Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel PRO/1000 Linux driver |
| 4 | Copyright(c) 1999 - 2007 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | Linux NICS <linux.nics@intel.com> |
| 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 26 | |
| 27 | *******************************************************************************/ |
| 28 | |
| 29 | #include <linux/delay.h> |
| 30 | |
| 31 | #include "e1000.h" |
| 32 | |
| 33 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); |
| 34 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); |
| 35 | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); |
| 36 | static s32 e1000_wait_autoneg(struct e1000_hw *hw); |
| 37 | |
| 38 | /* Cable length tables */ |
| 39 | static const u16 e1000_m88_cable_length_table[] = |
| 40 | { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; |
| 41 | |
| 42 | static const u16 e1000_igp_2_cable_length_table[] = |
| 43 | { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, |
| 44 | 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, |
| 45 | 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, |
| 46 | 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, |
| 47 | 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, |
| 48 | 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, |
| 49 | 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, |
| 50 | 124}; |
| 51 | #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ |
| 52 | (sizeof(e1000_igp_2_cable_length_table) / \ |
| 53 | sizeof(e1000_igp_2_cable_length_table[0])) |
| 54 | |
| 55 | /** |
| 56 | * e1000e_check_reset_block_generic - Check if PHY reset is blocked |
| 57 | * @hw: pointer to the HW structure |
| 58 | * |
| 59 | * Read the PHY management control register and check whether a PHY reset |
| 60 | * is blocked. If a reset is not blocked return 0, otherwise |
| 61 | * return E1000_BLK_PHY_RESET (12). |
| 62 | **/ |
| 63 | s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) |
| 64 | { |
| 65 | u32 manc; |
| 66 | |
| 67 | manc = er32(MANC); |
| 68 | |
| 69 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? |
| 70 | E1000_BLK_PHY_RESET : 0; |
| 71 | } |
| 72 | |
| 73 | /** |
| 74 | * e1000e_get_phy_id - Retrieve the PHY ID and revision |
| 75 | * @hw: pointer to the HW structure |
| 76 | * |
| 77 | * Reads the PHY registers and stores the PHY ID and possibly the PHY |
| 78 | * revision in the hardware structure. |
| 79 | **/ |
| 80 | s32 e1000e_get_phy_id(struct e1000_hw *hw) |
| 81 | { |
| 82 | struct e1000_phy_info *phy = &hw->phy; |
| 83 | s32 ret_val; |
| 84 | u16 phy_id; |
| 85 | |
| 86 | ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); |
| 87 | if (ret_val) |
| 88 | return ret_val; |
| 89 | |
| 90 | phy->id = (u32)(phy_id << 16); |
| 91 | udelay(20); |
| 92 | ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); |
| 93 | if (ret_val) |
| 94 | return ret_val; |
| 95 | |
| 96 | phy->id |= (u32)(phy_id & PHY_REVISION_MASK); |
| 97 | phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); |
| 98 | |
| 99 | return 0; |
| 100 | } |
| 101 | |
| 102 | /** |
| 103 | * e1000e_phy_reset_dsp - Reset PHY DSP |
| 104 | * @hw: pointer to the HW structure |
| 105 | * |
| 106 | * Reset the digital signal processor. |
| 107 | **/ |
| 108 | s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) |
| 109 | { |
| 110 | s32 ret_val; |
| 111 | |
| 112 | ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); |
| 113 | if (ret_val) |
| 114 | return ret_val; |
| 115 | |
| 116 | return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); |
| 117 | } |
| 118 | |
| 119 | /** |
| 120 | * e1000_read_phy_reg_mdic - Read MDI control register |
