blob: 7bb520aaf0a39bf630bcfc09ca22fde582a3acb3 [file] [log] [blame]
Paul Menageddbcc7e2007-10-18 23:39:30 -07001/*
2 * kernel/cgroup.c
3 *
4 * Generic process-grouping system.
5 *
6 * Based originally on the cpuset system, extracted by Paul Menage
7 * Copyright (C) 2006 Google, Inc
8 *
9 * Copyright notices from the original cpuset code:
10 * --------------------------------------------------
11 * Copyright (C) 2003 BULL SA.
12 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
13 *
14 * Portions derived from Patrick Mochel's sysfs code.
15 * sysfs is Copyright (c) 2001-3 Patrick Mochel
16 *
17 * 2003-10-10 Written by Simon Derr.
18 * 2003-10-22 Updates by Stephen Hemminger.
19 * 2004 May-July Rework by Paul Jackson.
20 * ---------------------------------------------------
21 *
22 * This file is subject to the terms and conditions of the GNU General Public
23 * License. See the file COPYING in the main directory of the Linux
24 * distribution for more details.
25 */
26
27#include <linux/cgroup.h>
28#include <linux/errno.h>
29#include <linux/fs.h>
30#include <linux/kernel.h>
31#include <linux/list.h>
32#include <linux/mm.h>
33#include <linux/mutex.h>
34#include <linux/mount.h>
35#include <linux/pagemap.h>
36#include <linux/rcupdate.h>
37#include <linux/sched.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/magic.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
Paul Menagebbcb81d2007-10-18 23:39:32 -070043#include <linux/sort.h>
Paul Menageddbcc7e2007-10-18 23:39:30 -070044#include <asm/atomic.h>
45
46/* Generate an array of cgroup subsystem pointers */
47#define SUBSYS(_x) &_x ## _subsys,
48
49static struct cgroup_subsys *subsys[] = {
50#include <linux/cgroup_subsys.h>
51};
52
53/*
54 * A cgroupfs_root represents the root of a cgroup hierarchy,
55 * and may be associated with a superblock to form an active
56 * hierarchy
57 */
58struct cgroupfs_root {
59 struct super_block *sb;
60
61 /*
62 * The bitmask of subsystems intended to be attached to this
63 * hierarchy
64 */
65 unsigned long subsys_bits;
66
67 /* The bitmask of subsystems currently attached to this hierarchy */
68 unsigned long actual_subsys_bits;
69
70 /* A list running through the attached subsystems */
71 struct list_head subsys_list;
72
73 /* The root cgroup for this hierarchy */
74 struct cgroup top_cgroup;
75
76 /* Tracks how many cgroups are currently defined in hierarchy.*/
77 int number_of_cgroups;
78
79 /* A list running through the mounted hierarchies */
80 struct list_head root_list;
81
82 /* Hierarchy-specific flags */
83 unsigned long flags;
84};
85
86
87/*
88 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
89 * subsystems that are otherwise unattached - it never has more than a
90 * single cgroup, and all tasks are part of that cgroup.
91 */
92static struct cgroupfs_root rootnode;
93
94/* The list of hierarchy roots */
95
96static LIST_HEAD(roots);
97
98/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
99#define dummytop (&rootnode.top_cgroup)
100
101/* This flag indicates whether tasks in the fork and exit paths should
102 * take callback_mutex and check for fork/exit handlers to call. This
103 * avoids us having to do extra work in the fork/exit path if none of the
104 * subsystems need to be called.
105 */
106static int need_forkexit_callback;
107
108/* bits in struct cgroup flags field */
109enum {
110 CONT_REMOVED,
111};
112
113/* convenient tests for these bits */
114inline int cgroup_is_removed(const struct cgroup *cont)
115{
116 return test_bit(CONT_REMOVED, &cont->flags);
117}
118
119/* bits in struct cgroupfs_root flags field */
120enum {
121 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
122};
123
124/*
125 * for_each_subsys() allows you to iterate on each subsystem attached to
126 * an active hierarchy
127 */
128#define for_each_subsys(_root, _ss) \
129list_for_each_entry(_ss, &_root->subsys_list, sibling)
130
131/* for_each_root() allows you to iterate across the active hierarchies */
132#define for_each_root(_root) \
133list_for_each_entry(_root, &roots, root_list)
134
Paul Menageb4f48b62007-10-18 23:39:33 -0700135/* Each task_struct has an embedded css_set, so the get/put
136 * operation simply takes a reference count on all the cgroups
137 * referenced by subsystems in this css_set. This can end up
138 * multiple-counting some cgroups, but that's OK - the ref-count is
139 * just a busy/not-busy indicator; ensuring that we only count each
140 * cgroup once would require taking a global lock to ensure that no
141 * subsystems moved between hierarchies while we were doing so.
142 *
143 * Possible TODO: decide at boot time based on the number of
144 * registered subsystems and the number of CPUs or NUMA nodes whether
145 * it's better for performance to ref-count every subsystem, or to
146 * take a global lock and only add one ref count to each hierarchy.
147 */
148static void get_css_set(struct css_set *cg)
149{
150 int i;
151 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
152 atomic_inc(&cg->subsys[i]->cgroup->count);
153}
154
155static void put_css_set(struct css_set *cg)
156{
157 int i;
158 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
159 atomic_dec(&cg->subsys[i]->cgroup->count);
160}
161
Paul Menageddbcc7e2007-10-18 23:39:30 -0700162/*
163 * There is one global cgroup mutex. We also require taking
164 * task_lock() when dereferencing a task's cgroup subsys pointers.
165 * See "The task_lock() exception", at the end of this comment.
166 *
167 * A task must hold cgroup_mutex to modify cgroups.
168 *
169 * Any task can increment and decrement the count field without lock.
170 * So in general, code holding cgroup_mutex can't rely on the count
171 * field not changing. However, if the count goes to zero, then only
172 * attach_task() can increment it again. Because a count of zero
173 * means that no tasks are currently attached, therefore there is no
174 * way a task attached to that cgroup can fork (the other way to
175 * increment the count). So code holding cgroup_mutex can safely
176 * assume that if the count is zero, it will stay zero. Similarly, if
177 * a task holds cgroup_mutex on a cgroup with zero count, it
178 * knows that the cgroup won't be removed, as cgroup_rmdir()
179 * needs that mutex.
180 *
181 * The cgroup_common_file_write handler for operations that modify
182 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
183 * single threading all such cgroup modifications across the system.
184 *
185 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
186 * (usually) take cgroup_mutex. These are the two most performance
187 * critical pieces of code here. The exception occurs on cgroup_exit(),
188 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
189 * is taken, and if the cgroup count is zero, a usermode call made
190 * to /sbin/cgroup_release_agent with the name of the cgroup (path
191 * relative to the root of cgroup file system) as the argument.
