Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of UBIFS. |
| 3 | * |
| 4 | * Copyright (C) 2006-2008 Nokia Corporation. |
| 5 | * Copyright (C) 2006, 2007 University of Szeged, Hungary |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify it |
| 8 | * under the terms of the GNU General Public License version 2 as published by |
| 9 | * the Free Software Foundation. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 14 | * more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License along with |
| 17 | * this program; if not, write to the Free Software Foundation, Inc., 51 |
| 18 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 19 | * |
| 20 | * Authors: Artem Bityutskiy (Битюцкий Артём) |
| 21 | * Adrian Hunter |
| 22 | * Zoltan Sogor |
| 23 | */ |
| 24 | |
| 25 | /* |
| 26 | * This file implements UBIFS I/O subsystem which provides various I/O-related |
| 27 | * helper functions (reading/writing/checking/validating nodes) and implements |
| 28 | * write-buffering support. Write buffers help to save space which otherwise |
| 29 | * would have been wasted for padding to the nearest minimal I/O unit boundary. |
| 30 | * Instead, data first goes to the write-buffer and is flushed when the |
| 31 | * buffer is full or when it is not used for some time (by timer). This is |
| 32 | * similarto the mechanism is used by JFFS2. |
| 33 | * |
| 34 | * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by |
| 35 | * mutexes defined inside these objects. Since sometimes upper-level code |
| 36 | * has to lock the write-buffer (e.g. journal space reservation code), many |
| 37 | * functions related to write-buffers have "nolock" suffix which means that the |
| 38 | * caller has to lock the write-buffer before calling this function. |
| 39 | * |
| 40 | * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not |
| 41 | * aligned, UBIFS starts the next node from the aligned address, and the padded |
| 42 | * bytes may contain any rubbish. In other words, UBIFS does not put padding |
| 43 | * bytes in those small gaps. Common headers of nodes store real node lengths, |
| 44 | * not aligned lengths. Indexing nodes also store real lengths in branches. |
| 45 | * |
| 46 | * UBIFS uses padding when it pads to the next min. I/O unit. In this case it |
| 47 | * uses padding nodes or padding bytes, if the padding node does not fit. |
| 48 | * |
| 49 | * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes |
| 50 | * every time they are read from the flash media. |
| 51 | */ |
| 52 | |
| 53 | #include <linux/crc32.h> |
| 54 | #include "ubifs.h" |
| 55 | |
| 56 | /** |
Adrian Hunter | ff46d7b | 2008-07-21 15:39:05 +0300 | [diff] [blame] | 57 | * ubifs_ro_mode - switch UBIFS to read read-only mode. |
| 58 | * @c: UBIFS file-system description object |
| 59 | * @err: error code which is the reason of switching to R/O mode |
| 60 | */ |
| 61 | void ubifs_ro_mode(struct ubifs_info *c, int err) |
| 62 | { |
| 63 | if (!c->ro_media) { |
| 64 | c->ro_media = 1; |
| 65 | ubifs_warn("switched to read-only mode, error %d", err); |
| 66 | dbg_dump_stack(); |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | /** |
Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 71 | * ubifs_check_node - check node. |
| 72 | * @c: UBIFS file-system description object |
| 73 | * @buf: node to check |
| 74 | * @lnum: logical eraseblock number |
| 75 | * @offs: offset within the logical eraseblock |
| 76 | * @quiet: print no messages |
| 77 | * |
| 78 | * This function checks node magic number and CRC checksum. This function also |
| 79 | * validates node length to prevent UBIFS from becoming crazy when an attacker |
| 80 | * feeds it a file-system image with incorrect nodes. For example, too large |
| 81 | * node length in the common header could cause UBIFS to read memory outside of |
| 82 | * allocated buffer when checking the CRC checksum. |
| 83 | * |
| 84 | * This function returns zero in case of success %-EUCLEAN in case of bad CRC |
| 85 | * or magic. |
| 86 | */ |
| 87 | int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, |
| 88 | int offs, int quiet) |
| 89 | { |
| 90 | int err = -EINVAL, type, node_len; |
