Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /************************************************************************ |
| 2 | * Copyright 2003 Digi International (www.digi.com) |
| 3 | * |
| 4 | * Copyright (C) 2004 IBM Corporation. All rights reserved. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; either version 2, or (at your option) |
| 9 | * any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the |
| 13 | * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
| 14 | * PURPOSE. See the GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write to the Free Software |
| 18 | * Foundation, Inc., 59 * Temple Place - Suite 330, Boston, |
| 19 | * MA 02111-1307, USA. |
| 20 | * |
| 21 | * Contact Information: |
| 22 | * Scott H Kilau <Scott_Kilau@digi.com> |
| 23 | * Wendy Xiong <wendyx@us.ltcfwd.linux.ibm.com> |
| 24 | * |
| 25 | ***********************************************************************/ |
| 26 | #include <linux/delay.h> /* For udelay */ |
| 27 | #include <linux/serial_reg.h> /* For the various UART offsets */ |
| 28 | #include <linux/tty.h> |
| 29 | #include <linux/pci.h> |
| 30 | #include <asm/io.h> |
| 31 | |
| 32 | #include "jsm.h" /* Driver main header file */ |
| 33 | |
| 34 | static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; |
| 35 | |
| 36 | /* |
| 37 | * This function allows calls to ensure that all outstanding |
| 38 | * PCI writes have been completed, by doing a PCI read against |
| 39 | * a non-destructive, read-only location on the Neo card. |
| 40 | * |
| 41 | * In this case, we are reading the DVID (Read-only Device Identification) |
| 42 | * value of the Neo card. |
| 43 | */ |
| 44 | static inline void neo_pci_posting_flush(struct jsm_board *bd) |
| 45 | { |
| 46 | readb(bd->re_map_membase + 0x8D); |
| 47 | } |
| 48 | |
| 49 | static void neo_set_cts_flow_control(struct jsm_channel *ch) |
| 50 | { |
V. ANANDA KRISHNAN | c223695 | 2005-07-27 11:43:49 -0700 | [diff] [blame] | 51 | u8 ier, efr; |
| 52 | ier = readb(&ch->ch_neo_uart->ier); |
| 53 | efr = readb(&ch->ch_neo_uart->efr); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 54 | |
| 55 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n"); |
| 56 | |
| 57 | /* Turn on auto CTS flow control */ |
| 58 | ier |= (UART_17158_IER_CTSDSR); |
| 59 | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR); |
| 60 | |
| 61 | /* Turn off auto Xon flow control */ |
| 62 | efr &= ~(UART_17158_EFR_IXON); |
| 63 | |
| 64 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| 65 | writeb(0, &ch->ch_neo_uart->efr); |
| 66 | |
| 67 | /* Turn on UART enhanced bits */ |
| 68 | writeb(efr, &ch->ch_neo_uart->efr); |
| 69 | |
| 70 | /* Turn on table D, with 8 char hi/low watermarks */ |
| 71 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); |
| 72 | |
| 73 | /* Feed the UART our trigger levels */ |
| 74 | writeb(8, &ch->ch_neo_uart->tfifo); |
| 75 | ch->ch_t_tlevel = 8; |
| 76 | |
| 77 | writeb(ier, &ch->ch_neo_uart->ier); |
| 78 | } |
| 79 | |
| 80 | static void neo_set_rts_flow_control(struct jsm_channel *ch) |
| 81 | { |
V. ANANDA KRISHNAN | c223695 | 2005-07-27 11:43:49 -0700 | [diff] [blame] | 82 | u8 ier, efr; |
| 83 | ier = readb(&ch->ch_neo_uart->ier); |
| 84 | efr = readb(&ch->ch_neo_uart->efr); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 85 | |
| 86 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n"); |
| 87 | |
| 88 | /* Turn on auto RTS flow control */ |
| 89 | ier |= (UART_17158_IER_RTSDTR); |
| 90 | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR); |
| 91 | |
| 92 | /* Turn off auto Xoff flow control */ |
| 93 | ier &= ~(UART_17158_IER_XOFF); |
| 94 | efr &= ~(UART_17158_EFR_IXOFF); |
| 95 | |
| 96 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| 97 | writeb(0, &ch->ch_neo_uart->efr); |
| 98 | |
| 99 | /* Turn on UART enhanced bits */ |
| 100 | writeb(efr, &ch->ch_neo_uart->efr); |
| 101 | |
| 102 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); |
| 103 | ch->ch_r_watermark = 4; |
| 104 | |
| 105 | writeb(56, &ch->ch_neo_uart->rfifo); |
| 106 | ch->ch_r_tlevel = 56; |
| 107 | |
| 108 | writeb(ier, &ch->ch_neo_uart->ier); |
| 109 | |
| 110 | /* |
| 111 | * From the Neo UART spec sheet: |
| 112 | * The auto RTS/DTR function must be started by asserting |
| 113 | * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after |
| 114 | * it is enabled. |
| 115 | */ |
| 116 | ch->ch_mostat |= (UART_MCR_RTS); |
| 117 | } |
| 118 | |
| 119 | |
| 120 | static void neo_set_ixon_flow_control(struct jsm_channel *ch) |
| 121 | { |
V. ANANDA KRISHNAN | c223695 | 2005-07-27 11:43:49 -0700 | [diff] [blame] | 122 | u8 ier, efr; |
| 123 | ier = readb(&ch->ch_neo_uart->ier); |
| 124 | efr = readb(&ch->ch_neo_uart->efr); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 125 | |
| 126 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n"); |
| 127 | |
| 128 | /* Turn off auto CTS flow control */ |
| 129 | ier &= ~(UART_17158_IER_CTSDSR); |
| 130 | efr &= ~(UART_17158_EFR_CTSDSR); |
| 131 | |
| 132 | /* Turn on auto Xon flow control */ |
| 133 | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON); |
| 134 | |
| 135 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| 136 | writeb(0, &ch->ch_neo_uart->efr); |
| 137 | |
| 138 | /* Turn on UART enhanced bits */ |
| 139 | writeb(efr, &ch->ch_neo_uart->efr); |
| 140 | |
| 141 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); |
| 142 | ch->ch_r_watermark = 4; |
| 143 | |
| 144 | writeb(32, &ch->ch_neo_uart->rfifo); |
| 145 | ch->ch_r_tlevel = 32; |
| 146 | |
| 147 | /* Tell UART what start/stop chars it should be looking for */ |
| 148 | writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); |
| 149 | writeb(0, &ch->ch_neo_uart->xonchar2); |
| 150 | |
| 151 | writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); |
| 152 | writeb(0, &ch->ch_neo_uart->xoffchar2); |
| 153 | |
| 154 | writeb(ier, &ch->ch_neo_uart->ier); |
| 155 | } |
| 156 | |
| 157 | static void neo_set_ixoff_flow_control(struct jsm_channel *ch) |
| 158 | { |
V. ANANDA KRISHNAN | c223695 | 2005-07-27 11:43:49 -0700 | [diff] [blame] | 159 | u8 ier, efr; |
| 160 | ier = readb(&ch->ch_neo_uart->ier); |
| 161 | efr = readb(&ch->ch_neo_uart->efr); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 162 | |