| 121 | * @hw: pointer to the HW structure |
| 122 | * @offset: register offset to be read |
| 123 | * @data: pointer to the read data |
| 124 | * |
| 125 | * Reads the MDI control regsiter in the PHY at offset and stores the |
| 126 | * information read to data. |
| 127 | **/ |
| 128 | static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) |
| 129 | { |
| 130 | struct e1000_phy_info *phy = &hw->phy; |
| 131 | u32 i, mdic = 0; |
| 132 | |
| 133 | if (offset > MAX_PHY_REG_ADDRESS) { |
| 134 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); |
| 135 | return -E1000_ERR_PARAM; |
| 136 | } |
| 137 | |
| 138 | /* Set up Op-code, Phy Address, and register offset in the MDI |
| 139 | * Control register. The MAC will take care of interfacing with the |
| 140 | * PHY to retrieve the desired data. |
| 141 | */ |
| 142 | mdic = ((offset << E1000_MDIC_REG_SHIFT) | |
| 143 | (phy->addr << E1000_MDIC_PHY_SHIFT) | |
| 144 | (E1000_MDIC_OP_READ)); |
| 145 | |
| 146 | ew32(MDIC, mdic); |
| 147 | |
| 148 | /* Poll the ready bit to see if the MDI read completed */ |
| 149 | for (i = 0; i < 64; i++) { |
| 150 | udelay(50); |
| 151 | mdic = er32(MDIC); |
| 152 | if (mdic & E1000_MDIC_READY) |
| 153 | break; |
| 154 | } |
| 155 | if (!(mdic & E1000_MDIC_READY)) { |
| 156 | hw_dbg(hw, "MDI Read did not complete\n"); |
| 157 | return -E1000_ERR_PHY; |
| 158 | } |
| 159 | if (mdic & E1000_MDIC_ERROR) { |
| 160 | hw_dbg(hw, "MDI Error\n"); |
| 161 | return -E1000_ERR_PHY; |
| 162 | } |
| 163 | *data = (u16) mdic; |
| 164 | |
| 165 | return 0; |
| 166 | } |
| 167 | |
| 168 | /** |
| 169 | * e1000_write_phy_reg_mdic - Write MDI control register |
| 170 | * @hw: pointer to the HW structure |
| 171 | * @offset: register offset to write to |
| 172 | * @data: data to write to register at offset |
| 173 | * |
| 174 | * Writes data to MDI control register in the PHY at offset. |
| 175 | **/ |
| 176 | static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) |
| 177 | { |
| 178 | struct e1000_phy_info *phy = &hw->phy; |
| 179 | u32 i, mdic = 0; |
| 180 | |
| 181 | if (offset > MAX_PHY_REG_ADDRESS) { |
| 182 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); |
| 183 | return -E1000_ERR_PARAM; |
| 184 | } |
| 185 | |
| 186 | /* Set up Op-code, Phy Address, and register offset in the MDI |
| 187 | * Control register. The MAC will take care of interfacing with the |
| 188 | * PHY to retrieve the desired data. |
| 189 | */ |
| 190 | mdic = (((u32)data) | |
| 191 | (offset << E1000_MDIC_REG_SHIFT) | |
| 192 | (phy->addr << E1000_MDIC_PHY_SHIFT) | |
| 193 | (E1000_MDIC_OP_WRITE)); |
| 194 | |
| 195 | ew32(MDIC, mdic); |
| 196 | |
| 197 | /* Poll the ready bit to see if the MDI read completed */ |
| 198 | for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { |
| 199 | udelay(5); |
| 200 | mdic = er32(MDIC); |
| 201 | if (mdic & E1000_MDIC_READY) |
| 202 | break; |
| 203 | } |
| 204 | if (!(mdic & E1000_MDIC_READY)) { |
| 205 | hw_dbg(hw, "MDI Write did not complete\n"); |
| 206 | return -E1000_ERR_PHY; |
| 207 | } |
| 208 | |
| 209 | return 0; |
| 210 | } |
| 211 | |
| 212 | /** |
| 213 | * e1000e_read_phy_reg_m88 - Read m88 PHY register |
| 214 | * @hw: pointer to the HW structure |
| 215 | * @offset: register offset to be read |
| 216 | * @data: pointer to the read data |
| 217 | * |
| 218 | * Acquires semaphore, if necessary, then reads the PHY register at offset |
| 219 | * and storing the retrieved information in data. Release any acquired |
| 220 | * semaphores before exiting. |
| 221 | **/ |
| 222 | s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) |
| 223 | { |
| 224 | s32 ret_val; |
| 225 | |
| 226 | ret_val = hw->phy.ops.acquire_phy(hw); |