| 91 | uint32_t crc, node_crc, magic; |
| 92 | const struct ubifs_ch *ch = buf; |
| 93 | |
| 94 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
| 95 | ubifs_assert(!(offs & 7) && offs < c->leb_size); |
| 96 | |
| 97 | magic = le32_to_cpu(ch->magic); |
| 98 | if (magic != UBIFS_NODE_MAGIC) { |
| 99 | if (!quiet) |
| 100 | ubifs_err("bad magic %#08x, expected %#08x", |
| 101 | magic, UBIFS_NODE_MAGIC); |
| 102 | err = -EUCLEAN; |
| 103 | goto out; |
| 104 | } |
| 105 | |
| 106 | type = ch->node_type; |
| 107 | if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { |
| 108 | if (!quiet) |
| 109 | ubifs_err("bad node type %d", type); |
| 110 | goto out; |
| 111 | } |
| 112 | |
| 113 | node_len = le32_to_cpu(ch->len); |
| 114 | if (node_len + offs > c->leb_size) |
| 115 | goto out_len; |
| 116 | |
| 117 | if (c->ranges[type].max_len == 0) { |
| 118 | if (node_len != c->ranges[type].len) |
| 119 | goto out_len; |
| 120 | } else if (node_len < c->ranges[type].min_len || |
| 121 | node_len > c->ranges[type].max_len) |
| 122 | goto out_len; |
| 123 | |
| 124 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); |
| 125 | node_crc = le32_to_cpu(ch->crc); |
| 126 | if (crc != node_crc) { |
| 127 | if (!quiet) |
| 128 | ubifs_err("bad CRC: calculated %#08x, read %#08x", |
| 129 | crc, node_crc); |
| 130 | err = -EUCLEAN; |
| 131 | goto out; |
| 132 | } |
| 133 | |
| 134 | return 0; |
| 135 | |
| 136 | out_len: |
| 137 | if (!quiet) |
| 138 | ubifs_err("bad node length %d", node_len); |
| 139 | out: |
| 140 | if (!quiet) { |
| 141 | ubifs_err("bad node at LEB %d:%d", lnum, offs); |
| 142 | dbg_dump_node(c, buf); |
| 143 | dbg_dump_stack(); |
| 144 | } |
| 145 | return err; |
| 146 | } |
| 147 | |
| 148 | /** |
| 149 | * ubifs_pad - pad flash space. |
| 150 | * @c: UBIFS file-system description object |
| 151 | * @buf: buffer to put padding to |
| 152 | * @pad: how many bytes to pad |
| 153 | * |
| 154 | * The flash media obliges us to write only in chunks of %c->min_io_size and |
| 155 | * when we have to write less data we add padding node to the write-buffer and |
| 156 | * pad it to the next minimal I/O unit's boundary. Padding nodes help when the |
| 157 | * media is being scanned. If the amount of wasted space is not enough to fit a |
| 158 | * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes |
| 159 | * pattern (%UBIFS_PADDING_BYTE). |
| 160 | * |
| 161 | * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is |
| 162 | * used. |
| 163 | */ |
| 164 | void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) |
| 165 | { |
| 166 | uint32_t crc; |
| 167 | |
| 168 | ubifs_assert(pad >= 0 && !(pad & 7)); |
| 169 | |
| 170 | if (pad >= UBIFS_PAD_NODE_SZ) { |
| 171 | struct ubifs_ch *ch = buf; |
| 172 | struct ubifs_pad_node *pad_node = buf; |
| 173 | |
| 174 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); |
| 175 | ch->node_type = UBIFS_PAD_NODE; |
| 176 | ch->group_type = UBIFS_NO_NODE_GROUP; |
| 177 | ch->padding[0] = ch->padding[1] = 0; |
| 178 | ch->sqnum = 0; |
| 179 | ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); |
| 180 | pad -= UBIFS_PAD_NODE_SZ; |
| 181 | pad_node->pad_len = cpu_to_le32(pad); |
| 182 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); |
| 183 | ch->crc = cpu_to_le32(crc); |
| 184 | memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); |
| 185 | } else if (pad > 0) |
| 186 | /* Too little space, padding node won't fit */ |
| 187 | memset(buf, UBIFS_PADDING_BYTE, pad); |
| 188 | } |
| 189 | |
| 190 | /** |
| 191 | * next_sqnum - get next sequence number. |
| 192 | * @c: UBIFS file-system description object |
| 193 | */ |
| 194 | static unsigned long long next_sqnum(struct ubifs_info *c) |
| 195 | { |
| 196 | unsigned long long sqnum; |
| 197 | |
| 198 | spin_lock(&c->cnt_lock); |
| 199 | sqnum = ++c->max_sqnum; |
| 200 | spin_unlock(&c->cnt_lock); |
| 201 | |
| 202 | if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { |
| 203 | if (sqnum >= SQNUM_WATERMARK) { |
| 204 | ubifs_err("sequence number overflow %llu, end of life", |
| 205 | sqnum); |
| 206 | ubifs_ro_mode(c, -EINVAL); |
| 207 | } |
| 208 | ubifs_warn("running out of sequence numbers, end of life soon"); |