| 163 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n"); |
| 164 | |
| 165 | /* Turn off auto RTS flow control */ |
| 166 | ier &= ~(UART_17158_IER_RTSDTR); |
| 167 | efr &= ~(UART_17158_EFR_RTSDTR); |
| 168 | |
| 169 | /* Turn on auto Xoff flow control */ |
| 170 | ier |= (UART_17158_IER_XOFF); |
| 171 | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); |
| 172 | |
| 173 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| 174 | writeb(0, &ch->ch_neo_uart->efr); |
| 175 | |
| 176 | /* Turn on UART enhanced bits */ |
| 177 | writeb(efr, &ch->ch_neo_uart->efr); |
| 178 | |
| 179 | /* Turn on table D, with 8 char hi/low watermarks */ |
| 180 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); |
| 181 | |
| 182 | writeb(8, &ch->ch_neo_uart->tfifo); |
| 183 | ch->ch_t_tlevel = 8; |
| 184 | |
| 185 | /* Tell UART what start/stop chars it should be looking for */ |
| 186 | writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); |
| 187 | writeb(0, &ch->ch_neo_uart->xonchar2); |
| 188 | |
| 189 | writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); |
| 190 | writeb(0, &ch->ch_neo_uart->xoffchar2); |
| 191 | |
| 192 | writeb(ier, &ch->ch_neo_uart->ier); |
| 193 | } |
| 194 | |
| 195 | static void neo_set_no_input_flow_control(struct jsm_channel *ch) |
| 196 | { |
V. ANANDA KRISHNAN | c223695 | 2005-07-27 11:43:49 -0700 | [diff] [blame] | 197 | u8 ier, efr; |
| 198 | ier = readb(&ch->ch_neo_uart->ier); |
| 199 | efr = readb(&ch->ch_neo_uart->efr); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 200 | |
| 201 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n"); |
| 202 | |
| 203 | /* Turn off auto RTS flow control */ |
| 204 | ier &= ~(UART_17158_IER_RTSDTR); |
| 205 | efr &= ~(UART_17158_EFR_RTSDTR); |
| 206 | |
| 207 | /* Turn off auto Xoff flow control */ |
| 208 | ier &= ~(UART_17158_IER_XOFF); |
| 209 | if (ch->ch_c_iflag & IXON) |
| 210 | efr &= ~(UART_17158_EFR_IXOFF); |
| 211 | else |
| 212 | efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); |
| 213 | |
| 214 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| 215 | writeb(0, &ch->ch_neo_uart->efr); |
| 216 | |
| 217 | /* Turn on UART enhanced bits */ |
| 218 | writeb(efr, &ch->ch_neo_uart->efr); |
| 219 | |
| 220 | /* Turn on table D, with 8 char hi/low watermarks */ |
| 221 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); |
| 222 | |
| 223 | ch->ch_r_watermark = 0; |
| 224 | |
| 225 | writeb(16, &ch->ch_neo_uart->tfifo); |
| 226 | ch->ch_t_tlevel = 16; |
| 227 | |
| 228 | writeb(16, &ch->ch_neo_uart->rfifo); |
| 229 | ch->ch_r_tlevel = 16; |
| 230 | |
| 231 | writeb(ier, &ch->ch_neo_uart->ier); |
| 232 | } |
| 233 | |
| 234 | static void neo_set_no_output_flow_control(struct jsm_channel *ch) |
| 235 | { |
V. ANANDA KRISHNAN | c223695 | 2005-07-27 11:43:49 -0700 | [diff] [blame] | 236 | u8 ier, efr; |
| 237 | ier = readb(&ch->ch_neo_uart->ier); |
| 238 | efr = readb(&ch->ch_neo_uart->efr); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 239 | |
| 240 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n"); |
| 241 | |
| 242 | /* Turn off auto CTS flow control */ |
| 243 | ier &= ~(UART_17158_IER_CTSDSR); |
| 244 | efr &= ~(UART_17158_EFR_CTSDSR); |
| 245 | |
| 246 | /* Turn off auto Xon flow control */ |
| 247 | if (ch->ch_c_iflag & IXOFF) |
| 248 | efr &= ~(UART_17158_EFR_IXON); |
| 249 | else |
| 250 | efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON); |
| 251 | |
| 252 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ |
| 253 | writeb(0, &ch->ch_neo_uart->efr); |
| 254 | |
| 255 | /* Turn on UART enhanced bits */ |
| 256 | writeb(efr, &ch->ch_neo_uart->efr); |
| 257 | |
| 258 | /* Turn on table D, with 8 char hi/low watermarks */ |
| 259 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); |
| 260 | |
| 261 | ch->ch_r_watermark = 0; |
| 262 | |
| 263 | writeb(16, &ch->ch_neo_uart->tfifo); |
| 264 | ch->ch_t_tlevel = 16; |
| 265 | |
| 266 | writeb(16, &ch->ch_neo_uart->rfifo); |
| 267 | ch->ch_r_tlevel = 16; |
| 268 | |
| 269 | writeb(ier, &ch->ch_neo_uart->ier); |
| 270 | } |
| 271 | |
| 272 | static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch) |
| 273 | { |
| 274 | |
| 275 | /* if hardware flow control is set, then skip this whole thing */ |
| 276 | if (ch->ch_c_cflag & CRTSCTS) |
| 277 | return; |
| 278 | |
| 279 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n"); |
| 280 | |
| 281 | /* Tell UART what start/stop chars it should be looking for */ |
| 282 | writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); |
| 283 | writeb(0, &ch->ch_neo_uart->xonchar2); |
| 284 | |
| 285 | writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); |
| 286 | writeb(0, &ch->ch_neo_uart->xoffchar2); |
| 287 | } |
| 288 | |
| 289 | static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch) |
| 290 | { |
| 291 | int qleft = 0; |
| 292 | u8 linestatus = 0; |
| 293 | u8 error_mask = 0; |
| 294 | int n = 0; |
| 295 | int total = 0; |
| 296 | u16 head; |
| 297 | u16 tail; |
| 298 | |
| 299 | if (!ch) |
| 300 | return; |
| 301 | |
| 302 | /* cache head and tail of queue */ |
| 303 | head = ch->ch_r_head & RQUEUEMASK; |
| 304 | tail = ch->ch_r_tail & RQUEUEMASK; |
| 305 | |
| 306 | /* Get our cached LSR */ |
| 307 | linestatus = ch->ch_cached_lsr; |
| 308 | ch->ch_cached_lsr = 0; |
| 309 | |
| 310 | /* Store how much space we have left in the queue */ |
| 311 | if ((qleft = tail - head - 1) < 0) |
| 312 | qleft += RQUEUEMASK + 1; |
| 313 | |
| 314 | /* |
| 315 | * If the UART is not in FIFO mode, force the FIFO copy to |
| 316 | * NOT be run, by setting total to 0. |
| 317 | * |
| 318 | * On the other hand, if the UART IS in FIFO mode, then ask |
| 319 | * the UART to give us an approximation of data it has RX'ed. |
| 320 | */ |
| 321 | if (!(ch->ch_flags & CH_FIFO_ENABLED)) |
| 322 | total = 0; |
| 323 | else { |
| 324 | total = readb(&ch->ch_neo_uart->rfifo); |
| 325 | |
| 326 | /* |
| 327 | * EXAR chip bug - RX FIFO COUNT - Fudge factor. |
| 328 | * |
| 329 | * This resolves a problem/bug with the Exar chip that sometimes |
| 330 | * returns a bogus value in the rfifo register. |
| 331 | * The count can be any where from 0-3 bytes "off". |
| 332 | * Bizarre, but true. |
| 333 | */ |