192 *
193 * A cgroup can only be deleted if both its 'count' of using tasks
194 * is zero, and its list of 'children' cgroups is empty. Since all
195 * tasks in the system use _some_ cgroup, and since there is always at
196 * least one task in the system (init, pid == 1), therefore, top_cgroup
197 * always has either children cgroups and/or using tasks. So we don't
198 * need a special hack to ensure that top_cgroup cannot be deleted.
199 *
200 * The task_lock() exception
201 *
202 * The need for this exception arises from the action of
203 * attach_task(), which overwrites one tasks cgroup pointer with
204 * another. It does so using cgroup_mutexe, however there are
205 * several performance critical places that need to reference
206 * task->cgroup without the expense of grabbing a system global
207 * mutex. Therefore except as noted below, when dereferencing or, as
208 * in attach_task(), modifying a task'ss cgroup pointer we use
209 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
210 * the task_struct routinely used for such matters.
211 *
212 * P.S. One more locking exception. RCU is used to guard the
213 * update of a tasks cgroup pointer by attach_task()
214 */
215
216static DEFINE_MUTEX(cgroup_mutex);
217
218/**
219 * cgroup_lock - lock out any changes to cgroup structures
220 *
221 */
222
223void cgroup_lock(void)
224{
225 mutex_lock(&cgroup_mutex);
226}
227
228/**
229 * cgroup_unlock - release lock on cgroup changes
230 *
231 * Undo the lock taken in a previous cgroup_lock() call.
232 */
233
234void cgroup_unlock(void)
235{
236 mutex_unlock(&cgroup_mutex);
237}
238
239/*
240 * A couple of forward declarations required, due to cyclic reference loop:
241 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
242 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
243 * -> cgroup_mkdir.
244 */
245
246static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
247static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
248static int cgroup_populate_dir(struct cgroup *cont);
249static struct inode_operations cgroup_dir_inode_operations;
250
251static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
252{
253 struct inode *inode = new_inode(sb);
254 static struct backing_dev_info cgroup_backing_dev_info = {
255 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
256 };
257
258 if (inode) {
259 inode->i_mode = mode;
260 inode->i_uid = current->fsuid;
261 inode->i_gid = current->fsgid;
262 inode->i_blocks = 0;
263 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
264 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
265 }
266 return inode;
267}
268
269static void cgroup_diput(struct dentry *dentry, struct inode *inode)
270{
271 /* is dentry a directory ? if so, kfree() associated cgroup */
272 if (S_ISDIR(inode->i_mode)) {
273 struct cgroup *cont = dentry->d_fsdata;
274 BUG_ON(!(cgroup_is_removed(cont)));
275 kfree(cont);
276 }
277 iput(inode);
278}
279
280static void remove_dir(struct dentry *d)
281{
282 struct dentry *parent = dget(d->d_parent);
283
284 d_delete(d);
285 simple_rmdir(parent->d_inode, d);
286 dput(parent);
287}
288
289static void cgroup_clear_directory(struct dentry *dentry)
290{
291 struct list_head *node;
292
293 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
294 spin_lock(&dcache_lock);
295 node = dentry->d_subdirs.next;
296 while (node != &dentry->d_subdirs) {
297 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
298 list_del_init(node);
299 if (d->d_inode) {
300 /* This should never be called on a cgroup
301 * directory with child cgroups */
302 BUG_ON(d->d_inode->i_mode & S_IFDIR);
303 d = dget_locked(d);
304 spin_unlock(&dcache_lock);
305 d_delete(d);
306 simple_unlink(dentry->d_inode, d);
307 dput(d);
308 spin_lock(&dcache_lock);
309 }
310 node = dentry->d_subdirs.next;
311 }
312 spin_unlock(&dcache_lock);
313}
314
315/*
316 * NOTE : the dentry must have been dget()'ed
317 */
318static void cgroup_d_remove_dir(struct dentry *dentry)
319{
320 cgroup_clear_directory(dentry);
321
322 spin_lock(&dcache_lock);
323 list_del_init(&dentry->d_u.d_child);
324 spin_unlock(&dcache_lock);
325 remove_dir(dentry);
326}
327
328static int rebind_subsystems(struct cgroupfs_root *root,
329 unsigned long final_bits)
330{
331 unsigned long added_bits, removed_bits;
332 struct cgroup *cont = &root->top_cgroup;
333 int i;
334
335 removed_bits = root->actual_subsys_bits & ~final_bits;
336 added_bits = final_bits & ~root->actual_subsys_bits;
337 /* Check that any added subsystems are currently free */
338 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
339 unsigned long long bit = 1ull << i;
340 struct cgroup_subsys *ss = subsys[i];
341 if (!(bit & added_bits))
342 continue;
343 if (ss->root != &rootnode) {
344 /* Subsystem isn't free */
345 return -EBUSY;
346 }
347 }
348
349 /* Currently we don't handle adding/removing subsystems when
350 * any child cgroups exist. This is theoretically supportable
351 * but involves complex error handling, so it's being left until
352 * later */
353 if (!list_empty(&cont->children))
354 return -EBUSY;
355
356 /* Process each subsystem */
357 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
358 struct cgroup_subsys *ss = subsys[i];
359 unsigned long bit = 1UL << i;
360 if (bit & added_bits) {
361 /* We're binding this subsystem to this hierarchy */
362 BUG_ON(cont->subsys[i]);
363 BUG_ON(!dummytop->subsys[i]);
364 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
365 cont->subsys[i] = dummytop->subsys[i];
366 cont->subsys[i]->cgroup = cont;
367 list_add(&ss->sibling, &root->subsys_list);
368 rcu_assign_pointer(ss->root, root);
369 if (ss->bind)
370 ss->bind(ss, cont);
371
372 } else if (bit & removed_bits) {
373 /* We're removing this subsystem */
374 BUG_ON(cont->subsys[i] != dummytop->subsys[i]);
375 BUG_ON(cont->subsys[i]->cgroup != cont);
376 if (ss->bind)
377 ss->bind(ss, dummytop);
378 dummytop->subsys[i]->cgroup = dummytop;
379 cont->subsys[i] = NULL;
380 rcu_assign_pointer(subsys[i]->root, &rootnode);
381 list_del(&ss->sibling);
382 } else if (bit & final_bits) {
383 /* Subsystem state should already exist */
384 BUG_ON(!cont->subsys[i]);
385 } else {
386 /* Subsystem state shouldn't exist */
387 BUG_ON(cont->subsys[i]);
388 }
389 }
390 root->subsys_bits = root->actual_subsys_bits = final_bits;
391 synchronize_rcu();
392
393 return 0;
394}
395
396static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
397{
398 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
399 struct cgroup_subsys *ss;
400
401 mutex_lock(&cgroup_mutex);
402 for_each_subsys(root, ss)
403 seq_printf(seq, ",%s", ss->name);
404 if (test_bit(ROOT_NOPREFIX, &root->flags))
405 seq_puts(seq, ",noprefix");
406 mutex_unlock(&cgroup_mutex);
407 return 0;
408}
409
410struct cgroup_sb_opts {
411 unsigned long subsys_bits;
412 unsigned long flags;
413};
414
415/* Convert a hierarchy specifier into a bitmask of subsystems and
416 * flags. */