| 227 | if (ret_val) |
| 228 | return ret_val; |
| 229 | |
| 230 | ret_val = e1000_read_phy_reg_mdic(hw, |
| 231 | MAX_PHY_REG_ADDRESS & offset, |
| 232 | data); |
| 233 | |
| 234 | hw->phy.ops.release_phy(hw); |
| 235 | |
| 236 | return ret_val; |
| 237 | } |
| 238 | |
| 239 | /** |
| 240 | * e1000e_write_phy_reg_m88 - Write m88 PHY register |
| 241 | * @hw: pointer to the HW structure |
| 242 | * @offset: register offset to write to |
| 243 | * @data: data to write at register offset |
| 244 | * |
| 245 | * Acquires semaphore, if necessary, then writes the data to PHY register |
| 246 | * at the offset. Release any acquired semaphores before exiting. |
| 247 | **/ |
| 248 | s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) |
| 249 | { |
| 250 | s32 ret_val; |
| 251 | |
| 252 | ret_val = hw->phy.ops.acquire_phy(hw); |
| 253 | if (ret_val) |
| 254 | return ret_val; |
| 255 | |
| 256 | ret_val = e1000_write_phy_reg_mdic(hw, |
| 257 | MAX_PHY_REG_ADDRESS & offset, |
| 258 | data); |
| 259 | |
| 260 | hw->phy.ops.release_phy(hw); |
| 261 | |
| 262 | return ret_val; |
| 263 | } |
| 264 | |
| 265 | /** |
| 266 | * e1000e_read_phy_reg_igp - Read igp PHY register |
| 267 | * @hw: pointer to the HW structure |
| 268 | * @offset: register offset to be read |
| 269 | * @data: pointer to the read data |
| 270 | * |
| 271 | * Acquires semaphore, if necessary, then reads the PHY register at offset |
| 272 | * and storing the retrieved information in data. Release any acquired |
| 273 | * semaphores before exiting. |
| 274 | **/ |
| 275 | s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) |
| 276 | { |
| 277 | s32 ret_val; |
| 278 | |
| 279 | ret_val = hw->phy.ops.acquire_phy(hw); |
| 280 | if (ret_val) |
| 281 | return ret_val; |
| 282 | |
| 283 | if (offset > MAX_PHY_MULTI_PAGE_REG) { |
| 284 | ret_val = e1000_write_phy_reg_mdic(hw, |
| 285 | IGP01E1000_PHY_PAGE_SELECT, |
| 286 | (u16)offset); |
| 287 | if (ret_val) { |
| 288 | hw->phy.ops.release_phy(hw); |
| 289 | return ret_val; |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | ret_val = e1000_read_phy_reg_mdic(hw, |
| 294 | MAX_PHY_REG_ADDRESS & offset, |
| 295 | data); |
| 296 | |
| 297 | hw->phy.ops.release_phy(hw); |
| 298 | |
| 299 | return ret_val; |
| 300 | } |
| 301 | |
| 302 | /** |
| 303 | * e1000e_write_phy_reg_igp - Write igp PHY register |
| 304 | * @hw: pointer to the HW structure |
| 305 | * @offset: register offset to write to |
| 306 | * @data: data to write at register offset |
| 307 | * |
| 308 | * Acquires semaphore, if necessary, then writes the data to PHY register |
| 309 | * at the offset. Release any acquired semaphores before exiting. |
| 310 | **/ |
| 311 | s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) |
| 312 | { |
| 313 | s32 ret_val; |
| 314 | |
| 315 | ret_val = hw->phy.ops.acquire_phy(hw); |
| 316 | if (ret_val) |
| 317 | return ret_val; |
| 318 | |
| 319 | if (offset > MAX_PHY_MULTI_PAGE_REG) { |
| 320 | ret_val = e1000_write_phy_reg_mdic(hw, |
| 321 | IGP01E1000_PHY_PAGE_SELECT, |
| 322 | (u16)offset); |
| 323 | if (ret_val) { |
| 324 | hw->phy.ops.release_phy(hw); |
| 325 | return ret_val; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | ret_val = e1000_write_phy_reg_mdic(hw, |
| 330 | MAX_PHY_REG_ADDRESS & offset, |
| 331 | data); |
| 332 | |
| 333 | hw->phy.ops.release_phy(hw); |
| 334 | |
| 335 | return ret_val; |
| 336 | } |
| 337 | |
| 338 | /** |
| 339 | * e1000e_read_kmrn_reg - Read kumeran register |
| 340 | * @hw: pointer to the HW structure |
| 341 | * @offset: register offset to be read |
| 342 | * @data: pointer to the read data |
| 343 | * |
| 344 | * Acquires semaphore, if necessary. Then reads the PHY register at offset |