| 334 | total -= 3; |
| 335 | } |
| 336 | |
| 337 | /* |
| 338 | * Finally, bound the copy to make sure we don't overflow |
| 339 | * our own queue... |
| 340 | * The byte by byte copy loop below this loop this will |
| 341 | * deal with the queue overflow possibility. |
| 342 | */ |
| 343 | total = min(total, qleft); |
| 344 | |
| 345 | while (total > 0) { |
| 346 | /* |
| 347 | * Grab the linestatus register, we need to check |
| 348 | * to see if there are any errors in the FIFO. |
| 349 | */ |
| 350 | linestatus = readb(&ch->ch_neo_uart->lsr); |
| 351 | |
| 352 | /* |
| 353 | * Break out if there is a FIFO error somewhere. |
| 354 | * This will allow us to go byte by byte down below, |
| 355 | * finding the exact location of the error. |
| 356 | */ |
| 357 | if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) |
| 358 | break; |
| 359 | |
| 360 | /* Make sure we don't go over the end of our queue */ |
| 361 | n = min(((u32) total), (RQUEUESIZE - (u32) head)); |
| 362 | |
| 363 | /* |
| 364 | * Cut down n even further if needed, this is to fix |
| 365 | * a problem with memcpy_fromio() with the Neo on the |
| 366 | * IBM pSeries platform. |
| 367 | * 15 bytes max appears to be the magic number. |
| 368 | */ |
| 369 | n = min((u32) n, (u32) 12); |
| 370 | |
| 371 | /* |
| 372 | * Since we are grabbing the linestatus register, which |
| 373 | * will reset some bits after our read, we need to ensure |
| 374 | * we don't miss our TX FIFO emptys. |
| 375 | */ |
| 376 | if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) |
| 377 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| 378 | |
| 379 | linestatus = 0; |
| 380 | |
| 381 | /* Copy data from uart to the queue */ |
| 382 | memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n); |
| 383 | /* |
| 384 | * Since RX_FIFO_DATA_ERROR was 0, we are guarenteed |
| 385 | * that all the data currently in the FIFO is free of |
| 386 | * breaks and parity/frame/orun errors. |
| 387 | */ |
| 388 | memset(ch->ch_equeue + head, 0, n); |
| 389 | |
| 390 | /* Add to and flip head if needed */ |
| 391 | head = (head + n) & RQUEUEMASK; |
| 392 | total -= n; |
| 393 | qleft -= n; |
| 394 | ch->ch_rxcount += n; |
| 395 | } |
| 396 | |
| 397 | /* |
| 398 | * Create a mask to determine whether we should |
| 399 | * insert the character (if any) into our queue. |
| 400 | */ |
| 401 | if (ch->ch_c_iflag & IGNBRK) |
| 402 | error_mask |= UART_LSR_BI; |
| 403 | |
| 404 | /* |
| 405 | * Now cleanup any leftover bytes still in the UART. |
| 406 | * Also deal with any possible queue overflow here as well. |
| 407 | */ |
| 408 | while (1) { |
| 409 | |
| 410 | /* |
| 411 | * Its possible we have a linestatus from the loop above |
| 412 | * this, so we "OR" on any extra bits. |
| 413 | */ |
| 414 | linestatus |= readb(&ch->ch_neo_uart->lsr); |
| 415 | |
| 416 | /* |
| 417 | * If the chip tells us there is no more data pending to |
| 418 | * be read, we can then leave. |
| 419 | * But before we do, cache the linestatus, just in case. |
| 420 | */ |
| 421 | if (!(linestatus & UART_LSR_DR)) { |
| 422 | ch->ch_cached_lsr = linestatus; |
| 423 | break; |
| 424 | } |
| 425 | |
| 426 | /* No need to store this bit */ |
| 427 | linestatus &= ~UART_LSR_DR; |
| 428 | |
| 429 | /* |
| 430 | * Since we are grabbing the linestatus register, which |
| 431 | * will reset some bits after our read, we need to ensure |
| 432 | * we don't miss our TX FIFO emptys. |
| 433 | */ |
| 434 | if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) { |
| 435 | linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR); |
| 436 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| 437 | } |
| 438 | |
| 439 | /* |
| 440 | * Discard character if we are ignoring the error mask. |
| 441 | */ |
| 442 | if (linestatus & error_mask) { |
| 443 | u8 discard; |
| 444 | linestatus = 0; |
| 445 | memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1); |
| 446 | continue; |
| 447 | } |
| 448 | |
| 449 | /* |
| 450 | * If our queue is full, we have no choice but to drop some data. |
| 451 | * The assumption is that HWFLOW or SWFLOW should have stopped |
| 452 | * things way way before we got to this point. |
| 453 | * |
| 454 | * I decided that I wanted to ditch the oldest data first, |
| 455 | * I hope thats okay with everyone? Yes? Good. |
| 456 | */ |
| 457 | while (qleft < 1) { |
| 458 | jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, |
| 459 | "Queue full, dropping DATA:%x LSR:%x\n", |
| 460 | ch->ch_rqueue[tail], ch->ch_equeue[tail]); |
| 461 | |
| 462 | ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK; |
| 463 | ch->ch_err_overrun++; |
| 464 | qleft++; |
| 465 | } |
| 466 | |
| 467 | memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1); |
| 468 | ch->ch_equeue[head] = (u8) linestatus; |
| 469 | |
| 470 | jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, |
| 471 | "DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]); |
| 472 | |
| 473 | /* Ditch any remaining linestatus value. */ |
| 474 | linestatus = 0; |
| 475 | |
| 476 | /* Add to and flip head if needed */ |
| 477 | head = (head + 1) & RQUEUEMASK; |
| 478 | |
| 479 | qleft--; |
| 480 | ch->ch_rxcount++; |
| 481 | } |
| 482 | |
| 483 | /* |
| 484 | * Write new final heads to channel structure. |
| 485 | */ |
| 486 | ch->ch_r_head = head & RQUEUEMASK; |
| 487 | ch->ch_e_head = head & EQUEUEMASK; |
| 488 | jsm_input(ch); |
| 489 | } |
| 490 | |
| 491 | static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch) |
| 492 | { |
| 493 | u16 head; |
| 494 | u16 tail; |
| 495 | int n; |
| 496 | int s; |
| 497 | int qlen; |
| 498 | u32 len_written = 0; |
| 499 | |
| 500 | if (!ch) |
| 501 | return; |
| 502 | |
| 503 | /* No data to write to the UART */ |
| 504 | if (ch->ch_w_tail == ch->ch_w_head) |
| 505 | return; |
| 506 | |
| 507 | /* If port is "stopped", don't send any data to the UART */ |
| 508 | if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING)) |
| 509 | return; |
| 510 | /* |
| 511 | * If FIFOs are disabled. Send data directly to txrx register |
| 512 | */ |
| 513 | if (!(ch->ch_flags & CH_FIFO_ENABLED)) { |
| 514 | u8 lsrbits = readb(&ch->ch_neo_uart->lsr); |
| 515 | |
| 516 | ch->ch_cached_lsr |= lsrbits; |
| 517 | if (ch->ch_cached_lsr & UART_LSR_THRE) { |
