Dave Jiang | c0d1217 | 2007-07-19 01:49:46 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Generic EDAC defs |
| 3 | * |
| 4 | * Author: Dave Jiang <djiang@mvista.com> |
| 5 | * |
Hitoshi Mitake | c3c52bc | 2008-04-29 01:03:18 -0700 | [diff] [blame] | 6 | * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under |
Dave Jiang | c0d1217 | 2007-07-19 01:49:46 -0700 | [diff] [blame] | 7 | * the terms of the GNU General Public License version 2. This program |
| 8 | * is licensed "as is" without any warranty of any kind, whether express |
| 9 | * or implied. |
| 10 | * |
| 11 | */ |
| 12 | #ifndef _LINUX_EDAC_H_ |
| 13 | #define _LINUX_EDAC_H_ |
| 14 | |
Arun Sharma | 60063497 | 2011-07-26 16:09:06 -0700 | [diff] [blame] | 15 | #include <linux/atomic.h> |
Borislav Petkov | 30e1f7a | 2010-09-02 17:26:48 +0200 | [diff] [blame] | 16 | #include <linux/sysdev.h> |
Dave Jiang | c0d1217 | 2007-07-19 01:49:46 -0700 | [diff] [blame] | 17 | |
| 18 | #define EDAC_OPSTATE_INVAL -1 |
| 19 | #define EDAC_OPSTATE_POLL 0 |
| 20 | #define EDAC_OPSTATE_NMI 1 |
| 21 | #define EDAC_OPSTATE_INT 2 |
| 22 | |
| 23 | extern int edac_op_state; |
Dave Jiang | 66ee2f9 | 2007-07-19 01:49:54 -0700 | [diff] [blame] | 24 | extern int edac_err_assert; |
Dave Jiang | c0d1217 | 2007-07-19 01:49:46 -0700 | [diff] [blame] | 25 | extern atomic_t edac_handlers; |
Borislav Petkov | 30e1f7a | 2010-09-02 17:26:48 +0200 | [diff] [blame] | 26 | extern struct sysdev_class edac_class; |
Dave Jiang | c0d1217 | 2007-07-19 01:49:46 -0700 | [diff] [blame] | 27 | |
| 28 | extern int edac_handler_set(void); |
| 29 | extern void edac_atomic_assert_error(void); |
Borislav Petkov | 30e1f7a | 2010-09-02 17:26:48 +0200 | [diff] [blame] | 30 | extern struct sysdev_class *edac_get_sysfs_class(void); |
| 31 | extern void edac_put_sysfs_class(void); |
Dave Jiang | c0d1217 | 2007-07-19 01:49:46 -0700 | [diff] [blame] | 32 | |
Hitoshi Mitake | c3c52bc | 2008-04-29 01:03:18 -0700 | [diff] [blame] | 33 | static inline void opstate_init(void) |
| 34 | { |
| 35 | switch (edac_op_state) { |
| 36 | case EDAC_OPSTATE_POLL: |
| 37 | case EDAC_OPSTATE_NMI: |
| 38 | break; |
| 39 | default: |
| 40 | edac_op_state = EDAC_OPSTATE_POLL; |
| 41 | } |
| 42 | return; |
| 43 | } |
| 44 | |
Mauro Carvalho Chehab | ddeb354 | 2011-03-04 15:11:29 -0300 | [diff] [blame] | 45 | #define EDAC_MC_LABEL_LEN 31 |
| 46 | #define MC_PROC_NAME_MAX_LEN 7 |
| 47 | |
| 48 | /* memory devices */ |
| 49 | enum dev_type { |
| 50 | DEV_UNKNOWN = 0, |
| 51 | DEV_X1, |
| 52 | DEV_X2, |
| 53 | DEV_X4, |
| 54 | DEV_X8, |
| 55 | DEV_X16, |
| 56 | DEV_X32, /* Do these parts exist? */ |
| 57 | DEV_X64 /* Do these parts exist? */ |
| 58 | }; |
| 59 | |
| 60 | #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN) |
| 61 | #define DEV_FLAG_X1 BIT(DEV_X1) |
| 62 | #define DEV_FLAG_X2 BIT(DEV_X2) |
| 63 | #define DEV_FLAG_X4 BIT(DEV_X4) |
| 64 | #define DEV_FLAG_X8 BIT(DEV_X8) |
| 65 | #define DEV_FLAG_X16 BIT(DEV_X16) |
| 66 | #define DEV_FLAG_X32 BIT(DEV_X32) |
| 67 | #define DEV_FLAG_X64 BIT(DEV_X64) |
| 68 | |
| 69 | /* memory types */ |
| 70 | enum mem_type { |
| 71 | MEM_EMPTY = 0, /* Empty csrow */ |
| 72 | MEM_RESERVED, /* Reserved csrow type */ |
| 73 | MEM_UNKNOWN, /* Unknown csrow type */ |
| 74 | MEM_FPM, /* Fast page mode */ |
| 75 | MEM_EDO, /* Extended data out */ |
| 76 | MEM_BEDO, /* Burst Extended data out */ |
| 77 | MEM_SDR, /* Single data rate SDRAM */ |
| 78 | MEM_RDR, /* Registered single data rate SDRAM */ |
| 79 | MEM_DDR, /* Double data rate SDRAM */ |