| 209 | } |
| 210 | |
| 211 | return sqnum; |
| 212 | } |
| 213 | |
| 214 | /** |
| 215 | * ubifs_prepare_node - prepare node to be written to flash. |
| 216 | * @c: UBIFS file-system description object |
| 217 | * @node: the node to pad |
| 218 | * @len: node length |
| 219 | * @pad: if the buffer has to be padded |
| 220 | * |
| 221 | * This function prepares node at @node to be written to the media - it |
| 222 | * calculates node CRC, fills the common header, and adds proper padding up to |
| 223 | * the next minimum I/O unit if @pad is not zero. |
| 224 | */ |
| 225 | void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) |
| 226 | { |
| 227 | uint32_t crc; |
| 228 | struct ubifs_ch *ch = node; |
| 229 | unsigned long long sqnum = next_sqnum(c); |
| 230 | |
| 231 | ubifs_assert(len >= UBIFS_CH_SZ); |
| 232 | |
| 233 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); |
| 234 | ch->len = cpu_to_le32(len); |
| 235 | ch->group_type = UBIFS_NO_NODE_GROUP; |
| 236 | ch->sqnum = cpu_to_le64(sqnum); |
| 237 | ch->padding[0] = ch->padding[1] = 0; |
| 238 | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); |
| 239 | ch->crc = cpu_to_le32(crc); |
| 240 | |
| 241 | if (pad) { |
| 242 | len = ALIGN(len, 8); |
| 243 | pad = ALIGN(len, c->min_io_size) - len; |
| 244 | ubifs_pad(c, node + len, pad); |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /** |
| 249 | * ubifs_prep_grp_node - prepare node of a group to be written to flash. |
| 250 | * @c: UBIFS file-system description object |
| 251 | * @node: the node to pad |
| 252 | * @len: node length |
| 253 | * @last: indicates the last node of the group |
| 254 | * |
| 255 | * This function prepares node at @node to be written to the media - it |
| 256 | * calculates node CRC and fills the common header. |
| 257 | */ |
| 258 | void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) |
| 259 | { |
| 260 | uint32_t crc; |
| 261 | struct ubifs_ch *ch = node; |
| 262 | unsigned long long sqnum = next_sqnum(c); |
| 263 | |
| 264 | ubifs_assert(len >= UBIFS_CH_SZ); |
| 265 | |
| 266 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); |
| 267 | ch->len = cpu_to_le32(len); |
| 268 | if (last) |
| 269 | ch->group_type = UBIFS_LAST_OF_NODE_GROUP; |
| 270 | else |
| 271 | ch->group_type = UBIFS_IN_NODE_GROUP; |
| 272 | ch->sqnum = cpu_to_le64(sqnum); |
| 273 | ch->padding[0] = ch->padding[1] = 0; |
| 274 | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); |
| 275 | ch->crc = cpu_to_le32(crc); |
| 276 | } |
| 277 | |
| 278 | /** |
| 279 | * wbuf_timer_callback - write-buffer timer callback function. |
| 280 | * @data: timer data (write-buffer descriptor) |
| 281 | * |
| 282 | * This function is called when the write-buffer timer expires. |
| 283 | */ |
| 284 | static void wbuf_timer_callback_nolock(unsigned long data) |
| 285 | { |
| 286 | struct ubifs_wbuf *wbuf = (struct ubifs_wbuf *)data; |
| 287 | |
| 288 | wbuf->need_sync = 1; |
| 289 | wbuf->c->need_wbuf_sync = 1; |
| 290 | ubifs_wake_up_bgt(wbuf->c); |
| 291 | } |
| 292 | |
| 293 | /** |
| 294 | * new_wbuf_timer - start new write-buffer timer. |
| 295 | * @wbuf: write-buffer descriptor |
| 296 | */ |
| 297 | static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) |
| 298 | { |
| 299 | ubifs_assert(!timer_pending(&wbuf->timer)); |
| 300 | |
| 301 | if (!wbuf->timeout) |
| 302 | return; |
| 303 | |
| 304 | wbuf->timer.expires = jiffies + wbuf->timeout; |
| 305 | add_timer(&wbuf->timer); |
| 306 | } |
| 307 | |
| 308 | /** |
| 309 | * cancel_wbuf_timer - cancel write-buffer timer. |
| 310 | * @wbuf: write-buffer descriptor |
| 311 | */ |
| 312 | static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) |
| 313 | { |
| 314 | /* |
| 315 | * If the syncer is waiting for the lock (from the background thread's |
| 316 | * context) and another task is changing write-buffer then the syncing |
| 317 | * should be canceled. |
| 318 | */ |
| 319 | wbuf->need_sync = 0; |
| 320 | del_timer(&wbuf->timer); |
| 321 | } |
| 322 | |
| 323 | /** |
| 324 | * ubifs_wbuf_sync_nolock - synchronize write-buffer. |
| 325 | * @wbuf: write-buffer to synchronize |
| 326 | * |