417static int parse_cgroupfs_options(char *data,
418 struct cgroup_sb_opts *opts)
419{
420 char *token, *o = data ?: "all";
421
422 opts->subsys_bits = 0;
423 opts->flags = 0;
424
425 while ((token = strsep(&o, ",")) != NULL) {
426 if (!*token)
427 return -EINVAL;
428 if (!strcmp(token, "all")) {
429 opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
430 } else if (!strcmp(token, "noprefix")) {
431 set_bit(ROOT_NOPREFIX, &opts->flags);
432 } else {
433 struct cgroup_subsys *ss;
434 int i;
435 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
436 ss = subsys[i];
437 if (!strcmp(token, ss->name)) {
438 set_bit(i, &opts->subsys_bits);
439 break;
440 }
441 }
442 if (i == CGROUP_SUBSYS_COUNT)
443 return -ENOENT;
444 }
445 }
446
447 /* We can't have an empty hierarchy */
448 if (!opts->subsys_bits)
449 return -EINVAL;
450
451 return 0;
452}
453
454static int cgroup_remount(struct super_block *sb, int *flags, char *data)
455{
456 int ret = 0;
457 struct cgroupfs_root *root = sb->s_fs_info;
458 struct cgroup *cont = &root->top_cgroup;
459 struct cgroup_sb_opts opts;
460
461 mutex_lock(&cont->dentry->d_inode->i_mutex);
462 mutex_lock(&cgroup_mutex);
463
464 /* See what subsystems are wanted */
465 ret = parse_cgroupfs_options(data, &opts);
466 if (ret)
467 goto out_unlock;
468
469 /* Don't allow flags to change at remount */
470 if (opts.flags != root->flags) {
471 ret = -EINVAL;
472 goto out_unlock;
473 }
474
475 ret = rebind_subsystems(root, opts.subsys_bits);
476
477 /* (re)populate subsystem files */
478 if (!ret)
479 cgroup_populate_dir(cont);
480
481 out_unlock:
482 mutex_unlock(&cgroup_mutex);
483 mutex_unlock(&cont->dentry->d_inode->i_mutex);
484 return ret;
485}
486
487static struct super_operations cgroup_ops = {
488 .statfs = simple_statfs,
489 .drop_inode = generic_delete_inode,
490 .show_options = cgroup_show_options,
491 .remount_fs = cgroup_remount,
492};
493
494static void init_cgroup_root(struct cgroupfs_root *root)
495{
496 struct cgroup *cont = &root->top_cgroup;
497 INIT_LIST_HEAD(&root->subsys_list);
498 INIT_LIST_HEAD(&root->root_list);
499 root->number_of_cgroups = 1;
500 cont->root = root;
501 cont->top_cgroup = cont;
502 INIT_LIST_HEAD(&cont->sibling);
503 INIT_LIST_HEAD(&cont->children);
504}
505
506static int cgroup_test_super(struct super_block *sb, void *data)
507{
508 struct cgroupfs_root *new = data;
509 struct cgroupfs_root *root = sb->s_fs_info;
510
511 /* First check subsystems */
512 if (new->subsys_bits != root->subsys_bits)
513 return 0;
514
515 /* Next check flags */
516 if (new->flags != root->flags)
517 return 0;
518
519 return 1;
520}
521
522static int cgroup_set_super(struct super_block *sb, void *data)
523{
524 int ret;
525 struct cgroupfs_root *root = data;
526
527 ret = set_anon_super(sb, NULL);
528 if (ret)
529 return ret;
530
531 sb->s_fs_info = root;
532 root->sb = sb;
533
534 sb->s_blocksize = PAGE_CACHE_SIZE;
535 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
536 sb->s_magic = CGROUP_SUPER_MAGIC;
537 sb->s_op = &cgroup_ops;
538
539 return 0;
540}
541
542static int cgroup_get_rootdir(struct super_block *sb)
543{
544 struct inode *inode =
545 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
546 struct dentry *dentry;
547
548 if (!inode)
549 return -ENOMEM;
550
551 inode->i_op = &simple_dir_inode_operations;
552 inode->i_fop = &simple_dir_operations;
553 inode->i_op = &cgroup_dir_inode_operations;
554 /* directories start off with i_nlink == 2 (for "." entry) */
555 inc_nlink(inode);
556 dentry = d_alloc_root(inode);
557 if (!dentry) {
558 iput(inode);
559 return -ENOMEM;
560 }
561 sb->s_root = dentry;
562 return 0;
563}
564
565static int cgroup_get_sb(struct file_system_type *fs_type,
566 int flags, const char *unused_dev_name,
567 void *data, struct vfsmount *mnt)
568{
569 struct cgroup_sb_opts opts;
570 int ret = 0;
571 struct super_block *sb;
572 struct cgroupfs_root *root;
573
574 /* First find the desired set of subsystems */
575 ret = parse_cgroupfs_options(data, &opts);
576 if (ret)
577 return ret;
578
579 root = kzalloc(sizeof(*root), GFP_KERNEL);
580 if (!root)
581 return -ENOMEM;
582
583 init_cgroup_root(root);
584 root->subsys_bits = opts.subsys_bits;
585 root->flags = opts.flags;
586
587 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
588
589 if (IS_ERR(sb)) {
590 kfree(root);
591 return PTR_ERR(sb);
592 }
593
594 if (sb->s_fs_info != root) {
595 /* Reusing an existing superblock */
596 BUG_ON(sb->s_root == NULL);
597 kfree(root);
598 root = NULL;
599 } else {
600 /* New superblock */
601 struct cgroup *cont = &root->top_cgroup;
602
603 BUG_ON(sb->s_root != NULL);
604
605 ret = cgroup_get_rootdir(sb);
606 if (ret)
607 goto drop_new_super;
608
609 mutex_lock(&cgroup_mutex);
610
611 ret = rebind_subsystems(root, root->subsys_bits);
612 if (ret == -EBUSY) {
613 mutex_unlock(&cgroup_mutex);
614 goto drop_new_super;
615 }
616
617 /* EBUSY should be the only error here */
618 BUG_ON(ret);
619
620 list_add(&root->root_list, &roots);
621
622 sb->s_root->d_fsdata = &root->top_cgroup;
623 root->top_cgroup.dentry = sb->s_root;
624
625 BUG_ON(!list_empty(&cont->sibling));
626 BUG_ON(!list_empty(&cont->children));
627 BUG_ON(root->number_of_cgroups != 1);
628
629 /*
630 * I believe that it's safe to nest i_mutex inside
631 * cgroup_mutex in this case, since no-one else can
632 * be accessing this directory yet. But we still need
633 * to teach lockdep that this is the case - currently
634 * a cgroupfs remount triggers a lockdep warning
635 */
636 mutex_lock(&cont->dentry->d_inode->i_mutex);
637 cgroup_populate_dir(cont);
638 mutex_unlock(&cont->dentry->d_inode->i_mutex);
639 mutex_unlock(&cgroup_mutex);
640 }
641
642 return simple_set_mnt(mnt, sb);
643
644 drop_new_super:
645 up_write(&sb->s_umount);
646 deactivate_super(sb);
647 return ret;
648}
649
650static void cgroup_kill_sb(struct super_block *sb) {
651 struct cgroupfs_root *root = sb->s_fs_info;
652 struct cgroup *cont = &root->top_cgroup;
653 int ret;
654
655 BUG_ON(!root);
656
657 BUG_ON(root->number_of_cgroups != 1);
658 BUG_ON(!list_empty(&cont->children));
659 BUG_ON(!list_empty(&cont->sibling));
660
661 mutex_lock(&cgroup_mutex);
662
663 /* Rebind all subsystems back to the default hierarchy */
664 ret = rebind_subsystems(root, 0);
665 /* Shouldn't be able to fail ... */
666 BUG_ON(ret);
667
668 if (!list_empty(&root->root_list))
669 list_del(&root->root_list);
670 mutex_unlock(&cgroup_mutex);
671
672 kfree(root);
673 kill_litter_super(sb);
674}
675
676static struct file_system_type cgroup_fs_type = {
677 .name = "cgroup",
678 .get_sb = cgroup_get_sb,
679 .kill_sb = cgroup_kill_sb,
680};
681
682static inline struct cgroup *__d_cont(struct dentry *dentry)
683{
684 return dentry->d_fsdata;
685}
686
687static inline struct cftype *__d_cft(struct dentry *dentry)
688{
689 return dentry->d_fsdata;
690}
691
692/*
693 * Called with cgroup_mutex held. Writes path of cgroup into buf.