| 518 | ch->ch_cached_lsr &= ~(UART_LSR_THRE); |
| 519 | |
| 520 | writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx); |
| 521 | jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev, |
| 522 | "Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]); |
| 523 | ch->ch_w_tail++; |
| 524 | ch->ch_w_tail &= WQUEUEMASK; |
| 525 | ch->ch_txcount++; |
| 526 | } |
| 527 | return; |
| 528 | } |
| 529 | |
| 530 | /* |
| 531 | * We have to do it this way, because of the EXAR TXFIFO count bug. |
| 532 | */ |
| 533 | if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM))) |
| 534 | return; |
| 535 | |
| 536 | len_written = 0; |
| 537 | n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel; |
| 538 | |
| 539 | /* cache head and tail of queue */ |
| 540 | head = ch->ch_w_head & WQUEUEMASK; |
| 541 | tail = ch->ch_w_tail & WQUEUEMASK; |
| 542 | qlen = (head - tail) & WQUEUEMASK; |
| 543 | |
| 544 | /* Find minimum of the FIFO space, versus queue length */ |
| 545 | n = min(n, qlen); |
| 546 | |
| 547 | while (n > 0) { |
| 548 | |
| 549 | s = ((head >= tail) ? head : WQUEUESIZE) - tail; |
| 550 | s = min(s, n); |
| 551 | |
| 552 | if (s <= 0) |
| 553 | break; |
| 554 | |
| 555 | memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s); |
| 556 | /* Add and flip queue if needed */ |
| 557 | tail = (tail + s) & WQUEUEMASK; |
| 558 | n -= s; |
| 559 | ch->ch_txcount += s; |
| 560 | len_written += s; |
| 561 | } |
| 562 | |
| 563 | /* Update the final tail */ |
| 564 | ch->ch_w_tail = tail & WQUEUEMASK; |
| 565 | |
| 566 | if (len_written >= ch->ch_t_tlevel) |
| 567 | ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| 568 | |
| 569 | if (!jsm_tty_write(&ch->uart_port)) |
| 570 | uart_write_wakeup(&ch->uart_port); |
| 571 | } |
| 572 | |
| 573 | static void neo_parse_modem(struct jsm_channel *ch, u8 signals) |
| 574 | { |
| 575 | u8 msignals = signals; |
| 576 | |
| 577 | jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev, |
| 578 | "neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals); |
| 579 | |
| 580 | if (!ch) |
| 581 | return; |
| 582 | |
| 583 | /* Scrub off lower bits. They signify delta's, which I don't care about */ |
| 584 | msignals &= 0xf0; |
| 585 | |
| 586 | if (msignals & UART_MSR_DCD) |
| 587 | ch->ch_mistat |= UART_MSR_DCD; |
| 588 | else |
| 589 | ch->ch_mistat &= ~UART_MSR_DCD; |
| 590 | |
| 591 | if (msignals & UART_MSR_DSR) |
| 592 | ch->ch_mistat |= UART_MSR_DSR; |
| 593 | else |
| 594 | ch->ch_mistat &= ~UART_MSR_DSR; |
| 595 | |
| 596 | if (msignals & UART_MSR_RI) |
| 597 | ch->ch_mistat |= UART_MSR_RI; |
| 598 | else |
| 599 | ch->ch_mistat &= ~UART_MSR_RI; |
| 600 | |
| 601 | if (msignals & UART_MSR_CTS) |
| 602 | ch->ch_mistat |= UART_MSR_CTS; |
| 603 | else |
| 604 | ch->ch_mistat &= ~UART_MSR_CTS; |
| 605 | |
| 606 | jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev, |
| 607 | "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n", |
| 608 | ch->ch_portnum, |
| 609 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR), |
| 610 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS), |
| 611 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS), |
| 612 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR), |
| 613 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI), |
| 614 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD)); |
| 615 | } |
| 616 | |
| 617 | /* Make the UART raise any of the output signals we want up */ |
| 618 | static void neo_assert_modem_signals(struct jsm_channel *ch) |
| 619 | { |
| 620 | u8 out; |
| 621 | |
| 622 | if (!ch) |
| 623 | return; |
| 624 | |
| 625 | out = ch->ch_mostat; |
| 626 | |
| 627 | writeb(out, &ch->ch_neo_uart->mcr); |
| 628 | |
| 629 | /* flush write operation */ |
| 630 | neo_pci_posting_flush(ch->ch_bd); |
| 631 | } |
| 632 | |
| 633 | /* |
| 634 | * Flush the WRITE FIFO on the Neo. |
| 635 | * |
| 636 | * NOTE: Channel lock MUST be held before calling this function! |
| 637 | */ |
| 638 | static void neo_flush_uart_write(struct jsm_channel *ch) |
| 639 | { |
| 640 | u8 tmp = 0; |
| 641 | int i = 0; |
| 642 | |
| 643 | if (!ch) |
| 644 | return; |
| 645 | |
| 646 | writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); |
| 647 | |
| 648 | for (i = 0; i < 10; i++) { |
| 649 | |
| 650 | /* Check to see if the UART feels it completely flushed the FIFO. */ |
| 651 | tmp = readb(&ch->ch_neo_uart->isr_fcr); |
| 652 | if (tmp & 4) { |
| 653 | jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, |
| 654 | "Still flushing TX UART... i: %d\n", i); |
| 655 | udelay(10); |
| 656 | } |
| 657 | else |
| 658 | break; |
| 659 | } |
| 660 | |
| 661 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| 662 | } |
| 663 | |
| 664 | |
| 665 | /* |
| 666 | * Flush the READ FIFO on the Neo. |
| 667 | * |
| 668 | * NOTE: Channel lock MUST be held before calling this function! |
| 669 | */ |
| 670 | static void neo_flush_uart_read(struct jsm_channel *ch) |
| 671 | { |
| 672 | u8 tmp = 0; |
| 673 | int i = 0; |
| 674 | |
| 675 | if (!ch) |
| 676 | return; |
| 677 | |
| 678 | writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr); |
| 679 | |
| 680 | for (i = 0; i < 10; i++) { |
| 681 | |
| 682 | /* Check to see if the UART feels it completely flushed the FIFO. */ |
| 683 | tmp = readb(&ch->ch_neo_uart->isr_fcr); |
| 684 | if (tmp & 2) { |
| 685 | jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, |
| 686 | "Still flushing RX UART... i: %d\n", i); |
| 687 | udelay(10); |
| 688 | } |
| 689 | else |
| 690 | break; |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | /* |
| 695 | * No locks are assumed to be held when calling this function. |
| 696 | */ |
Adrian Bunk | 408b664 | 2005-05-01 08:59:29 -0700 | [diff] [blame] | 697 | static void neo_clear_break(struct jsm_channel *ch, int force) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 698 | { |
| 699 | unsigned long lock_flags; |
| 700 | |
| 701 | spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| 702 | |
| 703 | /* Turn break off, and unset some variables */ |
| 704 | if (ch->ch_flags & CH_BREAK_SENDING) { |
| 705 | u8 temp = readb(&ch->ch_neo_uart->lcr); |
| 706 | writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr); |
| 707 | |
| 708 | ch->ch_flags &= ~(CH_BREAK_SENDING); |