| 327 | * This function synchronizes write-buffer @buf and returns zero in case of |
| 328 | * success or a negative error code in case of failure. |
| 329 | */ |
| 330 | int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) |
| 331 | { |
| 332 | struct ubifs_info *c = wbuf->c; |
| 333 | int err, dirt; |
| 334 | |
| 335 | cancel_wbuf_timer_nolock(wbuf); |
| 336 | if (!wbuf->used || wbuf->lnum == -1) |
| 337 | /* Write-buffer is empty or not seeked */ |
| 338 | return 0; |
| 339 | |
| 340 | dbg_io("LEB %d:%d, %d bytes", |
| 341 | wbuf->lnum, wbuf->offs, wbuf->used); |
| 342 | ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY)); |
| 343 | ubifs_assert(!(wbuf->avail & 7)); |
| 344 | ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size); |
| 345 | |
| 346 | if (c->ro_media) |
| 347 | return -EROFS; |
| 348 | |
| 349 | ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail); |
| 350 | err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, |
| 351 | c->min_io_size, wbuf->dtype); |
| 352 | if (err) { |
| 353 | ubifs_err("cannot write %d bytes to LEB %d:%d", |
| 354 | c->min_io_size, wbuf->lnum, wbuf->offs); |
| 355 | dbg_dump_stack(); |
| 356 | return err; |
| 357 | } |
| 358 | |
| 359 | dirt = wbuf->avail; |
| 360 | |
| 361 | spin_lock(&wbuf->lock); |
| 362 | wbuf->offs += c->min_io_size; |
| 363 | wbuf->avail = c->min_io_size; |
| 364 | wbuf->used = 0; |
| 365 | wbuf->next_ino = 0; |
| 366 | spin_unlock(&wbuf->lock); |
| 367 | |
| 368 | if (wbuf->sync_callback) |
| 369 | err = wbuf->sync_callback(c, wbuf->lnum, |
| 370 | c->leb_size - wbuf->offs, dirt); |
| 371 | return err; |
| 372 | } |
| 373 | |
| 374 | /** |
| 375 | * ubifs_wbuf_seek_nolock - seek write-buffer. |
| 376 | * @wbuf: write-buffer |
| 377 | * @lnum: logical eraseblock number to seek to |
| 378 | * @offs: logical eraseblock offset to seek to |
| 379 | * @dtype: data type |
| 380 | * |
| 381 | * This function targets the write buffer to logical eraseblock @lnum:@offs. |
| 382 | * The write-buffer is synchronized if it is not empty. Returns zero in case of |
| 383 | * success and a negative error code in case of failure. |
| 384 | */ |
| 385 | int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs, |
| 386 | int dtype) |
| 387 | { |
| 388 | const struct ubifs_info *c = wbuf->c; |
| 389 | |
| 390 | dbg_io("LEB %d:%d", lnum, offs); |
| 391 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); |
| 392 | ubifs_assert(offs >= 0 && offs <= c->leb_size); |
| 393 | ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); |
| 394 | ubifs_assert(lnum != wbuf->lnum); |
| 395 | |
| 396 | if (wbuf->used > 0) { |
| 397 | int err = ubifs_wbuf_sync_nolock(wbuf); |
| 398 | |
| 399 | if (err) |
| 400 | return err; |
| 401 | } |
| 402 | |
| 403 | spin_lock(&wbuf->lock); |
| 404 | wbuf->lnum = lnum; |
| 405 | wbuf->offs = offs; |
| 406 | wbuf->avail = c->min_io_size; |
| 407 | wbuf->used = 0; |
| 408 | spin_unlock(&wbuf->lock); |
| 409 | wbuf->dtype = dtype; |
| 410 | |
| 411 | return 0; |
| 412 | } |
| 413 | |
| 414 | /** |
| 415 | * ubifs_bg_wbufs_sync - synchronize write-buffers. |
| 416 | * @c: UBIFS file-system description object |
| 417 | * |
| 418 | * This function is called by background thread to synchronize write-buffers. |
| 419 | * Returns zero in case of success and a negative error code in case of |
| 420 | * failure. |
| 421 | */ |
| 422 | int ubifs_bg_wbufs_sync(struct ubifs_info *c) |
| 423 | { |
| 424 | int err, i; |
| 425 | |
| 426 | if (!c->need_wbuf_sync) |
| 427 | return 0; |
| 428 | c->need_wbuf_sync = 0; |
| 429 | |
| 430 | if (c->ro_media) { |
| 431 | err = -EROFS; |
| 432 | goto out_timers; |
| 433 | } |
| 434 | |
| 435 | dbg_io("synchronize"); |
| 436 | for (i = 0; i < c->jhead_cnt; i++) { |
| 437 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; |
| 438 | |
| 439 | cond_resched(); |
| 440 | |
| 441 | /* |
| 442 | * If the mutex is locked then wbuf is being changed, so |
| 443 | * synchronization is not necessary. |
| 444 | */ |
| 445 | if (mutex_is_locked(&wbuf->io_mutex)) |
| 446 | continue; |
| 447 | |
| 448 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| 449 | if (!wbuf->need_sync) { |
| 450 | mutex_unlock(&wbuf->io_mutex); |
| 451 | continue; |