694 * Returns 0 on success, -errno on error.
695 */
696int cgroup_path(const struct cgroup *cont, char *buf, int buflen)
697{
698 char *start;
699
700 if (cont == dummytop) {
701 /*
702 * Inactive subsystems have no dentry for their root
703 * cgroup
704 */
705 strcpy(buf, "/");
706 return 0;
707 }
708
709 start = buf + buflen;
710
711 *--start = '\0';
712 for (;;) {
713 int len = cont->dentry->d_name.len;
714 if ((start -= len) < buf)
715 return -ENAMETOOLONG;
716 memcpy(start, cont->dentry->d_name.name, len);
717 cont = cont->parent;
718 if (!cont)
719 break;
720 if (!cont->parent)
721 continue;
722 if (--start < buf)
723 return -ENAMETOOLONG;
724 *start = '/';
725 }
726 memmove(buf, start, buf + buflen - start);
727 return 0;
728}
729
Paul Menagebbcb81d2007-10-18 23:39:32 -0700730/*
731 * Return the first subsystem attached to a cgroup's hierarchy, and
732 * its subsystem id.
733 */
734
735static void get_first_subsys(const struct cgroup *cont,
736 struct cgroup_subsys_state **css, int *subsys_id)
737{
738 const struct cgroupfs_root *root = cont->root;
739 const struct cgroup_subsys *test_ss;
740 BUG_ON(list_empty(&root->subsys_list));
741 test_ss = list_entry(root->subsys_list.next,
742 struct cgroup_subsys, sibling);
743 if (css) {
744 *css = cont->subsys[test_ss->subsys_id];
745 BUG_ON(!*css);
746 }
747 if (subsys_id)
748 *subsys_id = test_ss->subsys_id;
749}
750
751/*
752 * Attach task 'tsk' to cgroup 'cont'
753 *
754 * Call holding cgroup_mutex. May take task_lock of
755 * the task 'pid' during call.
756 */
757static int attach_task(struct cgroup *cont, struct task_struct *tsk)
758{
759 int retval = 0;
760 struct cgroup_subsys *ss;
761 struct cgroup *oldcont;
762 struct css_set *cg = &tsk->cgroups;
763 struct cgroupfs_root *root = cont->root;
764 int i;
765 int subsys_id;
766
767 get_first_subsys(cont, NULL, &subsys_id);
768
769 /* Nothing to do if the task is already in that cgroup */
770 oldcont = task_cgroup(tsk, subsys_id);
771 if (cont == oldcont)
772 return 0;
773
774 for_each_subsys(root, ss) {
775 if (ss->can_attach) {
776 retval = ss->can_attach(ss, cont, tsk);
777 if (retval) {
778 return retval;
779 }
780 }
781 }
782
783 task_lock(tsk);
784 if (tsk->flags & PF_EXITING) {
785 task_unlock(tsk);
786 return -ESRCH;
787 }
788 /* Update the css_set pointers for the subsystems in this
789 * hierarchy */
790 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
791 if (root->subsys_bits & (1ull << i)) {
792 /* Subsystem is in this hierarchy. So we want
793 * the subsystem state from the new
794 * cgroup. Transfer the refcount from the
795 * old to the new */
796 atomic_inc(&cont->count);
797 atomic_dec(&cg->subsys[i]->cgroup->count);
798 rcu_assign_pointer(cg->subsys[i], cont->subsys[i]);
799 }
800 }
801 task_unlock(tsk);
802
803 for_each_subsys(root, ss) {
804 if (ss->attach) {
805 ss->attach(ss, cont, oldcont, tsk);
806 }
807 }
808
809 synchronize_rcu();
810 return 0;
811}
812
813/*
814 * Attach task with pid 'pid' to cgroup 'cont'. Call with
815 * cgroup_mutex, may take task_lock of task
816 */
817static int attach_task_by_pid(struct cgroup *cont, char *pidbuf)
818{
819 pid_t pid;
820 struct task_struct *tsk;
821 int ret;
822
823 if (sscanf(pidbuf, "%d", &pid) != 1)
824 return -EIO;
825
826 if (pid) {
827 rcu_read_lock();
828 tsk = find_task_by_pid(pid);
829 if (!tsk || tsk->flags & PF_EXITING) {
830 rcu_read_unlock();
831 return -ESRCH;
832 }
833 get_task_struct(tsk);
834 rcu_read_unlock();
835
836 if ((current->euid) && (current->euid != tsk->uid)
837 && (current->euid != tsk->suid)) {
838 put_task_struct(tsk);
839 return -EACCES;
840 }
841 } else {
842 tsk = current;
843 get_task_struct(tsk);
844 }
845
846 ret = attach_task(cont, tsk);
847 put_task_struct(tsk);
848 return ret;
849}
850
Paul Menageddbcc7e2007-10-18 23:39:30 -0700851/* The various types of files and directories in a cgroup file system */
852
853enum cgroup_filetype {
854 FILE_ROOT,
855 FILE_DIR,
856 FILE_TASKLIST,
857};
858
Paul Menage355e0c42007-10-18 23:39:33 -0700859static ssize_t cgroup_write_uint(struct cgroup *cont, struct cftype *cft,
860 struct file *file,
861 const char __user *userbuf,
862 size_t nbytes, loff_t *unused_ppos)
863{
864 char buffer[64];
865 int retval = 0;
866 u64 val;
867 char *end;
868
869 if (!nbytes)
870 return -EINVAL;
871 if (nbytes >= sizeof(buffer))
872 return -E2BIG;
873 if (copy_from_user(buffer, userbuf, nbytes))
874 return -EFAULT;
875
876 buffer[nbytes] = 0; /* nul-terminate */
877
878 /* strip newline if necessary */
879 if (nbytes && (buffer[nbytes-1] == '\n'))
880 buffer[nbytes-1] = 0;
881 val = simple_strtoull(buffer, &end, 0);
882 if (*end)
883 return -EINVAL;
884
885 /* Pass to subsystem */
886 retval = cft->write_uint(cont, cft, val);
887 if (!retval)
888 retval = nbytes;
889 return retval;
890}
891
Paul Menagebbcb81d2007-10-18 23:39:32 -0700892static ssize_t cgroup_common_file_write(struct cgroup *cont,
893 struct cftype *cft,
894 struct file *file,
895 const char __user *userbuf,