| 80 | MEM_RDDR, /* Registered Double data rate SDRAM */ |
| 81 | MEM_RMBS, /* Rambus DRAM */ |
| 82 | MEM_DDR2, /* DDR2 RAM */ |
| 83 | MEM_FB_DDR2, /* fully buffered DDR2 */ |
| 84 | MEM_RDDR2, /* Registered DDR2 RAM */ |
| 85 | MEM_XDR, /* Rambus XDR */ |
| 86 | MEM_DDR3, /* DDR3 RAM */ |
| 87 | MEM_RDDR3, /* Registered DDR3 RAM */ |
| 88 | }; |
| 89 | |
| 90 | #define MEM_FLAG_EMPTY BIT(MEM_EMPTY) |
| 91 | #define MEM_FLAG_RESERVED BIT(MEM_RESERVED) |
| 92 | #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN) |
| 93 | #define MEM_FLAG_FPM BIT(MEM_FPM) |
| 94 | #define MEM_FLAG_EDO BIT(MEM_EDO) |
| 95 | #define MEM_FLAG_BEDO BIT(MEM_BEDO) |
| 96 | #define MEM_FLAG_SDR BIT(MEM_SDR) |
| 97 | #define MEM_FLAG_RDR BIT(MEM_RDR) |
| 98 | #define MEM_FLAG_DDR BIT(MEM_DDR) |
| 99 | #define MEM_FLAG_RDDR BIT(MEM_RDDR) |
| 100 | #define MEM_FLAG_RMBS BIT(MEM_RMBS) |
| 101 | #define MEM_FLAG_DDR2 BIT(MEM_DDR2) |
| 102 | #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) |
| 103 | #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) |
| 104 | #define MEM_FLAG_XDR BIT(MEM_XDR) |
| 105 | #define MEM_FLAG_DDR3 BIT(MEM_DDR3) |
| 106 | #define MEM_FLAG_RDDR3 BIT(MEM_RDDR3) |
| 107 | |
| 108 | /* chipset Error Detection and Correction capabilities and mode */ |
| 109 | enum edac_type { |
| 110 | EDAC_UNKNOWN = 0, /* Unknown if ECC is available */ |
| 111 | EDAC_NONE, /* Doesn't support ECC */ |
| 112 | EDAC_RESERVED, /* Reserved ECC type */ |
| 113 | EDAC_PARITY, /* Detects parity errors */ |
| 114 | EDAC_EC, /* Error Checking - no correction */ |
| 115 | EDAC_SECDED, /* Single bit error correction, Double detection */ |
| 116 | EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */ |
| 117 | EDAC_S4ECD4ED, /* Chipkill x4 devices */ |
| 118 | EDAC_S8ECD8ED, /* Chipkill x8 devices */ |
| 119 | EDAC_S16ECD16ED, /* Chipkill x16 devices */ |
| 120 | }; |
| 121 | |
| 122 | #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN) |
| 123 | #define EDAC_FLAG_NONE BIT(EDAC_NONE) |
| 124 | #define EDAC_FLAG_PARITY BIT(EDAC_PARITY) |
| 125 | #define EDAC_FLAG_EC BIT(EDAC_EC) |
| 126 | #define EDAC_FLAG_SECDED BIT(EDAC_SECDED) |
| 127 | #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED) |
| 128 | #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED) |
| 129 | #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED) |
| 130 | #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED) |
| 131 | |
| 132 | /* scrubbing capabilities */ |
| 133 | enum scrub_type { |
| 134 | SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */ |
| 135 | SCRUB_NONE, /* No scrubber */ |
| 136 | SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */ |
| 137 | SCRUB_SW_SRC, /* Software scrub only errors */ |
| 138 | SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */ |
| 139 | SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */ |
| 140 | SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */ |
| 141 | SCRUB_HW_SRC, /* Hardware scrub only errors */ |
| 142 | SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */ |
| 143 | SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */ |
| 144 | }; |
| 145 | |
| 146 | #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG) |
| 147 | #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC) |
| 148 | #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC) |
| 149 | #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE) |
| 150 | #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG) |
| 151 | #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC) |
