 if (lane_id < 4)
4873 addr = (4 * NUM_GENERAL_FIELDS)
4874 + (lane_id * 4 * NUM_LANE_FIELDS);
4875 else
4876 addr = 0;
4877 addr += field_id * 4;
4878
4879 /* read is in 8-byte chunks, hardware will truncate the address down */
4880 ret = read_8051_data(dd, addr, 8, &big_data);
4881
4882 if (ret == 0) {
4883 /* extract the 4 bytes we want */
4884 if (addr & 0x4)
4885 *result = (u32)(big_data >> 32);
4886 else
4887 *result = (u32)big_data;
4888 } else {
4889 *result = 0;
4890 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
4891 __func__, lane_id, field_id);
4892 }
4893
4894 return ret;
4895}
4896
4897static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
4898 u8 continuous)
4899{
4900 u32 frame;
4901
4902 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
4903 | power_management << POWER_MANAGEMENT_SHIFT;
4904 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
4905 GENERAL_CONFIG, frame);
4906}
4907
4908static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
4909 u16 vl15buf, u8 crc_sizes)
4910{
4911 u32 frame;
4912
4913 frame = (u32)vau << VAU_SHIFT
4914 | (u32)z << Z_SHIFT
4915 | (u32)vcu << VCU_SHIFT
4916 | (u32)vl15buf << VL15BUF_SHIFT
4917 | (u32)crc_sizes << CRC_SIZES_SHIFT;
4918 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
4919 GENERAL_CONFIG, frame);
4920}
4921
4922static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
4923 u8 *flag_bits, u16 *link_widths)
4924{
4925 u32 frame;
4926
4927 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
4928 &frame);
4929 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
4930 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
4931 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
4932}
4933
4934static int write_vc_local_link_width(struct hfi1_devdata *dd,
4935 u8 misc_bits,
4936 u8 flag_bits,
4937 u16 link_widths)
4938{
4939 u32 frame;
4940
4941 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
4942 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
4943 | (u32)link_widths << LINK_WIDTH_SHIFT;
4944 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
4945 frame);
4946}
4947
4948static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
4949 u8 device_rev)
4950{
4951 u32 frame;
4952
4953 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
4954 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
4955 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
4956}
4957
4958static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
4959 u8 *device_rev)
4960{
4961 u32 frame;
4962
4963 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
4964 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
4965 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
4966 & REMOTE_DEVICE_REV_MASK;
4967}
4968
4969void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
4970{
4971 u32 frame;
4972
4973 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
4974 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
4975 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
4976}
4977
4978static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
4979 u8 *continuous)
4980{
4981 u32 frame;
4982
4983 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
4984 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
4985 & POWER_MANAGEMENT_MASK;
4986 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
4987 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
4988}
4989
4990static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
4991 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
4992{
4993 u32 frame;
4994
4995 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
4996 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
4997 *z = (frame >> Z_SHIFT) & Z_MASK;
4998 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
4999 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
5000 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
5001}
5002
5003static void read_vc_remote_link_width(struct hfi1_devdata *dd,
5004 u8 *remote_tx_rate,
5005 u16 *link_widths)
5006{
5007 u32 frame;
5008
5009 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
5010 &frame);
5011 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
5012 & REMOTE_TX_RATE_MASK;
5013 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
5014}
5015
5016static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
5017{
5018 u32 frame;
5019
5020 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
5021 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
5022}
5023
5024static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
5025{
5026 u32 frame;
5027
5028 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
5029 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
5030}
5031
5032static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
5033{
5034 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
5035}
5036
5037static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
5038{
5039 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
5040}
5041
5042void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
5043{
5044 u32 frame;
5045 int ret;
5046
5047 *link_quality = 0;
5048 if (dd->pport->host_link_state & HLS_UP) {
5049 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
5050 &frame);
5051 if (ret == 0)
5052 *link_quality = (frame >> LINK_QUALITY_SHIFT)
5053 & LINK_QUALITY_MASK;
5054 }
5055}
5056
5057static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
5058{
5059 u32 frame;
5060
5061 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
5062 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
5063}
5064
5065static int read_tx_settings(struct hfi1_devdata *dd,
5066 u8 *enable_lane_tx,
5067 u8 *tx_polarity_inversion,
5068 u8 *rx_polarity_inversion,
5069 u8 *max_rate)
5070{
5071 u32 frame;
5072 int ret;
5073
5074 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
5075 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
5076 & ENABLE_LANE_TX_MASK;
5077 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
5078 & TX_POLARITY_INVERSION_MASK;
5079 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
5080 & RX_POLARITY_INVERSION_MASK;
5081 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
5082 return ret;
5083}
5084
5085static int write_tx_settings(struct hfi1_devdata *dd,
5086 u8 enable_lane_tx,
5087 u8 tx_polarity_inversion,
5088 u8 rx_polarity_inversion,
5089 u8 max_rate)
5090{
5091 u32 frame;
5092
5093 /* no need to mask, all variable sizes match field widths */
5094 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
5095 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
5096 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
5097 | max_rate << MAX_RATE_SHIFT;
5098 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
5099}
5100
5101static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
5102{
5103 u32 frame, version, prod_id;
5104 int ret, lane;
5105
5106 /* 4 lanes */
5107 for (lane = 0; lane < 4; lane++) {
5108 ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
5109 if (ret) {
5110 dd_dev_err(
5111 dd,
5112 "Unable to read lane %d firmware details\n",
5113 lane);
5114 continue;
5115 }
5116 version = (frame >> SPICO_ROM_VERSION_SHIFT)
5117 & SPICO_ROM_VERSION_MASK;
5118 prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
5119 & SPICO_ROM_PROD_ID_MASK;
5120 dd_dev_info(dd,
5121 "Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
5122 lane, version, prod_id);
5123 }
5124}
5125
5126/*
5127 * Read an idle LCB message.
5128 *
5129 * Returns 0 on success, -EINVAL on error
5130 */
5131static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
5132{
5133 int ret;
5134
5135 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG,
5136 type, data_out);
5137 if (ret != HCMD_SUCCESS) {
5138 dd_dev_err(dd, "read idle message: type %d, err %d\n",
5139 (u32)type, ret);
5140 return -EINVAL;
5141 }
5142 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
5143 /* return only the payload as we already know the type */
5144 *data_out >>= IDLE_PAYLOAD_SHIFT;
5145 return 0;
5146}
5147
5148/*
5149 * Read an idle SMA message. To be done in response to a notification from
5150 * the 8051.
5151 *
5152 * Returns 0 on success, -EINVAL on error
5153 */
5154static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
5155{
5156 return read_idle_message(dd,
5157 (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, data);
5158}
5159
5160/*
5161 * Send an idle LCB message.
5162 *
5163 * Returns 0 on success, -EINVAL on error
5164 */
5165static int send_idle_message(struct hfi1_devdata *dd, u64 data)
5166{
5167 int ret;
5168
5169 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
5170 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
5171 if (ret != HCMD_SUCCESS) {
5172 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
5173 data, ret);
5174 return -EINVAL;
5175 }
5176 return 0;
5177}
5178
5179/*
5180 * Send an idle SMA message.
5181 *
5182 * Returns 0 on success, -EINVAL on error
5183 */
5184int send_idle_sma(struct hfi1_devdata *dd, u64 message)
5185{
5186 u64 data;
5187
5188 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT)
5189 | ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
5190 return send_idle_message(dd, data);
5191}
5192
5193/*
5194 * Initialize the LCB then do a quick link up. This may or may not be
5195 * in loopback.
5196 *
5197 * return 0 on success, -errno on error
5198 */
5199static int do_quick_linkup(struct hfi1_devdata *dd)
5200{
5201 u64 reg;
5202 unsigned long timeout;
5203 int ret;
5204
5205 lcb_shutdown(dd, 0);
5206
5207 if (loopback) {
5208 /* LCB_CFG_LOOPBACK.VAL = 2 */
5209 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
5210 write_csr(dd, DC_LCB_CFG_LOOPBACK,
5211 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
5212 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
5213 }
5214
5215 /* start the LCBs */
5216 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
5217 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
5218
5219 /* simulator only loopback steps */
5220 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
5221 /* LCB_CFG_RUN.EN = 1 */
5222 write_csr(dd, DC_LCB_CFG_RUN,
5223 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
5224
5225 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
5226 timeout = jiffies + msecs_to_jiffies(10);
5227 while (1) {
5228 reg = read_csr(dd,
5229 DC_LCB_STS_LINK_TRANSFER_ACTIVE);
5230 if (reg)
5231 break;
5232 if (time_after(jiffies, timeout)) {
5233 dd_dev_err(dd,
5234 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
5235 return -ETIMEDOUT;
5236 }
5237 udelay(2);
5238 }
5239
5240 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
5241 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
5242 }
5243
5244 if (!loopback) {
5245 /*
5246 * When doing quick linkup and not in loopback, both
5247 * sides must be done with LCB set-up before either
5248 * starts the quick linkup. Put a delay here so that
5249 * both sides can be started and have a chance to be
5250 * done with LCB set up before resuming.
5251 */
5252 dd_dev_err(dd,
5253 "Pausing for peer to be finished with LCB set up\n");
5254 msleep(5000);
5255 dd_dev_err(dd,
5256 "Continuing with quick linkup\n");
5257 }
5258
5259 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
5260 set_8051_lcb_access(dd);
5261
5262 /*
5263 * State "quick" LinkUp request sets the physical link state to
5264 * LinkUp without a verify capability sequence.
5265 * This state is in simulator v37 and later.
5266 */
5267 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
5268 if (ret != HCMD_SUCCESS) {
5269 dd_dev_err(dd,
5270 "%s: set physical link state to quick LinkUp failed with return %d\n",
5271 __func__, ret);
5272
5273 set_host_lcb_access(dd);
5274 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
5275
5276 if (ret >= 0)
5277 ret = -EINVAL;
5278 return ret;
5279 }
5280
5281 return 0; /* success */
5282}
5283
5284/*
5285 * Set the SerDes to internal loopback mode.
5286 * Returns 0 on success, -errno on error.
5287 */
5288static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
5289{
5290 int ret;
5291
5292 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
5293 if (ret == HCMD_SUCCESS)
5294 return 0;
5295 dd_dev_err(dd,
5296 "Set physical link state to SerDes Loopback failed with return %d\n",
5297 ret);
5298 if (ret >= 0)
5299 ret = -EINVAL;
5300 return ret;
5301}
5302
5303/*
5304 * Do all special steps to set up loopback.
5305 */
5306static int init_loopback(struct hfi1_devdata *dd)
5307{
5308 dd_dev_info(dd, "Entering loopback mode\n");
5309
5310 /* all loopbacks should disable self GUID check */
5311 write_csr(dd, DC_DC8051_CFG_MODE,
5312 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
5313
5314 /*
5315 * The simulator has only one loopback option - LCB. Switch
5316 * to that option, which includes quick link up.
5317 *
5318 * Accept all valid loopback values.
5319 */
5320 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
5321 && (loopback == LOOPBACK_SERDES
5322 || loopback == LOOPBACK_LCB
5323 || loopback == LOOPBACK_CABLE)) {
5324 loopback = LOOPBACK_LCB;
5325 quick_linkup = 1;
5326 return 0;
5327 }
5328
5329 /* handle serdes loopback */
5330 if (loopback == LOOPBACK_SERDES) {
5331 /* internal serdes loopack needs quick linkup on RTL */
5332 if (dd->icode == ICODE_RTL_SILICON)
5333 quick_linkup = 1;
5334 return set_serdes_loopback_mode(dd);
5335 }
5336
5337 /* LCB loopback - handled at poll time */
5338 if (loopback == LOOPBACK_LCB) {
5339 quick_linkup = 1; /* LCB is always quick linkup */
5340
5341 /* not supported in emulation due to emulation RTL changes */
5342 if (dd->icode == ICODE_FPGA_EMULATION) {
5343 dd_dev_err(dd,
5344 "LCB loopback not supported in emulation\n");
5345 return -EINVAL;
5346 }
5347 return 0;
5348 }
5349
5350 /* external cable loopback requires no extra steps */
5351 if (loopback == LOOPBACK_CABLE)
5352 return 0;
5353
5354 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
5355 return -EINVAL;
5356}
5357
5358/*
5359 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
5360 * used in the Verify Capability link width attribute.
5361 */
5362static u16 opa_to_vc_link_widths(u16 opa_widths)
5363{
5364 int i;
5365 u16 result = 0;
5366
5367 static const struct link_bits {
5368 u16 from;
5369 u16 to;
5370 } opa_link_xlate[] = {
5371 { OPA_LINK_WIDTH_1X, 1 << (1-1) },
5372 { OPA_LINK_WIDTH_2X, 1 << (2-1) },
5373 { OPA_LINK_WIDTH_3X, 1 << (3-1) },
5374 { OPA_LINK_WIDTH_4X, 1 << (4-1) },
5375 };
5376
5377 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
5378 if (opa_widths & opa_link_xlate[i].from)
5379 result |= opa_link_xlate[i].to;
5380 }
5381 return result;
5382}
5383
5384/*
5385 * Set link attributes before moving to polling.
5386 */
5387static int set_local_link_attributes(struct hfi1_pportdata *ppd)
5388{
5389 struct hfi1_devdata *dd = ppd->dd;
5390 u8 enable_lane_tx;
5391 u8 tx_polarity_inversion;
5392 u8 rx_polarity_inversion;
5393 int ret;
5394
5395 /* reset our fabric serdes to clear any lingering problems */
5396 fabric_serdes_reset(dd);
5397
5398 /* set the local tx rate - need to read-modify-write */
5399 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
5400 &rx_polarity_inversion, &ppd->local_tx_rate);
5401 if (ret)
5402 goto set_local_link_attributes_fail;
5403
5404 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
5405 /* set the tx rate to the fastest enabled */
5406 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
5407 ppd->local_tx_rate = 1;
5408 else
5409 ppd->local_tx_rate = 0;
5410 } else {
5411 /* set the tx rate to all enabled */
5412 ppd->local_tx_rate = 0;
5413 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
5414 ppd->local_tx_rate |= 2;
5415 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
5416 ppd->local_tx_rate |= 1;
5417 }
5418 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
5419 rx_polarity_inversion, ppd->local_tx_rate);
5420 if (ret != HCMD_SUCCESS)
5421 goto set_local_link_attributes_fail;
5422
5423 /*
5424 * DC supports continuous updates.
5425 */
5426 ret = write_vc_local_phy(dd, 0 /* no power management */,
5427 1 /* continuous updates */);
5428 if (ret != HCMD_SUCCESS)
5429 goto set_local_link_attributes_fail;
5430
5431 /* z=1 in the next call: AU of 0 is not supported by the hardware */
5432 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
5433 ppd->port_crc_mode_enabled);
5434 if (ret != HCMD_SUCCESS)
5435 goto set_local_link_attributes_fail;
5436
5437 ret = write_vc_local_link_width(dd, 0, 0,
5438 opa_to_vc_link_widths(ppd->link_width_enabled));
5439 if (ret != HCMD_SUCCESS)
5440 goto set_local_link_attributes_fail;
5441
5442 /* let peer know who we are */
5443 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
5444 if (ret == HCMD_SUCCESS)
5445 return 0;
5446
5447set_local_link_attributes_fail:
5448 dd_dev_err(dd,
5449 "Failed to set local link attributes, return 0x%x\n",
5450 ret);
5451 return ret;
5452}
5453
5454/*
5455 * Call this to start the link. Schedule a retry if the cable is not
5456 * present or if unable to start polling. Do not do anything if the
5457 * link is disabled. Returns 0 if link is disabled or moved to polling
5458 */
5459int start_link(struct hfi1_pportdata *ppd)
5460{
5461 if (!ppd->link_enabled) {
5462 dd_dev_info(ppd->dd,
5463 "%s: stopping link start because link is disabled\n",
5464 __func__);
5465 return 0;
5466 }
5467 if (!ppd->driver_link_ready) {
5468 dd_dev_info(ppd->dd,
5469 "%s: stopping link start because driver is not ready\n",
5470 __func__);
5471 return 0;
5472 }
5473
5474 if (qsfp_mod_present(ppd) || loopback == LOOPBACK_SERDES ||
5475 loopback == LOOPBACK_LCB ||
5476 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
5477 return set_link_state(ppd, HLS_DN_POLL);
5478
5479 dd_dev_info(ppd->dd,
5480 "%s: stopping link start because no cable is present\n",
5481 __func__);
5482 return -EAGAIN;
5483}
5484
5485static void reset_qsfp(struct hfi1_pportdata *ppd)
5486{
5487 struct hfi1_devdata *dd = ppd->dd;
5488 u64 mask, qsfp_mask;
5489
5490 mask = (u64)QSFP_HFI0_RESET_N;
5491 qsfp_mask = read_csr(dd,
5492 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE);
5493 qsfp_mask |= mask;
5494 write_csr(dd,
5495 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE,
5496 qsfp_mask);
5497
5498 qsfp_mask = read_csr(dd,
5499 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
5500 qsfp_mask &= ~mask;
5501 write_csr(dd,
5502 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT,
5503 qsfp_mask);
5504
5505 udelay(10);
5506
5507 qsfp_mask |= mask;
5508 write_csr(dd,
5509 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT,
5510 qsfp_mask);
5511}
5512
5513static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
5514 u8 *qsfp_interrupt_status)
5515{
5516 struct hfi1_devdata *dd = ppd->dd;
5517
5518 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
5519 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
5520 dd_dev_info(dd,
5521 "%s: QSFP cable on fire\n",
5522 __func__);
5523
5524 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
5525 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
5526 dd_dev_info(dd,
5527 "%s: QSFP cable temperature too low\n",
5528 __func__);
5529
5530 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
5531 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
5532 dd_dev_info(dd,
5533 "%s: QSFP supply voltage too high\n",
5534 __func__);
5535
5536 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
5537 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
5538 dd_dev_info(dd,
5539 "%s: QSFP supply voltage too low\n",
5540 __func__);
5541
5542 /* Byte 2 is vendor specific */
5543
5544 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
5545 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
5546 dd_dev_info(dd,
5547 "%s: Cable RX channel 1/2 power too high\n",
5548 __func__);
5549
5550 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
5551 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
5552 dd_dev_info(dd,
5553 "%s: Cable RX channel 1/2 power too low\n",
5554 __func__);
5555
5556 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
5557 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
5558 dd_dev_info(dd,
5559 "%s: Cable RX channel 3/4 power too high\n",
5560 __func__);
5561
5562 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
5563 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
5564 dd_dev_info(dd,
5565 "%s: Cable RX channel 3/4 power too low\n",
5566 __func__);
5567
5568 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
5569 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
5570 dd_dev_info(dd,
5571 "%s: Cable TX channel 1/2 bias too high\n",
5572 __func__);
5573
5574 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
5575 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
5576 dd_dev_info(dd,
5577 "%s: Cable TX channel 1/2 bias too low\n",
5578 __func__);
5579
5580 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
5581 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
5582 dd_dev_info(dd,
5583 "%s: Cable TX channel 3/4 bias too high\n",
5584 __func__);
5585
5586 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
5587 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
5588 dd_dev_info(dd,
5589 "%s: Cable TX channel 3/4 bias too low\n",
5590 __func__);
5591
5592 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
5593 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
5594 dd_dev_info(dd,
5595 "%s: Cable TX channel 1/2 power too high\n",
5596 __func__);
5597
5598 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
5599 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
5600 dd_dev_info(dd,
5601 "%s: Cable TX channel 1/2 power too low\n",
5602 __func__);
5603
5604 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
5605 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
5606 dd_dev_info(dd,
5607 "%s: Cable TX channel 3/4 power too high\n",
5608 __func__);
5609
5610 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
5611 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
5612 dd_dev_info(dd,
5613 "%s: Cable TX channel 3/4 power too low\n",
5614 __func__);
5615
5616 /* Bytes 9-10 and 11-12 are reserved */
5617 /* Bytes 13-15 are vendor specific */
5618
5619 return 0;
5620}
5621
5622static int do_pre_lni_host_behaviors(struct hfi1_pportdata *ppd)
5623{
5624 refresh_qsfp_cache(ppd, &ppd->qsfp_info);
5625
5626 return 0;
5627}
5628
5629static int do_qsfp_intr_fallback(struct hfi1_pportdata *ppd)
5630{
5631 struct hfi1_devdata *dd = ppd->dd;
5632 u8 qsfp_interrupt_status = 0;
5633
5634 if (qsfp_read(ppd, dd->hfi1_id, 2, &qsfp_interrupt_status, 1)
5635 != 1) {
5636 dd_dev_info(dd,
5637 "%s: Failed to read status of QSFP module\n",
5638 __func__);
5639 return -EIO;
5640 }
5641
5642 /* We don't care about alarms & warnings with a non-functional INT_N */
5643 if (!(qsfp_interrupt_status & QSFP_DATA_NOT_READY))
5644 do_pre_lni_host_behaviors(ppd);
5645
5646 return 0;
5647}
5648
5649/* This routine will only be scheduled if the QSFP module is present */
5650static void qsfp_event(struct work_struct *work)
5651{
5652 struct qsfp_data *qd;
5653 struct hfi1_pportdata *ppd;
5654 struct hfi1_devdata *dd;
5655
5656 qd = container_of(work, struct qsfp_data, qsfp_work);
5657 ppd = qd->ppd;
5658 dd = ppd->dd;
5659
5660 /* Sanity check */
5661 if (!qsfp_mod_present(ppd))
5662 return;
5663
5664 /*
5665 * Turn DC back on after cables has been
5666 * re-inserted. Up until now, the DC has been in
5667 * reset to save power.
5668 */
5669 dc_start(dd);
5670
5671 if (qd->cache_refresh_required) {
5672 msleep(3000);
5673 reset_qsfp(ppd);
5674
5675 /* Check for QSFP interrupt after t_init (SFF 8679)
5676 * + extra
5677 */
5678 msleep(3000);
5679 if (!qd->qsfp_interrupt_functional) {
5680 if (do_qsfp_intr_fallback(ppd) < 0)
5681 dd_dev_info(dd, "%s: QSFP fallback failed\n",
5682 __func__);
5683 ppd->driver_link_ready = 1;
5684 start_link(ppd);
5685 }
5686 }
5687
5688 if (qd->check_interrupt_flags) {
5689 u8 qsfp_interrupt_status[16] = {0,};
5690
5691 if (qsfp_read(ppd, dd->hfi1_id, 6,
5692 &qsfp_interrupt_status[0], 16) != 16) {
5693 dd_dev_info(dd,
5694 "%s: Failed to read status of QSFP module\n",
5695 __func__);
5696 } else {
5697 unsigned long flags;
5698 u8 data_status;
5699
5700 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5701 ppd->qsfp_info.check_interrupt_flags = 0;
5702 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5703 flags);
5704
5705 if (qsfp_read(ppd, dd->hfi1_id, 2, &data_status, 1)
5706 != 1) {
5707 dd_dev_info(dd,
5708 "%s: Failed to read status of QSFP module\n",
5709 __func__);
5710 }
5711 if (!(data_status & QSFP_DATA_NOT_READY)) {
5712 do_pre_lni_host_behaviors(ppd);
5713 start_link(ppd);
5714 } else
5715 handle_qsfp_error_conditions(ppd,
5716 qsfp_interrupt_status);
5717 }
5718 }
5719}
5720
5721void init_qsfp(struct hfi1_pportdata *ppd)
5722{
5723 struct hfi1_devdata *dd = ppd->dd;
5724 u64 qsfp_mask;
5725
5726 if (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
Easwar Hariharan3c2f85b2015-10-26 10:28:31 -04005727 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04005728 ppd->driver_link_ready = 1;
5729 return;
5730 }
5731
5732 ppd->qsfp_info.ppd = ppd;
5733 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
5734
5735 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5736 /* Clear current status to avoid spurious interrupts */
5737 write_csr(dd,
5738 dd->hfi1_id ?