896 size_t nbytes, loff_t *unused_ppos)
897{
898 enum cgroup_filetype type = cft->private;
899 char *buffer;
900 int retval = 0;
901
902 if (nbytes >= PATH_MAX)
903 return -E2BIG;
904
905 /* +1 for nul-terminator */
906 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
907 if (buffer == NULL)
908 return -ENOMEM;
909
910 if (copy_from_user(buffer, userbuf, nbytes)) {
911 retval = -EFAULT;
912 goto out1;
913 }
914 buffer[nbytes] = 0; /* nul-terminate */
915
916 mutex_lock(&cgroup_mutex);
917
918 if (cgroup_is_removed(cont)) {
919 retval = -ENODEV;
920 goto out2;
921 }
922
923 switch (type) {
924 case FILE_TASKLIST:
925 retval = attach_task_by_pid(cont, buffer);
926 break;
927 default:
928 retval = -EINVAL;
929 goto out2;
930 }
931
932 if (retval == 0)
933 retval = nbytes;
934out2:
935 mutex_unlock(&cgroup_mutex);
936out1:
937 kfree(buffer);
938 return retval;
939}
940
Paul Menageddbcc7e2007-10-18 23:39:30 -0700941static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
942 size_t nbytes, loff_t *ppos)
943{
944 struct cftype *cft = __d_cft(file->f_dentry);
945 struct cgroup *cont = __d_cont(file->f_dentry->d_parent);
946
947 if (!cft)
948 return -ENODEV;
Paul Menage355e0c42007-10-18 23:39:33 -0700949 if (cft->write)
950 return cft->write(cont, cft, file, buf, nbytes, ppos);
951 if (cft->write_uint)
952 return cgroup_write_uint(cont, cft, file, buf, nbytes, ppos);
953 return -EINVAL;
Paul Menageddbcc7e2007-10-18 23:39:30 -0700954}
955
956static ssize_t cgroup_read_uint(struct cgroup *cont, struct cftype *cft,
957 struct file *file,
958 char __user *buf, size_t nbytes,
959 loff_t *ppos)
960{
961 char tmp[64];
962 u64 val = cft->read_uint(cont, cft);
963 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
964
965 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
966}
967
968static ssize_t cgroup_file_read(struct file *file, char __user *buf,
969 size_t nbytes, loff_t *ppos)
970{
971 struct cftype *cft = __d_cft(file->f_dentry);
972 struct cgroup *cont = __d_cont(file->f_dentry->d_parent);
973
974 if (!cft)
975 return -ENODEV;
976
977 if (cft->read)
978 return cft->read(cont, cft, file, buf, nbytes, ppos);
979 if (cft->read_uint)
980 return cgroup_read_uint(cont, cft, file, buf, nbytes, ppos);
981 return -EINVAL;
982}
983
984static int cgroup_file_open(struct inode *inode, struct file *file)
985{
986 int err;
987 struct cftype *cft;
988
989 err = generic_file_open(inode, file);
990 if (err)
991 return err;
992
993 cft = __d_cft(file->f_dentry);
994 if (!cft)
995 return -ENODEV;
996 if (cft->open)
997 err = cft->open(inode, file);
998 else
999 err = 0;
1000
1001 return err;
1002}
1003
1004static int cgroup_file_release(struct inode *inode, struct file *file)
1005{
1006 struct cftype *cft = __d_cft(file->f_dentry);
1007 if (cft->release)
1008 return cft->release(inode, file);
1009 return 0;
1010}
1011
1012/*
1013 * cgroup_rename - Only allow simple rename of directories in place.
1014 */
1015static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1016 struct inode *new_dir, struct dentry *new_dentry)
1017{
1018 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1019 return -ENOTDIR;
1020 if (new_dentry->d_inode)
1021 return -EEXIST;
1022 if (old_dir != new_dir)
1023 return -EIO;
1024 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1025}
1026
1027static struct file_operations cgroup_file_operations = {
1028 .read = cgroup_file_read,
1029 .write = cgroup_file_write,
1030 .llseek = generic_file_llseek,
1031 .open = cgroup_file_open,
1032 .release = cgroup_file_release,
1033};
1034
1035static struct inode_operations cgroup_dir_inode_operations = {
1036 .lookup = simple_lookup,
1037 .mkdir = cgroup_mkdir,
1038 .rmdir = cgroup_rmdir,
1039 .rename = cgroup_rename,
1040};
1041
1042static int cgroup_create_file(struct dentry *dentry, int mode,
1043 struct super_block *sb)
1044{
1045 static struct dentry_operations cgroup_dops = {
1046 .d_iput = cgroup_diput,
1047 };
1048
1049 struct inode *inode;
1050
1051 if (!dentry)
1052 return -ENOENT;
1053 if (dentry->d_inode)
1054 return -EEXIST;
1055
1056 inode = cgroup_new_inode(mode, sb);
1057 if (!inode)
1058 return -ENOMEM;
1059
1060 if (S_ISDIR(mode)) {
1061 inode->i_op = &cgroup_dir_inode_operations;
1062 inode->i_fop = &simple_dir_operations;
1063
1064 /* start off with i_nlink == 2 (for "." entry) */
1065 inc_nlink(inode);
1066
1067 /* start with the directory inode held, so that we can
1068 * populate it without racing with another mkdir */
1069 mutex_lock(&inode->i_mutex);
1070 } else if (S_ISREG(mode)) {
1071 inode->i_size = 0;
1072 inode->i_fop = &cgroup_file_operations;
1073 }
1074 dentry->d_op = &cgroup_dops;
1075 d_instantiate(dentry, inode);
1076 dget(dentry); /* Extra count - pin the dentry in core */
1077 return 0;
1078}
1079
1080/*
1081 * cgroup_create_dir - create a directory for an object.
1082 * cont: the cgroup we create the directory for.
1083 * It must have a valid ->parent field
1084 * And we are going to fill its ->dentry field.