| 452 | } |
| 453 | |
| 454 | err = ubifs_wbuf_sync_nolock(wbuf); |
| 455 | mutex_unlock(&wbuf->io_mutex); |
| 456 | if (err) { |
| 457 | ubifs_err("cannot sync write-buffer, error %d", err); |
| 458 | ubifs_ro_mode(c, err); |
| 459 | goto out_timers; |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | return 0; |
| 464 | |
| 465 | out_timers: |
| 466 | /* Cancel all timers to prevent repeated errors */ |
| 467 | for (i = 0; i < c->jhead_cnt; i++) { |
| 468 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; |
| 469 | |
| 470 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| 471 | cancel_wbuf_timer_nolock(wbuf); |
| 472 | mutex_unlock(&wbuf->io_mutex); |
| 473 | } |
| 474 | return err; |
| 475 | } |
| 476 | |
| 477 | /** |
| 478 | * ubifs_wbuf_write_nolock - write data to flash via write-buffer. |
| 479 | * @wbuf: write-buffer |
| 480 | * @buf: node to write |
| 481 | * @len: node length |
| 482 | * |
| 483 | * This function writes data to flash via write-buffer @wbuf. This means that |
| 484 | * the last piece of the node won't reach the flash media immediately if it |
| 485 | * does not take whole minimal I/O unit. Instead, the node will sit in RAM |
| 486 | * until the write-buffer is synchronized (e.g., by timer). |
| 487 | * |
| 488 | * This function returns zero in case of success and a negative error code in |
| 489 | * case of failure. If the node cannot be written because there is no more |
| 490 | * space in this logical eraseblock, %-ENOSPC is returned. |
| 491 | */ |
| 492 | int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) |
| 493 | { |
| 494 | struct ubifs_info *c = wbuf->c; |
| 495 | int err, written, n, aligned_len = ALIGN(len, 8), offs; |
| 496 | |
| 497 | dbg_io("%d bytes (%s) to wbuf at LEB %d:%d", len, |
| 498 | dbg_ntype(((struct ubifs_ch *)buf)->node_type), wbuf->lnum, |
| 499 | wbuf->offs + wbuf->used); |
| 500 | ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); |
| 501 | ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); |
| 502 | ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); |
| 503 | ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size); |
| 504 | ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); |
| 505 | |
| 506 | if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { |
| 507 | err = -ENOSPC; |
| 508 | goto out; |
| 509 | } |
| 510 | |
| 511 | cancel_wbuf_timer_nolock(wbuf); |
| 512 | |
| 513 | if (c->ro_media) |
| 514 | return -EROFS; |
| 515 | |
| 516 | if (aligned_len <= wbuf->avail) { |
| 517 | /* |
| 518 | * The node is not very large and fits entirely within |
| 519 | * write-buffer. |
| 520 | */ |
| 521 | memcpy(wbuf->buf + wbuf->used, buf, len); |
| 522 | |
| 523 | if (aligned_len == wbuf->avail) { |
| 524 | dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, |
| 525 | wbuf->offs); |
| 526 | err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, |
| 527 | wbuf->offs, c->min_io_size, |
| 528 | wbuf->dtype); |
| 529 | if (err) |
| 530 | goto out; |
| 531 | |
| 532 | spin_lock(&wbuf->lock); |
| 533 | wbuf->offs += c->min_io_size; |
| 534 | wbuf->avail = c->min_io_size; |
| 535 | wbuf->used = 0; |
| 536 | wbuf->next_ino = 0; |
| 537 | spin_unlock(&wbuf->lock); |
| 538 | } else { |
| 539 | spin_lock(&wbuf->lock); |
| 540 | wbuf->avail -= aligned_len; |
| 541 | wbuf->used += aligned_len; |
| 542 | spin_unlock(&wbuf->lock); |
| 543 | } |
| 544 | |
| 545 | goto exit; |
| 546 | } |
| 547 | |
| 548 | /* |
| 549 | * The node is large enough and does not fit entirely within current |
| 550 | * minimal I/O unit. We have to fill and flush write-buffer and switch |
| 551 | * to the next min. I/O unit. |
| 552 | */ |
| 553 | dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, wbuf->offs); |
| 554 | memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); |
| 555 | err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, |
| 556 | c->min_io_size, wbuf->dtype); |
| 557 | if (err) |
| 558 | goto out; |
| 559 | |
| 560 | offs = wbuf->offs + c->min_io_size; |
| 561 | len -= wbuf->avail; |
| 562 | aligned_len -= wbuf->avail; |
| 563 | written = wbuf->avail; |
| 564 | |
| 565 | /* |