5739 ASIC_QSFP2_CLEAR :
5740 ASIC_QSFP1_CLEAR,
5741 qsfp_mask);
5742
5743 /* Handle active low nature of INT_N and MODPRST_N pins */
5744 if (qsfp_mod_present(ppd))
5745 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
5746 write_csr(dd,
5747 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
5748 qsfp_mask);
5749
5750 /* Allow only INT_N and MODPRST_N to trigger QSFP interrupts */
5751 qsfp_mask |= (u64)QSFP_HFI0_MODPRST_N;
5752 write_csr(dd,
5753 dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
5754 qsfp_mask);
5755
5756 if (qsfp_mod_present(ppd)) {
5757 msleep(3000);
5758 reset_qsfp(ppd);
5759
5760 /* Check for QSFP interrupt after t_init (SFF 8679)
5761 * + extra
5762 */
5763 msleep(3000);
5764 if (!ppd->qsfp_info.qsfp_interrupt_functional) {
5765 if (do_qsfp_intr_fallback(ppd) < 0)
5766 dd_dev_info(dd,
5767 "%s: QSFP fallback failed\n",
5768 __func__);
5769 ppd->driver_link_ready = 1;
5770 }
5771 }
5772}
5773
5774int bringup_serdes(struct hfi1_pportdata *ppd)
5775{
5776 struct hfi1_devdata *dd = ppd->dd;
5777 u64 guid;
5778 int ret;
5779
5780 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
5781 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
5782
5783 guid = ppd->guid;
5784 if (!guid) {
5785 if (dd->base_guid)
5786 guid = dd->base_guid + ppd->port - 1;
5787 ppd->guid = guid;
5788 }
5789
5790 /* the link defaults to enabled */
5791 ppd->link_enabled = 1;
5792 /* Set linkinit_reason on power up per OPA spec */
5793 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
5794
5795 if (loopback) {
5796 ret = init_loopback(dd);
5797 if (ret < 0)
5798 return ret;
5799 }
5800
5801 return start_link(ppd);
5802}
5803
5804void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
5805{
5806 struct hfi1_devdata *dd = ppd->dd;
5807
5808 /*
5809 * Shut down the link and keep it down. First turn off that the
5810 * driver wants to allow the link to be up (driver_link_ready).
5811 * Then make sure the link is not automatically restarted
5812 * (link_enabled). Cancel any pending restart. And finally
5813 * go offline.
5814 */
5815 ppd->driver_link_ready = 0;
5816 ppd->link_enabled = 0;
5817
5818 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
5819 OPA_LINKDOWN_REASON_SMA_DISABLED);
5820 set_link_state(ppd, HLS_DN_OFFLINE);
5821
5822 /* disable the port */
5823 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
5824}
5825
5826static inline int init_cpu_counters(struct hfi1_devdata *dd)
5827{
5828 struct hfi1_pportdata *ppd;
5829 int i;
5830
5831 ppd = (struct hfi1_pportdata *)(dd + 1);
5832 for (i = 0; i < dd->num_pports; i++, ppd++) {
5833 ppd->ibport_data.rc_acks = NULL;
5834 ppd->ibport_data.rc_qacks = NULL;
5835 ppd->ibport_data.rc_acks = alloc_percpu(u64);
5836 ppd->ibport_data.rc_qacks = alloc_percpu(u64);
5837 ppd->ibport_data.rc_delayed_comp = alloc_percpu(u64);
5838 if ((ppd->ibport_data.rc_acks == NULL) ||
5839 (ppd->ibport_data.rc_delayed_comp == NULL) ||
5840 (ppd->ibport_data.rc_qacks == NULL))
5841 return -ENOMEM;
5842 }
5843
5844 return 0;
5845}
5846
5847static const char * const pt_names[] = {
5848 "expected",
5849 "eager",
5850 "invalid"
5851};
5852
5853static const char *pt_name(u32 type)
5854{
5855 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
5856}
5857
5858/*
5859 * index is the index into the receive array
5860 */
5861void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
5862 u32 type, unsigned long pa, u16 order)
5863{
5864 u64 reg;
5865 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
5866 (dd->kregbase + RCV_ARRAY));
5867
5868 if (!(dd->flags & HFI1_PRESENT))
5869 goto done;
5870
5871 if (type == PT_INVALID) {
5872 pa = 0;
5873 } else if (type > PT_INVALID) {
5874 dd_dev_err(dd,
5875 "unexpected receive array type %u for index %u, not handled\n",
5876 type, index);
5877 goto done;
5878 }
5879
5880 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
5881 pt_name(type), index, pa, (unsigned long)order);
5882
5883#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
5884 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
5885 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
5886 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
5887 << RCV_ARRAY_RT_ADDR_SHIFT;
5888 writeq(reg, base + (index * 8));
5889
5890 if (type == PT_EAGER)
5891 /*
5892 * Eager entries are written one-by-one so we have to push them
5893 * after we write the entry.
5894 */
5895 flush_wc();
5896done:
5897 return;
5898}
5899
5900void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
5901{
5902 struct hfi1_devdata *dd = rcd->dd;
5903 u32 i;
5904
5905 /* this could be optimized */
5906 for (i = rcd->eager_base; i < rcd->eager_base +
5907 rcd->egrbufs.alloced; i++)
5908 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
5909
5910 for (i = rcd->expected_base;
5911 i < rcd->expected_base + rcd->expected_count; i++)
5912 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
5913}
5914
5915int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
5916 struct hfi1_ctxt_info *kinfo)
5917{
5918 kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
5919 HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
5920 return 0;
5921}
5922
5923struct hfi1_message_header *hfi1_get_msgheader(
5924 struct hfi1_devdata *dd, __le32 *rhf_addr)
5925{
5926 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
5927
5928 return (struct hfi1_message_header *)
5929 (rhf_addr - dd->rhf_offset + offset);
5930}
5931
5932static const char * const ib_cfg_name_strings[] = {
5933 "HFI1_IB_CFG_LIDLMC",
5934 "HFI1_IB_CFG_LWID_DG_ENB",
5935 "HFI1_IB_CFG_LWID_ENB",
5936 "HFI1_IB_CFG_LWID",
5937 "HFI1_IB_CFG_SPD_ENB",
5938 "HFI1_IB_CFG_SPD",
5939 "HFI1_IB_CFG_RXPOL_ENB",
5940 "HFI1_IB_CFG_LREV_ENB",
5941 "HFI1_IB_CFG_LINKLATENCY",
5942 "HFI1_IB_CFG_HRTBT",
5943 "HFI1_IB_CFG_OP_VLS",
5944 "HFI1_IB_CFG_VL_HIGH_CAP",
5945 "HFI1_IB_CFG_VL_LOW_CAP",
5946 "HFI1_IB_CFG_OVERRUN_THRESH",
5947 "HFI1_IB_CFG_PHYERR_THRESH",
5948 "HFI1_IB_CFG_LINKDEFAULT",
5949 "HFI1_IB_CFG_PKEYS",
5950 "HFI1_IB_CFG_MTU",
5951 "HFI1_IB_CFG_LSTATE",
5952 "HFI1_IB_CFG_VL_HIGH_LIMIT",
5953 "HFI1_IB_CFG_PMA_TICKS",
5954 "HFI1_IB_CFG_PORT"
5955};
5956
5957static const char *ib_cfg_name(int which)
5958{
5959 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
5960 return "invalid";
5961 return ib_cfg_name_strings[which];
5962}
5963
5964int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
5965{
5966 struct hfi1_devdata *dd = ppd->dd;
5967 int val = 0;
5968
5969 switch (which) {
5970 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
5971 val = ppd->link_width_enabled;
5972 break;
5973 case HFI1_IB_CFG_LWID: /* currently active Link-width */
5974 val = ppd->link_width_active;
5975 break;
5976 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
5977 val = ppd->link_speed_enabled;
5978 break;
5979 case HFI1_IB_CFG_SPD: /* current Link speed */
5980 val = ppd->link_speed_active;
5981 break;
5982
5983 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
5984 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
5985 case HFI1_IB_CFG_LINKLATENCY:
5986 goto unimplemented;
5987
5988 case HFI1_IB_CFG_OP_VLS:
5989 val = ppd->vls_operational;
5990 break;
5991 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
5992 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
5993 break;
5994 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
5995 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
5996 break;
5997 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
5998 val = ppd->overrun_threshold;
5999 break;
6000 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
6001 val = ppd->phy_error_threshold;
6002 break;
6003 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
6004 val = dd->link_default;
6005 break;
6006
6007 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
6008 case HFI1_IB_CFG_PMA_TICKS:
6009 default:
6010unimplemented:
6011 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
6012 dd_dev_info(
6013 dd,
6014 "%s: which %s: not implemented\n",
6015 __func__,
6016 ib_cfg_name(which));
6017 break;
6018 }
6019
6020 return val;
6021}
6022
6023/*
6024 * The largest MAD packet size.
6025 */
6026#define MAX_MAD_PACKET 2048
6027
6028/*
6029 * Return the maximum header bytes that can go on the _wire_
6030 * for this device. This count includes the ICRC which is
6031 * not part of the packet held in memory but it is appended
6032 * by the HW.
6033 * This is dependent on the device's receive header entry size.
6034 * HFI allows this to be set per-receive context, but the
6035 * driver presently enforces a global value.
6036 */
6037u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
6038{
6039 /*
6040 * The maximum non-payload (MTU) bytes in LRH.PktLen are
6041 * the Receive Header Entry Size minus the PBC (or RHF) size
6042 * plus one DW for the ICRC appended by HW.
6043 *
6044 * dd->rcd[0].rcvhdrqentsize is in DW.
6045 * We use rcd[0] as all context will have the same value. Also,
6046 * the first kernel context would have been allocated by now so
6047 * we are guaranteed a valid value.
6048 */
6049 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
6050}
6051
6052/*
6053 * Set Send Length
6054 * @ppd - per port data
6055 *
6056 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
6057 * registers compare against LRH.PktLen, so use the max bytes included
6058 * in the LRH.
6059 *
6060 * This routine changes all VL values except VL15, which it maintains at
6061 * the same value.
6062 */
6063static void set_send_length(struct hfi1_pportdata *ppd)
6064{
6065 struct hfi1_devdata *dd = ppd->dd;
6066 u32 max_hb = lrh_max_header_bytes(dd), maxvlmtu = 0, dcmtu;
6067 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
6068 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
6069 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
6070 int i;
6071
6072 for (i = 0; i < ppd->vls_supported; i++) {
6073 if (dd->vld[i].mtu > maxvlmtu)
6074 maxvlmtu = dd->vld[i].mtu;
6075 if (i <= 3)
6076 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
6077 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
6078 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
6079 else
6080 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
6081 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
6082 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
6083 }
6084 write_csr(dd, SEND_LEN_CHECK0, len1);
6085 write_csr(dd, SEND_LEN_CHECK1, len2);
6086 /* adjust kernel credit return thresholds based on new MTUs */
6087 /* all kernel receive contexts have the same hdrqentsize */
6088 for (i = 0; i < ppd->vls_supported; i++) {
6089 sc_set_cr_threshold(dd->vld[i].sc,
6090 sc_mtu_to_threshold(dd->vld[i].sc, dd->vld[i].mtu,
6091 dd->rcd[0]->rcvhdrqentsize));
6092 }
6093 sc_set_cr_threshold(dd->vld[15].sc,
6094 sc_mtu_to_threshold(dd->vld[15].sc, dd->vld[15].mtu,
6095 dd->rcd[0]->rcvhdrqentsize));
6096
6097 /* Adjust maximum MTU for the port in DC */
6098 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
6099 (ilog2(maxvlmtu >> 8) + 1);
6100 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
6101 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
6102 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
6103 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
6104 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
6105}
6106
6107static void set_lidlmc(struct hfi1_pportdata *ppd)
6108{
6109 int i;
6110 u64 sreg = 0;
6111 struct hfi1_devdata *dd = ppd->dd;
6112 u32 mask = ~((1U << ppd->lmc) - 1);
6113 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
6114
6115 if (dd->hfi1_snoop.mode_flag)
6116 dd_dev_info(dd, "Set lid/lmc while snooping");
6117
6118 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
6119 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
6120 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
6121 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT)|
6122 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
6123 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
6124 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
6125
6126 /*
6127 * Iterate over all the send contexts and set their SLID check
6128 */
6129 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
6130 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
6131 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
6132 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
6133
6134 for (i = 0; i < dd->chip_send_contexts; i++) {
6135 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
6136 i, (u32)sreg);
6137 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
6138 }
6139
6140 /* Now we have to do the same thing for the sdma engines */
6141 sdma_update_lmc(dd, mask, ppd->lid);
6142}
6143
6144static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
6145{
6146 unsigned long timeout;
6147 u32 curr_state;
6148
6149 timeout = jiffies + msecs_to_jiffies(msecs);
6150 while (1) {
6151 curr_state = read_physical_state(dd);
6152 if (curr_state == state)
6153 break;
6154 if (time_after(jiffies, timeout)) {
6155 dd_dev_err(dd,
6156 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
6157 state, curr_state);
6158 return -ETIMEDOUT;
6159 }
6160 usleep_range(1950, 2050); /* sleep 2ms-ish */
6161 }
6162
6163 return 0;
6164}
6165
6166/*
6167 * Helper for set_link_state(). Do not call except from that routine.
6168 * Expects ppd->hls_mutex to be held.
6169 *
6170 * @rem_reason value to be sent to the neighbor
6171 *
6172 * LinkDownReasons only set if transition succeeds.
6173 */
6174static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
6175{
6176 struct hfi1_devdata *dd = ppd->dd;
6177 u32 pstate, previous_state;
6178 u32 last_local_state;
6179 u32 last_remote_state;
6180 int ret;
6181 int do_transition;
6182 int do_wait;
6183
6184 previous_state = ppd->host_link_state;
6185 ppd->host_link_state = HLS_GOING_OFFLINE;
6186 pstate = read_physical_state(dd);
6187 if (pstate == PLS_OFFLINE) {
6188 do_transition = 0; /* in right state */
6189 do_wait = 0; /* ...no need to wait */
6190 } else if ((pstate & 0xff) == PLS_OFFLINE) {
6191 do_transition = 0; /* in an offline transient state */
6192 do_wait = 1; /* ...wait for it to settle */
6193 } else {
6194 do_transition = 1; /* need to move to offline */
6195 do_wait = 1; /* ...will need to wait */
6196 }
6197
6198 if (do_transition) {
6199 ret = set_physical_link_state(dd,
6200 PLS_OFFLINE | (rem_reason << 8));
6201
6202 if (ret != HCMD_SUCCESS) {
6203 dd_dev_err(dd,
6204 "Failed to transition to Offline link state, return %d\n",
6205 ret);
6206 return -EINVAL;
6207 }
6208 if (ppd->offline_disabled_reason == OPA_LINKDOWN_REASON_NONE)
6209 ppd->offline_disabled_reason =
6210 OPA_LINKDOWN_REASON_TRANSIENT;
6211 }
6212
6213 if (do_wait) {
6214 /* it can take a while for the link to go down */
Dean Luickdc060242015-10-26 10:28:29 -04006215 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006216 if (ret < 0)
6217 return ret;
6218 }
6219
6220 /* make sure the logical state is also down */
6221 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
6222
6223 /*
6224 * Now in charge of LCB - must be after the physical state is
6225 * offline.quiet and before host_link_state is changed.
6226 */
6227 set_host_lcb_access(dd);
6228 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
6229 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
6230
6231 /*
6232 * The LNI has a mandatory wait time after the physical state
6233 * moves to Offline.Quiet. The wait time may be different
6234 * depending on how the link went down. The 8051 firmware
6235 * will observe the needed wait time and only move to ready
6236 * when that is completed. The largest of the quiet timeouts
6237 * is 2.5s, so wait that long and then a bit more.
6238 */
6239 ret = wait_fm_ready(dd, 3000);
6240 if (ret) {
6241 dd_dev_err(dd,
6242 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
6243 /* state is really offline, so make it so */
6244 ppd->host_link_state = HLS_DN_OFFLINE;
6245 return ret;
6246 }
6247
6248 /*
6249 * The state is now offline and the 8051 is ready to accept host
6250 * requests.
6251 * - change our state
6252 * - notify others if we were previously in a linkup state
6253 */
6254 ppd->host_link_state = HLS_DN_OFFLINE;
6255 if (previous_state & HLS_UP) {
6256 /* went down while link was up */
6257 handle_linkup_change(dd, 0);
6258 } else if (previous_state
6259 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
6260 /* went down while attempting link up */
6261 /* byte 1 of last_*_state is the failure reason */
6262 read_last_local_state(dd, &last_local_state);
6263 read_last_remote_state(dd, &last_remote_state);
6264 dd_dev_err(dd,
6265 "LNI failure last states: local 0x%08x, remote 0x%08x\n",
6266 last_local_state, last_remote_state);
6267 }
6268
6269 /* the active link width (downgrade) is 0 on link down */
6270 ppd->link_width_active = 0;
6271 ppd->link_width_downgrade_tx_active = 0;
6272 ppd->link_width_downgrade_rx_active = 0;
6273 ppd->current_egress_rate = 0;
6274 return 0;
6275}
6276
6277/* return the link state name */
6278static const char *link_state_name(u32 state)
6279{
6280 const char *name;
6281 int n = ilog2(state);
6282 static const char * const names[] = {
6283 [__HLS_UP_INIT_BP] = "INIT",
6284 [__HLS_UP_ARMED_BP] = "ARMED",
6285 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
6286 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
6287 [__HLS_DN_POLL_BP] = "POLL",
6288 [__HLS_DN_DISABLE_BP] = "DISABLE",
6289 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
6290 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
6291 [__HLS_GOING_UP_BP] = "GOING_UP",
6292 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
6293 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
6294 };
6295
6296 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
6297 return name ? name : "unknown";
6298}
6299
6300/* return the link state reason name */
6301static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
6302{
6303 if (state == HLS_UP_INIT) {
6304 switch (ppd->linkinit_reason) {
6305 case OPA_LINKINIT_REASON_LINKUP:
6306 return "(LINKUP)";
6307 case OPA_LINKINIT_REASON_FLAPPING:
6308 return "(FLAPPING)";
6309 case OPA_LINKINIT_OUTSIDE_POLICY:
6310 return "(OUTSIDE_POLICY)";
6311 case OPA_LINKINIT_QUARANTINED:
6312 return "(QUARANTINED)";
6313 case OPA_LINKINIT_INSUFIC_CAPABILITY:
6314 return "(INSUFIC_CAPABILITY)";
6315 default:
6316 break;
6317 }
6318 }
6319 return "";
6320}
6321
6322/*
6323 * driver_physical_state - convert the driver's notion of a port's
6324 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
6325 * Return -1 (converted to a u32) to indicate error.
6326 */
6327u32 driver_physical_state(struct hfi1_pportdata *ppd)
6328{
6329 switch (ppd->host_link_state) {
6330 case HLS_UP_INIT:
6331 case HLS_UP_ARMED:
6332 case HLS_UP_ACTIVE:
6333 return IB_PORTPHYSSTATE_LINKUP;
6334 case HLS_DN_POLL:
6335 return IB_PORTPHYSSTATE_POLLING;
6336 case HLS_DN_DISABLE:
6337 return IB_PORTPHYSSTATE_DISABLED;
6338 case HLS_DN_OFFLINE:
6339 return OPA_PORTPHYSSTATE_OFFLINE;
6340 case HLS_VERIFY_CAP:
6341 return IB_PORTPHYSSTATE_POLLING;
6342 case HLS_GOING_UP:
6343 return IB_PORTPHYSSTATE_POLLING;
6344 case HLS_GOING_OFFLINE:
6345 return OPA_PORTPHYSSTATE_OFFLINE;
6346 case HLS_LINK_COOLDOWN:
6347 return OPA_PORTPHYSSTATE_OFFLINE;
6348 case HLS_DN_DOWNDEF:
6349 default:
6350 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
6351 ppd->host_link_state);
6352 return -1;
6353 }
6354}
6355
6356/*
6357 * driver_logical_state - convert the driver's notion of a port's
6358 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
6359 * (converted to a u32) to indicate error.
6360 */
6361u32 driver_logical_state(struct hfi1_pportdata *ppd)
6362{
6363 if (ppd->host_link_state && !(ppd->host_link_state & HLS_UP))
6364 return IB_PORT_DOWN;
6365
6366 switch (ppd->host_link_state & HLS_UP) {
6367 case HLS_UP_INIT:
6368 return IB_PORT_INIT;
6369 case HLS_UP_ARMED:
6370 return IB_PORT_ARMED;
6371 case HLS_UP_ACTIVE:
6372 return IB_PORT_ACTIVE;
6373 default:
6374 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
6375 ppd->host_link_state);
6376 return -1;
6377 }
6378}
6379
6380void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
6381 u8 neigh_reason, u8 rem_reason)
6382{
6383 if (ppd->local_link_down_reason.latest == 0 &&
6384 ppd->neigh_link_down_reason.latest == 0) {
6385 ppd->local_link_down_reason.latest = lcl_reason;
6386 ppd->neigh_link_down_reason.latest = neigh_reason;
6387 ppd->remote_link_down_reason = rem_reason;
6388 }
6389}
6390
6391/*
6392 * Change the physical and/or logical link state.
6393 *
6394 * Do not call this routine while inside an interrupt. It contains
6395 * calls to routines that can take multiple seconds to finish.
6396 *
6397 * Returns 0 on success, -errno on failure.
6398 */
6399int set_link_state(struct hfi1_pportdata *ppd, u32 state)
6400{
6401 struct hfi1_devdata *dd = ppd->dd;
6402 struct ib_event event = {.device = NULL};
6403 int ret1, ret = 0;
6404 int was_up, is_down;
6405 int orig_new_state, poll_bounce;
6406
6407 mutex_lock(&ppd->hls_lock);
6408
6409 orig_new_state = state;
6410 if (state == HLS_DN_DOWNDEF)
6411 state = dd->link_default;
6412
6413 /* interpret poll -> poll as a link bounce */
6414 poll_bounce = ppd->host_link_state == HLS_DN_POLL
6415 && state == HLS_DN_POLL;
6416
6417 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
6418 link_state_name(ppd->host_link_state),
6419 link_state_name(orig_new_state),
6420 poll_bounce ? "(bounce) " : "",
6421 link_state_reason_name(ppd, state));
6422
6423 was_up = !!(ppd->host_link_state & HLS_UP);
6424
6425 /*
6426 * If we're going to a (HLS_*) link state that implies the logical
6427 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
6428 * reset is_sm_config_started to 0.
6429 */
6430 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
6431 ppd->is_sm_config_started = 0;
6432
6433 /*
6434 * Do nothing if the states match. Let a poll to poll link bounce
6435 * go through.
6436 */
6437 if (ppd->host_link_state == state && !poll_bounce)
6438 goto done;
6439
6440 switch (state) {
6441 case HLS_UP_INIT:
6442 if (ppd->host_link_state == HLS_DN_POLL && (quick_linkup
6443 || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
6444 /*
6445 * Quick link up jumps from polling to here.
6446 *
6447 * Whether in normal or loopback mode, the
6448 * simulator jumps from polling to link up.