| 152 | #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC) |
| 153 | #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE) |
| 154 | |
| 155 | /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */ |
| 156 | |
| 157 | /* EDAC internal operation states */ |
| 158 | #define OP_ALLOC 0x100 |
| 159 | #define OP_RUNNING_POLL 0x201 |
| 160 | #define OP_RUNNING_INTERRUPT 0x202 |
| 161 | #define OP_RUNNING_POLL_INTR 0x203 |
| 162 | #define OP_OFFLINE 0x300 |
| 163 | |
| 164 | /* |
| 165 | * There are several things to be aware of that aren't at all obvious: |
| 166 | * |
| 167 | * |
| 168 | * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc.. |
| 169 | * |
| 170 | * These are some of the many terms that are thrown about that don't always |
| 171 | * mean what people think they mean (Inconceivable!). In the interest of |
| 172 | * creating a common ground for discussion, terms and their definitions |
| 173 | * will be established. |
| 174 | * |
| 175 | * Memory devices: The individual chip on a memory stick. These devices |
| 176 | * commonly output 4 and 8 bits each. Grouping several |
| 177 | * of these in parallel provides 64 bits which is common |
| 178 | * for a memory stick. |
| 179 | * |
| 180 | * Memory Stick: A printed circuit board that aggregates multiple |
| 181 | * memory devices in parallel. This is the atomic |
| 182 | * memory component that is purchaseable by Joe consumer |
| 183 | * and loaded into a memory socket. |
| 184 | * |
| 185 | * Socket: A physical connector on the motherboard that accepts |
| 186 | * a single memory stick. |
| 187 | * |
| 188 | * Channel: Set of memory devices on a memory stick that must be |
| 189 | * grouped in parallel with one or more additional |
| 190 | * channels from other memory sticks. This parallel |
| 191 | * grouping of the output from multiple channels are |
| 192 | * necessary for the smallest granularity of memory access. |
| 193 | * Some memory controllers are capable of single channel - |
| 194 | * which means that memory sticks can be loaded |
| 195 | * individually. Other memory controllers are only |
| 196 | * capable of dual channel - which means that memory |
| 197 | * sticks must be loaded as pairs (see "socket set"). |
| 198 | * |
| 199 | * Chip-select row: All of the memory devices that are selected together. |
| 200 | * for a single, minimum grain of memory access. |
| 201 | * This selects all of the parallel memory devices across |
| 202 | * all of the parallel channels. Common chip-select rows |
| 203 | * for single channel are 64 bits, for dual channel 128 |
| 204 | * bits. |
| 205 | * |
| 206 | * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory. |
| 207 | * Motherboards commonly drive two chip-select pins to |
| 208 | * a memory stick. A single-ranked stick, will occupy |
| 209 | * only one of those rows. The other will be unused. |
| 210 | * |
| 211 | * Double-Ranked stick: A double-ranked stick has two chip-select rows which |
| 212 | * access different sets of memory devices. The two |
| 213 | * rows cannot be accessed concurrently. |
| 214 | * |
| 215 | * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick. |
| 216 | * A double-sided stick has two chip-select rows which |
| 217 | * access different sets of memory devices. The two |
| 218 | * rows cannot be accessed concurrently. "Double-sided" |
| 219 | * is irrespective of the memory devices being mounted |
| 220 | * on both sides of the memory stick. |
| 221 | * |
| 222 | * Socket set: All of the memory sticks that are required for |