| 709 | jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, |
| 710 | "clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies); |
| 711 | |
| 712 | /* flush write operation */ |
| 713 | neo_pci_posting_flush(ch->ch_bd); |
| 714 | } |
| 715 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| 716 | } |
| 717 | |
| 718 | /* |
| 719 | * Parse the ISR register. |
| 720 | */ |
| 721 | static inline void neo_parse_isr(struct jsm_board *brd, u32 port) |
| 722 | { |
| 723 | struct jsm_channel *ch; |
| 724 | u8 isr; |
| 725 | u8 cause; |
| 726 | unsigned long lock_flags; |
| 727 | |
| 728 | if (!brd) |
| 729 | return; |
| 730 | |
| 731 | if (port > brd->maxports) |
| 732 | return; |
| 733 | |
| 734 | ch = brd->channels[port]; |
| 735 | if (!ch) |
| 736 | return; |
| 737 | |
| 738 | /* Here we try to figure out what caused the interrupt to happen */ |
| 739 | while (1) { |
| 740 | |
| 741 | isr = readb(&ch->ch_neo_uart->isr_fcr); |
| 742 | |
| 743 | /* Bail if no pending interrupt */ |
| 744 | if (isr & UART_IIR_NO_INT) |
| 745 | break; |
| 746 | |
| 747 | /* |
| 748 | * Yank off the upper 2 bits, which just show that the FIFO's are enabled. |
| 749 | */ |
| 750 | isr &= ~(UART_17158_IIR_FIFO_ENABLED); |
| 751 | |
| 752 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| 753 | "%s:%d isr: %x\n", __FILE__, __LINE__, isr); |
| 754 | |
| 755 | if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) { |
| 756 | /* Read data from uart -> queue */ |
| 757 | neo_copy_data_from_uart_to_queue(ch); |
| 758 | |
| 759 | /* Call our tty layer to enforce queue flow control if needed. */ |
| 760 | spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| 761 | jsm_check_queue_flow_control(ch); |
| 762 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| 763 | } |
| 764 | |
| 765 | if (isr & UART_IIR_THRI) { |
| 766 | /* Transfer data (if any) from Write Queue -> UART. */ |
| 767 | spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| 768 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| 769 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| 770 | neo_copy_data_from_queue_to_uart(ch); |
| 771 | } |
| 772 | |
| 773 | if (isr & UART_17158_IIR_XONXOFF) { |
| 774 | cause = readb(&ch->ch_neo_uart->xoffchar1); |
| 775 | |
| 776 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| 777 | "Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause); |
| 778 | |
| 779 | /* |
| 780 | * Since the UART detected either an XON or |
| 781 | * XOFF match, we need to figure out which |
| 782 | * one it was, so we can suspend or resume data flow. |
| 783 | */ |
| 784 | spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| 785 | if (cause == UART_17158_XON_DETECT) { |
| 786 | /* Is output stopped right now, if so, resume it */ |
| 787 | if (brd->channels[port]->ch_flags & CH_STOP) { |
| 788 | ch->ch_flags &= ~(CH_STOP); |
| 789 | } |
| 790 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| 791 | "Port %d. XON detected in incoming data\n", port); |
| 792 | } |
| 793 | else if (cause == UART_17158_XOFF_DETECT) { |
| 794 | if (!(brd->channels[port]->ch_flags & CH_STOP)) { |
| 795 | ch->ch_flags |= CH_STOP; |
| 796 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| 797 | "Setting CH_STOP\n"); |
| 798 | } |
| 799 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| 800 | "Port: %d. XOFF detected in incoming data\n", port); |
| 801 | } |
| 802 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| 803 | } |
| 804 | |
| 805 | if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) { |
| 806 | /* |
| 807 | * If we get here, this means the hardware is doing auto flow control. |
| 808 | * Check to see whether RTS/DTR or CTS/DSR caused this interrupt. |
| 809 | */ |
| 810 | cause = readb(&ch->ch_neo_uart->mcr); |
| 811 | |
| 812 | /* Which pin is doing auto flow? RTS or DTR? */ |
| 813 | spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| 814 | if ((cause & 0x4) == 0) { |
| 815 | if (cause & UART_MCR_RTS) |
| 816 | ch->ch_mostat |= UART_MCR_RTS; |
| 817 | else |
| 818 | ch->ch_mostat &= ~(UART_MCR_RTS); |
| 819 | } else { |
| 820 | if (cause & UART_MCR_DTR) |
| 821 | ch->ch_mostat |= UART_MCR_DTR; |
| 822 | else |
| 823 | ch->ch_mostat &= ~(UART_MCR_DTR); |
| 824 | } |
| 825 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| 826 | } |
| 827 | |
| 828 | /* Parse any modem signal changes */ |
| 829 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| 830 | "MOD_STAT: sending to parse_modem_sigs\n"); |
| 831 | neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | static inline void neo_parse_lsr(struct jsm_board *brd, u32 port) |
| 836 | { |
| 837 | struct jsm_channel *ch; |
| 838 | int linestatus; |
| 839 | unsigned long lock_flags; |
| 840 | |
| 841 | if (!brd) |
| 842 | return; |
| 843 | |
| 844 | if (port > brd->maxports) |
| 845 | return; |
| 846 | |
| 847 | ch = brd->channels[port]; |
| 848 | if (!ch) |
| 849 | return; |
| 850 | |
| 851 | linestatus = readb(&ch->ch_neo_uart->lsr); |
| 852 | |
| 853 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, |
| 854 | "%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus); |
| 855 | |
| 856 | ch->ch_cached_lsr |= linestatus; |
| 857 | |
| 858 | if (ch->ch_cached_lsr & UART_LSR_DR) { |
| 859 | /* Read data from uart -> queue */ |
| 860 | neo_copy_data_from_uart_to_queue(ch); |
| 861 | spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| 862 | jsm_check_queue_flow_control(ch); |
| 863 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| 864 | } |
| 865 | |
| 866 | /* |
| 867 | * This is a special flag. It indicates that at least 1 |
| 868 | * RX error (parity, framing, or break) has happened. |
| 869 | * Mark this in our struct, which will tell me that I have |
| 870 | *to do the special RX+LSR read for this FIFO load. |
| 871 | */ |
| 872 | if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) |
| 873 | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, |
| 874 | "%s:%d Port: %d Got an RX error, need to parse LSR\n", |
| 875 | __FILE__, __LINE__, port); |
| 876 | |
| 877 | /* |
| 878 | * The next 3 tests should *NOT* happen, as the above test |
| 879 | * should encapsulate all 3... At least, thats what Exar says. |
| 880 | */ |
| 881 | |
| 882 | if (linestatus & UART_LSR_PE) { |