6449 * Accept that here.
6450 */
6451 /* OK */;
6452 } else if (ppd->host_link_state != HLS_GOING_UP) {
6453 goto unexpected;
6454 }
6455
6456 ppd->host_link_state = HLS_UP_INIT;
6457 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
6458 if (ret) {
6459 /* logical state didn't change, stay at going_up */
6460 ppd->host_link_state = HLS_GOING_UP;
6461 dd_dev_err(dd,
6462 "%s: logical state did not change to INIT\n",
6463 __func__);
6464 } else {
6465 /* clear old transient LINKINIT_REASON code */
6466 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
6467 ppd->linkinit_reason =
6468 OPA_LINKINIT_REASON_LINKUP;
6469
6470 /* enable the port */
6471 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6472
6473 handle_linkup_change(dd, 1);
6474 }
6475 break;
6476 case HLS_UP_ARMED:
6477 if (ppd->host_link_state != HLS_UP_INIT)
6478 goto unexpected;
6479
6480 ppd->host_link_state = HLS_UP_ARMED;
6481 set_logical_state(dd, LSTATE_ARMED);
6482 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
6483 if (ret) {
6484 /* logical state didn't change, stay at init */
6485 ppd->host_link_state = HLS_UP_INIT;
6486 dd_dev_err(dd,
6487 "%s: logical state did not change to ARMED\n",
6488 __func__);
6489 }
6490 /*
6491 * The simulator does not currently implement SMA messages,
6492 * so neighbor_normal is not set. Set it here when we first
6493 * move to Armed.
6494 */
6495 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
6496 ppd->neighbor_normal = 1;
6497 break;
6498 case HLS_UP_ACTIVE:
6499 if (ppd->host_link_state != HLS_UP_ARMED)
6500 goto unexpected;
6501
6502 ppd->host_link_state = HLS_UP_ACTIVE;
6503 set_logical_state(dd, LSTATE_ACTIVE);
6504 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
6505 if (ret) {
6506 /* logical state didn't change, stay at armed */
6507 ppd->host_link_state = HLS_UP_ARMED;
6508 dd_dev_err(dd,
6509 "%s: logical state did not change to ACTIVE\n",
6510 __func__);
6511 } else {
6512
6513 /* tell all engines to go running */
6514 sdma_all_running(dd);
6515
6516 /* Signal the IB layer that the port has went active */
6517 event.device = &dd->verbs_dev.ibdev;
6518 event.element.port_num = ppd->port;
6519 event.event = IB_EVENT_PORT_ACTIVE;
6520 }
6521 break;
6522 case HLS_DN_POLL:
6523 if ((ppd->host_link_state == HLS_DN_DISABLE ||
6524 ppd->host_link_state == HLS_DN_OFFLINE) &&
6525 dd->dc_shutdown)
6526 dc_start(dd);
6527 /* Hand LED control to the DC */
6528 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
6529
6530 if (ppd->host_link_state != HLS_DN_OFFLINE) {
6531 u8 tmp = ppd->link_enabled;
6532
6533 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6534 if (ret) {
6535 ppd->link_enabled = tmp;
6536 break;
6537 }
6538 ppd->remote_link_down_reason = 0;
6539
6540 if (ppd->driver_link_ready)
6541 ppd->link_enabled = 1;
6542 }
6543
6544 ret = set_local_link_attributes(ppd);
6545 if (ret)
6546 break;
6547
6548 ppd->port_error_action = 0;
6549 ppd->host_link_state = HLS_DN_POLL;
6550
6551 if (quick_linkup) {
6552 /* quick linkup does not go into polling */
6553 ret = do_quick_linkup(dd);
6554 } else {
6555 ret1 = set_physical_link_state(dd, PLS_POLLING);
6556 if (ret1 != HCMD_SUCCESS) {
6557 dd_dev_err(dd,
6558 "Failed to transition to Polling link state, return 0x%x\n",
6559 ret1);
6560 ret = -EINVAL;
6561 }
6562 }
6563 ppd->offline_disabled_reason = OPA_LINKDOWN_REASON_NONE;
6564 /*
6565 * If an error occurred above, go back to offline. The
6566 * caller may reschedule another attempt.
6567 */
6568 if (ret)
6569 goto_offline(ppd, 0);
6570 break;
6571 case HLS_DN_DISABLE:
6572 /* link is disabled */
6573 ppd->link_enabled = 0;
6574
6575 /* allow any state to transition to disabled */
6576
6577 /* must transition to offline first */
6578 if (ppd->host_link_state != HLS_DN_OFFLINE) {
6579 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6580 if (ret)
6581 break;
6582 ppd->remote_link_down_reason = 0;
6583 }
6584
6585 ret1 = set_physical_link_state(dd, PLS_DISABLED);
6586 if (ret1 != HCMD_SUCCESS) {
6587 dd_dev_err(dd,
6588 "Failed to transition to Disabled link state, return 0x%x\n",
6589 ret1);
6590 ret = -EINVAL;
6591 break;
6592 }
6593 ppd->host_link_state = HLS_DN_DISABLE;
6594 dc_shutdown(dd);
6595 break;
6596 case HLS_DN_OFFLINE:
6597 if (ppd->host_link_state == HLS_DN_DISABLE)
6598 dc_start(dd);
6599
6600 /* allow any state to transition to offline */
6601 ret = goto_offline(ppd, ppd->remote_link_down_reason);
6602 if (!ret)
6603 ppd->remote_link_down_reason = 0;
6604 break;
6605 case HLS_VERIFY_CAP:
6606 if (ppd->host_link_state != HLS_DN_POLL)
6607 goto unexpected;
6608 ppd->host_link_state = HLS_VERIFY_CAP;
6609 break;
6610 case HLS_GOING_UP:
6611 if (ppd->host_link_state != HLS_VERIFY_CAP)
6612 goto unexpected;
6613
6614 ret1 = set_physical_link_state(dd, PLS_LINKUP);
6615 if (ret1 != HCMD_SUCCESS) {
6616 dd_dev_err(dd,
6617 "Failed to transition to link up state, return 0x%x\n",
6618 ret1);
6619 ret = -EINVAL;
6620 break;
6621 }
6622 ppd->host_link_state = HLS_GOING_UP;
6623 break;
6624
6625 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
6626 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
6627 default:
6628 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
6629 __func__, state);
6630 ret = -EINVAL;
6631 break;
6632 }
6633
6634 is_down = !!(ppd->host_link_state & (HLS_DN_POLL |
6635 HLS_DN_DISABLE | HLS_DN_OFFLINE));
6636
6637 if (was_up && is_down && ppd->local_link_down_reason.sma == 0 &&
6638 ppd->neigh_link_down_reason.sma == 0) {
6639 ppd->local_link_down_reason.sma =
6640 ppd->local_link_down_reason.latest;
6641 ppd->neigh_link_down_reason.sma =
6642 ppd->neigh_link_down_reason.latest;
6643 }
6644
6645 goto done;
6646
6647unexpected:
6648 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
6649 __func__, link_state_name(ppd->host_link_state),
6650 link_state_name(state));
6651 ret = -EINVAL;
6652
6653done:
6654 mutex_unlock(&ppd->hls_lock);
6655
6656 if (event.device)
6657 ib_dispatch_event(&event);
6658
6659 return ret;
6660}
6661
6662int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
6663{
6664 u64 reg;
6665 int ret = 0;
6666
6667 switch (which) {
6668 case HFI1_IB_CFG_LIDLMC:
6669 set_lidlmc(ppd);
6670 break;
6671 case HFI1_IB_CFG_VL_HIGH_LIMIT:
6672 /*
6673 * The VL Arbitrator high limit is sent in units of 4k
6674 * bytes, while HFI stores it in units of 64 bytes.
6675 */
6676 val *= 4096/64;
6677 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
6678 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
6679 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
6680 break;
6681 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
6682 /* HFI only supports POLL as the default link down state */
6683 if (val != HLS_DN_POLL)
6684 ret = -EINVAL;
6685 break;
6686 case HFI1_IB_CFG_OP_VLS:
6687 if (ppd->vls_operational != val) {
6688 ppd->vls_operational = val;
6689 if (!ppd->port)
6690 ret = -EINVAL;
6691 else
6692 ret = sdma_map_init(
6693 ppd->dd,
6694 ppd->port - 1,
6695 val,
6696 NULL);
6697 }
6698 break;
6699 /*
6700 * For link width, link width downgrade, and speed enable, always AND
6701 * the setting with what is actually supported. This has two benefits.
6702 * First, enabled can't have unsupported values, no matter what the
6703 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
6704 * "fill in with your supported value" have all the bits in the
6705 * field set, so simply ANDing with supported has the desired result.
6706 */
6707 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
6708 ppd->link_width_enabled = val & ppd->link_width_supported;
6709 break;
6710 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
6711 ppd->link_width_downgrade_enabled =
6712 val & ppd->link_width_downgrade_supported;
6713 break;
6714 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
6715 ppd->link_speed_enabled = val & ppd->link_speed_supported;
6716 break;
6717 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
6718 /*
6719 * HFI does not follow IB specs, save this value
6720 * so we can report it, if asked.
6721 */
6722 ppd->overrun_threshold = val;
6723 break;
6724 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
6725 /*
6726 * HFI does not follow IB specs, save this value
6727 * so we can report it, if asked.
6728 */
6729 ppd->phy_error_threshold = val;
6730 break;
6731
6732 case HFI1_IB_CFG_MTU:
6733 set_send_length(ppd);
6734 break;
6735
6736 case HFI1_IB_CFG_PKEYS:
6737 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
6738 set_partition_keys(ppd);
6739 break;
6740
6741 default:
6742 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
6743 dd_dev_info(ppd->dd,
6744 "%s: which %s, val 0x%x: not implemented\n",
6745 __func__, ib_cfg_name(which), val);
6746 break;
6747 }
6748 return ret;
6749}
6750
6751/* begin functions related to vl arbitration table caching */
6752static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
6753{
6754 int i;
6755
6756 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
6757 VL_ARB_LOW_PRIO_TABLE_SIZE);
6758 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
6759 VL_ARB_HIGH_PRIO_TABLE_SIZE);
6760
6761 /*
6762 * Note that we always return values directly from the
6763 * 'vl_arb_cache' (and do no CSR reads) in response to a
6764 * 'Get(VLArbTable)'. This is obviously correct after a
6765 * 'Set(VLArbTable)', since the cache will then be up to
6766 * date. But it's also correct prior to any 'Set(VLArbTable)'
6767 * since then both the cache, and the relevant h/w registers
6768 * will be zeroed.
6769 */
6770
6771 for (i = 0; i < MAX_PRIO_TABLE; i++)
6772 spin_lock_init(&ppd->vl_arb_cache[i].lock);
6773}
6774
6775/*
6776 * vl_arb_lock_cache
6777 *
6778 * All other vl_arb_* functions should be called only after locking
6779 * the cache.
6780 */
6781static inline struct vl_arb_cache *
6782vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
6783{
6784 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
6785 return NULL;
6786 spin_lock(&ppd->vl_arb_cache[idx].lock);
6787 return &ppd->vl_arb_cache[idx];
6788}
6789
6790static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
6791{
6792 spin_unlock(&ppd->vl_arb_cache[idx].lock);
6793}
6794
6795static void vl_arb_get_cache(struct vl_arb_cache *cache,
6796 struct ib_vl_weight_elem *vl)
6797{
6798 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
6799}
6800
6801static void vl_arb_set_cache(struct vl_arb_cache *cache,
6802 struct ib_vl_weight_elem *vl)
6803{
6804 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
6805}
6806
6807static int vl_arb_match_cache(struct vl_arb_cache *cache,
6808 struct ib_vl_weight_elem *vl)
6809{
6810 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
6811}
6812/* end functions related to vl arbitration table caching */
6813
6814static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
6815 u32 size, struct ib_vl_weight_elem *vl)
6816{
6817 struct hfi1_devdata *dd = ppd->dd;
6818 u64 reg;
6819 unsigned int i, is_up = 0;
6820 int drain, ret = 0;
6821
6822 mutex_lock(&ppd->hls_lock);
6823
6824 if (ppd->host_link_state & HLS_UP)
6825 is_up = 1;
6826
6827 drain = !is_ax(dd) && is_up;
6828
6829 if (drain)
6830 /*
6831 * Before adjusting VL arbitration weights, empty per-VL
6832 * FIFOs, otherwise a packet whose VL weight is being
6833 * set to 0 could get stuck in a FIFO with no chance to
6834 * egress.
6835 */
6836 ret = stop_drain_data_vls(dd);
6837
6838 if (ret) {
6839 dd_dev_err(
6840 dd,
6841 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
6842 __func__);
6843 goto err;
6844 }
6845
6846 for (i = 0; i < size; i++, vl++) {
6847 /*
6848 * NOTE: The low priority shift and mask are used here, but
6849 * they are the same for both the low and high registers.
6850 */
6851 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
6852 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
6853 | (((u64)vl->weight
6854 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
6855 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
6856 write_csr(dd, target + (i * 8), reg);
6857 }
6858 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
6859
6860 if (drain)
6861 open_fill_data_vls(dd); /* reopen all VLs */
6862
6863err:
6864 mutex_unlock(&ppd->hls_lock);
6865
6866 return ret;
6867}
6868
6869/*
6870 * Read one credit merge VL register.
6871 */
6872static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
6873 struct vl_limit *vll)
6874{
6875 u64 reg = read_csr(dd, csr);
6876
6877 vll->dedicated = cpu_to_be16(
6878 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
6879 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
6880 vll->shared = cpu_to_be16(
6881 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
6882 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
6883}
6884
6885/*
6886 * Read the current credit merge limits.
6887 */
6888static int get_buffer_control(struct hfi1_devdata *dd,
6889 struct buffer_control *bc, u16 *overall_limit)
6890{
6891 u64 reg;
6892 int i;
6893
6894 /* not all entries are filled in */
6895 memset(bc, 0, sizeof(*bc));
6896
6897 /* OPA and HFI have a 1-1 mapping */
6898 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6899 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8*i), &bc->vl[i]);
6900
6901 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
6902 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
6903
6904 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6905 bc->overall_shared_limit = cpu_to_be16(
6906 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
6907 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
6908 if (overall_limit)
6909 *overall_limit = (reg
6910 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
6911 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
6912 return sizeof(struct buffer_control);
6913}
6914
6915static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
6916{
6917 u64 reg;
6918 int i;
6919
6920 /* each register contains 16 SC->VLnt mappings, 4 bits each */
6921 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
6922 for (i = 0; i < sizeof(u64); i++) {
6923 u8 byte = *(((u8 *)&reg) + i);
6924
6925 dp->vlnt[2 * i] = byte & 0xf;
6926 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
6927 }
6928
6929 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
6930 for (i = 0; i < sizeof(u64); i++) {
6931 u8 byte = *(((u8 *)&reg) + i);
6932
6933 dp->vlnt[16 + (2 * i)] = byte & 0xf;
6934 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
6935 }
6936 return sizeof(struct sc2vlnt);
6937}
6938
6939static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
6940 struct ib_vl_weight_elem *vl)
6941{
6942 unsigned int i;
6943
6944 for (i = 0; i < nelems; i++, vl++) {
6945 vl->vl = 0xf;
6946 vl->weight = 0;
6947 }
6948}
6949
6950static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
6951{
6952 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
6953 DC_SC_VL_VAL(15_0,
6954 0, dp->vlnt[0] & 0xf,
6955 1, dp->vlnt[1] & 0xf,
6956 2, dp->vlnt[2] & 0xf,
6957 3, dp->vlnt[3] & 0xf,
6958 4, dp->vlnt[4] & 0xf,
6959 5, dp->vlnt[5] & 0xf,
6960 6, dp->vlnt[6] & 0xf,
6961 7, dp->vlnt[7] & 0xf,
6962 8, dp->vlnt[8] & 0xf,
6963 9, dp->vlnt[9] & 0xf,
6964 10, dp->vlnt[10] & 0xf,
6965 11, dp->vlnt[11] & 0xf,
6966 12, dp->vlnt[12] & 0xf,
6967 13, dp->vlnt[13] & 0xf,
6968 14, dp->vlnt[14] & 0xf,
6969 15, dp->vlnt[15] & 0xf));
6970 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
6971 DC_SC_VL_VAL(31_16,
6972 16, dp->vlnt[16] & 0xf,
6973 17, dp->vlnt[17] & 0xf,
6974 18, dp->vlnt[18] & 0xf,
6975 19, dp->vlnt[19] & 0xf,
6976 20, dp->vlnt[20] & 0xf,
6977 21, dp->vlnt[21] & 0xf,
6978 22, dp->vlnt[22] & 0xf,
6979 23, dp->vlnt[23] & 0xf,
6980 24, dp->vlnt[24] & 0xf,
6981 25, dp->vlnt[25] & 0xf,
6982 26, dp->vlnt[26] & 0xf,
6983 27, dp->vlnt[27] & 0xf,
6984 28, dp->vlnt[28] & 0xf,
6985 29, dp->vlnt[29] & 0xf,
6986 30, dp->vlnt[30] & 0xf,
6987 31, dp->vlnt[31] & 0xf));
6988}
6989
6990static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
6991 u16 limit)
6992{
6993 if (limit != 0)
6994 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
6995 what, (int)limit, idx);
6996}
6997
6998/* change only the shared limit portion of SendCmGLobalCredit */
6999static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
7000{
7001 u64 reg;
7002
7003 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
7004 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
7005 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
7006 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
7007}
7008
7009/* change only the total credit limit portion of SendCmGLobalCredit */
7010static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
7011{
7012 u64 reg;
7013
7014 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
7015 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
7016 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
7017 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
7018}
7019
7020/* set the given per-VL shared limit */
7021static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
7022{
7023 u64 reg;
7024 u32 addr;
7025
7026 if (vl < TXE_NUM_DATA_VL)
7027 addr = SEND_CM_CREDIT_VL + (8 * vl);
7028 else
7029 addr = SEND_CM_CREDIT_VL15;
7030
7031 reg = read_csr(dd, addr);
7032 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
7033 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
7034 write_csr(dd, addr, reg);
7035}
7036
7037/* set the given per-VL dedicated limit */
7038static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
7039{
7040 u64 reg;
7041 u32 addr;
7042
7043 if (vl < TXE_NUM_DATA_VL)
7044 addr = SEND_CM_CREDIT_VL + (8 * vl);
7045 else
7046 addr = SEND_CM_CREDIT_VL15;
7047
7048 reg = read_csr(dd, addr);
7049 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
7050 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
7051 write_csr(dd, addr, reg);
7052}
7053
7054/* spin until the given per-VL status mask bits clear */
7055static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
7056 const char *which)
7057{
7058 unsigned long timeout;
7059 u64 reg;
7060
7061 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
7062 while (1) {
7063 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
7064
7065 if (reg == 0)
7066 return; /* success */
7067 if (time_after(jiffies, timeout))
7068 break; /* timed out */
7069 udelay(1);
7070 }
7071
7072 dd_dev_err(dd,
7073 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
7074 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
7075 /*
7076 * If this occurs, it is likely there was a credit loss on the link.
7077 * The only recovery from that is a link bounce.
7078 */
7079 dd_dev_err(dd,
7080 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
7081}
7082
7083/*
7084 * The number of credits on the VLs may be changed while everything
7085 * is "live", but the following algorithm must be followed due to
7086 * how the hardware is actually implemented. In particular,
7087 * Return_Credit_Status[] is the only correct status check.
7088 *
7089 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
7090 * set Global_Shared_Credit_Limit = 0
7091 * use_all_vl = 1
7092 * mask0 = all VLs that are changing either dedicated or shared limits
7093 * set Shared_Limit[mask0] = 0
7094 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
7095 * if (changing any dedicated limit)
7096 * mask1 = all VLs that are lowering dedicated limits
7097 * lower Dedicated_Limit[mask1]
7098 * spin until Return_Credit_Status[mask1] == 0
7099 * raise Dedicated_Limits
7100 * raise Shared_Limits
7101 * raise Global_Shared_Credit_Limit
7102 *
7103 * lower = if the new limit is lower, set the limit to the new value
7104 * raise = if the new limit is higher than the current value (may be changed
7105 * earlier in the algorithm), set the new limit to the new value
7106 */
7107static int set_buffer_control(struct hfi1_devdata *dd,
7108 struct buffer_control *new_bc)
7109{
7110 u64 changing_mask, ld_mask, stat_mask;
7111 int change_count;
7112 int i, use_all_mask;
7113 int this_shared_changing;
7114 /*
7115 * A0: add the variable any_shared_limit_changing below and in the
7116 * algorithm above. If removing A0 support, it can be removed.
7117 */
7118 int any_shared_limit_changing;
7119 struct buffer_control cur_bc;
7120 u8 changing[OPA_MAX_VLS];
7121 u8 lowering_dedicated[OPA_MAX_VLS];
7122 u16 cur_total;
7123 u32 new_total = 0;
7124 const u64 all_mask =
7125 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
7126 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
7127 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
7128 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
7129 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
7130 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
7131 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
7132 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
7133 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
7134
7135#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
7136#define NUM_USABLE_VLS 16 /* look at VL15 and less */
7137
7138
7139 /* find the new total credits, do sanity check on unused VLs */
7140 for (i = 0; i < OPA_MAX_VLS; i++) {
7141 if (valid_vl(i)) {
7142 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
7143 continue;
7144 }
7145 nonzero_msg(dd, i, "dedicated",
7146 be16_to_cpu(new_bc->vl[i].dedicated));
7147 nonzero_msg(dd, i, "shared",
7148 be16_to_cpu(new_bc->vl[i].shared));
7149 new_bc->vl[i].dedicated = 0;
7150 new_bc->vl[i].shared = 0;
7151 }
7152 new_total += be16_to_cpu(new_bc->overall_shared_limit);
7153 if (new_total > (u32)dd->link_credits)
7154 return -EINVAL;
7155 /* fetch the current values */
7156 get_buffer_control(dd, &cur_bc, &cur_total);
7157
7158 /*
7159 * Create the masks we will use.
7160 */
7161 memset(changing, 0, sizeof(changing));
7162 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
7163 /* NOTE: Assumes that the individual VL bits are adjacent and in
7164 increasing order */
7165 stat_mask =
7166 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
7167 changing_mask = 0;
7168 ld_mask = 0;
7169 change_count = 0;
7170 any_shared_limit_changing = 0;
7171 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
7172 if (!valid_vl(i))
7173 continue;
7174 this_shared_changing = new_bc->vl[i].shared
7175 != cur_bc.vl[i].shared;
7176 if (this_shared_changing)
7177 any_shared_limit_changing = 1;
7178 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated
7179 || this_shared_changing) {
7180 changing[i] = 1;
7181 changing_mask |= stat_mask;
7182 change_count++;
7183 }
7184 if (be16_to_cpu(new_bc->vl[i].dedicated) <
7185 be16_to_cpu(cur_bc.vl[i].dedicated)) {
7186 lowering_dedicated[i] = 1;
7187 ld_mask |= stat_mask;
7188 }
7189 }
7190
7191 /* bracket the credit change with a total adjustment */
7192 if (new_total > cur_total)
7193 set_global_limit(dd, new_total);
7194
7195 /*
7196 * Start the credit change algorithm.