| 566 | * The remaining data may take more whole min. I/O units, so write the |
| 567 | * remains multiple to min. I/O unit size directly to the flash media. |
| 568 | * We align node length to 8-byte boundary because we anyway flash wbuf |
| 569 | * if the remaining space is less than 8 bytes. |
| 570 | */ |
| 571 | n = aligned_len >> c->min_io_shift; |
| 572 | if (n) { |
| 573 | n <<= c->min_io_shift; |
| 574 | dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs); |
| 575 | err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n, |
| 576 | wbuf->dtype); |
| 577 | if (err) |
| 578 | goto out; |
| 579 | offs += n; |
| 580 | aligned_len -= n; |
| 581 | len -= n; |
| 582 | written += n; |
| 583 | } |
| 584 | |
| 585 | spin_lock(&wbuf->lock); |
| 586 | if (aligned_len) |
| 587 | /* |
| 588 | * And now we have what's left and what does not take whole |
| 589 | * min. I/O unit, so write it to the write-buffer and we are |
| 590 | * done. |
| 591 | */ |
| 592 | memcpy(wbuf->buf, buf + written, len); |
| 593 | |
| 594 | wbuf->offs = offs; |
| 595 | wbuf->used = aligned_len; |
| 596 | wbuf->avail = c->min_io_size - aligned_len; |
| 597 | wbuf->next_ino = 0; |
| 598 | spin_unlock(&wbuf->lock); |
| 599 | |
| 600 | exit: |
| 601 | if (wbuf->sync_callback) { |
| 602 | int free = c->leb_size - wbuf->offs - wbuf->used; |
| 603 | |
| 604 | err = wbuf->sync_callback(c, wbuf->lnum, free, 0); |
| 605 | if (err) |
| 606 | goto out; |
| 607 | } |
| 608 | |
| 609 | if (wbuf->used) |
| 610 | new_wbuf_timer_nolock(wbuf); |
| 611 | |
| 612 | return 0; |
| 613 | |
| 614 | out: |
| 615 | ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", |
| 616 | len, wbuf->lnum, wbuf->offs, err); |
| 617 | dbg_dump_node(c, buf); |
| 618 | dbg_dump_stack(); |
| 619 | dbg_dump_leb(c, wbuf->lnum); |
| 620 | return err; |
| 621 | } |
| 622 | |
| 623 | /** |
| 624 | * ubifs_write_node - write node to the media. |
| 625 | * @c: UBIFS file-system description object |
| 626 | * @buf: the node to write |
| 627 | * @len: node length |
| 628 | * @lnum: logical eraseblock number |
| 629 | * @offs: offset within the logical eraseblock |
| 630 | * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN) |
| 631 | * |
| 632 | * This function automatically fills node magic number, assigns sequence |
| 633 | * number, and calculates node CRC checksum. The length of the @buf buffer has |
| 634 | * to be aligned to the minimal I/O unit size. This function automatically |
| 635 | * appends padding node and padding bytes if needed. Returns zero in case of |
| 636 | * success and a negative error code in case of failure. |
| 637 | */ |
| 638 | int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, |
| 639 | int offs, int dtype) |
| 640 | { |
| 641 | int err, buf_len = ALIGN(len, c->min_io_size); |
| 642 | |
| 643 | dbg_io("LEB %d:%d, %s, length %d (aligned %d)", |
| 644 | lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, |
| 645 | buf_len); |
| 646 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
| 647 | ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); |
| 648 | |
| 649 | if (c->ro_media) |
| 650 | return -EROFS; |
| 651 | |
| 652 | ubifs_prepare_node(c, buf, len, 1); |
| 653 | err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype); |
| 654 | if (err) { |
| 655 | ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", |
| 656 | buf_len, lnum, offs, err); |
| 657 | dbg_dump_node(c, buf); |
| 658 | dbg_dump_stack(); |
| 659 | } |
| 660 | |
| 661 | return err; |
| 662 | } |
| 663 | |
| 664 | /** |
| 665 | * ubifs_read_node_wbuf - read node from the media or write-buffer. |
| 666 | * @wbuf: wbuf to check for un-written data |
| 667 | * @buf: buffer to read to |
| 668 | * @type: node type |
| 669 | * @len: node length |
| 670 | * @lnum: logical eraseblock number |
| 671 | * @offs: offset within the logical eraseblock |
| 672 | * |
| 673 | * This function reads a node of known type and length, checks it and stores |
| 674 | * in @buf. If the node partially or fully sits in the write-buffer, this |
| 675 | * function takes data from the buffer, otherwise it reads the flash media. |
| 676 | * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative |
| 677 | * error code in case of failure. |