| 883 | ch->ch_err_parity++; |
| 884 | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, |
| 885 | "%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port); |
| 886 | } |
| 887 | |
| 888 | if (linestatus & UART_LSR_FE) { |
| 889 | ch->ch_err_frame++; |
| 890 | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, |
| 891 | "%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port); |
| 892 | } |
| 893 | |
| 894 | if (linestatus & UART_LSR_BI) { |
| 895 | ch->ch_err_break++; |
| 896 | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, |
| 897 | "%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port); |
| 898 | } |
| 899 | |
| 900 | if (linestatus & UART_LSR_OE) { |
| 901 | /* |
| 902 | * Rx Oruns. Exar says that an orun will NOT corrupt |
| 903 | * the FIFO. It will just replace the holding register |
| 904 | * with this new data byte. So basically just ignore this. |
| 905 | * Probably we should eventually have an orun stat in our driver... |
| 906 | */ |
| 907 | ch->ch_err_overrun++; |
| 908 | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, |
| 909 | "%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port); |
| 910 | } |
| 911 | |
| 912 | if (linestatus & UART_LSR_THRE) { |
| 913 | spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| 914 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| 915 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| 916 | |
| 917 | /* Transfer data (if any) from Write Queue -> UART. */ |
| 918 | neo_copy_data_from_queue_to_uart(ch); |
| 919 | } |
| 920 | else if (linestatus & UART_17158_TX_AND_FIFO_CLR) { |
| 921 | spin_lock_irqsave(&ch->ch_lock, lock_flags); |
| 922 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| 923 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); |
| 924 | |
| 925 | /* Transfer data (if any) from Write Queue -> UART. */ |
| 926 | neo_copy_data_from_queue_to_uart(ch); |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | /* |
| 931 | * neo_param() |
| 932 | * Send any/all changes to the line to the UART. |
| 933 | */ |
| 934 | static void neo_param(struct jsm_channel *ch) |
| 935 | { |
| 936 | u8 lcr = 0; |
| 937 | u8 uart_lcr = 0; |
| 938 | u8 ier = 0; |
| 939 | u32 baud = 9600; |
| 940 | int quot = 0; |
| 941 | struct jsm_board *bd; |
| 942 | |
| 943 | bd = ch->ch_bd; |
| 944 | if (!bd) |
| 945 | return; |
| 946 | |
| 947 | /* |
| 948 | * If baud rate is zero, flush queues, and set mval to drop DTR. |
| 949 | */ |
| 950 | if ((ch->ch_c_cflag & (CBAUD)) == 0) { |
| 951 | ch->ch_r_head = ch->ch_r_tail = 0; |
| 952 | ch->ch_e_head = ch->ch_e_tail = 0; |
| 953 | ch->ch_w_head = ch->ch_w_tail = 0; |
| 954 | |
| 955 | neo_flush_uart_write(ch); |
| 956 | neo_flush_uart_read(ch); |
| 957 | |
| 958 | ch->ch_flags |= (CH_BAUD0); |
| 959 | ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR); |
| 960 | neo_assert_modem_signals(ch); |
| 961 | ch->ch_old_baud = 0; |
| 962 | return; |
| 963 | |
| 964 | } else if (ch->ch_custom_speed) { |
| 965 | baud = ch->ch_custom_speed; |
| 966 | if (ch->ch_flags & CH_BAUD0) |
| 967 | ch->ch_flags &= ~(CH_BAUD0); |
| 968 | } else { |
| 969 | int iindex = 0; |
| 970 | int jindex = 0; |
| 971 | |
| 972 | const u64 bauds[4][16] = { |
| 973 | { |
| 974 | 0, 50, 75, 110, |
| 975 | 134, 150, 200, 300, |
| 976 | 600, 1200, 1800, 2400, |
| 977 | 4800, 9600, 19200, 38400 }, |
| 978 | { |
| 979 | 0, 57600, 115200, 230400, |
| 980 | 460800, 150, 200, 921600, |
| 981 | 600, 1200, 1800, 2400, |
| 982 | 4800, 9600, 19200, 38400 }, |
| 983 | { |
| 984 | 0, 57600, 76800, 115200, |
| 985 | 131657, 153600, 230400, 460800, |
| 986 | 921600, 1200, 1800, 2400, |
| 987 | 4800, 9600, 19200, 38400 }, |
| 988 | { |
| 989 | 0, 57600, 115200, 230400, |
| 990 | 460800, 150, 200, 921600, |
| 991 | 600, 1200, 1800, 2400, |
| 992 | 4800, 9600, 19200, 38400 } |
| 993 | }; |
| 994 | |
| 995 | baud = C_BAUD(ch->uart_port.info->tty) & 0xff; |
| 996 | |
| 997 | if (ch->ch_c_cflag & CBAUDEX) |
| 998 | iindex = 1; |
| 999 | |
| 1000 | jindex = baud; |
| 1001 | |
| 1002 | if ((iindex >= 0) && (iindex < 4) && (jindex >= 0) && (jindex < 16)) |
| 1003 | baud = bauds[iindex][jindex]; |
| 1004 | else { |
| 1005 | jsm_printk(IOCTL, DEBUG, &ch->ch_bd->pci_dev, |
| 1006 | "baud indices were out of range (%d)(%d)", |
| 1007 | iindex, jindex); |
| 1008 | baud = 0; |
| 1009 | } |
| 1010 | |
| 1011 | if (baud == 0) |
| 1012 | baud = 9600; |
| 1013 | |
| 1014 | if (ch->ch_flags & CH_BAUD0) |
| 1015 | ch->ch_flags &= ~(CH_BAUD0); |
| 1016 | } |
| 1017 | |
| 1018 | if (ch->ch_c_cflag & PARENB) |
| 1019 | lcr |= UART_LCR_PARITY; |
| 1020 | |
| 1021 | if (!(ch->ch_c_cflag & PARODD)) |
| 1022 | lcr |= UART_LCR_EPAR; |
| 1023 | |
| 1024 | /* |
| 1025 | * Not all platforms support mark/space parity, |
| 1026 | * so this will hide behind an ifdef. |
| 1027 | */ |
| 1028 | #ifdef CMSPAR |
| 1029 | if (ch->ch_c_cflag & CMSPAR) |
| 1030 | lcr |= UART_LCR_SPAR; |
| 1031 | #endif |
| 1032 | |
| 1033 | if (ch->ch_c_cflag & CSTOPB) |
| 1034 | lcr |= UART_LCR_STOP; |
| 1035 | |
| 1036 | switch (ch->ch_c_cflag & CSIZE) { |
| 1037 | case CS5: |
| 1038 | lcr |= UART_LCR_WLEN5; |
| 1039 | break; |
| 1040 | case CS6: |
| 1041 | lcr |= UART_LCR_WLEN6; |
| 1042 | break; |
| 1043 | case CS7: |
| 1044 | lcr |= UART_LCR_WLEN7; |
| 1045 | break; |
| 1046 | case CS8: |
| 1047 | default: |
| 1048 | lcr |= UART_LCR_WLEN8; |
| 1049 | break; |
| 1050 | } |
| 1051 | |
| 1052 | ier = readb(&ch->ch_neo_uart->ier); |
| 1053 | uart_lcr = readb(&ch->ch_neo_uart->lcr); |
| 1054 | |
| 1055 | if (baud == 0) |
| 1056 | baud = 9600; |
| 1057 | |
| 1058 | quot = ch->ch_bd->bd_dividend / baud; |
| 1059 | |
| 1060 | if (quot != 0) { |
| 1061 | ch->ch_old_baud = baud; |
| 1062 | writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr); |
| 1063 | writeb((quot & 0xff), &ch->ch_neo_uart->txrx); |
| 1064 | writeb((quot >> 8), &ch->ch_neo_uart->ier); |
| 1065 | writeb(lcr, &ch->ch_neo_uart->lcr); |
| 1066 | } |
| 1067 | |
| 1068 | if (uart_lcr != lcr) |
| 1069 | writeb(lcr, &ch->ch_neo_uart->lcr); |
| 1070 | |
| 1071 | if (ch->ch_c_cflag & CREAD) |
| 1072 | ier |= (UART_IER_RDI | UART_IER_RLSI); |
| 1073 | |
| 1074 | ier |= (UART_IER_THRI | UART_IER_MSI); |
| 1075 | |
| 1076 | writeb(ier, &ch->ch_neo_uart->ier); |