7197 */
7198 use_all_mask = 0;
7199 if ((be16_to_cpu(new_bc->overall_shared_limit) <
7200 be16_to_cpu(cur_bc.overall_shared_limit))
7201 || (is_a0(dd) && any_shared_limit_changing)) {
7202 set_global_shared(dd, 0);
7203 cur_bc.overall_shared_limit = 0;
7204 use_all_mask = 1;
7205 }
7206
7207 for (i = 0; i < NUM_USABLE_VLS; i++) {
7208 if (!valid_vl(i))
7209 continue;
7210
7211 if (changing[i]) {
7212 set_vl_shared(dd, i, 0);
7213 cur_bc.vl[i].shared = 0;
7214 }
7215 }
7216
7217 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
7218 "shared");
7219
7220 if (change_count > 0) {
7221 for (i = 0; i < NUM_USABLE_VLS; i++) {
7222 if (!valid_vl(i))
7223 continue;
7224
7225 if (lowering_dedicated[i]) {
7226 set_vl_dedicated(dd, i,
7227 be16_to_cpu(new_bc->vl[i].dedicated));
7228 cur_bc.vl[i].dedicated =
7229 new_bc->vl[i].dedicated;
7230 }
7231 }
7232
7233 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
7234
7235 /* now raise all dedicated that are going up */
7236 for (i = 0; i < NUM_USABLE_VLS; i++) {
7237 if (!valid_vl(i))
7238 continue;
7239
7240 if (be16_to_cpu(new_bc->vl[i].dedicated) >
7241 be16_to_cpu(cur_bc.vl[i].dedicated))
7242 set_vl_dedicated(dd, i,
7243 be16_to_cpu(new_bc->vl[i].dedicated));
7244 }
7245 }
7246
7247 /* next raise all shared that are going up */
7248 for (i = 0; i < NUM_USABLE_VLS; i++) {
7249 if (!valid_vl(i))
7250 continue;
7251
7252 if (be16_to_cpu(new_bc->vl[i].shared) >
7253 be16_to_cpu(cur_bc.vl[i].shared))
7254 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
7255 }
7256
7257 /* finally raise the global shared */
7258 if (be16_to_cpu(new_bc->overall_shared_limit) >
7259 be16_to_cpu(cur_bc.overall_shared_limit))
7260 set_global_shared(dd,
7261 be16_to_cpu(new_bc->overall_shared_limit));
7262
7263 /* bracket the credit change with a total adjustment */
7264 if (new_total < cur_total)
7265 set_global_limit(dd, new_total);
7266 return 0;
7267}
7268
7269/*
7270 * Read the given fabric manager table. Return the size of the
7271 * table (in bytes) on success, and a negative error code on
7272 * failure.
7273 */
7274int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
7275
7276{
7277 int size;
7278 struct vl_arb_cache *vlc;
7279
7280 switch (which) {
7281 case FM_TBL_VL_HIGH_ARB:
7282 size = 256;
7283 /*
7284 * OPA specifies 128 elements (of 2 bytes each), though
7285 * HFI supports only 16 elements in h/w.
7286 */
7287 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
7288 vl_arb_get_cache(vlc, t);
7289 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7290 break;
7291 case FM_TBL_VL_LOW_ARB:
7292 size = 256;
7293 /*
7294 * OPA specifies 128 elements (of 2 bytes each), though
7295 * HFI supports only 16 elements in h/w.
7296 */
7297 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
7298 vl_arb_get_cache(vlc, t);
7299 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7300 break;
7301 case FM_TBL_BUFFER_CONTROL:
7302 size = get_buffer_control(ppd->dd, t, NULL);
7303 break;
7304 case FM_TBL_SC2VLNT:
7305 size = get_sc2vlnt(ppd->dd, t);
7306 break;
7307 case FM_TBL_VL_PREEMPT_ELEMS:
7308 size = 256;
7309 /* OPA specifies 128 elements, of 2 bytes each */
7310 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
7311 break;
7312 case FM_TBL_VL_PREEMPT_MATRIX:
7313 size = 256;
7314 /*
7315 * OPA specifies that this is the same size as the VL
7316 * arbitration tables (i.e., 256 bytes).
7317 */
7318 break;
7319 default:
7320 return -EINVAL;
7321 }
7322 return size;
7323}
7324
7325/*
7326 * Write the given fabric manager table.
7327 */
7328int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
7329{
7330 int ret = 0;
7331 struct vl_arb_cache *vlc;
7332
7333 switch (which) {
7334 case FM_TBL_VL_HIGH_ARB:
7335 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
7336 if (vl_arb_match_cache(vlc, t)) {
7337 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7338 break;
7339 }
7340 vl_arb_set_cache(vlc, t);
7341 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
7342 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
7343 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
7344 break;
7345 case FM_TBL_VL_LOW_ARB:
7346 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
7347 if (vl_arb_match_cache(vlc, t)) {
7348 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7349 break;
7350 }
7351 vl_arb_set_cache(vlc, t);
7352 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
7353 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
7354 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
7355 break;
7356 case FM_TBL_BUFFER_CONTROL:
7357 ret = set_buffer_control(ppd->dd, t);
7358 break;
7359 case FM_TBL_SC2VLNT:
7360 set_sc2vlnt(ppd->dd, t);
7361 break;
7362 default:
7363 ret = -EINVAL;
7364 }
7365 return ret;
7366}
7367
7368/*
7369 * Disable all data VLs.
7370 *
7371 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
7372 */
7373static int disable_data_vls(struct hfi1_devdata *dd)
7374{
7375 if (is_a0(dd))
7376 return 1;
7377
7378 pio_send_control(dd, PSC_DATA_VL_DISABLE);
7379
7380 return 0;
7381}
7382
7383/*
7384 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
7385 * Just re-enables all data VLs (the "fill" part happens
7386 * automatically - the name was chosen for symmetry with
7387 * stop_drain_data_vls()).
7388 *
7389 * Return 0 if successful, non-zero if the VLs cannot be enabled.
7390 */
7391int open_fill_data_vls(struct hfi1_devdata *dd)
7392{
7393 if (is_a0(dd))
7394 return 1;
7395
7396 pio_send_control(dd, PSC_DATA_VL_ENABLE);
7397
7398 return 0;
7399}
7400
7401/*
7402 * drain_data_vls() - assumes that disable_data_vls() has been called,
7403 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
7404 * engines to drop to 0.
7405 */
7406static void drain_data_vls(struct hfi1_devdata *dd)
7407{
7408 sc_wait(dd);
7409 sdma_wait(dd);
7410 pause_for_credit_return(dd);
7411}
7412
7413/*
7414 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
7415 *
7416 * Use open_fill_data_vls() to resume using data VLs. This pair is
7417 * meant to be used like this:
7418 *
7419 * stop_drain_data_vls(dd);
7420 * // do things with per-VL resources
7421 * open_fill_data_vls(dd);
7422 */
7423int stop_drain_data_vls(struct hfi1_devdata *dd)
7424{
7425 int ret;
7426
7427 ret = disable_data_vls(dd);
7428 if (ret == 0)
7429 drain_data_vls(dd);
7430
7431 return ret;
7432}
7433
7434/*
7435 * Convert a nanosecond time to a cclock count. No matter how slow
7436 * the cclock, a non-zero ns will always have a non-zero result.
7437 */
7438u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
7439{
7440 u32 cclocks;
7441
7442 if (dd->icode == ICODE_FPGA_EMULATION)
7443 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
7444 else /* simulation pretends to be ASIC */
7445 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
7446 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
7447 cclocks = 1;
7448 return cclocks;
7449}
7450
7451/*
7452 * Convert a cclock count to nanoseconds. Not matter how slow
7453 * the cclock, a non-zero cclocks will always have a non-zero result.
7454 */
7455u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
7456{
7457 u32 ns;
7458
7459 if (dd->icode == ICODE_FPGA_EMULATION)
7460 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
7461 else /* simulation pretends to be ASIC */
7462 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
7463 if (cclocks && !ns)
7464 ns = 1;
7465 return ns;
7466}
7467
7468/*
7469 * Dynamically adjust the receive interrupt timeout for a context based on
7470 * incoming packet rate.
7471 *
7472 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
7473 */
7474static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
7475{
7476 struct hfi1_devdata *dd = rcd->dd;
7477 u32 timeout = rcd->rcvavail_timeout;
7478
7479 /*
7480 * This algorithm doubles or halves the timeout depending on whether
7481 * the number of packets received in this interrupt were less than or
7482 * greater equal the interrupt count.
7483 *
7484 * The calculations below do not allow a steady state to be achieved.
7485 * Only at the endpoints it is possible to have an unchanging
7486 * timeout.
7487 */
7488 if (npkts < rcv_intr_count) {
7489 /*
7490 * Not enough packets arrived before the timeout, adjust
7491 * timeout downward.
7492 */
7493 if (timeout < 2) /* already at minimum? */
7494 return;
7495 timeout >>= 1;
7496 } else {
7497 /*
7498 * More than enough packets arrived before the timeout, adjust
7499 * timeout upward.
7500 */
7501 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
7502 return;
7503 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
7504 }
7505
7506 rcd->rcvavail_timeout = timeout;
7507 /* timeout cannot be larger than rcv_intr_timeout_csr which has already
7508 been verified to be in range */
7509 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
7510 (u64)timeout << RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
7511}
7512
7513void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
7514 u32 intr_adjust, u32 npkts)
7515{
7516 struct hfi1_devdata *dd = rcd->dd;
7517 u64 reg;
7518 u32 ctxt = rcd->ctxt;
7519
7520 /*
7521 * Need to write timeout register before updating RcvHdrHead to ensure
7522 * that a new value is used when the HW decides to restart counting.
7523 */
7524 if (intr_adjust)
7525 adjust_rcv_timeout(rcd, npkts);
7526 if (updegr) {
7527 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
7528 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
7529 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
7530 }
7531 mmiowb();
7532 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
7533 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
7534 << RCV_HDR_HEAD_HEAD_SHIFT);
7535 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
7536 mmiowb();
7537}
7538
7539u32 hdrqempty(struct hfi1_ctxtdata *rcd)
7540{
7541 u32 head, tail;
7542
7543 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
7544 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
7545
7546 if (rcd->rcvhdrtail_kvaddr)
7547 tail = get_rcvhdrtail(rcd);
7548 else
7549 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
7550
7551 return head == tail;
7552}
7553
7554/*
7555 * Context Control and Receive Array encoding for buffer size:
7556 * 0x0 invalid
7557 * 0x1 4 KB
7558 * 0x2 8 KB
7559 * 0x3 16 KB
7560 * 0x4 32 KB
7561 * 0x5 64 KB
7562 * 0x6 128 KB
7563 * 0x7 256 KB
7564 * 0x8 512 KB (Receive Array only)
7565 * 0x9 1 MB (Receive Array only)
7566 * 0xa 2 MB (Receive Array only)
7567 *
7568 * 0xB-0xF - reserved (Receive Array only)
7569 *
7570 *
7571 * This routine assumes that the value has already been sanity checked.
7572 */
7573static u32 encoded_size(u32 size)
7574{
7575 switch (size) {
7576 case 4*1024: return 0x1;
7577 case 8*1024: return 0x2;
7578 case 16*1024: return 0x3;
7579 case 32*1024: return 0x4;
7580 case 64*1024: return 0x5;
7581 case 128*1024: return 0x6;
7582 case 256*1024: return 0x7;
7583 case 512*1024: return 0x8;
7584 case 1*1024*1024: return 0x9;
7585 case 2*1024*1024: return 0xa;
7586 }
7587 return 0x1; /* if invalid, go with the minimum size */
7588}
7589
7590void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
7591{
7592 struct hfi1_ctxtdata *rcd;
7593 u64 rcvctrl, reg;
7594 int did_enable = 0;
7595
7596 rcd = dd->rcd[ctxt];
7597 if (!rcd)
7598 return;
7599
7600 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
7601
7602 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
7603 /* if the context already enabled, don't do the extra steps */
7604 if ((op & HFI1_RCVCTRL_CTXT_ENB)
7605 && !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
7606 /* reset the tail and hdr addresses, and sequence count */
7607 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
7608 rcd->rcvhdrq_phys);
7609 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
7610 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
7611 rcd->rcvhdrqtailaddr_phys);
7612 rcd->seq_cnt = 1;
7613
7614 /* reset the cached receive header queue head value */
7615 rcd->head = 0;
7616
7617 /*
7618 * Zero the receive header queue so we don't get false
7619 * positives when checking the sequence number. The
7620 * sequence numbers could land exactly on the same spot.
7621 * E.g. a rcd restart before the receive header wrapped.
7622 */
7623 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
7624
7625 /* starting timeout */
7626 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
7627
7628 /* enable the context */
7629 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
7630
7631 /* clean the egr buffer size first */
7632 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
7633 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
7634 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
7635 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
7636
7637 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
7638 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
7639 did_enable = 1;
7640
7641 /* zero RcvEgrIndexHead */
7642 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
7643
7644 /* set eager count and base index */
7645 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
7646 & RCV_EGR_CTRL_EGR_CNT_MASK)
7647 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
7648 (((rcd->eager_base >> RCV_SHIFT)
7649 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
7650 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
7651 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
7652
7653 /*
7654 * Set TID (expected) count and base index.
7655 * rcd->expected_count is set to individual RcvArray entries,
7656 * not pairs, and the CSR takes a pair-count in groups of
7657 * four, so divide by 8.
7658 */
7659 reg = (((rcd->expected_count >> RCV_SHIFT)
7660 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
7661 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
7662 (((rcd->expected_base >> RCV_SHIFT)
7663 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
7664 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
7665 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
7666 if (ctxt == VL15CTXT)
7667 write_csr(dd, RCV_VL15, VL15CTXT);
7668 }
7669 if (op & HFI1_RCVCTRL_CTXT_DIS) {
7670 write_csr(dd, RCV_VL15, 0);
7671 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
7672 }
7673 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
7674 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
7675 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
7676 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
7677 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
7678 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
7679 if (op & HFI1_RCVCTRL_TAILUPD_DIS)
7680 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
7681 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
7682 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
7683 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
7684 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
7685 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
7686 /* In one-packet-per-eager mode, the size comes from
7687 the RcvArray entry. */
7688 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
7689 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
7690 }
7691 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
7692 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
7693 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
7694 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
7695 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
7696 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
7697 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
7698 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
7699 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
7700 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
7701 rcd->rcvctrl = rcvctrl;
7702 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
7703 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
7704
7705 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
7706 if (did_enable
7707 && (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
7708 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
7709 if (reg != 0) {
7710 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
7711 ctxt, reg);
7712 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
7713 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
7714 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
7715 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
7716 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
7717 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
7718 ctxt, reg, reg == 0 ? "not" : "still");
7719 }
7720 }
7721
7722 if (did_enable) {
7723 /*
7724 * The interrupt timeout and count must be set after
7725 * the context is enabled to take effect.
7726 */
7727 /* set interrupt timeout */
7728 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
7729 (u64)rcd->rcvavail_timeout <<
7730 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
7731
7732 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
7733 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
7734 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
7735 }
7736
7737 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
7738 /*
7739 * If the context has been disabled and the Tail Update has
7740 * been cleared, clear the RCV_HDR_TAIL_ADDR CSR so
7741 * it doesn't contain an address that is invalid.
7742 */
7743 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 0);
7744}
7745
7746u32 hfi1_read_cntrs(struct hfi1_devdata *dd, loff_t pos, char **namep,
7747 u64 **cntrp)
7748{
7749 int ret;
7750 u64 val = 0;
7751
7752 if (namep) {
7753 ret = dd->cntrnameslen;
7754 if (pos != 0) {
7755 dd_dev_err(dd, "read_cntrs does not support indexing");
7756 return 0;
7757 }
7758 *namep = dd->cntrnames;
7759 } else {
7760 const struct cntr_entry *entry;
7761 int i, j;
7762
7763 ret = (dd->ndevcntrs) * sizeof(u64);
7764 if (pos != 0) {
7765 dd_dev_err(dd, "read_cntrs does not support indexing");
7766 return 0;
7767 }
7768
7769 /* Get the start of the block of counters */
7770 *cntrp = dd->cntrs;
7771
7772 /*
7773 * Now go and fill in each counter in the block.
7774 */
7775 for (i = 0; i < DEV_CNTR_LAST; i++) {
7776 entry = &dev_cntrs[i];
7777 hfi1_cdbg(CNTR, "reading %s", entry->name);
7778 if (entry->flags & CNTR_DISABLED) {
7779 /* Nothing */
7780 hfi1_cdbg(CNTR, "\tDisabled\n");
7781 } else {
7782 if (entry->flags & CNTR_VL) {
7783 hfi1_cdbg(CNTR, "\tPer VL\n");
7784 for (j = 0; j < C_VL_COUNT; j++) {
7785 val = entry->rw_cntr(entry,
7786 dd, j,
7787 CNTR_MODE_R,
7788 0);
7789 hfi1_cdbg(
7790 CNTR,
7791 "\t\tRead 0x%llx for %d\n",
7792 val, j);
7793 dd->cntrs[entry->offset + j] =
7794 val;
7795 }
7796 } else {
7797 val = entry->rw_cntr(entry, dd,
7798 CNTR_INVALID_VL,
7799 CNTR_MODE_R, 0);
7800 dd->cntrs[entry->offset] = val;
7801 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
7802 }
7803 }
7804 }
7805 }
7806 return ret;
7807}
7808
7809/*
7810 * Used by sysfs to create files for hfi stats to read
7811 */
7812u32 hfi1_read_portcntrs(struct hfi1_devdata *dd, loff_t pos, u32 port,
7813 char **namep, u64 **cntrp)
7814{
7815 int ret;
7816 u64 val = 0;
7817
7818 if (namep) {
7819 ret = dd->portcntrnameslen;
7820 if (pos != 0) {
7821 dd_dev_err(dd, "index not supported");
7822 return 0;
7823 }
7824 *namep = dd->portcntrnames;
7825 } else {
7826 const struct cntr_entry *entry;
7827 struct hfi1_pportdata *ppd;
7828 int i, j;
7829
7830 ret = (dd->nportcntrs) * sizeof(u64);
7831 if (pos != 0) {
7832 dd_dev_err(dd, "indexing not supported");
7833 return 0;
7834 }
7835 ppd = (struct hfi1_pportdata *)(dd + 1 + port);
7836 *cntrp = ppd->cntrs;
7837
7838 for (i = 0; i < PORT_CNTR_LAST; i++) {
7839 entry = &port_cntrs[i];
7840 hfi1_cdbg(CNTR, "reading %s", entry->name);
7841 if (entry->flags & CNTR_DISABLED) {
7842 /* Nothing */
7843 hfi1_cdbg(CNTR, "\tDisabled\n");
7844 continue;
7845 }
7846
7847 if (entry->flags & CNTR_VL) {
7848 hfi1_cdbg(CNTR, "\tPer VL");
7849 for (j = 0; j < C_VL_COUNT; j++) {
7850 val = entry->rw_cntr(entry, ppd, j,
7851 CNTR_MODE_R,
7852 0);
7853 hfi1_cdbg(
7854 CNTR,
7855 "\t\tRead 0x%llx for %d",
7856 val, j);
7857 ppd->cntrs[entry->offset + j] = val;
7858 }
7859 } else {
7860 val = entry->rw_cntr(entry, ppd,
7861 CNTR_INVALID_VL,
7862 CNTR_MODE_R,
7863 0);
7864 ppd->cntrs[entry->offset] = val;
7865 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
7866 }
7867 }
7868 }
7869 return ret;
7870}
7871
7872static void free_cntrs(struct hfi1_devdata *dd)
7873{
7874 struct hfi1_pportdata *ppd;
7875 int i;
7876
7877 if (dd->synth_stats_timer.data)
7878 del_timer_sync(&dd->synth_stats_timer);
7879 dd->synth_stats_timer.data = 0;
7880 ppd = (struct hfi1_pportdata *)(dd + 1);
7881 for (i = 0; i < dd->num_pports; i++, ppd++) {
7882 kfree(ppd->cntrs);
7883 kfree(ppd->scntrs);
7884 free_percpu(ppd->ibport_data.rc_acks);
7885 free_percpu(ppd->ibport_data.rc_qacks);
7886 free_percpu(ppd->ibport_data.rc_delayed_comp);
7887 ppd->cntrs = NULL;
7888 ppd->scntrs = NULL;
7889 ppd->ibport_data.rc_acks = NULL;
7890 ppd->ibport_data.rc_qacks = NULL;
7891 ppd->ibport_data.rc_delayed_comp = NULL;
7892 }
7893 kfree(dd->portcntrnames);
7894 dd->portcntrnames = NULL;
7895 kfree(dd->cntrs);
7896 dd->cntrs = NULL;
7897 kfree(dd->scntrs);
7898 dd->scntrs = NULL;
7899 kfree(dd->cntrnames);
7900 dd->cntrnames = NULL;
7901}
7902
7903#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
7904#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
7905
7906static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
7907 u64 *psval, void *context, int vl)
7908{
7909 u64 val;
7910 u64 sval = *psval;
7911
7912 if (entry->flags & CNTR_DISABLED) {
7913 dd_dev_err(dd, "Counter %s not enabled", entry->name);
7914 return 0;
7915 }
7916
7917 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
7918
7919 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
7920
7921 /* If its a synthetic counter there is more work we need to do */
7922 if (entry->flags & CNTR_SYNTH) {
7923 if (sval == CNTR_MAX) {
7924 /* No need to read already saturated */
7925 return CNTR_MAX;
7926 }
7927
7928 if (entry->flags & CNTR_32BIT) {
7929 /* 32bit counters can wrap multiple times */
7930 u64 upper = sval >> 32;
7931 u64 lower = (sval << 32) >> 32;
7932
7933 if (lower > val) { /* hw wrapped */
7934 if (upper == CNTR_32BIT_MAX)
7935 val = CNTR_MAX;
7936 else
7937 upper++;
7938 }
7939
7940 if (val != CNTR_MAX)
7941 val = (upper << 32) | val;
7942
7943 } else {
7944 /* If we rolled we are saturated */
7945 if ((val < sval) || (val > CNTR_MAX))
7946 val = CNTR_MAX;
7947 }
7948 }
7949
7950 *psval = val;
7951
7952 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
7953
7954 return val;
7955}
7956
7957static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
7958 struct cntr_entry *entry,
7959 u64 *psval, void *context, int vl, u64 data)
7960{
7961 u64 val;
7962
7963 if (entry->flags & CNTR_DISABLED) {
7964 dd_dev_err(dd, "Counter %s not enabled", entry->name);
7965 return 0;
7966 }
7967
7968 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
7969
7970 if (entry->flags & CNTR_SYNTH) {
7971 *psval = data;
7972 if (entry->flags & CNTR_32BIT) {
7973 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
7974 (data << 32) >> 32);
7975 val = data; /* return the full 64bit value */
7976 } else {
7977 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
7978 data);
7979 }
7980 } else {
7981 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
7982 }
7983
7984 *psval = val;
7985
7986 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
7987
7988 return val;
7989}
7990
7991u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
7992{
7993 struct cntr_entry *entry;
7994 u64 *sval;
7995
7996 entry = &dev_cntrs[index];
7997 sval = dd->scntrs + entry->offset;
7998
7999 if (vl != CNTR_INVALID_VL)
8000 sval += vl;
8001
8002 return read_dev_port_cntr(dd, entry, sval, dd, vl);
8003}
8004
8005u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
8006{
8007 struct cntr_entry *entry;
8008 u64 *sval;
8009
8010 entry = &dev_cntrs[index];
8011 sval = dd->scntrs + entry->offset;
8012
8013 if (vl != CNTR_INVALID_VL)
8014 sval += vl;
8015
8016 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
8017}
8018
8019u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
8020{
8021 struct cntr_entry *entry;
8022 u64 *sval;
8023
8024 entry = &port_cntrs[index];
8025 sval = ppd->scntrs + entry->offset;
8026
8027 if (vl != CNTR_INVALID_VL)
8028 sval += vl;
8029
8030 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
8031 (index <= C_RCV_HDR_OVF_LAST)) {
8032 /* We do not want to bother for disabled contexts */
8033 return 0;
8034 }
8035
8036 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
8037}
8038
8039u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
8040{
8041 struct cntr_entry *entry;
8042 u64 *sval;
8043
8044 entry = &port_cntrs[index];
8045 sval = ppd->scntrs + entry->offset;
8046
8047 if (vl != CNTR_INVALID_VL)
8048 sval += vl;
8049
8050 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
8051 (index <= C_RCV_HDR_OVF_LAST)) {
8052 /* We do not want to bother for disabled contexts */
8053 return 0;
8054 }
8055
8056 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
8057}
8058
8059static void update_synth_timer(unsigned long opaque)
8060{
8061 u64 cur_tx;
8062 u64 cur_rx;
8063 u64 total_flits;
8064 u8 update = 0;
8065 int i, j, vl;
8066 struct hfi1_pportdata *ppd;
8067 struct cntr_entry *entry;
8068
8069 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
8070
8071 /*
8072 * Rather than keep beating on the CSRs pick a minimal set that we can
8073 * check to watch for potential roll over. We can do this by looking at
8074 * the number of flits sent/recv. If the total flits exceeds 32bits then
8075 * we have to iterate all the counters and update.