| 678 | */ |
| 679 | int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, |
| 680 | int lnum, int offs) |
| 681 | { |
| 682 | const struct ubifs_info *c = wbuf->c; |
| 683 | int err, rlen, overlap; |
| 684 | struct ubifs_ch *ch = buf; |
| 685 | |
| 686 | dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); |
| 687 | ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
| 688 | ubifs_assert(!(offs & 7) && offs < c->leb_size); |
| 689 | ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); |
| 690 | |
| 691 | spin_lock(&wbuf->lock); |
| 692 | overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); |
| 693 | if (!overlap) { |
| 694 | /* We may safely unlock the write-buffer and read the data */ |
| 695 | spin_unlock(&wbuf->lock); |
| 696 | return ubifs_read_node(c, buf, type, len, lnum, offs); |
| 697 | } |
| 698 | |
| 699 | /* Don't read under wbuf */ |
| 700 | rlen = wbuf->offs - offs; |
| 701 | if (rlen < 0) |
| 702 | rlen = 0; |
| 703 | |
| 704 | /* Copy the rest from the write-buffer */ |
| 705 | memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); |
| 706 | spin_unlock(&wbuf->lock); |
| 707 | |
| 708 | if (rlen > 0) { |
| 709 | /* Read everything that goes before write-buffer */ |
| 710 | err = ubi_read(c->ubi, lnum, buf, offs, rlen); |
| 711 | if (err && err != -EBADMSG) { |
| 712 | ubifs_err("failed to read node %d from LEB %d:%d, " |
| 713 | "error %d", type, lnum, offs, err); |
| 714 | dbg_dump_stack(); |
| 715 | return err; |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | if (type != ch->node_type) { |
| 720 | ubifs_err("bad node type (%d but expected %d)", |
| 721 | ch->node_type, type); |
| 722 | goto out; |
| 723 | } |
| 724 | |
| 725 | err = ubifs_check_node(c, buf, lnum, offs, 0); |
| 726 | if (err) { |
| 727 | ubifs_err("expected node type %d", type); |
| 728 | return err; |
| 729 | } |
| 730 | |
| 731 | rlen = le32_to_cpu(ch->len); |
| 732 | if (rlen != len) { |
| 733 | ubifs_err("bad node length %d, expected %d", rlen, len); |
| 734 | goto out; |
| 735 | } |
| 736 | |
| 737 | return 0; |
| 738 | |
| 739 | out: |
| 740 | ubifs_err("bad node at LEB %d:%d", lnum, offs); |
| 741 | dbg_dump_node(c, buf); |
| 742 | dbg_dump_stack(); |
| 743 | return -EINVAL; |
| 744 | } |
| 745 | |
| 746 | /** |
| 747 | * ubifs_read_node - read node. |
| 748 | * @c: UBIFS file-system description object |
| 749 | * @buf: buffer to read to |
| 750 | * @type: node type |
| 751 | * @len: node length (not aligned) |
| 752 | * @lnum: logical eraseblock number |
| 753 | * @offs: offset within the logical eraseblock |
| 754 | * |
| 755 | * This function reads a node of known type and and length, checks it and |
| 756 | * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched |
| 757 | * and a negative error code in case of failure. |
| 758 | */ |
| 759 | int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, |
| 760 | int lnum, int offs) |
| 761 | { |
| 762 | int err, l; |
| 763 | struct ubifs_ch *ch = buf; |
| 764 | |
| 765 | dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); |
| 766 | ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
| 767 | ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); |
| 768 | ubifs_assert(!(offs & 7) && offs < c->leb_size); |
| 769 | ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); |
| 770 | |
| 771 | err = ubi_read(c->ubi, lnum, buf, offs, len); |
| 772 | if (err && err != -EBADMSG) { |
| 773 | ubifs_err("cannot read node %d from LEB %d:%d, error %d", |
| 774 | type, lnum, offs, err); |
| 775 | return err; |
| 776 | } |
| 777 | |
| 778 | if (type != ch->node_type) { |
| 779 | ubifs_err("bad node type (%d but expected %d)", |
| 780 | ch->node_type, type); |
| 781 | goto out; |
| 782 | } |
| 783 | |
| 784 | err = ubifs_check_node(c, buf, lnum, offs, 0); |
| 785 | if (err) { |
| 786 | ubifs_err("expected node type %d", type); |
| 787 | return err; |
| 788 | } |
| 789 | |
| 790 | l = le32_to_cpu(ch->len); |
| 791 | if (l != len) { |
| 792 | ubifs_err("bad node length %d, expected %d", l, len); |
| 793 | goto out; |
| 794 | } |
| 795 | |
| 796 | return 0; |
| 797 | |
| 798 | out: |
| 799 | ubifs_err("bad node at LEB %d:%d", lnum, offs); |