| 1077 | |
| 1078 | /* Set new start/stop chars */ |
| 1079 | neo_set_new_start_stop_chars(ch); |
| 1080 | |
| 1081 | if (ch->ch_c_cflag & CRTSCTS) |
| 1082 | neo_set_cts_flow_control(ch); |
| 1083 | else if (ch->ch_c_iflag & IXON) { |
| 1084 | /* If start/stop is set to disable, then we should disable flow control */ |
| 1085 | if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) |
| 1086 | neo_set_no_output_flow_control(ch); |
| 1087 | else |
| 1088 | neo_set_ixon_flow_control(ch); |
| 1089 | } |
| 1090 | else |
| 1091 | neo_set_no_output_flow_control(ch); |
| 1092 | |
| 1093 | if (ch->ch_c_cflag & CRTSCTS) |
| 1094 | neo_set_rts_flow_control(ch); |
| 1095 | else if (ch->ch_c_iflag & IXOFF) { |
| 1096 | /* If start/stop is set to disable, then we should disable flow control */ |
| 1097 | if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) |
| 1098 | neo_set_no_input_flow_control(ch); |
| 1099 | else |
| 1100 | neo_set_ixoff_flow_control(ch); |
| 1101 | } |
| 1102 | else |
| 1103 | neo_set_no_input_flow_control(ch); |
| 1104 | /* |
| 1105 | * Adjust the RX FIFO Trigger level if baud is less than 9600. |
| 1106 | * Not exactly elegant, but this is needed because of the Exar chip's |
| 1107 | * delay on firing off the RX FIFO interrupt on slower baud rates. |
| 1108 | */ |
| 1109 | if (baud < 9600) { |
| 1110 | writeb(1, &ch->ch_neo_uart->rfifo); |
| 1111 | ch->ch_r_tlevel = 1; |
| 1112 | } |
| 1113 | |
| 1114 | neo_assert_modem_signals(ch); |
| 1115 | |
| 1116 | /* Get current status of the modem signals now */ |
| 1117 | neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); |
| 1118 | return; |
| 1119 | } |
| 1120 | |
| 1121 | /* |
| 1122 | * jsm_neo_intr() |
| 1123 | * |
| 1124 | * Neo specific interrupt handler. |
| 1125 | */ |
| 1126 | static irqreturn_t neo_intr(int irq, void *voidbrd, struct pt_regs *regs) |
| 1127 | { |
| 1128 | struct jsm_board *brd = (struct jsm_board *) voidbrd; |
| 1129 | struct jsm_channel *ch; |
| 1130 | int port = 0; |
| 1131 | int type = 0; |
| 1132 | int current_port; |
| 1133 | u32 tmp; |
| 1134 | u32 uart_poll; |
| 1135 | unsigned long lock_flags; |
| 1136 | unsigned long lock_flags2; |
| 1137 | int outofloop_count = 0; |
| 1138 | |
| 1139 | brd->intr_count++; |
| 1140 | |
| 1141 | /* Lock out the slow poller from running on this board. */ |
| 1142 | spin_lock_irqsave(&brd->bd_intr_lock, lock_flags); |
| 1143 | |
| 1144 | /* |
| 1145 | * Read in "extended" IRQ information from the 32bit Neo register. |
| 1146 | * Bits 0-7: What port triggered the interrupt. |
| 1147 | * Bits 8-31: Each 3bits indicate what type of interrupt occurred. |
| 1148 | */ |
| 1149 | uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET); |
| 1150 | |
| 1151 | jsm_printk(INTR, INFO, &brd->pci_dev, |
| 1152 | "%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll); |
| 1153 | |
| 1154 | if (!uart_poll) { |
| 1155 | jsm_printk(INTR, INFO, &brd->pci_dev, |
| 1156 | "Kernel interrupted to me, but no pending interrupts...\n"); |
| 1157 | spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); |
| 1158 | return IRQ_NONE; |
| 1159 | } |
| 1160 | |
| 1161 | /* At this point, we have at least SOMETHING to service, dig further... */ |
| 1162 | |
| 1163 | current_port = 0; |
| 1164 | |
| 1165 | /* Loop on each port */ |
| 1166 | while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){ |
| 1167 | |
| 1168 | tmp = uart_poll; |
| 1169 | outofloop_count++; |
| 1170 | |
| 1171 | /* Check current port to see if it has interrupt pending */ |
| 1172 | if ((tmp & jsm_offset_table[current_port]) != 0) { |
| 1173 | port = current_port; |
| 1174 | type = tmp >> (8 + (port * 3)); |
| 1175 | type &= 0x7; |
| 1176 | } else { |
| 1177 | current_port++; |
| 1178 | continue; |
| 1179 | } |
| 1180 | |
| 1181 | jsm_printk(INTR, INFO, &brd->pci_dev, |
| 1182 | "%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type); |
| 1183 | |
| 1184 | /* Remove this port + type from uart_poll */ |
| 1185 | uart_poll &= ~(jsm_offset_table[port]); |
| 1186 | |
| 1187 | if (!type) { |
| 1188 | /* If no type, just ignore it, and move onto next port */ |
| 1189 | jsm_printk(INTR, ERR, &brd->pci_dev, |
| 1190 | "Interrupt with no type! port: %d\n", port); |
| 1191 | continue; |
| 1192 | } |
| 1193 | |
| 1194 | /* Switch on type of interrupt we have */ |
| 1195 | switch (type) { |
| 1196 | |
| 1197 | case UART_17158_RXRDY_TIMEOUT: |
| 1198 | /* |
| 1199 | * RXRDY Time-out is cleared by reading data in the |
| 1200 | * RX FIFO until it falls below the trigger level. |
| 1201 | */ |
| 1202 | |
| 1203 | /* Verify the port is in range. */ |
| 1204 | if (port > brd->nasync) |
| 1205 | continue; |
| 1206 | |
| 1207 | ch = brd->channels[port]; |
| 1208 | neo_copy_data_from_uart_to_queue(ch); |
| 1209 | |
| 1210 | /* Call our tty layer to enforce queue flow control if needed. */ |
| 1211 | spin_lock_irqsave(&ch->ch_lock, lock_flags2); |
| 1212 | jsm_check_queue_flow_control(ch); |
| 1213 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags2); |
| 1214 | |
| 1215 | continue; |
| 1216 | |
| 1217 | case UART_17158_RX_LINE_STATUS: |
| 1218 | /* |
| 1219 | * RXRDY and RX LINE Status (logic OR of LSR[4:1]) |
| 1220 | */ |
| 1221 | neo_parse_lsr(brd, port); |
| 1222 | continue; |
| 1223 | |
| 1224 | case UART_17158_TXRDY: |
| 1225 | /* |
| 1226 | * TXRDY interrupt clears after reading ISR register for the UART channel. |
| 1227 | */ |
| 1228 | |
| 1229 | /* |
| 1230 | * Yes, this is odd... |
| 1231 | * Why would I check EVERY possibility of type of |
| 1232 | * interrupt, when we know its TXRDY??? |
| 1233 | * Becuz for some reason, even tho we got triggered for TXRDY, |
| 1234 | * it seems to be occassionally wrong. Instead of TX, which |
| 1235 | * it should be, I was getting things like RXDY too. Weird. |
| 1236 | */ |
| 1237 | neo_parse_isr(brd, port); |
| 1238 | continue; |
| 1239 | |
| 1240 | case UART_17158_MSR: |
| 1241 | /* |
| 1242 | * MSR or flow control was seen. |
| 1243 | */ |
| 1244 | neo_parse_isr(brd, port); |
| 1245 | continue; |
| 1246 | |
| 1247 | default: |
| 1248 | /* |
| 1249 | * The UART triggered us with a bogus interrupt type. |
| 1250 | * It appears the Exar chip, when REALLY bogged down, will throw |
| 1251 | * these once and awhile. |