8076 */
8077 entry = &dev_cntrs[C_DC_RCV_FLITS];
8078 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
8079
8080 entry = &dev_cntrs[C_DC_XMIT_FLITS];
8081 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
8082
8083 hfi1_cdbg(
8084 CNTR,
8085 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
8086 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
8087
8088 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
8089 /*
8090 * May not be strictly necessary to update but it won't hurt and
8091 * simplifies the logic here.
8092 */
8093 update = 1;
8094 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
8095 dd->unit);
8096 } else {
8097 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
8098 hfi1_cdbg(CNTR,
8099 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
8100 total_flits, (u64)CNTR_32BIT_MAX);
8101 if (total_flits >= CNTR_32BIT_MAX) {
8102 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
8103 dd->unit);
8104 update = 1;
8105 }
8106 }
8107
8108 if (update) {
8109 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
8110 for (i = 0; i < DEV_CNTR_LAST; i++) {
8111 entry = &dev_cntrs[i];
8112 if (entry->flags & CNTR_VL) {
8113 for (vl = 0; vl < C_VL_COUNT; vl++)
8114 read_dev_cntr(dd, i, vl);
8115 } else {
8116 read_dev_cntr(dd, i, CNTR_INVALID_VL);
8117 }
8118 }
8119 ppd = (struct hfi1_pportdata *)(dd + 1);
8120 for (i = 0; i < dd->num_pports; i++, ppd++) {
8121 for (j = 0; j < PORT_CNTR_LAST; j++) {
8122 entry = &port_cntrs[j];
8123 if (entry->flags & CNTR_VL) {
8124 for (vl = 0; vl < C_VL_COUNT; vl++)
8125 read_port_cntr(ppd, j, vl);
8126 } else {
8127 read_port_cntr(ppd, j, CNTR_INVALID_VL);
8128 }
8129 }
8130 }
8131
8132 /*
8133 * We want the value in the register. The goal is to keep track
8134 * of the number of "ticks" not the counter value. In other
8135 * words if the register rolls we want to notice it and go ahead
8136 * and force an update.
8137 */
8138 entry = &dev_cntrs[C_DC_XMIT_FLITS];
8139 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
8140 CNTR_MODE_R, 0);
8141
8142 entry = &dev_cntrs[C_DC_RCV_FLITS];
8143 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
8144 CNTR_MODE_R, 0);
8145
8146 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
8147 dd->unit, dd->last_tx, dd->last_rx);
8148
8149 } else {
8150 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
8151 }
8152
8153mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
8154}
8155
8156#define C_MAX_NAME 13 /* 12 chars + one for /0 */
8157static int init_cntrs(struct hfi1_devdata *dd)
8158{
8159 int i, rcv_ctxts, index, j;
8160 size_t sz;
8161 char *p;
8162 char name[C_MAX_NAME];
8163 struct hfi1_pportdata *ppd;
8164
8165 /* set up the stats timer; the add_timer is done at the end */
Muhammad Falak R Wani24523a92015-10-25 16:13:23 +05308166 setup_timer(&dd->synth_stats_timer, update_synth_timer,
8167 (unsigned long)dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04008168
8169 /***********************/
8170 /* per device counters */
8171 /***********************/
8172
8173 /* size names and determine how many we have*/
8174 dd->ndevcntrs = 0;
8175 sz = 0;
8176 index = 0;
8177
8178 for (i = 0; i < DEV_CNTR_LAST; i++) {
8179 hfi1_dbg_early("Init cntr %s\n", dev_cntrs[i].name);
8180 if (dev_cntrs[i].flags & CNTR_DISABLED) {
8181 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
8182 continue;
8183 }
8184
8185 if (dev_cntrs[i].flags & CNTR_VL) {
8186 hfi1_dbg_early("\tProcessing VL cntr\n");
8187 dev_cntrs[i].offset = index;
8188 for (j = 0; j < C_VL_COUNT; j++) {
8189 memset(name, '\0', C_MAX_NAME);
8190 snprintf(name, C_MAX_NAME, "%s%d",
8191 dev_cntrs[i].name,
8192 vl_from_idx(j));
8193 sz += strlen(name);
8194 sz++;
8195 hfi1_dbg_early("\t\t%s\n", name);
8196 dd->ndevcntrs++;
8197 index++;
8198 }
8199 } else {
8200 /* +1 for newline */
8201 sz += strlen(dev_cntrs[i].name) + 1;
8202 dd->ndevcntrs++;
8203 dev_cntrs[i].offset = index;
8204 index++;
8205 hfi1_dbg_early("\tAdding %s\n", dev_cntrs[i].name);
8206 }
8207 }
8208
8209 /* allocate space for the counter values */
8210 dd->cntrs = kcalloc(index, sizeof(u64), GFP_KERNEL);
8211 if (!dd->cntrs)
8212 goto bail;
8213
8214 dd->scntrs = kcalloc(index, sizeof(u64), GFP_KERNEL);
8215 if (!dd->scntrs)
8216 goto bail;
8217
8218
8219 /* allocate space for the counter names */
8220 dd->cntrnameslen = sz;
8221 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
8222 if (!dd->cntrnames)
8223 goto bail;
8224
8225 /* fill in the names */
8226 for (p = dd->cntrnames, i = 0, index = 0; i < DEV_CNTR_LAST; i++) {
8227 if (dev_cntrs[i].flags & CNTR_DISABLED) {
8228 /* Nothing */
8229 } else {
8230 if (dev_cntrs[i].flags & CNTR_VL) {
8231 for (j = 0; j < C_VL_COUNT; j++) {
8232 memset(name, '\0', C_MAX_NAME);
8233 snprintf(name, C_MAX_NAME, "%s%d",
8234 dev_cntrs[i].name,
8235 vl_from_idx(j));
8236 memcpy(p, name, strlen(name));
8237 p += strlen(name);
8238 *p++ = '\n';
8239 }
8240 } else {
8241 memcpy(p, dev_cntrs[i].name,
8242 strlen(dev_cntrs[i].name));
8243 p += strlen(dev_cntrs[i].name);
8244 *p++ = '\n';
8245 }
8246 index++;
8247 }
8248 }
8249
8250 /*********************/
8251 /* per port counters */
8252 /*********************/
8253
8254 /*
8255 * Go through the counters for the overflows and disable the ones we
8256 * don't need. This varies based on platform so we need to do it
8257 * dynamically here.
8258 */
8259 rcv_ctxts = dd->num_rcv_contexts;
8260 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
8261 i <= C_RCV_HDR_OVF_LAST; i++) {
8262 port_cntrs[i].flags |= CNTR_DISABLED;
8263 }
8264
8265 /* size port counter names and determine how many we have*/
8266 sz = 0;
8267 dd->nportcntrs = 0;
8268 for (i = 0; i < PORT_CNTR_LAST; i++) {
8269 hfi1_dbg_early("Init pcntr %s\n", port_cntrs[i].name);
8270 if (port_cntrs[i].flags & CNTR_DISABLED) {
8271 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
8272 continue;
8273 }
8274
8275 if (port_cntrs[i].flags & CNTR_VL) {
8276 hfi1_dbg_early("\tProcessing VL cntr\n");
8277 port_cntrs[i].offset = dd->nportcntrs;
8278 for (j = 0; j < C_VL_COUNT; j++) {
8279 memset(name, '\0', C_MAX_NAME);
8280 snprintf(name, C_MAX_NAME, "%s%d",
8281 port_cntrs[i].name,
8282 vl_from_idx(j));
8283 sz += strlen(name);
8284 sz++;
8285 hfi1_dbg_early("\t\t%s\n", name);
8286 dd->nportcntrs++;
8287 }
8288 } else {
8289 /* +1 for newline */
8290 sz += strlen(port_cntrs[i].name) + 1;
8291 port_cntrs[i].offset = dd->nportcntrs;
8292 dd->nportcntrs++;
8293 hfi1_dbg_early("\tAdding %s\n", port_cntrs[i].name);
8294 }
8295 }
8296
8297 /* allocate space for the counter names */
8298 dd->portcntrnameslen = sz;
8299 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
8300 if (!dd->portcntrnames)
8301 goto bail;
8302
8303 /* fill in port cntr names */
8304 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
8305 if (port_cntrs[i].flags & CNTR_DISABLED)
8306 continue;
8307
8308 if (port_cntrs[i].flags & CNTR_VL) {
8309 for (j = 0; j < C_VL_COUNT; j++) {
8310 memset(name, '\0', C_MAX_NAME);
8311 snprintf(name, C_MAX_NAME, "%s%d",
8312 port_cntrs[i].name,
8313 vl_from_idx(j));
8314 memcpy(p, name, strlen(name));
8315 p += strlen(name);
8316 *p++ = '\n';
8317 }
8318 } else {
8319 memcpy(p, port_cntrs[i].name,
8320 strlen(port_cntrs[i].name));
8321 p += strlen(port_cntrs[i].name);
8322 *p++ = '\n';
8323 }
8324 }
8325
8326 /* allocate per port storage for counter values */
8327 ppd = (struct hfi1_pportdata *)(dd + 1);
8328 for (i = 0; i < dd->num_pports; i++, ppd++) {
8329 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
8330 if (!ppd->cntrs)
8331 goto bail;
8332
8333 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
8334 if (!ppd->scntrs)
8335 goto bail;
8336 }
8337
8338 /* CPU counters need to be allocated and zeroed */
8339 if (init_cpu_counters(dd))
8340 goto bail;
8341
8342 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
8343 return 0;
8344bail:
8345 free_cntrs(dd);
8346 return -ENOMEM;
8347}
8348
8349
8350static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
8351{
8352 switch (chip_lstate) {
8353 default:
8354 dd_dev_err(dd,
8355 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
8356 chip_lstate);
8357 /* fall through */
8358 case LSTATE_DOWN:
8359 return IB_PORT_DOWN;
8360 case LSTATE_INIT:
8361 return IB_PORT_INIT;
8362 case LSTATE_ARMED:
8363 return IB_PORT_ARMED;
8364 case LSTATE_ACTIVE:
8365 return IB_PORT_ACTIVE;
8366 }
8367}
8368
8369u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
8370{
8371 /* look at the HFI meta-states only */
8372 switch (chip_pstate & 0xf0) {
8373 default:
8374 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
8375 chip_pstate);
8376 /* fall through */
8377 case PLS_DISABLED:
8378 return IB_PORTPHYSSTATE_DISABLED;
8379 case PLS_OFFLINE:
8380 return OPA_PORTPHYSSTATE_OFFLINE;
8381 case PLS_POLLING:
8382 return IB_PORTPHYSSTATE_POLLING;
8383 case PLS_CONFIGPHY:
8384 return IB_PORTPHYSSTATE_TRAINING;
8385 case PLS_LINKUP:
8386 return IB_PORTPHYSSTATE_LINKUP;
8387 case PLS_PHYTEST:
8388 return IB_PORTPHYSSTATE_PHY_TEST;
8389 }
8390}
8391
8392/* return the OPA port logical state name */
8393const char *opa_lstate_name(u32 lstate)
8394{
8395 static const char * const port_logical_names[] = {
8396 "PORT_NOP",
8397 "PORT_DOWN",
8398 "PORT_INIT",
8399 "PORT_ARMED",
8400 "PORT_ACTIVE",
8401 "PORT_ACTIVE_DEFER",
8402 };
8403 if (lstate < ARRAY_SIZE(port_logical_names))
8404 return port_logical_names[lstate];
8405 return "unknown";
8406}
8407
8408/* return the OPA port physical state name */
8409const char *opa_pstate_name(u32 pstate)
8410{
8411 static const char * const port_physical_names[] = {
8412 "PHYS_NOP",
8413 "reserved1",
8414 "PHYS_POLL",
8415 "PHYS_DISABLED",
8416 "PHYS_TRAINING",
8417 "PHYS_LINKUP",
8418 "PHYS_LINK_ERR_RECOVER",
8419 "PHYS_PHY_TEST",
8420 "reserved8",
8421 "PHYS_OFFLINE",
8422 "PHYS_GANGED",
8423 "PHYS_TEST",
8424 };
8425 if (pstate < ARRAY_SIZE(port_physical_names))
8426 return port_physical_names[pstate];
8427 return "unknown";
8428}
8429
8430/*
8431 * Read the hardware link state and set the driver's cached value of it.
8432 * Return the (new) current value.
8433 */
8434u32 get_logical_state(struct hfi1_pportdata *ppd)
8435{
8436 u32 new_state;
8437
8438 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
8439 if (new_state != ppd->lstate) {
8440 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
8441 opa_lstate_name(new_state), new_state);
8442 ppd->lstate = new_state;
8443 }
8444 /*
8445 * Set port status flags in the page mapped into userspace
8446 * memory. Do it here to ensure a reliable state - this is
8447 * the only function called by all state handling code.
8448 * Always set the flags due to the fact that the cache value
8449 * might have been changed explicitly outside of this
8450 * function.
8451 */
8452 if (ppd->statusp) {
8453 switch (ppd->lstate) {
8454 case IB_PORT_DOWN:
8455 case IB_PORT_INIT:
8456 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
8457 HFI1_STATUS_IB_READY);
8458 break;
8459 case IB_PORT_ARMED:
8460 *ppd->statusp |= HFI1_STATUS_IB_CONF;
8461 break;
8462 case IB_PORT_ACTIVE:
8463 *ppd->statusp |= HFI1_STATUS_IB_READY;
8464 break;
8465 }
8466 }
8467 return ppd->lstate;
8468}
8469
8470/**
8471 * wait_logical_linkstate - wait for an IB link state change to occur
8472 * @ppd: port device
8473 * @state: the state to wait for
8474 * @msecs: the number of milliseconds to wait
8475 *
8476 * Wait up to msecs milliseconds for IB link state change to occur.
8477 * For now, take the easy polling route.
8478 * Returns 0 if state reached, otherwise -ETIMEDOUT.
8479 */
8480static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
8481 int msecs)
8482{
8483 unsigned long timeout;
8484
8485 timeout = jiffies + msecs_to_jiffies(msecs);
8486 while (1) {
8487 if (get_logical_state(ppd) == state)
8488 return 0;
8489 if (time_after(jiffies, timeout))
8490 break;
8491 msleep(20);
8492 }
8493 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
8494
8495 return -ETIMEDOUT;
8496}
8497
8498u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
8499{
8500 static u32 remembered_state = 0xff;
8501 u32 pstate;
8502 u32 ib_pstate;
8503
8504 pstate = read_physical_state(ppd->dd);
8505 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
8506 if (remembered_state != ib_pstate) {
8507 dd_dev_info(ppd->dd,
8508 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
8509 __func__, opa_pstate_name(ib_pstate), ib_pstate,
8510 pstate);
8511 remembered_state = ib_pstate;
8512 }
8513 return ib_pstate;
8514}
8515
8516/*
8517 * Read/modify/write ASIC_QSFP register bits as selected by mask
8518 * data: 0 or 1 in the positions depending on what needs to be written
8519 * dir: 0 for read, 1 for write
8520 * mask: select by setting
8521 * I2CCLK (bit 0)
8522 * I2CDATA (bit 1)
8523 */
8524u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
8525 u32 mask)
8526{
8527 u64 qsfp_oe, target_oe;
8528
8529 target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
8530 if (mask) {
8531 /* We are writing register bits, so lock access */
8532 dir &= mask;
8533 data &= mask;
8534
8535 qsfp_oe = read_csr(dd, target_oe);
8536 qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
8537 write_csr(dd, target_oe, qsfp_oe);
8538 }
8539 /* We are exclusively reading bits here, but it is unlikely
8540 * we'll get valid data when we set the direction of the pin
8541 * in the same call, so read should call this function again
8542 * to get valid data
8543 */
8544 return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
8545}
8546
8547#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
8548(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
8549
8550#define SET_STATIC_RATE_CONTROL_SMASK(r) \
8551(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
8552
8553int hfi1_init_ctxt(struct send_context *sc)
8554{
8555 if (sc != NULL) {
8556 struct hfi1_devdata *dd = sc->dd;
8557 u64 reg;
8558 u8 set = (sc->type == SC_USER ?
8559 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
8560 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
8561 reg = read_kctxt_csr(dd, sc->hw_context,
8562 SEND_CTXT_CHECK_ENABLE);
8563 if (set)
8564 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
8565 else
8566 SET_STATIC_RATE_CONTROL_SMASK(reg);
8567 write_kctxt_csr(dd, sc->hw_context,
8568 SEND_CTXT_CHECK_ENABLE, reg);
8569 }
8570 return 0;
8571}
8572
8573int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
8574{
8575 int ret = 0;
8576 u64 reg;
8577
8578 if (dd->icode != ICODE_RTL_SILICON) {
8579 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
8580 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
8581 __func__);
8582 return -EINVAL;
8583 }
8584 reg = read_csr(dd, ASIC_STS_THERM);
8585 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
8586 ASIC_STS_THERM_CURR_TEMP_MASK);
8587 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
8588 ASIC_STS_THERM_LO_TEMP_MASK);
8589 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
8590 ASIC_STS_THERM_HI_TEMP_MASK);
8591 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
8592 ASIC_STS_THERM_CRIT_TEMP_MASK);
8593 /* triggers is a 3-bit value - 1 bit per trigger. */
8594 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
8595
8596 return ret;
8597}
8598
8599/* ========================================================================= */
8600
8601/*
8602 * Enable/disable chip from delivering interrupts.
8603 */
8604void set_intr_state(struct hfi1_devdata *dd, u32 enable)
8605{
8606 int i;
8607
8608 /*
8609 * In HFI, the mask needs to be 1 to allow interrupts.
8610 */
8611 if (enable) {
8612 u64 cce_int_mask;
8613 const int qsfp1_int_smask = QSFP1_INT % 64;
8614 const int qsfp2_int_smask = QSFP2_INT % 64;
8615
8616 /* enable all interrupts */
8617 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8618 write_csr(dd, CCE_INT_MASK + (8*i), ~(u64)0);
8619
8620 /*
8621 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
8622 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
8623 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
8624 * the index of the appropriate CSR in the CCEIntMask CSR array
8625 */
8626 cce_int_mask = read_csr(dd, CCE_INT_MASK +
8627 (8*(QSFP1_INT/64)));
8628 if (dd->hfi1_id) {
8629 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
8630 write_csr(dd, CCE_INT_MASK + (8*(QSFP1_INT/64)),
8631 cce_int_mask);
8632 } else {
8633 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
8634 write_csr(dd, CCE_INT_MASK + (8*(QSFP2_INT/64)),
8635 cce_int_mask);
8636 }
8637 } else {
8638 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8639 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
8640 }
8641}
8642
8643/*
8644 * Clear all interrupt sources on the chip.
8645 */
8646static void clear_all_interrupts(struct hfi1_devdata *dd)
8647{
8648 int i;
8649
8650 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8651 write_csr(dd, CCE_INT_CLEAR + (8*i), ~(u64)0);
8652
8653 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
8654 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
8655 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
8656 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
8657 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
8658 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
8659 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
8660 for (i = 0; i < dd->chip_send_contexts; i++)
8661 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
8662 for (i = 0; i < dd->chip_sdma_engines; i++)
8663 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
8664
8665 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
8666 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
8667 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
8668}
8669
8670/* Move to pcie.c? */
8671static void disable_intx(struct pci_dev *pdev)
8672{
8673 pci_intx(pdev, 0);
8674}
8675
8676static void clean_up_interrupts(struct hfi1_devdata *dd)
8677{
8678 int i;
8679
8680 /* remove irqs - must happen before disabling/turning off */
8681 if (dd->num_msix_entries) {
8682 /* MSI-X */
8683 struct hfi1_msix_entry *me = dd->msix_entries;
8684
8685 for (i = 0; i < dd->num_msix_entries; i++, me++) {
8686 if (me->arg == NULL) /* => no irq, no affinity */
8687 break;
8688 irq_set_affinity_hint(dd->msix_entries[i].msix.vector,
8689 NULL);
8690 free_irq(me->msix.vector, me->arg);
8691 }
8692 } else {
8693 /* INTx */
8694 if (dd->requested_intx_irq) {
8695 free_irq(dd->pcidev->irq, dd);
8696 dd->requested_intx_irq = 0;
8697 }
8698 }
8699
8700 /* turn off interrupts */
8701 if (dd->num_msix_entries) {
8702 /* MSI-X */
8703 hfi1_nomsix(dd);
8704 } else {
8705 /* INTx */
8706 disable_intx(dd->pcidev);
8707 }
8708
8709 /* clean structures */
8710 for (i = 0; i < dd->num_msix_entries; i++)
8711 free_cpumask_var(dd->msix_entries[i].mask);
8712 kfree(dd->msix_entries);
8713 dd->msix_entries = NULL;
8714 dd->num_msix_entries = 0;
8715}
8716
8717/*
8718 * Remap the interrupt source from the general handler to the given MSI-X
8719 * interrupt.