| 800 | dbg_dump_node(c, buf); |
| 801 | dbg_dump_stack(); |
| 802 | return -EINVAL; |
| 803 | } |
| 804 | |
| 805 | /** |
| 806 | * ubifs_wbuf_init - initialize write-buffer. |
| 807 | * @c: UBIFS file-system description object |
| 808 | * @wbuf: write-buffer to initialize |
| 809 | * |
| 810 | * This function initializes write buffer. Returns zero in case of success |
| 811 | * %-ENOMEM in case of failure. |
| 812 | */ |
| 813 | int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) |
| 814 | { |
| 815 | size_t size; |
| 816 | |
| 817 | wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL); |
| 818 | if (!wbuf->buf) |
| 819 | return -ENOMEM; |
| 820 | |
| 821 | size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); |
| 822 | wbuf->inodes = kmalloc(size, GFP_KERNEL); |
| 823 | if (!wbuf->inodes) { |
| 824 | kfree(wbuf->buf); |
| 825 | wbuf->buf = NULL; |
| 826 | return -ENOMEM; |
| 827 | } |
| 828 | |
| 829 | wbuf->used = 0; |
| 830 | wbuf->lnum = wbuf->offs = -1; |
| 831 | wbuf->avail = c->min_io_size; |
| 832 | wbuf->dtype = UBI_UNKNOWN; |
| 833 | wbuf->sync_callback = NULL; |
| 834 | mutex_init(&wbuf->io_mutex); |
| 835 | spin_lock_init(&wbuf->lock); |
| 836 | |
| 837 | wbuf->c = c; |
| 838 | init_timer(&wbuf->timer); |
| 839 | wbuf->timer.function = wbuf_timer_callback_nolock; |
| 840 | wbuf->timer.data = (unsigned long)wbuf; |
| 841 | wbuf->timeout = DEFAULT_WBUF_TIMEOUT; |
| 842 | wbuf->next_ino = 0; |
| 843 | |
| 844 | return 0; |
| 845 | } |
| 846 | |
| 847 | /** |
| 848 | * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. |
| 849 | * @wbuf: the write-buffer whereto add |
| 850 | * @inum: the inode number |
| 851 | * |
| 852 | * This function adds an inode number to the inode array of the write-buffer. |
| 853 | */ |
| 854 | void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) |
| 855 | { |
| 856 | if (!wbuf->buf) |
| 857 | /* NOR flash or something similar */ |
| 858 | return; |
| 859 | |
| 860 | spin_lock(&wbuf->lock); |
| 861 | if (wbuf->used) |
| 862 | wbuf->inodes[wbuf->next_ino++] = inum; |
| 863 | spin_unlock(&wbuf->lock); |
| 864 | } |
| 865 | |
| 866 | /** |
| 867 | * wbuf_has_ino - returns if the wbuf contains data from the inode. |
| 868 | * @wbuf: the write-buffer |
| 869 | * @inum: the inode number |
| 870 | * |
| 871 | * This function returns with %1 if the write-buffer contains some data from the |
| 872 | * given inode otherwise it returns with %0. |
| 873 | */ |
| 874 | static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) |
| 875 | { |
| 876 | int i, ret = 0; |
| 877 | |
| 878 | spin_lock(&wbuf->lock); |
| 879 | for (i = 0; i < wbuf->next_ino; i++) |
| 880 | if (inum == wbuf->inodes[i]) { |
| 881 | ret = 1; |
| 882 | break; |
| 883 | } |
| 884 | spin_unlock(&wbuf->lock); |
| 885 | |
| 886 | return ret; |
| 887 | } |
| 888 | |
| 889 | /** |
| 890 | * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. |
| 891 | * @c: UBIFS file-system description object |
| 892 | * @inode: inode to synchronize |
| 893 | * |
| 894 | * This function synchronizes write-buffers which contain nodes belonging to |
| 895 | * @inode. Returns zero in case of success and a negative error code in case of |
| 896 | * failure. |
| 897 | */ |
| 898 | int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) |
| 899 | { |
| 900 | int i, err = 0; |
| 901 | |
| 902 | for (i = 0; i < c->jhead_cnt; i++) { |
| 903 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; |
| 904 | |
| 905 | if (i == GCHD) |
| 906 | /* |
| 907 | * GC head is special, do not look at it. Even if the |
| 908 | * head contains something related to this inode, it is |
| 909 | * a _copy_ of corresponding on-flash node which sits |
| 910 | * somewhere else. |
| 911 | */ |
| 912 | continue; |
| 913 | |
| 914 | if (!wbuf_has_ino(wbuf, inode->i_ino)) |
| 915 | continue; |
| 916 | |
| 917 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| 918 | if (wbuf_has_ino(wbuf, inode->i_ino)) |
| 919 | err = ubifs_wbuf_sync_nolock(wbuf); |
| 920 | mutex_unlock(&wbuf->io_mutex); |
| 921 | |
| 922 | if (err) { |
| 923 | ubifs_ro_mode(c, err); |
| 924 | return err; |
| 925 | } |
| 926 | } |
| 927 | return 0; |
| 928 | } |