| 223 | * a single memory access or all of the memory sticks |
| 224 | * spanned by a chip-select row. A single socket set |
| 225 | * has two chip-select rows and if double-sided sticks |
| 226 | * are used these will occupy those chip-select rows. |
| 227 | * |
| 228 | * Bank: This term is avoided because it is unclear when |
| 229 | * needing to distinguish between chip-select rows and |
| 230 | * socket sets. |
| 231 | * |
| 232 | * Controller pages: |
| 233 | * |
| 234 | * Physical pages: |
| 235 | * |
| 236 | * Virtual pages: |
| 237 | * |
| 238 | * |
| 239 | * STRUCTURE ORGANIZATION AND CHOICES |
| 240 | * |
| 241 | * |
| 242 | * |
| 243 | * PS - I enjoyed writing all that about as much as you enjoyed reading it. |
| 244 | */ |
| 245 | |
| 246 | struct channel_info { |
| 247 | int chan_idx; /* channel index */ |
| 248 | u32 ce_count; /* Correctable Errors for this CHANNEL */ |
| 249 | char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ |
| 250 | struct csrow_info *csrow; /* the parent */ |
| 251 | }; |
| 252 | |
| 253 | struct csrow_info { |
| 254 | unsigned long first_page; /* first page number in dimm */ |
| 255 | unsigned long last_page; /* last page number in dimm */ |
| 256 | unsigned long page_mask; /* used for interleaving - |
| 257 | * 0UL for non intlv |
| 258 | */ |
| 259 | u32 nr_pages; /* number of pages in csrow */ |
| 260 | u32 grain; /* granularity of reported error in bytes */ |
| 261 | int csrow_idx; /* the chip-select row */ |
| 262 | enum dev_type dtype; /* memory device type */ |
| 263 | u32 ue_count; /* Uncorrectable Errors for this csrow */ |
| 264 | u32 ce_count; /* Correctable Errors for this csrow */ |
| 265 | enum mem_type mtype; /* memory csrow type */ |
| 266 | enum edac_type edac_mode; /* EDAC mode for this csrow */ |
| 267 | struct mem_ctl_info *mci; /* the parent */ |
| 268 | |
| 269 | struct kobject kobj; /* sysfs kobject for this csrow */ |
| 270 | |
| 271 | /* channel information for this csrow */ |
| 272 | u32 nr_channels; |
| 273 | struct channel_info *channels; |
| 274 | }; |
| 275 | |
| 276 | struct mcidev_sysfs_group { |
| 277 | const char *name; /* group name */ |
| 278 | const struct mcidev_sysfs_attribute *mcidev_attr; /* group attributes */ |
| 279 | }; |
| 280 | |
| 281 | struct mcidev_sysfs_group_kobj { |
| 282 | struct list_head list; /* list for all instances within a mc */ |
| 283 | |
| 284 | struct kobject kobj; /* kobj for the group */ |
| 285 | |
| 286 | const struct mcidev_sysfs_group *grp; /* group description table */ |
| 287 | struct mem_ctl_info *mci; /* the parent */ |
| 288 | }; |
| 289 | |
| 290 | /* mcidev_sysfs_attribute structure |
| 291 | * used for driver sysfs attributes and in mem_ctl_info |
| 292 | * sysfs top level entries |
| 293 | */ |
| 294 | struct mcidev_sysfs_attribute { |
| 295 | /* It should use either attr or grp */ |
| 296 | struct attribute attr; |
| 297 | const struct mcidev_sysfs_group *grp; /* Points to a group of attributes */ |
| 298 | |
| 299 | /* Ops for show/store values at the attribute - not used on group */ |
| 300 | ssize_t (*show)(struct mem_ctl_info *,char *); |
| 301 | ssize_t (*store)(struct mem_ctl_info *, const char *,size_t); |
| 302 | }; |
| 303 | |
| 304 | /* MEMORY controller information structure |
| 305 | */ |
| 306 | struct mem_ctl_info { |
| 307 | struct list_head link; /* for global list of mem_ctl_info structs */ |
| 308 | |
| 309 | struct module *owner; /* Module owner of this control struct */ |
| 310 | |
| 311 | unsigned long mtype_cap; /* memory types supported by mc */ |