8720 */
8721static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
8722{
8723 u64 reg;
8724 int m, n;
8725
8726 /* clear from the handled mask of the general interrupt */
8727 m = isrc / 64;
8728 n = isrc % 64;
8729 dd->gi_mask[m] &= ~((u64)1 << n);
8730
8731 /* direct the chip source to the given MSI-X interrupt */
8732 m = isrc / 8;
8733 n = isrc % 8;
8734 reg = read_csr(dd, CCE_INT_MAP + (8*m));
8735 reg &= ~((u64)0xff << (8*n));
8736 reg |= ((u64)msix_intr & 0xff) << (8*n);
8737 write_csr(dd, CCE_INT_MAP + (8*m), reg);
8738}
8739
8740static void remap_sdma_interrupts(struct hfi1_devdata *dd,
8741 int engine, int msix_intr)
8742{
8743 /*
8744 * SDMA engine interrupt sources grouped by type, rather than
8745 * engine. Per-engine interrupts are as follows:
8746 * SDMA
8747 * SDMAProgress
8748 * SDMAIdle
8749 */
8750 remap_intr(dd, IS_SDMA_START + 0*TXE_NUM_SDMA_ENGINES + engine,
8751 msix_intr);
8752 remap_intr(dd, IS_SDMA_START + 1*TXE_NUM_SDMA_ENGINES + engine,
8753 msix_intr);
8754 remap_intr(dd, IS_SDMA_START + 2*TXE_NUM_SDMA_ENGINES + engine,
8755 msix_intr);
8756}
8757
8758static void remap_receive_available_interrupt(struct hfi1_devdata *dd,
8759 int rx, int msix_intr)
8760{
8761 remap_intr(dd, IS_RCVAVAIL_START + rx, msix_intr);
8762}
8763
8764static int request_intx_irq(struct hfi1_devdata *dd)
8765{
8766 int ret;
8767
8768 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME"_%d",
8769 dd->unit);
8770 ret = request_irq(dd->pcidev->irq, general_interrupt,
8771 IRQF_SHARED, dd->intx_name, dd);
8772 if (ret)
8773 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
8774 ret);
8775 else
8776 dd->requested_intx_irq = 1;
8777 return ret;
8778}
8779
8780static int request_msix_irqs(struct hfi1_devdata *dd)
8781{
8782 const struct cpumask *local_mask;
8783 cpumask_var_t def, rcv;
8784 bool def_ret, rcv_ret;
8785 int first_general, last_general;
8786 int first_sdma, last_sdma;
8787 int first_rx, last_rx;
8788 int first_cpu, restart_cpu, curr_cpu;
8789 int rcv_cpu, sdma_cpu;
8790 int i, ret = 0, possible;
8791 int ht;
8792
8793 /* calculate the ranges we are going to use */
8794 first_general = 0;
8795 first_sdma = last_general = first_general + 1;
8796 first_rx = last_sdma = first_sdma + dd->num_sdma;
8797 last_rx = first_rx + dd->n_krcv_queues;
8798
8799 /*
8800 * Interrupt affinity.
8801 *
8802 * non-rcv avail gets a default mask that
8803 * starts as possible cpus with threads reset
8804 * and each rcv avail reset.
8805 *
8806 * rcv avail gets node relative 1 wrapping back
8807 * to the node relative 1 as necessary.
8808 *
8809 */
8810 local_mask = cpumask_of_pcibus(dd->pcidev->bus);
8811 /* if first cpu is invalid, use NUMA 0 */
8812 if (cpumask_first(local_mask) >= nr_cpu_ids)
8813 local_mask = topology_core_cpumask(0);
8814
8815 def_ret = zalloc_cpumask_var(&def, GFP_KERNEL);
8816 rcv_ret = zalloc_cpumask_var(&rcv, GFP_KERNEL);
8817 if (!def_ret || !rcv_ret)
8818 goto bail;
8819 /* use local mask as default */
8820 cpumask_copy(def, local_mask);
8821 possible = cpumask_weight(def);
8822 /* disarm threads from default */
8823 ht = cpumask_weight(
8824 topology_sibling_cpumask(cpumask_first(local_mask)));
8825 for (i = possible/ht; i < possible; i++)
8826 cpumask_clear_cpu(i, def);
8827 /* reset possible */
8828 possible = cpumask_weight(def);
8829 /* def now has full cores on chosen node*/
8830 first_cpu = cpumask_first(def);
8831 if (nr_cpu_ids >= first_cpu)
8832 first_cpu++;
8833 restart_cpu = first_cpu;
8834 curr_cpu = restart_cpu;
8835
8836 for (i = first_cpu; i < dd->n_krcv_queues + first_cpu; i++) {
8837 cpumask_clear_cpu(curr_cpu, def);
8838 cpumask_set_cpu(curr_cpu, rcv);
8839 if (curr_cpu >= possible)
8840 curr_cpu = restart_cpu;
8841 else
8842 curr_cpu++;
8843 }
8844 /* def mask has non-rcv, rcv has recv mask */
8845 rcv_cpu = cpumask_first(rcv);
8846 sdma_cpu = cpumask_first(def);
8847
8848 /*
8849 * Sanity check - the code expects all SDMA chip source
8850 * interrupts to be in the same CSR, starting at bit 0. Verify
8851 * that this is true by checking the bit location of the start.
8852 */
8853 BUILD_BUG_ON(IS_SDMA_START % 64);
8854
8855 for (i = 0; i < dd->num_msix_entries; i++) {
8856 struct hfi1_msix_entry *me = &dd->msix_entries[i];
8857 const char *err_info;
8858 irq_handler_t handler;
8859 void *arg;
8860 int idx;
8861 struct hfi1_ctxtdata *rcd = NULL;
8862 struct sdma_engine *sde = NULL;
8863
8864 /* obtain the arguments to request_irq */
8865 if (first_general <= i && i < last_general) {
8866 idx = i - first_general;
8867 handler = general_interrupt;
8868 arg = dd;
8869 snprintf(me->name, sizeof(me->name),
8870 DRIVER_NAME"_%d", dd->unit);
8871 err_info = "general";
8872 } else if (first_sdma <= i && i < last_sdma) {
8873 idx = i - first_sdma;
8874 sde = &dd->per_sdma[idx];
8875 handler = sdma_interrupt;
8876 arg = sde;
8877 snprintf(me->name, sizeof(me->name),
8878 DRIVER_NAME"_%d sdma%d", dd->unit, idx);
8879 err_info = "sdma";
8880 remap_sdma_interrupts(dd, idx, i);
8881 } else if (first_rx <= i && i < last_rx) {
8882 idx = i - first_rx;
8883 rcd = dd->rcd[idx];
8884 /* no interrupt if no rcd */
8885 if (!rcd)
8886 continue;
8887 /*
8888 * Set the interrupt register and mask for this
8889 * context's interrupt.
8890 */
8891 rcd->ireg = (IS_RCVAVAIL_START+idx) / 64;
8892 rcd->imask = ((u64)1) <<
8893 ((IS_RCVAVAIL_START+idx) % 64);
8894 handler = receive_context_interrupt;
8895 arg = rcd;
8896 snprintf(me->name, sizeof(me->name),
8897 DRIVER_NAME"_%d kctxt%d", dd->unit, idx);
8898 err_info = "receive context";
8899 remap_receive_available_interrupt(dd, idx, i);
8900 } else {
8901 /* not in our expected range - complain, then
8902 ignore it */
8903 dd_dev_err(dd,
8904 "Unexpected extra MSI-X interrupt %d\n", i);
8905 continue;
8906 }
8907 /* no argument, no interrupt */
8908 if (arg == NULL)
8909 continue;
8910 /* make sure the name is terminated */
8911 me->name[sizeof(me->name)-1] = 0;
8912
8913 ret = request_irq(me->msix.vector, handler, 0, me->name, arg);
8914 if (ret) {
8915 dd_dev_err(dd,
8916 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
8917 err_info, me->msix.vector, idx, ret);
8918 return ret;
8919 }
8920 /*
8921 * assign arg after request_irq call, so it will be
8922 * cleaned up
8923 */
8924 me->arg = arg;
8925
8926 if (!zalloc_cpumask_var(
8927 &dd->msix_entries[i].mask,
8928 GFP_KERNEL))
8929 goto bail;
8930 if (handler == sdma_interrupt) {
8931 dd_dev_info(dd, "sdma engine %d cpu %d\n",
8932 sde->this_idx, sdma_cpu);
8933 cpumask_set_cpu(sdma_cpu, dd->msix_entries[i].mask);
8934 sdma_cpu = cpumask_next(sdma_cpu, def);
8935 if (sdma_cpu >= nr_cpu_ids)
8936 sdma_cpu = cpumask_first(def);
8937 } else if (handler == receive_context_interrupt) {
8938 dd_dev_info(dd, "rcv ctxt %d cpu %d\n",
8939 rcd->ctxt, rcv_cpu);
8940 cpumask_set_cpu(rcv_cpu, dd->msix_entries[i].mask);
8941 rcv_cpu = cpumask_next(rcv_cpu, rcv);
8942 if (rcv_cpu >= nr_cpu_ids)
8943 rcv_cpu = cpumask_first(rcv);
8944 } else {
8945 /* otherwise first def */
8946 dd_dev_info(dd, "%s cpu %d\n",
8947 err_info, cpumask_first(def));
8948 cpumask_set_cpu(
8949 cpumask_first(def), dd->msix_entries[i].mask);
8950 }
8951 irq_set_affinity_hint(
8952 dd->msix_entries[i].msix.vector,
8953 dd->msix_entries[i].mask);
8954 }
8955
8956out:
8957 free_cpumask_var(def);
8958 free_cpumask_var(rcv);
8959 return ret;
8960bail:
8961 ret = -ENOMEM;
8962 goto out;
8963}
8964
8965/*
8966 * Set the general handler to accept all interrupts, remap all
8967 * chip interrupts back to MSI-X 0.
8968 */
8969static void reset_interrupts(struct hfi1_devdata *dd)
8970{
8971 int i;
8972
8973 /* all interrupts handled by the general handler */
8974 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
8975 dd->gi_mask[i] = ~(u64)0;
8976
8977 /* all chip interrupts map to MSI-X 0 */
8978 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
8979 write_csr(dd, CCE_INT_MAP + (8*i), 0);
8980}
8981
8982static int set_up_interrupts(struct hfi1_devdata *dd)
8983{
8984 struct hfi1_msix_entry *entries;
8985 u32 total, request;
8986 int i, ret;
8987 int single_interrupt = 0; /* we expect to have all the interrupts */
8988
8989 /*
8990 * Interrupt count:
8991 * 1 general, "slow path" interrupt (includes the SDMA engines
8992 * slow source, SDMACleanupDone)
8993 * N interrupts - one per used SDMA engine
8994 * M interrupt - one per kernel receive context
8995 */
8996 total = 1 + dd->num_sdma + dd->n_krcv_queues;
8997
8998 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
8999 if (!entries) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04009000 ret = -ENOMEM;
9001 goto fail;
9002 }
9003 /* 1-1 MSI-X entry assignment */
9004 for (i = 0; i < total; i++)
9005 entries[i].msix.entry = i;
9006
9007 /* ask for MSI-X interrupts */
9008 request = total;
9009 request_msix(dd, &request, entries);
9010
9011 if (request == 0) {
9012 /* using INTx */
9013 /* dd->num_msix_entries already zero */
9014 kfree(entries);
9015 single_interrupt = 1;
9016 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
9017 } else {
9018 /* using MSI-X */
9019 dd->num_msix_entries = request;
9020 dd->msix_entries = entries;
9021
9022 if (request != total) {
9023 /* using MSI-X, with reduced interrupts */
9024 dd_dev_err(
9025 dd,
9026 "cannot handle reduced interrupt case, want %u, got %u\n",
9027 total, request);
9028 ret = -EINVAL;
9029 goto fail;
9030 }
9031 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
9032 }
9033
9034 /* mask all interrupts */
9035 set_intr_state(dd, 0);
9036 /* clear all pending interrupts */
9037 clear_all_interrupts(dd);
9038
9039 /* reset general handler mask, chip MSI-X mappings */
9040 reset_interrupts(dd);
9041
9042 if (single_interrupt)
9043 ret = request_intx_irq(dd);
9044 else
9045 ret = request_msix_irqs(dd);
9046 if (ret)
9047 goto fail;
9048
9049 return 0;
9050
9051fail:
9052 clean_up_interrupts(dd);
9053 return ret;
9054}
9055
9056/*
9057 * Set up context values in dd. Sets:
9058 *
9059 * num_rcv_contexts - number of contexts being used
9060 * n_krcv_queues - number of kernel contexts
9061 * first_user_ctxt - first non-kernel context in array of contexts
9062 * freectxts - number of free user contexts
9063 * num_send_contexts - number of PIO send contexts being used
9064 */
9065static int set_up_context_variables(struct hfi1_devdata *dd)
9066{
9067 int num_kernel_contexts;
9068 int num_user_contexts;
9069 int total_contexts;
9070 int ret;
9071 unsigned ngroups;
9072
9073 /*
9074 * Kernel contexts: (to be fixed later):
9075 * - min or 2 or 1 context/numa
9076 * - Context 0 - default/errors
9077 * - Context 1 - VL15
9078 */
9079 if (n_krcvqs)
9080 num_kernel_contexts = n_krcvqs + MIN_KERNEL_KCTXTS;
9081 else
9082 num_kernel_contexts = num_online_nodes();
9083 num_kernel_contexts =
9084 max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
9085 /*
9086 * Every kernel receive context needs an ACK send context.
9087 * one send context is allocated for each VL{0-7} and VL15
9088 */
9089 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
9090 dd_dev_err(dd,
9091 "Reducing # kernel rcv contexts to: %d, from %d\n",
9092 (int)(dd->chip_send_contexts - num_vls - 1),
9093 (int)num_kernel_contexts);
9094 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
9095 }
9096 /*
9097 * User contexts: (to be fixed later)
9098 * - set to num_rcv_contexts if non-zero
9099 * - default to 1 user context per CPU
9100 */
9101 if (num_rcv_contexts)
9102 num_user_contexts = num_rcv_contexts;
9103 else
9104 num_user_contexts = num_online_cpus();
9105
9106 total_contexts = num_kernel_contexts + num_user_contexts;
9107
9108 /*
9109 * Adjust the counts given a global max.
9110 */
9111 if (total_contexts > dd->chip_rcv_contexts) {
9112 dd_dev_err(dd,
9113 "Reducing # user receive contexts to: %d, from %d\n",
9114 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
9115 (int)num_user_contexts);
9116 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
9117 /* recalculate */
9118 total_contexts = num_kernel_contexts + num_user_contexts;
9119 }
9120
9121 /* the first N are kernel contexts, the rest are user contexts */
9122 dd->num_rcv_contexts = total_contexts;
9123 dd->n_krcv_queues = num_kernel_contexts;
9124 dd->first_user_ctxt = num_kernel_contexts;
9125 dd->freectxts = num_user_contexts;
9126 dd_dev_info(dd,
9127 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
9128 (int)dd->chip_rcv_contexts,
9129 (int)dd->num_rcv_contexts,
9130 (int)dd->n_krcv_queues,
9131 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
9132
9133 /*
9134 * Receive array allocation:
9135 * All RcvArray entries are divided into groups of 8. This
9136 * is required by the hardware and will speed up writes to
9137 * consecutive entries by using write-combining of the entire
9138 * cacheline.
9139 *
9140 * The number of groups are evenly divided among all contexts.
9141 * any left over groups will be given to the first N user
9142 * contexts.
9143 */
9144 dd->rcv_entries.group_size = RCV_INCREMENT;
9145 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
9146 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
9147 dd->rcv_entries.nctxt_extra = ngroups -
9148 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
9149 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
9150 dd->rcv_entries.ngroups,
9151 dd->rcv_entries.nctxt_extra);
9152 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
9153 MAX_EAGER_ENTRIES * 2) {
9154 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
9155 dd->rcv_entries.group_size;
9156 dd_dev_info(dd,
9157 "RcvArray group count too high, change to %u\n",
9158 dd->rcv_entries.ngroups);
9159 dd->rcv_entries.nctxt_extra = 0;
9160 }
9161 /*
9162 * PIO send contexts
9163 */
9164 ret = init_sc_pools_and_sizes(dd);
9165 if (ret >= 0) { /* success */
9166 dd->num_send_contexts = ret;
9167 dd_dev_info(
9168 dd,
9169 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d)\n",
9170 dd->chip_send_contexts,
9171 dd->num_send_contexts,
9172 dd->sc_sizes[SC_KERNEL].count,
9173 dd->sc_sizes[SC_ACK].count,
9174 dd->sc_sizes[SC_USER].count);
9175 ret = 0; /* success */
9176 }
9177
9178 return ret;
9179}
9180
9181/*
9182 * Set the device/port partition key table. The MAD code
9183 * will ensure that, at least, the partial management
9184 * partition key is present in the table.
9185 */
9186static void set_partition_keys(struct hfi1_pportdata *ppd)
9187{
9188 struct hfi1_devdata *dd = ppd->dd;
9189 u64 reg = 0;
9190 int i;
9191
9192 dd_dev_info(dd, "Setting partition keys\n");
9193 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
9194 reg |= (ppd->pkeys[i] &
9195 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
9196 ((i % 4) *
9197 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
9198 /* Each register holds 4 PKey values. */
9199 if ((i % 4) == 3) {
9200 write_csr(dd, RCV_PARTITION_KEY +
9201 ((i - 3) * 2), reg);
9202 reg = 0;
9203 }
9204 }
9205
9206 /* Always enable HW pkeys check when pkeys table is set */
9207 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
9208}
9209
9210/*
9211 * These CSRs and memories are uninitialized on reset and must be
9212 * written before reading to set the ECC/parity bits.
9213 *
9214 * NOTE: All user context CSRs that are not mmaped write-only
9215 * (e.g. the TID flows) must be initialized even if the driver never
9216 * reads them.
9217 */
9218static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
9219{
9220 int i, j;
9221
9222 /* CceIntMap */
9223 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
9224 write_csr(dd, CCE_INT_MAP+(8*i), 0);
9225
9226 /* SendCtxtCreditReturnAddr */
9227 for (i = 0; i < dd->chip_send_contexts; i++)
9228 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
9229
9230 /* PIO Send buffers */
9231 /* SDMA Send buffers */
9232 /* These are not normally read, and (presently) have no method
9233 to be read, so are not pre-initialized */
9234
9235 /* RcvHdrAddr */
9236 /* RcvHdrTailAddr */
9237 /* RcvTidFlowTable */
9238 for (i = 0; i < dd->chip_rcv_contexts; i++) {
9239 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
9240 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
9241 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
9242 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE+(8*j), 0);
9243 }
9244
9245 /* RcvArray */
9246 for (i = 0; i < dd->chip_rcv_array_count; i++)
9247 write_csr(dd, RCV_ARRAY + (8*i),
9248 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
9249
9250 /* RcvQPMapTable */
9251 for (i = 0; i < 32; i++)
9252 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
9253}
9254
9255/*
9256 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
9257 */
9258static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
9259 u64 ctrl_bits)
9260{
9261 unsigned long timeout;
9262 u64 reg;
9263
9264 /* is the condition present? */
9265 reg = read_csr(dd, CCE_STATUS);
9266 if ((reg & status_bits) == 0)
9267 return;
9268
9269 /* clear the condition */
9270 write_csr(dd, CCE_CTRL, ctrl_bits);
9271
9272 /* wait for the condition to clear */
9273 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
9274 while (1) {
9275 reg = read_csr(dd, CCE_STATUS);
9276 if ((reg & status_bits) == 0)
9277 return;
9278 if (time_after(jiffies, timeout)) {
9279 dd_dev_err(dd,
9280 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
9281 status_bits, reg & status_bits);
9282 return;
9283 }
9284 udelay(1);
9285 }
9286}
9287
9288/* set CCE CSRs to chip reset defaults */
9289static void reset_cce_csrs(struct hfi1_devdata *dd)
9290{
9291 int i;
9292
9293 /* CCE_REVISION read-only */
9294 /* CCE_REVISION2 read-only */
9295 /* CCE_CTRL - bits clear automatically */
9296 /* CCE_STATUS read-only, use CceCtrl to clear */
9297 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
9298 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
9299 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
9300 for (i = 0; i < CCE_NUM_SCRATCH; i++)
9301 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
9302 /* CCE_ERR_STATUS read-only */
9303 write_csr(dd, CCE_ERR_MASK, 0);
9304 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
9305 /* CCE_ERR_FORCE leave alone */
9306 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
9307 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
9308 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
9309 /* CCE_PCIE_CTRL leave alone */
9310 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
9311 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
9312 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
9313 CCE_MSIX_TABLE_UPPER_RESETCSR);
9314 }
9315 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
9316 /* CCE_MSIX_PBA read-only */
9317 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
9318 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
9319 }
9320 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
9321 write_csr(dd, CCE_INT_MAP, 0);
9322 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
9323 /* CCE_INT_STATUS read-only */
9324 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
9325 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
9326 /* CCE_INT_FORCE leave alone */
9327 /* CCE_INT_BLOCKED read-only */
9328 }
9329 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
9330 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
9331}
9332
9333/* set ASIC CSRs to chip reset defaults */
9334static void reset_asic_csrs(struct hfi1_devdata *dd)
9335{
Mike Marciniszyn77241052015-07-30 15:17:43 -04009336 int i;
9337
9338 /*
9339 * If the HFIs are shared between separate nodes or VMs,
9340 * then more will need to be done here. One idea is a module
9341 * parameter that returns early, letting the first power-on or
9342 * a known first load do the reset and blocking all others.
9343 */
9344
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009345 if (!(dd->flags & HFI1_DO_INIT_ASIC))
9346 return;
Mike Marciniszyn77241052015-07-30 15:17:43 -04009347
9348 if (dd->icode != ICODE_FPGA_EMULATION) {
9349 /* emulation does not have an SBus - leave these alone */
9350 /*
9351 * All writes to ASIC_CFG_SBUS_REQUEST do something.
9352 * Notes:
9353 * o The reset is not zero if aimed at the core. See the
9354 * SBus documentation for details.
9355 * o If the SBus firmware has been updated (e.g. by the BIOS),
9356 * will the reset revert that?