1085 * dentry: dentry of the new container
1086 * mode: mode to set on new directory.
1087 */
1088static int cgroup_create_dir(struct cgroup *cont, struct dentry *dentry,
1089 int mode)
1090{
1091 struct dentry *parent;
1092 int error = 0;
1093
1094 parent = cont->parent->dentry;
1095 error = cgroup_create_file(dentry, S_IFDIR | mode, cont->root->sb);
1096 if (!error) {
1097 dentry->d_fsdata = cont;
1098 inc_nlink(parent->d_inode);
1099 cont->dentry = dentry;
1100 dget(dentry);
1101 }
1102 dput(dentry);
1103
1104 return error;
1105}
1106
1107int cgroup_add_file(struct cgroup *cont,
1108 struct cgroup_subsys *subsys,
1109 const struct cftype *cft)
1110{
1111 struct dentry *dir = cont->dentry;
1112 struct dentry *dentry;
1113 int error;
1114
1115 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1116 if (subsys && !test_bit(ROOT_NOPREFIX, &cont->root->flags)) {
1117 strcpy(name, subsys->name);
1118 strcat(name, ".");
1119 }
1120 strcat(name, cft->name);
1121 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1122 dentry = lookup_one_len(name, dir, strlen(name));
1123 if (!IS_ERR(dentry)) {
1124 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1125 cont->root->sb);
1126 if (!error)
1127 dentry->d_fsdata = (void *)cft;
1128 dput(dentry);
1129 } else
1130 error = PTR_ERR(dentry);
1131 return error;
1132}
1133
1134int cgroup_add_files(struct cgroup *cont,
1135 struct cgroup_subsys *subsys,
1136 const struct cftype cft[],
1137 int count)
1138{
1139 int i, err;
1140 for (i = 0; i < count; i++) {
1141 err = cgroup_add_file(cont, subsys, &cft[i]);
1142 if (err)
1143 return err;
1144 }
1145 return 0;
1146}
1147
Paul Menagebbcb81d2007-10-18 23:39:32 -07001148/* Count the number of tasks in a cgroup. Could be made more
1149 * time-efficient but less space-efficient with more linked lists
1150 * running through each cgroup and the css_set structures that
1151 * referenced it. Must be called with tasklist_lock held for read or
1152 * write or in an rcu critical section.
1153 */
1154int __cgroup_task_count(const struct cgroup *cont)
1155{
1156 int count = 0;
1157 struct task_struct *g, *p;
1158 struct cgroup_subsys_state *css;
1159 int subsys_id;
1160
1161 get_first_subsys(cont, &css, &subsys_id);
1162 do_each_thread(g, p) {
1163 if (task_subsys_state(p, subsys_id) == css)
1164 count ++;
1165 } while_each_thread(g, p);
1166 return count;
1167}
1168
1169/*
1170 * Stuff for reading the 'tasks' file.
1171 *
1172 * Reading this file can return large amounts of data if a cgroup has
1173 * *lots* of attached tasks. So it may need several calls to read(),
1174 * but we cannot guarantee that the information we produce is correct
1175 * unless we produce it entirely atomically.
1176 *
1177 * Upon tasks file open(), a struct ctr_struct is allocated, that
1178 * will have a pointer to an array (also allocated here). The struct
1179 * ctr_struct * is stored in file->private_data. Its resources will
1180 * be freed by release() when the file is closed. The array is used
1181 * to sprintf the PIDs and then used by read().
1182 */
1183struct ctr_struct {
1184 char *buf;
1185 int bufsz;
1186};
1187
1188/*
1189 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
1190 * 'cont'. Return actual number of pids loaded. No need to
1191 * task_lock(p) when reading out p->cgroup, since we're in an RCU
1192 * read section, so the css_set can't go away, and is
1193 * immutable after creation.
1194 */
1195static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cont)
1196{
1197 int n = 0;
1198 struct task_struct *g, *p;
1199 struct cgroup_subsys_state *css;
1200 int subsys_id;
1201
1202 get_first_subsys(cont, &css, &subsys_id);
1203 rcu_read_lock();
1204 do_each_thread(g, p) {
1205 if (task_subsys_state(p, subsys_id) == css) {
1206 pidarray[n++] = pid_nr(task_pid(p));
1207 if (unlikely(n == npids))
1208 goto array_full;
1209 }
1210 } while_each_thread(g, p);
1211
1212array_full:
1213 rcu_read_unlock();
1214 return n;
1215}
1216
1217static int cmppid(const void *a, const void *b)
1218{
1219 return *(pid_t *)a - *(pid_t *)b;
1220}
1221
1222/*
1223 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1224 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1225 * count 'cnt' of how many chars would be written if buf were large enough.
1226 */
1227static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1228{
1229 int cnt = 0;
1230 int i;
1231
1232 for (i = 0; i < npids; i++)
1233 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1234 return cnt;
1235}
1236
1237/*
1238 * Handle an open on 'tasks' file. Prepare a buffer listing the
1239 * process id's of tasks currently attached to the cgroup being opened.
1240 *
1241 * Does not require any specific cgroup mutexes, and does not take any.
1242 */
1243static int cgroup_tasks_open(struct inode *unused, struct file *file)
1244{
1245 struct cgroup *cont = __d_cont(file->f_dentry->d_parent);
1246 struct ctr_struct *ctr;
1247 pid_t *pidarray;
1248 int npids;
1249 char c;
1250
1251 if (!(file->f_mode & FMODE_READ))
1252 return 0;
1253
1254 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1255 if (!ctr)
1256 goto err0;
1257
1258 /*
1259 * If cgroup gets more users after we read count, we won't have
1260 * enough space - tough. This race is indistinguishable to the
1261 * caller from the case that the additional cgroup users didn't
1262 * show up until sometime later on.