| 312 | unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */ |
| 313 | unsigned long edac_cap; /* configuration capabilities - this is |
| 314 | * closely related to edac_ctl_cap. The |
| 315 | * difference is that the controller may be |
| 316 | * capable of s4ecd4ed which would be listed |
| 317 | * in edac_ctl_cap, but if channels aren't |
| 318 | * capable of s4ecd4ed then the edac_cap would |
| 319 | * not have that capability. |
| 320 | */ |
| 321 | unsigned long scrub_cap; /* chipset scrub capabilities */ |
| 322 | enum scrub_type scrub_mode; /* current scrub mode */ |
| 323 | |
| 324 | /* Translates sdram memory scrub rate given in bytes/sec to the |
| 325 | internal representation and configures whatever else needs |
| 326 | to be configured. |
| 327 | */ |
| 328 | int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw); |
| 329 | |
| 330 | /* Get the current sdram memory scrub rate from the internal |
| 331 | representation and converts it to the closest matching |
| 332 | bandwidth in bytes/sec. |
| 333 | */ |
| 334 | int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci); |
| 335 | |
| 336 | |
| 337 | /* pointer to edac checking routine */ |
| 338 | void (*edac_check) (struct mem_ctl_info * mci); |
| 339 | |
| 340 | /* |
| 341 | * Remaps memory pages: controller pages to physical pages. |
| 342 | * For most MC's, this will be NULL. |
| 343 | */ |
| 344 | /* FIXME - why not send the phys page to begin with? */ |
| 345 | unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci, |
| 346 | unsigned long page); |
| 347 | int mc_idx; |
| 348 | int nr_csrows; |
| 349 | struct csrow_info *csrows; |
| 350 | /* |
| 351 | * FIXME - what about controllers on other busses? - IDs must be |
| 352 | * unique. dev pointer should be sufficiently unique, but |
| 353 | * BUS:SLOT.FUNC numbers may not be unique. |
| 354 | */ |
| 355 | struct device *dev; |
| 356 | const char *mod_name; |
| 357 | const char *mod_ver; |
| 358 | const char *ctl_name; |
| 359 | const char *dev_name; |
| 360 | char proc_name[MC_PROC_NAME_MAX_LEN + 1]; |
| 361 | void *pvt_info; |
| 362 | u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */ |
| 363 | u32 ce_noinfo_count; /* Correctable Errors w/o info */ |
| 364 | u32 ue_count; /* Total Uncorrectable Errors for this MC */ |
| 365 | u32 ce_count; /* Total Correctable Errors for this MC */ |
| 366 | unsigned long start_time; /* mci load start time (in jiffies) */ |
| 367 | |
| 368 | struct completion complete; |
| 369 | |
| 370 | /* edac sysfs device control */ |
| 371 | struct kobject edac_mci_kobj; |
| 372 | |
| 373 | /* list for all grp instances within a mc */ |
| 374 | struct list_head grp_kobj_list; |
| 375 | |
| 376 | /* Additional top controller level attributes, but specified |
| 377 | * by the low level driver. |
| 378 | * |
| 379 | * Set by the low level driver to provide attributes at the |
| 380 | * controller level, same level as 'ue_count' and 'ce_count' above. |
| 381 | * An array of structures, NULL terminated |
| 382 | * |
| 383 | * If attributes are desired, then set to array of attributes |
| 384 | * If no attributes are desired, leave NULL |
| 385 | */ |
| 386 | const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes; |
| 387 | |
| 388 | /* work struct for this MC */ |
| 389 | struct delayed_work work; |
| 390 | |
| 391 | /* the internal state of this controller instance */ |
| 392 | int op_state; |
| 393 | }; |
| 394 | |
Dave Jiang | c0d1217 | 2007-07-19 01:49:46 -0700 | [diff] [blame] | 395 | #endif |