9357 */
9358 /* ASIC_CFG_SBUS_REQUEST leave alone */
9359 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
9360 }
9361 /* ASIC_SBUS_RESULT read-only */
9362 write_csr(dd, ASIC_STS_SBUS_COUNTERS, 0);
9363 for (i = 0; i < ASIC_NUM_SCRATCH; i++)
9364 write_csr(dd, ASIC_CFG_SCRATCH + (8 * i), 0);
9365 write_csr(dd, ASIC_CFG_MUTEX, 0); /* this will clear it */
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009366
9367 /* We might want to retain this state across FLR if we ever use it */
Mike Marciniszyn77241052015-07-30 15:17:43 -04009368 write_csr(dd, ASIC_CFG_DRV_STR, 0);
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009369
Mike Marciniszyn77241052015-07-30 15:17:43 -04009370 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0);
9371 /* ASIC_STS_THERM read-only */
9372 /* ASIC_CFG_RESET leave alone */
9373
9374 write_csr(dd, ASIC_PCIE_SD_HOST_CMD, 0);
9375 /* ASIC_PCIE_SD_HOST_STATUS read-only */
9376 write_csr(dd, ASIC_PCIE_SD_INTRPT_DATA_CODE, 0);
9377 write_csr(dd, ASIC_PCIE_SD_INTRPT_ENABLE, 0);
9378 /* ASIC_PCIE_SD_INTRPT_PROGRESS read-only */
9379 write_csr(dd, ASIC_PCIE_SD_INTRPT_STATUS, ~0ull); /* clear */
9380 /* ASIC_HFI0_PCIE_SD_INTRPT_RSPD_DATA read-only */
9381 /* ASIC_HFI1_PCIE_SD_INTRPT_RSPD_DATA read-only */
9382 for (i = 0; i < 16; i++)
9383 write_csr(dd, ASIC_PCIE_SD_INTRPT_LIST + (8 * i), 0);
9384
9385 /* ASIC_GPIO_IN read-only */
9386 write_csr(dd, ASIC_GPIO_OE, 0);
9387 write_csr(dd, ASIC_GPIO_INVERT, 0);
9388 write_csr(dd, ASIC_GPIO_OUT, 0);
9389 write_csr(dd, ASIC_GPIO_MASK, 0);
9390 /* ASIC_GPIO_STATUS read-only */
9391 write_csr(dd, ASIC_GPIO_CLEAR, ~0ull);
9392 /* ASIC_GPIO_FORCE leave alone */
9393
9394 /* ASIC_QSFP1_IN read-only */
9395 write_csr(dd, ASIC_QSFP1_OE, 0);
9396 write_csr(dd, ASIC_QSFP1_INVERT, 0);
9397 write_csr(dd, ASIC_QSFP1_OUT, 0);
9398 write_csr(dd, ASIC_QSFP1_MASK, 0);
9399 /* ASIC_QSFP1_STATUS read-only */
9400 write_csr(dd, ASIC_QSFP1_CLEAR, ~0ull);
9401 /* ASIC_QSFP1_FORCE leave alone */
9402
9403 /* ASIC_QSFP2_IN read-only */
9404 write_csr(dd, ASIC_QSFP2_OE, 0);
9405 write_csr(dd, ASIC_QSFP2_INVERT, 0);
9406 write_csr(dd, ASIC_QSFP2_OUT, 0);
9407 write_csr(dd, ASIC_QSFP2_MASK, 0);
9408 /* ASIC_QSFP2_STATUS read-only */
9409 write_csr(dd, ASIC_QSFP2_CLEAR, ~0ull);
9410 /* ASIC_QSFP2_FORCE leave alone */
9411
9412 write_csr(dd, ASIC_EEP_CTL_STAT, ASIC_EEP_CTL_STAT_RESETCSR);
9413 /* this also writes a NOP command, clearing paging mode */
9414 write_csr(dd, ASIC_EEP_ADDR_CMD, 0);
9415 write_csr(dd, ASIC_EEP_DATA, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009416}
9417
9418/* set MISC CSRs to chip reset defaults */
9419static void reset_misc_csrs(struct hfi1_devdata *dd)
9420{
9421 int i;
9422
9423 for (i = 0; i < 32; i++) {
9424 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
9425 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
9426 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
9427 }
9428 /* MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
9429 only be written 128-byte chunks */
9430 /* init RSA engine to clear lingering errors */
9431 write_csr(dd, MISC_CFG_RSA_CMD, 1);
9432 write_csr(dd, MISC_CFG_RSA_MU, 0);
9433 write_csr(dd, MISC_CFG_FW_CTRL, 0);
9434 /* MISC_STS_8051_DIGEST read-only */
9435 /* MISC_STS_SBM_DIGEST read-only */
9436 /* MISC_STS_PCIE_DIGEST read-only */
9437 /* MISC_STS_FAB_DIGEST read-only */
9438 /* MISC_ERR_STATUS read-only */
9439 write_csr(dd, MISC_ERR_MASK, 0);
9440 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
9441 /* MISC_ERR_FORCE leave alone */
9442}
9443
9444/* set TXE CSRs to chip reset defaults */
9445static void reset_txe_csrs(struct hfi1_devdata *dd)
9446{
9447 int i;
9448
9449 /*
9450 * TXE Kernel CSRs
9451 */
9452 write_csr(dd, SEND_CTRL, 0);
9453 __cm_reset(dd, 0); /* reset CM internal state */
9454 /* SEND_CONTEXTS read-only */
9455 /* SEND_DMA_ENGINES read-only */
9456 /* SEND_PIO_MEM_SIZE read-only */
9457 /* SEND_DMA_MEM_SIZE read-only */
9458 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
9459 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
9460 /* SEND_PIO_ERR_STATUS read-only */
9461 write_csr(dd, SEND_PIO_ERR_MASK, 0);
9462 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
9463 /* SEND_PIO_ERR_FORCE leave alone */
9464 /* SEND_DMA_ERR_STATUS read-only */
9465 write_csr(dd, SEND_DMA_ERR_MASK, 0);
9466 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
9467 /* SEND_DMA_ERR_FORCE leave alone */
9468 /* SEND_EGRESS_ERR_STATUS read-only */
9469 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
9470 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
9471 /* SEND_EGRESS_ERR_FORCE leave alone */
9472 write_csr(dd, SEND_BTH_QP, 0);
9473 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
9474 write_csr(dd, SEND_SC2VLT0, 0);
9475 write_csr(dd, SEND_SC2VLT1, 0);
9476 write_csr(dd, SEND_SC2VLT2, 0);
9477 write_csr(dd, SEND_SC2VLT3, 0);
9478 write_csr(dd, SEND_LEN_CHECK0, 0);
9479 write_csr(dd, SEND_LEN_CHECK1, 0);
9480 /* SEND_ERR_STATUS read-only */
9481 write_csr(dd, SEND_ERR_MASK, 0);
9482 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
9483 /* SEND_ERR_FORCE read-only */
9484 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
9485 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8*i), 0);
9486 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
9487 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8*i), 0);
9488 for (i = 0; i < dd->chip_send_contexts/NUM_CONTEXTS_PER_SET; i++)
9489 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8*i), 0);
9490 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
9491 write_csr(dd, SEND_COUNTER_ARRAY32 + (8*i), 0);
9492 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
9493 write_csr(dd, SEND_COUNTER_ARRAY64 + (8*i), 0);
9494 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
9495 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
9496 SEND_CM_GLOBAL_CREDIT_RESETCSR);
9497 /* SEND_CM_CREDIT_USED_STATUS read-only */
9498 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
9499 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
9500 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
9501 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
9502 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
9503 for (i = 0; i < TXE_NUM_DATA_VL; i++)
9504 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
9505 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
9506 /* SEND_CM_CREDIT_USED_VL read-only */
9507 /* SEND_CM_CREDIT_USED_VL15 read-only */
9508 /* SEND_EGRESS_CTXT_STATUS read-only */
9509 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
9510 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
9511 /* SEND_EGRESS_ERR_INFO read-only */
9512 /* SEND_EGRESS_ERR_SOURCE read-only */
9513
9514 /*
9515 * TXE Per-Context CSRs
9516 */
9517 for (i = 0; i < dd->chip_send_contexts; i++) {
9518 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
9519 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
9520 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
9521 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
9522 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
9523 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
9524 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
9525 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
9526 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
9527 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
9528 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
9529 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
9530 }
9531
9532 /*
9533 * TXE Per-SDMA CSRs
9534 */
9535 for (i = 0; i < dd->chip_sdma_engines; i++) {
9536 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
9537 /* SEND_DMA_STATUS read-only */
9538 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
9539 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
9540 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
9541 /* SEND_DMA_HEAD read-only */
9542 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
9543 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
9544 /* SEND_DMA_IDLE_CNT read-only */
9545 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
9546 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
9547 /* SEND_DMA_DESC_FETCHED_CNT read-only */
9548 /* SEND_DMA_ENG_ERR_STATUS read-only */
9549 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
9550 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
9551 /* SEND_DMA_ENG_ERR_FORCE leave alone */
9552 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
9553 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
9554 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
9555 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
9556 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
9557 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
9558 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
9559 }
9560}
9561
9562/*
9563 * Expect on entry:
9564 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
9565 */
9566static void init_rbufs(struct hfi1_devdata *dd)
9567{
9568 u64 reg;
9569 int count;
9570
9571 /*
9572 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
9573 * clear.
9574 */
9575 count = 0;
9576 while (1) {
9577 reg = read_csr(dd, RCV_STATUS);
9578 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
9579 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
9580 break;
9581 /*
9582 * Give up after 1ms - maximum wait time.
9583 *
9584 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
9585 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
9586 * 148 KB / (66% * 250MB/s) = 920us
9587 */
9588 if (count++ > 500) {
9589 dd_dev_err(dd,
9590 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
9591 __func__, reg);
9592 break;
9593 }
9594 udelay(2); /* do not busy-wait the CSR */
9595 }
9596
9597 /* start the init - expect RcvCtrl to be 0 */
9598 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
9599
9600 /*
9601 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
9602 * period after the write before RcvStatus.RxRbufInitDone is valid.
9603 * The delay in the first run through the loop below is sufficient and
9604 * required before the first read of RcvStatus.RxRbufInintDone.
9605 */
9606 read_csr(dd, RCV_CTRL);
9607
9608 /* wait for the init to finish */
9609 count = 0;
9610 while (1) {
9611 /* delay is required first time through - see above */
9612 udelay(2); /* do not busy-wait the CSR */
9613 reg = read_csr(dd, RCV_STATUS);
9614 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
9615 break;
9616
9617 /* give up after 100us - slowest possible at 33MHz is 73us */
9618 if (count++ > 50) {
9619 dd_dev_err(dd,
9620 "%s: RcvStatus.RxRbufInit not set, continuing\n",
9621 __func__);
9622 break;
9623 }
9624 }
9625}
9626
9627/* set RXE CSRs to chip reset defaults */
9628static void reset_rxe_csrs(struct hfi1_devdata *dd)
9629{
9630 int i, j;
9631
9632 /*
9633 * RXE Kernel CSRs
9634 */
9635 write_csr(dd, RCV_CTRL, 0);
9636 init_rbufs(dd);
9637 /* RCV_STATUS read-only */
9638 /* RCV_CONTEXTS read-only */
9639 /* RCV_ARRAY_CNT read-only */
9640 /* RCV_BUF_SIZE read-only */
9641 write_csr(dd, RCV_BTH_QP, 0);
9642 write_csr(dd, RCV_MULTICAST, 0);
9643 write_csr(dd, RCV_BYPASS, 0);
9644 write_csr(dd, RCV_VL15, 0);
9645 /* this is a clear-down */
9646 write_csr(dd, RCV_ERR_INFO,
9647 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
9648 /* RCV_ERR_STATUS read-only */
9649 write_csr(dd, RCV_ERR_MASK, 0);
9650 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
9651 /* RCV_ERR_FORCE leave alone */
9652 for (i = 0; i < 32; i++)
9653 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
9654 for (i = 0; i < 4; i++)
9655 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
9656 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
9657 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
9658 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
9659 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
9660 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
9661 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
9662 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
9663 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
9664 }
9665 for (i = 0; i < 32; i++)
9666 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
9667
9668 /*
9669 * RXE Kernel and User Per-Context CSRs
9670 */
9671 for (i = 0; i < dd->chip_rcv_contexts; i++) {
9672 /* kernel */
9673 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
9674 /* RCV_CTXT_STATUS read-only */
9675 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
9676 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
9677 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
9678 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
9679 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
9680 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
9681 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
9682 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
9683 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
9684 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
9685
9686 /* user */
9687 /* RCV_HDR_TAIL read-only */
9688 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
9689 /* RCV_EGR_INDEX_TAIL read-only */
9690 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
9691 /* RCV_EGR_OFFSET_TAIL read-only */
9692 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
9693 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j),
9694 0);
9695 }
9696 }
9697}
9698
9699/*
9700 * Set sc2vl tables.
9701 *
9702 * They power on to zeros, so to avoid send context errors
9703 * they need to be set:
9704 *
9705 * SC 0-7 -> VL 0-7 (respectively)
9706 * SC 15 -> VL 15
9707 * otherwise
9708 * -> VL 0
9709 */
9710static void init_sc2vl_tables(struct hfi1_devdata *dd)
9711{
9712 int i;
9713 /* init per architecture spec, constrained by hardware capability */
9714
9715 /* HFI maps sent packets */
9716 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
9717 0,
9718 0, 0, 1, 1,
9719 2, 2, 3, 3,
9720 4, 4, 5, 5,
9721 6, 6, 7, 7));
9722 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
9723 1,
9724 8, 0, 9, 0,
9725 10, 0, 11, 0,
9726 12, 0, 13, 0,
9727 14, 0, 15, 15));
9728 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
9729 2,
9730 16, 0, 17, 0,
9731 18, 0, 19, 0,
9732 20, 0, 21, 0,
9733 22, 0, 23, 0));
9734 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
9735 3,
9736 24, 0, 25, 0,
9737 26, 0, 27, 0,
9738 28, 0, 29, 0,
9739 30, 0, 31, 0));
9740
9741 /* DC maps received packets */
9742 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
9743 15_0,
9744 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
9745 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
9746 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
9747 31_16,
9748 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
9749 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
9750
9751 /* initialize the cached sc2vl values consistently with h/w */
9752 for (i = 0; i < 32; i++) {
9753 if (i < 8 || i == 15)
9754 *((u8 *)(dd->sc2vl) + i) = (u8)i;
9755 else
9756 *((u8 *)(dd->sc2vl) + i) = 0;
9757 }
9758}
9759
9760/*
9761 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
9762 * depend on the chip going through a power-on reset - a driver may be loaded
9763 * and unloaded many times.
9764 *
9765 * Do not write any CSR values to the chip in this routine - there may be
9766 * a reset following the (possible) FLR in this routine.
9767 *
9768 */
9769static void init_chip(struct hfi1_devdata *dd)
9770{
9771 int i;
9772
9773 /*
9774 * Put the HFI CSRs in a known state.
9775 * Combine this with a DC reset.
9776 *
9777 * Stop the device from doing anything while we do a
9778 * reset. We know there are no other active users of
9779 * the device since we are now in charge. Turn off
9780 * off all outbound and inbound traffic and make sure
9781 * the device does not generate any interrupts.
9782 */
9783
9784 /* disable send contexts and SDMA engines */
9785 write_csr(dd, SEND_CTRL, 0);
9786 for (i = 0; i < dd->chip_send_contexts; i++)
9787 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
9788 for (i = 0; i < dd->chip_sdma_engines; i++)
9789 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
9790 /* disable port (turn off RXE inbound traffic) and contexts */
9791 write_csr(dd, RCV_CTRL, 0);
9792 for (i = 0; i < dd->chip_rcv_contexts; i++)
9793 write_csr(dd, RCV_CTXT_CTRL, 0);
9794 /* mask all interrupt sources */
9795 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
9796 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
9797
9798 /*
9799 * DC Reset: do a full DC reset before the register clear.
9800 * A recommended length of time to hold is one CSR read,
9801 * so reread the CceDcCtrl. Then, hold the DC in reset
9802 * across the clear.
9803 */
9804 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
9805 (void) read_csr(dd, CCE_DC_CTRL);
9806
9807 if (use_flr) {
9808 /*
9809 * A FLR will reset the SPC core and part of the PCIe.
9810 * The parts that need to be restored have already been
9811 * saved.
9812 */
9813 dd_dev_info(dd, "Resetting CSRs with FLR\n");
9814
9815 /* do the FLR, the DC reset will remain */
9816 hfi1_pcie_flr(dd);
9817
9818 /* restore command and BARs */
9819 restore_pci_variables(dd);
9820
9821 if (is_a0(dd)) {
9822 dd_dev_info(dd, "Resetting CSRs with FLR\n");
9823 hfi1_pcie_flr(dd);
9824 restore_pci_variables(dd);
9825 }
9826
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009827 reset_asic_csrs(dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009828 } else {
9829 dd_dev_info(dd, "Resetting CSRs with writes\n");
9830 reset_cce_csrs(dd);
9831 reset_txe_csrs(dd);
9832 reset_rxe_csrs(dd);
9833 reset_asic_csrs(dd);
9834 reset_misc_csrs(dd);
9835 }
9836 /* clear the DC reset */
9837 write_csr(dd, CCE_DC_CTRL, 0);
Easwar Hariharan7c03ed82015-10-26 10:28:28 -04009838
Mike Marciniszyn77241052015-07-30 15:17:43 -04009839 /* Set the LED off */
9840 if (is_a0(dd))
9841 setextled(dd, 0);
9842 /*
9843 * Clear the QSFP reset.
9844 * A0 leaves the out lines floating on power on, then on an FLR
9845 * enforces a 0 on all out pins. The driver does not touch
9846 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
9847 * anything plugged constantly in reset, if it pays attention
9848 * to RESET_N.
9849 * A prime example of this is SiPh. For now, set all pins high.
9850 * I2CCLK and I2CDAT will change per direction, and INT_N and
9851 * MODPRS_N are input only and their value is ignored.
9852 */
9853 if (is_a0(dd)) {
9854 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
9855 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
9856 }
9857}
9858
9859static void init_early_variables(struct hfi1_devdata *dd)
9860{
9861 int i;
9862
9863 /* assign link credit variables */
9864 dd->vau = CM_VAU;
9865 dd->link_credits = CM_GLOBAL_CREDITS;
9866 if (is_a0(dd))
9867 dd->link_credits--;
9868 dd->vcu = cu_to_vcu(hfi1_cu);
9869 /* enough room for 8 MAD packets plus header - 17K */
9870 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
9871 if (dd->vl15_init > dd->link_credits)
9872 dd->vl15_init = dd->link_credits;
9873
9874 write_uninitialized_csrs_and_memories(dd);
9875
9876 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
9877 for (i = 0; i < dd->num_pports; i++) {
9878 struct hfi1_pportdata *ppd = &dd->pport[i];
9879
9880 set_partition_keys(ppd);
9881 }
9882 init_sc2vl_tables(dd);
9883}
9884
9885static void init_kdeth_qp(struct hfi1_devdata *dd)
9886{
9887 /* user changed the KDETH_QP */
9888 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
9889 /* out of range or illegal value */
9890 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
9891 kdeth_qp = 0;
9892 }
9893 if (kdeth_qp == 0) /* not set, or failed range check */
9894 kdeth_qp = DEFAULT_KDETH_QP;
9895
9896 write_csr(dd, SEND_BTH_QP,
9897 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK)
9898 << SEND_BTH_QP_KDETH_QP_SHIFT);
9899
9900 write_csr(dd, RCV_BTH_QP,
9901 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK)
9902 << RCV_BTH_QP_KDETH_QP_SHIFT);
9903}
9904
9905/**
9906 * init_qpmap_table
9907 * @dd - device data
9908 * @first_ctxt - first context
9909 * @last_ctxt - first context
9910 *
9911 * This return sets the qpn mapping table that
9912 * is indexed by qpn[8:1].
9913 *
9914 * The routine will round robin the 256 settings
9915 * from first_ctxt to last_ctxt.
9916 *
9917 * The first/last looks ahead to having specialized
9918 * receive contexts for mgmt and bypass. Normal
9919 * verbs traffic will assumed to be on a range
9920 * of receive contexts.
9921 */
9922static void init_qpmap_table(struct hfi1_devdata *dd,
9923 u32 first_ctxt,
9924 u32 last_ctxt)
9925{
9926 u64 reg = 0;
9927 u64 regno = RCV_QP_MAP_TABLE;
9928 int i;
9929 u64 ctxt = first_ctxt;
9930
9931 for (i = 0; i < 256;) {
9932 if (ctxt == VL15CTXT) {
9933 ctxt++;
9934 if (ctxt > last_ctxt)
9935 ctxt = first_ctxt;
9936 continue;
9937 }
9938 reg |= ctxt << (8 * (i % 8));
9939 i++;
9940 ctxt++;
9941 if (ctxt > last_ctxt)
9942 ctxt = first_ctxt;
9943 if (i % 8 == 0) {
9944 write_csr(dd, regno, reg);
9945 reg = 0;
9946 regno += 8;
9947 }
9948 }
9949 if (i % 8)
9950 write_csr(dd, regno, reg);
9951
9952 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
9953 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
9954}
9955
9956/**
9957 * init_qos - init RX qos
9958 * @dd - device data
9959 * @first_context
9960 *
9961 * This routine initializes Rule 0 and the
9962 * RSM map table to implement qos.
9963 *
9964 * If all of the limit tests succeed,
9965 * qos is applied based on the array
9966 * interpretation of krcvqs where
9967 * entry 0 is VL0.
9968 *
9969 * The number of vl bits (n) and the number of qpn
9970 * bits (m) are computed to feed both the RSM map table
9971 * and the single rule.
9972 *
9973 */
9974static void init_qos(struct hfi1_devdata *dd, u32 first_ctxt)
9975{
9976 u8 max_by_vl = 0;
9977 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
9978 u64 *rsmmap;
9979 u64 reg;
9980 u8 rxcontext = is_a0(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
9981
9982 /* validate */
9983 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
9984 num_vls == 1 ||
9985 krcvqsset <= 1)
9986 goto bail;
9987 for (i = 0; i < min_t(unsigned, num_vls, krcvqsset); i++)
9988 if (krcvqs[i] > max_by_vl)
9989 max_by_vl = krcvqs[i];
9990 if (max_by_vl > 32)
9991 goto bail;
9992 qpns_per_vl = __roundup_pow_of_two(max_by_vl);
9993 /* determine bits vl */
9994 n = ilog2(num_vls);
9995 /* determine bits for qpn */
9996 m = ilog2(qpns_per_vl);
9997 if ((m + n) > 7)
9998 goto bail;
9999 if (num_vls * qpns_per_vl > dd->chip_rcv_contexts)
10000 goto bail;
10001 rsmmap = kmalloc_array(NUM_MAP_REGS, sizeof(u64), GFP_KERNEL);
10002 memset(rsmmap, rxcontext, NUM_MAP_REGS * sizeof(u64));
10003 /* init the local copy of the table */
10004 for (i = 0, ctxt = first_ctxt; i < num_vls; i++) {
10005 unsigned tctxt;
10006
10007 for (qpn = 0, tctxt = ctxt;
10008 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
10009 unsigned idx, regoff, regidx;
10010
10011 /* generate index <= 128 */
10012 idx = (qpn << n) ^ i;
10013 regoff = (idx % 8) * 8;
10014 regidx = idx / 8;
10015 reg = rsmmap[regidx];
10016 /* replace 0xff with context number */
10017 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
10018 << regoff);
10019 reg |= (u64)(tctxt++) << regoff;
10020 rsmmap[regidx] = reg;
10021 if (tctxt == ctxt + krcvqs[i])
10022 tctxt = ctxt;
10023 }
10024 ctxt += krcvqs[i];
10025 }
10026 /* flush cached copies to chip */
10027 for (i = 0; i < NUM_MAP_REGS; i++)
10028 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rsmmap[i]);
10029 /* add rule0 */
10030 write_csr(dd, RCV_RSM_CFG /* + (8 * 0) */,
10031 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_MASK
10032 << RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_SHIFT |
10033 2ull << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
10034 write_csr(dd, RCV_RSM_SELECT /* + (8 * 0) */,
10035 LRH_BTH_MATCH_OFFSET
10036 << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
10037 LRH_SC_MATCH_OFFSET << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
10038 LRH_SC_SELECT_OFFSET << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
10039 ((u64)n) << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
10040 QPN_SELECT_OFFSET << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
10041 ((u64)m + (u64)n) << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
10042 write_csr(dd, RCV_RSM_MATCH /* + (8 * 0) */,
10043 LRH_BTH_MASK << RCV_RSM_MATCH_MASK1_SHIFT |
10044 LRH_BTH_VALUE << RCV_RSM_MATCH_VALUE1_SHIFT |
10045 LRH_SC_MASK << RCV_RSM_MATCH_MASK2_SHIFT |
10046 LRH_SC_VALUE << RCV_RSM_MATCH_VALUE2_SHIFT);
10047 /* Enable RSM */
10048 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
10049 kfree(rsmmap);
10050 /* map everything else (non-VL15) to context 0 */
10051 init_qpmap_table(
10052 dd,
10053 0,
10054 0);
10055 dd->qos_shift = n + 1;
10056 return;
10057bail:
10058 dd->qos_shift = 1;
10059 init_qpmap_table(
10060 dd,
10061 dd->n_krcv_queues > MIN_KERNEL_KCTXTS ? MIN_KERNEL_KCTXTS : 0,
10062 dd->n_krcv_queues - 1);
10063}
10064
10065static void init_rxe(struct hfi1_devdata *dd)
10066{
10067 /* enable all receive errors */
10068 write_csr(dd, RCV_ERR_MASK, ~0ull);
10069 /* setup QPN map table - start where VL15 context leaves off */
10070 init_qos(
10071 dd,
10072 dd->n_krcv_queues > MIN_KERNEL_KCTXTS ? MIN_KERNEL_KCTXTS : 0);
10073 /*
10074 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
10075 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
10076 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
10077 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
10078 * Max_PayLoad_Size set to its minimum of 128.