| 1252 | * Its harmless, just ignore it and move on. |
| 1253 | */ |
| 1254 | jsm_printk(INTR, ERR, &brd->pci_dev, |
| 1255 | "%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type); |
| 1256 | continue; |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); |
| 1261 | |
| 1262 | jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n"); |
| 1263 | return IRQ_HANDLED; |
| 1264 | } |
| 1265 | |
| 1266 | /* |
| 1267 | * Neo specific way of turning off the receiver. |
| 1268 | * Used as a way to enforce queue flow control when in |
| 1269 | * hardware flow control mode. |
| 1270 | */ |
| 1271 | static void neo_disable_receiver(struct jsm_channel *ch) |
| 1272 | { |
| 1273 | u8 tmp = readb(&ch->ch_neo_uart->ier); |
| 1274 | tmp &= ~(UART_IER_RDI); |
| 1275 | writeb(tmp, &ch->ch_neo_uart->ier); |
| 1276 | |
| 1277 | /* flush write operation */ |
| 1278 | neo_pci_posting_flush(ch->ch_bd); |
| 1279 | } |
| 1280 | |
| 1281 | |
| 1282 | /* |
| 1283 | * Neo specific way of turning on the receiver. |
| 1284 | * Used as a way to un-enforce queue flow control when in |
| 1285 | * hardware flow control mode. |
| 1286 | */ |
| 1287 | static void neo_enable_receiver(struct jsm_channel *ch) |
| 1288 | { |
| 1289 | u8 tmp = readb(&ch->ch_neo_uart->ier); |
| 1290 | tmp |= (UART_IER_RDI); |
| 1291 | writeb(tmp, &ch->ch_neo_uart->ier); |
| 1292 | |
| 1293 | /* flush write operation */ |
| 1294 | neo_pci_posting_flush(ch->ch_bd); |
| 1295 | } |
| 1296 | |
| 1297 | static void neo_send_start_character(struct jsm_channel *ch) |
| 1298 | { |
| 1299 | if (!ch) |
| 1300 | return; |
| 1301 | |
| 1302 | if (ch->ch_startc != __DISABLED_CHAR) { |
| 1303 | ch->ch_xon_sends++; |
| 1304 | writeb(ch->ch_startc, &ch->ch_neo_uart->txrx); |
| 1305 | |
| 1306 | /* flush write operation */ |
| 1307 | neo_pci_posting_flush(ch->ch_bd); |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | static void neo_send_stop_character(struct jsm_channel *ch) |
| 1312 | { |
| 1313 | if (!ch) |
| 1314 | return; |
| 1315 | |
| 1316 | if (ch->ch_stopc != __DISABLED_CHAR) { |
| 1317 | ch->ch_xoff_sends++; |
| 1318 | writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx); |
| 1319 | |
| 1320 | /* flush write operation */ |
| 1321 | neo_pci_posting_flush(ch->ch_bd); |
| 1322 | } |
| 1323 | } |
| 1324 | |
| 1325 | /* |
| 1326 | * neo_uart_init |
| 1327 | */ |
| 1328 | static void neo_uart_init(struct jsm_channel *ch) |
| 1329 | { |
| 1330 | writeb(0, &ch->ch_neo_uart->ier); |
| 1331 | writeb(0, &ch->ch_neo_uart->efr); |
| 1332 | writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr); |
| 1333 | |
| 1334 | /* Clear out UART and FIFO */ |
| 1335 | readb(&ch->ch_neo_uart->txrx); |
| 1336 | writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); |
| 1337 | readb(&ch->ch_neo_uart->lsr); |
| 1338 | readb(&ch->ch_neo_uart->msr); |
| 1339 | |
| 1340 | ch->ch_flags |= CH_FIFO_ENABLED; |
| 1341 | |
| 1342 | /* Assert any signals we want up */ |
| 1343 | writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); |
| 1344 | } |
| 1345 | |
| 1346 | /* |
| 1347 | * Make the UART completely turn off. |
| 1348 | */ |
| 1349 | static void neo_uart_off(struct jsm_channel *ch) |
| 1350 | { |
| 1351 | /* Turn off UART enhanced bits */ |
| 1352 | writeb(0, &ch->ch_neo_uart->efr); |
| 1353 | |
| 1354 | /* Stop all interrupts from occurring. */ |
| 1355 | writeb(0, &ch->ch_neo_uart->ier); |
| 1356 | } |
| 1357 | |
| 1358 | static u32 neo_get_uart_bytes_left(struct jsm_channel *ch) |
| 1359 | { |
| 1360 | u8 left = 0; |
| 1361 | u8 lsr = readb(&ch->ch_neo_uart->lsr); |
| 1362 | |
| 1363 | /* We must cache the LSR as some of the bits get reset once read... */ |
| 1364 | ch->ch_cached_lsr |= lsr; |
| 1365 | |
| 1366 | /* Determine whether the Transmitter is empty or not */ |
| 1367 | if (!(lsr & UART_LSR_TEMT)) |
| 1368 | left = 1; |
| 1369 | else { |
| 1370 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); |
| 1371 | left = 0; |
| 1372 | } |
| 1373 | |
| 1374 | return left; |
| 1375 | } |
| 1376 | |
| 1377 | /* Channel lock MUST be held by the calling function! */ |
| 1378 | static void neo_send_break(struct jsm_channel *ch) |
| 1379 | { |
| 1380 | /* |
| 1381 | * Set the time we should stop sending the break. |
| 1382 | * If we are already sending a break, toss away the existing |
| 1383 | * time to stop, and use this new value instead. |
| 1384 | */ |
| 1385 | |
| 1386 | /* Tell the UART to start sending the break */ |
| 1387 | if (!(ch->ch_flags & CH_BREAK_SENDING)) { |
| 1388 | u8 temp = readb(&ch->ch_neo_uart->lcr); |
| 1389 | writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr); |
| 1390 | ch->ch_flags |= (CH_BREAK_SENDING); |
| 1391 | |
| 1392 | /* flush write operation */ |
| 1393 | neo_pci_posting_flush(ch->ch_bd); |
| 1394 | } |
| 1395 | } |
| 1396 | |
| 1397 | /* |
| 1398 | * neo_send_immediate_char. |
| 1399 | * |
| 1400 | * Sends a specific character as soon as possible to the UART, |
| 1401 | * jumping over any bytes that might be in the write queue. |
| 1402 | * |
| 1403 | * The channel lock MUST be held by the calling function. |
| 1404 | */ |
| 1405 | static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c) |
| 1406 | { |
| 1407 | if (!ch) |
| 1408 | return; |
| 1409 | |
| 1410 | writeb(c, &ch->ch_neo_uart->txrx); |
| 1411 | |
| 1412 | /* flush write operation */ |
| 1413 | neo_pci_posting_flush(ch->ch_bd); |
| 1414 | } |
| 1415 | |
| 1416 | struct board_ops jsm_neo_ops = { |
| 1417 | .intr = neo_intr, |
| 1418 | .uart_init = neo_uart_init, |
| 1419 | .uart_off = neo_uart_off, |
| 1420 | .param = neo_param, |
| 1421 | .assert_modem_signals = neo_assert_modem_signals, |
| 1422 | .flush_uart_write = neo_flush_uart_write, |
| 1423 | .flush_uart_read = neo_flush_uart_read, |
| 1424 | .disable_receiver = neo_disable_receiver, |
| 1425 | .enable_receiver = neo_enable_receiver, |
| 1426 | .send_break = neo_send_break, |
| 1427 | .clear_break = neo_clear_break, |
| 1428 | .send_start_character = neo_send_start_character, |
| 1429 | .send_stop_character = neo_send_stop_character, |
| 1430 | .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart, |
| 1431 | .get_uart_bytes_left = neo_get_uart_bytes_left, |
| 1432 | .send_immediate_char = neo_send_immediate_char |
| 1433 | }; |