1263 */
1264 npids = cgroup_task_count(cont);
1265 if (npids) {
1266 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1267 if (!pidarray)
1268 goto err1;
1269
1270 npids = pid_array_load(pidarray, npids, cont);
1271 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1272
1273 /* Call pid_array_to_buf() twice, first just to get bufsz */
1274 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1275 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1276 if (!ctr->buf)
1277 goto err2;
1278 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1279
1280 kfree(pidarray);
1281 } else {
1282 ctr->buf = 0;
1283 ctr->bufsz = 0;
1284 }
1285 file->private_data = ctr;
1286 return 0;
1287
1288err2:
1289 kfree(pidarray);
1290err1:
1291 kfree(ctr);
1292err0:
1293 return -ENOMEM;
1294}
1295
1296static ssize_t cgroup_tasks_read(struct cgroup *cont,
1297 struct cftype *cft,
1298 struct file *file, char __user *buf,
1299 size_t nbytes, loff_t *ppos)
1300{
1301 struct ctr_struct *ctr = file->private_data;
1302
1303 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
1304}
1305
1306static int cgroup_tasks_release(struct inode *unused_inode,
1307 struct file *file)
1308{
1309 struct ctr_struct *ctr;
1310
1311 if (file->f_mode & FMODE_READ) {
1312 ctr = file->private_data;
1313 kfree(ctr->buf);
1314 kfree(ctr);
1315 }
1316 return 0;
1317}
1318
1319/*
1320 * for the common functions, 'private' gives the type of file
1321 */
1322static struct cftype cft_tasks = {
1323 .name = "tasks",
1324 .open = cgroup_tasks_open,
1325 .read = cgroup_tasks_read,
1326 .write = cgroup_common_file_write,
1327 .release = cgroup_tasks_release,
1328 .private = FILE_TASKLIST,
1329};
1330
Paul Menageddbcc7e2007-10-18 23:39:30 -07001331static int cgroup_populate_dir(struct cgroup *cont)
1332{
1333 int err;
1334 struct cgroup_subsys *ss;
1335
1336 /* First clear out any existing files */
1337 cgroup_clear_directory(cont->dentry);
1338
Paul Menagebbcb81d2007-10-18 23:39:32 -07001339 err = cgroup_add_file(cont, NULL, &cft_tasks);
1340 if (err < 0)
1341 return err;
1342
Paul Menageddbcc7e2007-10-18 23:39:30 -07001343 for_each_subsys(cont->root, ss) {
1344 if (ss->populate && (err = ss->populate(ss, cont)) < 0)
1345 return err;
1346 }
1347
1348 return 0;
1349}
1350
1351static void init_cgroup_css(struct cgroup_subsys_state *css,
1352 struct cgroup_subsys *ss,
1353 struct cgroup *cont)
1354{
1355 css->cgroup = cont;
1356 atomic_set(&css->refcnt, 0);
1357 css->flags = 0;
1358 if (cont == dummytop)
1359 set_bit(CSS_ROOT, &css->flags);
1360 BUG_ON(cont->subsys[ss->subsys_id]);
1361 cont->subsys[ss->subsys_id] = css;
1362}
1363
1364/*
1365 * cgroup_create - create a cgroup
1366 * parent: cgroup that will be parent of the new cgroup.
1367 * name: name of the new cgroup. Will be strcpy'ed.
1368 * mode: mode to set on new inode
1369 *
1370 * Must be called with the mutex on the parent inode held
1371 */
1372
1373static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
1374 int mode)
1375{
1376 struct cgroup *cont;
1377 struct cgroupfs_root *root = parent->root;
1378 int err = 0;
1379 struct cgroup_subsys *ss;
1380 struct super_block *sb = root->sb;
1381
1382 cont = kzalloc(sizeof(*cont), GFP_KERNEL);
1383 if (!cont)
1384 return -ENOMEM;
1385
1386 /* Grab a reference on the superblock so the hierarchy doesn't
1387 * get deleted on unmount if there are child cgroups. This
1388 * can be done outside cgroup_mutex, since the sb can't
1389 * disappear while someone has an open control file on the
1390 * fs */
1391 atomic_inc(&sb->s_active);
1392
1393 mutex_lock(&cgroup_mutex);
1394
1395 cont->flags = 0;
1396 INIT_LIST_HEAD(&cont->sibling);
1397 INIT_LIST_HEAD(&cont->children);
1398
1399 cont->parent = parent;
1400 cont->root = parent->root;
1401 cont->top_cgroup = parent->top_cgroup;
1402
1403 for_each_subsys(root, ss) {
1404 struct cgroup_subsys_state *css = ss->create(ss, cont);
1405 if (IS_ERR(css)) {
1406 err = PTR_ERR(css);
1407 goto err_destroy;
1408 }
1409 init_cgroup_css(css, ss, cont);
1410 }
1411
1412 list_add(&cont->sibling, &cont->parent->children);
1413 root->number_of_cgroups++;
1414
1415 err = cgroup_create_dir(cont, dentry, mode);
1416 if (err < 0)
1417 goto err_remove;
1418
1419 /* The cgroup directory was pre-locked for us */
1420 BUG_ON(!mutex_is_locked(&cont->dentry->d_inode->i_mutex));
1421
1422 err = cgroup_populate_dir(cont);
1423 /* If err < 0, we have a half-filled directory - oh well ;) */
1424
1425 mutex_unlock(&cgroup_mutex);
1426 mutex_unlock(&cont->dentry->d_inode->i_mutex);
1427
1428 return 0;
1429
1430 err_remove:
1431
1432 list_del(&cont->sibling);
1433 root->number_of_cgroups--;
1434
1435 err_destroy:
1436
1437 for_each_subsys(root, ss) {
1438 if (cont->subsys[ss->subsys_id])
1439 ss->destroy(ss, cont);
1440 }
1441
1442 mutex_unlock(&cgroup_mutex);
1443
1444 /* Release the reference count that we took on the superblock */
1445 deactivate_super(sb);
1446
1447 kfree(cont);
1448 return err;
1449}
1450
1451static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1452{
1453 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
1454
1455 /* the vfs holds inode->i_mutex already */
1456 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
1457}
1458
1459static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
1460{
1461 struct cgroup *cont = dentry->d_fsdata;
1462 struct dentry *d;
1463 struct cgroup *parent;
1464 struct cgroup_subsys *ss;
1465 struct super_block *sb;
1466 struct cgroupfs_root *root;
1467 int css_busy = 0;
1468
1469 /* the vfs holds both inode->i_mutex already */
1470
1471 mutex_lock(&cgroup_mutex);
1472 if (atomic_read(&cont->count) != 0) {
1473 mutex_unlock(&cgroup_mutex);
1474 return -EBUSY;
1475 }
1476 if (!list_empty(&cont->children)) {
1477 mutex_unlock(&cgroup_mutex);
1478 return -EBUSY;
1479 }
1480
1481 parent = cont->parent;
1482 root = cont->root;
1483 sb = root->sb;
1484
1485 /* Check the reference count on each subsystem. Since we
1486 * already established that there are no tasks in the
1487 * cgroup, if the css refcount is also 0, then there should
1488 * be no outstanding references, so the subsystem is safe to
1489 * destroy */
1490 for_each_subsys(root, ss) {
1491 struct cgroup_subsys_state *css;
1492 css = cont->subsys[ss->subsys_id];
1493 if (atomic_read(&css->refcnt)) {
1494 css_busy = 1;
1495 break;
1496 }
1497 }
1498 if (css_busy) {
1499 mutex_unlock(&cgroup_mutex);
1500 return -EBUSY;
1501 }
1502
1503 for_each_subsys(root, ss) {
1504 if (cont->subsys[ss->subsys_id])
1505 ss->destroy(ss, cont);
1506 }
1507
1508 set_bit(CONT_REMOVED, &cont->flags);
1509 /* delete my sibling from parent->children */
1510 list_del(&cont->sibling);
1511 spin_lock(&cont->dentry->d_lock);
1512 d = dget(cont->dentry);
1513 cont->dentry = NULL;
1514 spin_unlock(&d->d_lock);
1515
1516 cgroup_d_remove_dir(d);
1517 dput(d);
1518 root->number_of_cgroups--;
1519
1520 mutex_unlock(&cgroup_mutex);
1521 /* Drop the active superblock reference that we took when we
1522 * created the cgroup */
1523 deactivate_super(sb);
1524 return 0;
1525}
1526
1527static void cgroup_init_subsys(struct cgroup_subsys *ss)
1528{
1529 struct task_struct *g, *p;
1530 struct cgroup_subsys_state *css;
1531 printk(KERN_ERR "Initializing cgroup subsys %s\n", ss->name);
1532
1533 /* Create the top cgroup state for this subsystem */
1534 ss->root = &rootnode;
1535 css = ss->create(ss, dummytop);
1536 /* We don't handle early failures gracefully */
1537 BUG_ON(IS_ERR(css));
1538 init_cgroup_css(css, ss, dummytop);
1539
1540 /* Update all tasks to contain a subsys pointer to this state
1541 * - since the subsystem is newly registered, all tasks are in
1542 * the subsystem's top cgroup. */
1543
1544 /* If this subsystem requested that it be notified with fork
1545 * events, we should send it one now for every process in the
1546 * system */
1547
1548 read_lock(&tasklist_lock);
1549 init_task.cgroups.subsys[ss->subsys_id] = css;
1550 if (ss->fork)
1551 ss->fork(ss, &init_task);
1552
1553 do_each_thread(g, p) {
1554 printk(KERN_INFO "Setting task %p css to %p (%d)\n", css, p, p->pid);
1555 p->cgroups.subsys[ss->subsys_id] = css;
1556 if (ss->fork)
1557 ss->fork(ss, p);
1558 } while_each_thread(g, p);
1559 read_unlock(&tasklist_lock);
1560
1561 need_forkexit_callback |= ss->fork || ss->exit;
1562
1563 ss->active = 1;
1564}
1565
1566/**
1567 * cgroup_init_early - initialize cgroups at system boot, and
1568 * initialize any subsystems that request early init.