10079 *
10080 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
10081 * (64 bytes). Max_Payload_Size is possibly modified upward in
10082 * tune_pcie_caps() which is called after this routine.
10083 */
10084}
10085
10086static void init_other(struct hfi1_devdata *dd)
10087{
10088 /* enable all CCE errors */
10089 write_csr(dd, CCE_ERR_MASK, ~0ull);
10090 /* enable *some* Misc errors */
10091 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
10092 /* enable all DC errors, except LCB */
10093 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
10094 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
10095}
10096
10097/*
10098 * Fill out the given AU table using the given CU. A CU is defined in terms
10099 * AUs. The table is a an encoding: given the index, how many AUs does that
10100 * represent?
10101 *
10102 * NOTE: Assumes that the register layout is the same for the
10103 * local and remote tables.
10104 */
10105static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
10106 u32 csr0to3, u32 csr4to7)
10107{
10108 write_csr(dd, csr0to3,
10109 0ull <<
10110 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT
10111 | 1ull <<
10112 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT
10113 | 2ull * cu <<
10114 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT
10115 | 4ull * cu <<
10116 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
10117 write_csr(dd, csr4to7,
10118 8ull * cu <<
10119 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT
10120 | 16ull * cu <<
10121 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT
10122 | 32ull * cu <<
10123 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT
10124 | 64ull * cu <<
10125 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
10126
10127}
10128
10129static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
10130{
10131 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
10132 SEND_CM_LOCAL_AU_TABLE4_TO7);
10133}
10134
10135void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
10136{
10137 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
10138 SEND_CM_REMOTE_AU_TABLE4_TO7);
10139}
10140
10141static void init_txe(struct hfi1_devdata *dd)
10142{
10143 int i;
10144
10145 /* enable all PIO, SDMA, general, and Egress errors */
10146 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
10147 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
10148 write_csr(dd, SEND_ERR_MASK, ~0ull);
10149 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
10150
10151 /* enable all per-context and per-SDMA engine errors */
10152 for (i = 0; i < dd->chip_send_contexts; i++)
10153 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
10154 for (i = 0; i < dd->chip_sdma_engines; i++)
10155 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
10156
10157 /* set the local CU to AU mapping */
10158 assign_local_cm_au_table(dd, dd->vcu);
10159
10160 /*
10161 * Set reasonable default for Credit Return Timer
10162 * Don't set on Simulator - causes it to choke.
10163 */
10164 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
10165 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
10166}
10167
10168int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
10169{
10170 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
10171 unsigned sctxt;
10172 int ret = 0;
10173 u64 reg;
10174
10175 if (!rcd || !rcd->sc) {
10176 ret = -EINVAL;
10177 goto done;
10178 }
10179 sctxt = rcd->sc->hw_context;
10180 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
10181 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
10182 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
10183 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
10184 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
10185 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
10186 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
10187 /*
10188 * Enable send-side J_KEY integrity check, unless this is A0 h/w
10189 * (due to A0 erratum).
10190 */
10191 if (!is_a0(dd)) {
10192 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10193 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
10194 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10195 }
10196
10197 /* Enable J_KEY check on receive context. */
10198 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
10199 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
10200 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
10201 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
10202done:
10203 return ret;
10204}
10205
10206int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
10207{
10208 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
10209 unsigned sctxt;
10210 int ret = 0;
10211 u64 reg;
10212
10213 if (!rcd || !rcd->sc) {
10214 ret = -EINVAL;
10215 goto done;
10216 }
10217 sctxt = rcd->sc->hw_context;
10218 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
10219 /*
10220 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
10221 * This check would not have been enabled for A0 h/w, see
10222 * set_ctxt_jkey().
10223 */
10224 if (!is_a0(dd)) {
10225 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10226 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
10227 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10228 }
10229 /* Turn off the J_KEY on the receive side */
10230 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
10231done:
10232 return ret;
10233}
10234
10235int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
10236{
10237 struct hfi1_ctxtdata *rcd;
10238 unsigned sctxt;
10239 int ret = 0;
10240 u64 reg;
10241
10242 if (ctxt < dd->num_rcv_contexts)
10243 rcd = dd->rcd[ctxt];
10244 else {
10245 ret = -EINVAL;
10246 goto done;
10247 }
10248 if (!rcd || !rcd->sc) {
10249 ret = -EINVAL;
10250 goto done;
10251 }
10252 sctxt = rcd->sc->hw_context;
10253 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
10254 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
10255 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
10256 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10257 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
10258 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10259done:
10260 return ret;
10261}
10262
10263int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
10264{
10265 struct hfi1_ctxtdata *rcd;
10266 unsigned sctxt;
10267 int ret = 0;
10268 u64 reg;
10269
10270 if (ctxt < dd->num_rcv_contexts)
10271 rcd = dd->rcd[ctxt];
10272 else {
10273 ret = -EINVAL;
10274 goto done;
10275 }
10276 if (!rcd || !rcd->sc) {
10277 ret = -EINVAL;
10278 goto done;
10279 }
10280 sctxt = rcd->sc->hw_context;
10281 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
10282 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
10283 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
10284 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
10285done:
10286 return ret;
10287}
10288
10289/*
10290 * Start doing the clean up the the chip. Our clean up happens in multiple
10291 * stages and this is just the first.
10292 */
10293void hfi1_start_cleanup(struct hfi1_devdata *dd)
10294{
10295 free_cntrs(dd);
10296 free_rcverr(dd);
10297 clean_up_interrupts(dd);
10298}
10299
10300#define HFI_BASE_GUID(dev) \
10301 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
10302
10303/*
10304 * Certain chip functions need to be initialized only once per asic
10305 * instead of per-device. This function finds the peer device and
10306 * checks whether that chip initialization needs to be done by this
10307 * device.
10308 */
10309static void asic_should_init(struct hfi1_devdata *dd)
10310{
10311 unsigned long flags;
10312 struct hfi1_devdata *tmp, *peer = NULL;
10313
10314 spin_lock_irqsave(&hfi1_devs_lock, flags);
10315 /* Find our peer device */
10316 list_for_each_entry(tmp, &hfi1_dev_list, list) {
10317 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
10318 dd->unit != tmp->unit) {
10319 peer = tmp;
10320 break;
10321 }
10322 }
10323
10324 /*
10325 * "Claim" the ASIC for initialization if it hasn't been
10326 " "claimed" yet.
10327 */
10328 if (!peer || !(peer->flags & HFI1_DO_INIT_ASIC))
10329 dd->flags |= HFI1_DO_INIT_ASIC;
10330 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
10331}
10332
10333/**
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040010334 * Allocate and initialize the device structure for the hfi.
Mike Marciniszyn77241052015-07-30 15:17:43 -040010335 * @dev: the pci_dev for hfi1_ib device
10336 * @ent: pci_device_id struct for this dev
10337 *
10338 * Also allocates, initializes, and returns the devdata struct for this
10339 * device instance
10340 *
10341 * This is global, and is called directly at init to set up the
10342 * chip-specific function pointers for later use.
10343 */
10344struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
10345 const struct pci_device_id *ent)
10346{
10347 struct hfi1_devdata *dd;
10348 struct hfi1_pportdata *ppd;
10349 u64 reg;
10350 int i, ret;
10351 static const char * const inames[] = { /* implementation names */
10352 "RTL silicon",
10353 "RTL VCS simulation",
10354 "RTL FPGA emulation",
10355 "Functional simulator"
10356 };
10357
10358 dd = hfi1_alloc_devdata(pdev,
10359 NUM_IB_PORTS * sizeof(struct hfi1_pportdata));
10360 if (IS_ERR(dd))
10361 goto bail;
10362 ppd = dd->pport;
10363 for (i = 0; i < dd->num_pports; i++, ppd++) {
10364 int vl;
10365 /* init common fields */
10366 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
10367 /* DC supports 4 link widths */
10368 ppd->link_width_supported =
10369 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
10370 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
10371 ppd->link_width_downgrade_supported =
10372 ppd->link_width_supported;
10373 /* start out enabling only 4X */
10374 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
10375 ppd->link_width_downgrade_enabled =
10376 ppd->link_width_downgrade_supported;
10377 /* link width active is 0 when link is down */
10378 /* link width downgrade active is 0 when link is down */
10379
10380 if (num_vls < HFI1_MIN_VLS_SUPPORTED
10381 || num_vls > HFI1_MAX_VLS_SUPPORTED) {
10382 hfi1_early_err(&pdev->dev,
10383 "Invalid num_vls %u, using %u VLs\n",
10384 num_vls, HFI1_MAX_VLS_SUPPORTED);
10385 num_vls = HFI1_MAX_VLS_SUPPORTED;
10386 }
10387 ppd->vls_supported = num_vls;
10388 ppd->vls_operational = ppd->vls_supported;
10389 /* Set the default MTU. */
10390 for (vl = 0; vl < num_vls; vl++)
10391 dd->vld[vl].mtu = hfi1_max_mtu;
10392 dd->vld[15].mtu = MAX_MAD_PACKET;
10393 /*
10394 * Set the initial values to reasonable default, will be set
10395 * for real when link is up.
10396 */
10397 ppd->lstate = IB_PORT_DOWN;
10398 ppd->overrun_threshold = 0x4;
10399 ppd->phy_error_threshold = 0xf;
10400 ppd->port_crc_mode_enabled = link_crc_mask;
10401 /* initialize supported LTP CRC mode */
10402 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
10403 /* initialize enabled LTP CRC mode */
10404 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
10405 /* start in offline */
10406 ppd->host_link_state = HLS_DN_OFFLINE;
10407 init_vl_arb_caches(ppd);
10408 }
10409
10410 dd->link_default = HLS_DN_POLL;
10411
10412 /*
10413 * Do remaining PCIe setup and save PCIe values in dd.
10414 * Any error printing is already done by the init code.
10415 * On return, we have the chip mapped.
10416 */
10417 ret = hfi1_pcie_ddinit(dd, pdev, ent);
10418 if (ret < 0)
10419 goto bail_free;
10420
10421 /* verify that reads actually work, save revision for reset check */
10422 dd->revision = read_csr(dd, CCE_REVISION);
10423 if (dd->revision == ~(u64)0) {
10424 dd_dev_err(dd, "cannot read chip CSRs\n");
10425 ret = -EINVAL;
10426 goto bail_cleanup;
10427 }
10428 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
10429 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
10430 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
10431 & CCE_REVISION_CHIP_REV_MINOR_MASK;
10432
10433 /* obtain the hardware ID - NOT related to unit, which is a
10434 software enumeration */
10435 reg = read_csr(dd, CCE_REVISION2);
10436 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
10437 & CCE_REVISION2_HFI_ID_MASK;
10438 /* the variable size will remove unwanted bits */
10439 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
10440 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
10441 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
10442 dd->icode < ARRAY_SIZE(inames) ? inames[dd->icode] : "unknown",
10443 (int)dd->irev);
10444
10445 /* speeds the hardware can support */
10446 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
10447 /* speeds allowed to run at */
10448 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
10449 /* give a reasonable active value, will be set on link up */
10450 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
10451
10452 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
10453 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
10454 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
10455 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
10456 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
10457 /* fix up link widths for emulation _p */
10458 ppd = dd->pport;
10459 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
10460 ppd->link_width_supported =
10461 ppd->link_width_enabled =
10462 ppd->link_width_downgrade_supported =
10463 ppd->link_width_downgrade_enabled =
10464 OPA_LINK_WIDTH_1X;
10465 }
10466 /* insure num_vls isn't larger than number of sdma engines */
10467 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
10468 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
10469 num_vls, HFI1_MAX_VLS_SUPPORTED);
10470 ppd->vls_supported = num_vls = HFI1_MAX_VLS_SUPPORTED;
10471 ppd->vls_operational = ppd->vls_supported;
10472 }
10473
10474 /*
10475 * Convert the ns parameter to the 64 * cclocks used in the CSR.
10476 * Limit the max if larger than the field holds. If timeout is
10477 * non-zero, then the calculated field will be at least 1.
10478 *
10479 * Must be after icode is set up - the cclock rate depends
10480 * on knowing the hardware being used.
10481 */
10482 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
10483 if (dd->rcv_intr_timeout_csr >
10484 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
10485 dd->rcv_intr_timeout_csr =
10486 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
10487 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
10488 dd->rcv_intr_timeout_csr = 1;
10489
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040010490 /* needs to be done before we look for the peer device */
10491 read_guid(dd);
10492
10493 /* should this device init the ASIC block? */
10494 asic_should_init(dd);
10495
Mike Marciniszyn77241052015-07-30 15:17:43 -040010496 /* obtain chip sizes, reset chip CSRs */
10497 init_chip(dd);
10498
10499 /* read in the PCIe link speed information */
10500 ret = pcie_speeds(dd);
10501 if (ret)
10502 goto bail_cleanup;
10503
Mike Marciniszyn77241052015-07-30 15:17:43 -040010504 /* read in firmware */
10505 ret = hfi1_firmware_init(dd);
10506 if (ret)
10507 goto bail_cleanup;
10508
10509 /*
10510 * In general, the PCIe Gen3 transition must occur after the
10511 * chip has been idled (so it won't initiate any PCIe transactions
10512 * e.g. an interrupt) and before the driver changes any registers
10513 * (the transition will reset the registers).
10514 *
10515 * In particular, place this call after:
10516 * - init_chip() - the chip will not initiate any PCIe transactions
10517 * - pcie_speeds() - reads the current link speed
10518 * - hfi1_firmware_init() - the needed firmware is ready to be
10519 * downloaded
10520 */
10521 ret = do_pcie_gen3_transition(dd);
10522 if (ret)
10523 goto bail_cleanup;
10524
10525 /* start setting dd values and adjusting CSRs */
10526 init_early_variables(dd);
10527
10528 parse_platform_config(dd);
10529
10530 /* add board names as they are defined */
10531 dd->boardname = kmalloc(64, GFP_KERNEL);
10532 if (!dd->boardname)
10533 goto bail_cleanup;
10534 snprintf(dd->boardname, 64, "Board ID 0x%llx",
10535 dd->revision >> CCE_REVISION_BOARD_ID_LOWER_NIBBLE_SHIFT
10536 & CCE_REVISION_BOARD_ID_LOWER_NIBBLE_MASK);
10537
10538 snprintf(dd->boardversion, BOARD_VERS_MAX,
10539 "ChipABI %u.%u, %s, ChipRev %u.%u, SW Compat %llu\n",
10540 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
10541 dd->boardname,
10542 (u32)dd->majrev,
10543 (u32)dd->minrev,
10544 (dd->revision >> CCE_REVISION_SW_SHIFT)
10545 & CCE_REVISION_SW_MASK);
10546
10547 ret = set_up_context_variables(dd);
10548 if (ret)
10549 goto bail_cleanup;
10550
10551 /* set initial RXE CSRs */
10552 init_rxe(dd);
10553 /* set initial TXE CSRs */
10554 init_txe(dd);
10555 /* set initial non-RXE, non-TXE CSRs */
10556 init_other(dd);
10557 /* set up KDETH QP prefix in both RX and TX CSRs */
10558 init_kdeth_qp(dd);
10559
10560 /* send contexts must be set up before receive contexts */
10561 ret = init_send_contexts(dd);
10562 if (ret)
10563 goto bail_cleanup;
10564
10565 ret = hfi1_create_ctxts(dd);
10566 if (ret)
10567 goto bail_cleanup;
10568
10569 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
10570 /*
10571 * rcd[0] is guaranteed to be valid by this point. Also, all
10572 * context are using the same value, as per the module parameter.
10573 */
10574 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
10575
10576 ret = init_pervl_scs(dd);
10577 if (ret)
10578 goto bail_cleanup;
10579
10580 /* sdma init */
10581 for (i = 0; i < dd->num_pports; ++i) {
10582 ret = sdma_init(dd, i);
10583 if (ret)
10584 goto bail_cleanup;
10585 }
10586
10587 /* use contexts created by hfi1_create_ctxts */
10588 ret = set_up_interrupts(dd);
10589 if (ret)
10590 goto bail_cleanup;
10591
10592 /* set up LCB access - must be after set_up_interrupts() */
10593 init_lcb_access(dd);
10594
10595 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
10596 dd->base_guid & 0xFFFFFF);
10597
10598 dd->oui1 = dd->base_guid >> 56 & 0xFF;
10599 dd->oui2 = dd->base_guid >> 48 & 0xFF;
10600 dd->oui3 = dd->base_guid >> 40 & 0xFF;
10601
10602 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
10603 if (ret)
10604 goto bail_clear_intr;
10605 check_fabric_firmware_versions(dd);
10606
10607 thermal_init(dd);
10608
10609 ret = init_cntrs(dd);
10610 if (ret)
10611 goto bail_clear_intr;
10612
10613 ret = init_rcverr(dd);
10614 if (ret)
10615 goto bail_free_cntrs;
10616
10617 ret = eprom_init(dd);
10618 if (ret)
10619 goto bail_free_rcverr;
10620
10621 goto bail;
10622
10623bail_free_rcverr:
10624 free_rcverr(dd);
10625bail_free_cntrs:
10626 free_cntrs(dd);
10627bail_clear_intr:
10628 clean_up_interrupts(dd);
10629bail_cleanup:
10630 hfi1_pcie_ddcleanup(dd);
10631bail_free:
10632 hfi1_free_devdata(dd);
10633 dd = ERR_PTR(ret);
10634bail:
10635 return dd;
10636}
10637
10638static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
10639 u32 dw_len)
10640{
10641 u32 delta_cycles;
10642 u32 current_egress_rate = ppd->current_egress_rate;
10643 /* rates here are in units of 10^6 bits/sec */
10644
10645 if (desired_egress_rate == -1)
10646 return 0; /* shouldn't happen */
10647
10648 if (desired_egress_rate >= current_egress_rate)
10649 return 0; /* we can't help go faster, only slower */
10650
10651 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
10652 egress_cycles(dw_len * 4, current_egress_rate);
10653
10654 return (u16)delta_cycles;
10655}
10656
10657
10658/**
10659 * create_pbc - build a pbc for transmission
10660 * @flags: special case flags or-ed in built pbc
10661 * @srate: static rate
10662 * @vl: vl
10663 * @dwlen: dword length (header words + data words + pbc words)
10664 *
10665 * Create a PBC with the given flags, rate, VL, and length.
10666 *
10667 * NOTE: The PBC created will not insert any HCRC - all callers but one are
10668 * for verbs, which does not use this PSM feature. The lone other caller
10669 * is for the diagnostic interface which calls this if the user does not
10670 * supply their own PBC.
10671 */
10672u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
10673 u32 dw_len)
10674{
10675 u64 pbc, delay = 0;
10676
10677 if (unlikely(srate_mbs))
10678 delay = delay_cycles(ppd, srate_mbs, dw_len);
10679
10680 pbc = flags
10681 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
10682 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
10683 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
10684 | (dw_len & PBC_LENGTH_DWS_MASK)
10685 << PBC_LENGTH_DWS_SHIFT;
10686
10687 return pbc;
10688}
10689
10690#define SBUS_THERMAL 0x4f
10691#define SBUS_THERM_MONITOR_MODE 0x1
10692
10693#define THERM_FAILURE(dev, ret, reason) \
10694 dd_dev_err((dd), \
10695 "Thermal sensor initialization failed: %s (%d)\n", \
10696 (reason), (ret))
10697
10698/*
10699 * Initialize the Avago Thermal sensor.
10700 *
10701 * After initialization, enable polling of thermal sensor through
10702 * SBus interface. In order for this to work, the SBus Master
10703 * firmware has to be loaded due to the fact that the HW polling
10704 * logic uses SBus interrupts, which are not supported with
10705 * default firmware. Otherwise, no data will be returned through
10706 * the ASIC_STS_THERM CSR.
10707 */
10708static int thermal_init(struct hfi1_devdata *dd)
10709{
10710 int ret = 0;
10711
10712 if (dd->icode != ICODE_RTL_SILICON ||
10713 !(dd->flags & HFI1_DO_INIT_ASIC))
10714 return ret;
10715
10716 acquire_hw_mutex(dd);
10717 dd_dev_info(dd, "Initializing thermal sensor\n");
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040010718
Mike Marciniszyn77241052015-07-30 15:17:43 -040010719 /* Thermal Sensor Initialization */
10720 /* Step 1: Reset the Thermal SBus Receiver */
10721 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10722 RESET_SBUS_RECEIVER, 0);
10723 if (ret) {
10724 THERM_FAILURE(dd, ret, "Bus Reset");
10725 goto done;
10726 }
10727 /* Step 2: Set Reset bit in Thermal block */
10728 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10729 WRITE_SBUS_RECEIVER, 0x1);
10730 if (ret) {
10731 THERM_FAILURE(dd, ret, "Therm Block Reset");
10732 goto done;
10733 }
10734 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
10735 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
10736 WRITE_SBUS_RECEIVER, 0x32);
10737 if (ret) {
10738 THERM_FAILURE(dd, ret, "Write Clock Div");
10739 goto done;
10740 }
10741 /* Step 4: Select temperature mode */
10742 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
10743 WRITE_SBUS_RECEIVER,
10744 SBUS_THERM_MONITOR_MODE);
10745 if (ret) {
10746 THERM_FAILURE(dd, ret, "Write Mode Sel");
10747 goto done;
10748 }
10749 /* Step 5: De-assert block reset and start conversion */
10750 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
10751 WRITE_SBUS_RECEIVER, 0x2);
10752 if (ret) {
10753 THERM_FAILURE(dd, ret, "Write Reset Deassert");
10754 goto done;
10755 }
10756 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
10757 msleep(22);
10758
10759 /* Enable polling of thermal readings */
10760 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
10761done:
10762 release_hw_mutex(dd);
10763 return ret;
10764}
10765
10766static void handle_temp_err(struct hfi1_devdata *dd)
10767{
10768 struct hfi1_pportdata *ppd = &dd->pport[0];
10769 /*
10770 * Thermal Critical Interrupt
10771 * Put the device into forced freeze mode, take link down to
10772 * offline, and put DC into reset.
10773 */
10774 dd_dev_emerg(dd,
10775 "Critical temperature reached! Forcing device into freeze mode!\n");
10776 dd->flags |= HFI1_FORCED_FREEZE;
10777 start_freeze_handling(ppd, FREEZE_SELF|FREEZE_ABORT);
10778 /*
10779 * Shut DC down as much and as quickly as possible.
10780 *
10781 * Step 1: Take the link down to OFFLINE. This will cause the
10782 * 8051 to put the Serdes in reset. However, we don't want to
10783 * go through the entire link state machine since we want to
10784 * shutdown ASAP. Furthermore, this is not a graceful shutdown
10785 * but rather an attempt to save the chip.
10786 * Code below is almost the same as quiet_serdes() but avoids
10787 * all the extra work and the sleeps.
10788 */
10789 ppd->driver_link_ready = 0;
10790 ppd->link_enabled = 0;
10791 set_physical_link_state(dd, PLS_OFFLINE |
10792 (OPA_LINKDOWN_REASON_SMA_DISABLED << 8));
10793 /*
10794 * Step 2: Shutdown LCB and 8051
10795 * After shutdown, do not restore DC_CFG_RESET value.
10796 */
10797 dc_shutdown(dd);
10798}