1569 */
1570int __init cgroup_init_early(void)
1571{
1572 int i;
1573 init_cgroup_root(&rootnode);
1574 list_add(&rootnode.root_list, &roots);
1575
1576 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1577 struct cgroup_subsys *ss = subsys[i];
1578
1579 BUG_ON(!ss->name);
1580 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
1581 BUG_ON(!ss->create);
1582 BUG_ON(!ss->destroy);
1583 if (ss->subsys_id != i) {
1584 printk(KERN_ERR "Subsys %s id == %d\n",
1585 ss->name, ss->subsys_id);
1586 BUG();
1587 }
1588
1589 if (ss->early_init)
1590 cgroup_init_subsys(ss);
1591 }
1592 return 0;
1593}
1594
1595/**
1596 * cgroup_init - register cgroup filesystem and /proc file, and
1597 * initialize any subsystems that didn't request early init.
1598 */
1599int __init cgroup_init(void)
1600{
1601 int err;
1602 int i;
1603
1604 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1605 struct cgroup_subsys *ss = subsys[i];
1606 if (!ss->early_init)
1607 cgroup_init_subsys(ss);
1608 }
1609
1610 err = register_filesystem(&cgroup_fs_type);
1611 if (err < 0)
1612 goto out;
1613
1614out:
1615 return err;
1616}
Paul Menageb4f48b62007-10-18 23:39:33 -07001617
1618/**
1619 * cgroup_fork - attach newly forked task to its parents cgroup.
1620 * @tsk: pointer to task_struct of forking parent process.
1621 *
1622 * Description: A task inherits its parent's cgroup at fork().
1623 *
1624 * A pointer to the shared css_set was automatically copied in
1625 * fork.c by dup_task_struct(). However, we ignore that copy, since
1626 * it was not made under the protection of RCU or cgroup_mutex, so
1627 * might no longer be a valid cgroup pointer. attach_task() might
1628 * have already changed current->cgroup, allowing the previously
1629 * referenced cgroup to be removed and freed.
1630 *
1631 * At the point that cgroup_fork() is called, 'current' is the parent
1632 * task, and the passed argument 'child' points to the child task.
1633 */
1634void cgroup_fork(struct task_struct *child)
1635{
1636 rcu_read_lock();
1637 child->cgroups = rcu_dereference(current->cgroups);
1638 get_css_set(&child->cgroups);
1639 rcu_read_unlock();
1640}
1641
1642/**
1643 * cgroup_fork_callbacks - called on a new task very soon before
1644 * adding it to the tasklist. No need to take any locks since no-one
1645 * can be operating on this task
1646 */
1647void cgroup_fork_callbacks(struct task_struct *child)
1648{
1649 if (need_forkexit_callback) {
1650 int i;
1651 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1652 struct cgroup_subsys *ss = subsys[i];
1653 if (ss->fork)
1654 ss->fork(ss, child);
1655 }
1656 }
1657}
1658
1659/**
1660 * cgroup_exit - detach cgroup from exiting task
1661 * @tsk: pointer to task_struct of exiting process
1662 *
1663 * Description: Detach cgroup from @tsk and release it.
1664 *
1665 * Note that cgroups marked notify_on_release force every task in
1666 * them to take the global cgroup_mutex mutex when exiting.
1667 * This could impact scaling on very large systems. Be reluctant to
1668 * use notify_on_release cgroups where very high task exit scaling
1669 * is required on large systems.
1670 *
1671 * the_top_cgroup_hack:
1672 *
1673 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
1674 *
1675 * We call cgroup_exit() while the task is still competent to
1676 * handle notify_on_release(), then leave the task attached to the
1677 * root cgroup in each hierarchy for the remainder of its exit.
1678 *
1679 * To do this properly, we would increment the reference count on
1680 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
1681 * code we would add a second cgroup function call, to drop that
1682 * reference. This would just create an unnecessary hot spot on
1683 * the top_cgroup reference count, to no avail.
1684 *
1685 * Normally, holding a reference to a cgroup without bumping its
1686 * count is unsafe. The cgroup could go away, or someone could
1687 * attach us to a different cgroup, decrementing the count on
1688 * the first cgroup that we never incremented. But in this case,
1689 * top_cgroup isn't going away, and either task has PF_EXITING set,
1690 * which wards off any attach_task() attempts, or task is a failed
1691 * fork, never visible to attach_task.
1692 *
1693 */
1694void cgroup_exit(struct task_struct *tsk, int run_callbacks)
1695{
1696 int i;
1697
1698 if (run_callbacks && need_forkexit_callback) {
1699 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1700 struct cgroup_subsys *ss = subsys[i];
1701 if (ss->exit)
1702 ss->exit(ss, tsk);
1703 }
1704 }
1705 /* Reassign the task to the init_css_set. */
1706 task_lock(tsk);
1707 put_css_set(&tsk->cgroups);
1708 tsk->cgroups = init_task.cgroups;
1709 task_unlock(tsk);
1710}