| 345 | * using the kumeran interface. The information retrieved is stored in data. |
| 346 | * Release any acquired semaphores before exiting. |
| 347 | **/ |
| 348 | s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) |
| 349 | { |
| 350 | u32 kmrnctrlsta; |
| 351 | s32 ret_val; |
| 352 | |
| 353 | ret_val = hw->phy.ops.acquire_phy(hw); |
| 354 | if (ret_val) |
| 355 | return ret_val; |
| 356 | |
| 357 | kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
| 358 | E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; |
| 359 | ew32(KMRNCTRLSTA, kmrnctrlsta); |
| 360 | |
| 361 | udelay(2); |
| 362 | |
| 363 | kmrnctrlsta = er32(KMRNCTRLSTA); |
| 364 | *data = (u16)kmrnctrlsta; |
| 365 | |
| 366 | hw->phy.ops.release_phy(hw); |
| 367 | |
| 368 | return ret_val; |
| 369 | } |
| 370 | |
| 371 | /** |
| 372 | * e1000e_write_kmrn_reg - Write kumeran register |
| 373 | * @hw: pointer to the HW structure |
| 374 | * @offset: register offset to write to |
| 375 | * @data: data to write at register offset |
| 376 | * |
| 377 | * Acquires semaphore, if necessary. Then write the data to PHY register |
| 378 | * at the offset using the kumeran interface. Release any acquired semaphores |
| 379 | * before exiting. |
| 380 | **/ |
| 381 | s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) |
| 382 | { |
| 383 | u32 kmrnctrlsta; |
| 384 | s32 ret_val; |
| 385 | |
| 386 | ret_val = hw->phy.ops.acquire_phy(hw); |
| 387 | if (ret_val) |
| 388 | return ret_val; |
| 389 | |
| 390 | kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
| 391 | E1000_KMRNCTRLSTA_OFFSET) | data; |
| 392 | ew32(KMRNCTRLSTA, kmrnctrlsta); |
| 393 | |
| 394 | udelay(2); |
| 395 | hw->phy.ops.release_phy(hw); |
| 396 | |
| 397 | return ret_val; |
| 398 | } |
| 399 | |
| 400 | /** |
| 401 | * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link |
| 402 | * @hw: pointer to the HW structure |
| 403 | * |
| 404 | * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock |
| 405 | * and downshift values are set also. |
| 406 | **/ |
| 407 | s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) |
| 408 | { |
| 409 | struct e1000_phy_info *phy = &hw->phy; |
| 410 | s32 ret_val; |
| 411 | u16 phy_data; |
| 412 | |
| 413 | /* Enable CRS on TX. This must be set for half-duplex operation. */ |
| 414 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 415 | if (ret_val) |
| 416 | return ret_val; |
| 417 | |
| 418 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| 419 | |
| 420 | /* Options: |
| 421 | * MDI/MDI-X = 0 (default) |
| 422 | * 0 - Auto for all speeds |
| 423 | * 1 - MDI mode |
| 424 | * 2 - MDI-X mode |
| 425 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| 426 | */ |
| 427 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| 428 | |
| 429 | switch (phy->mdix) { |
| 430 | case 1: |
| 431 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| 432 | break; |
| 433 | case 2: |
| 434 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| 435 | break; |
| 436 | case 3: |
| 437 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| 438 | break; |
| 439 | case 0: |
| 440 | default: |
| 441 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| 442 | break; |
| 443 | } |
| 444 | |
| 445 | /* Options: |
| 446 | * disable_polarity_correction = 0 (default) |
| 447 | * Automatic Correction for Reversed Cable Polarity |
| 448 | * 0 - Disabled |
| 449 | * 1 - Enabled |
| 450 | */ |
| 451 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| 452 | if (phy->disable_polarity_correction == 1) |
| 453 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
| 454 | |
| 455 | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| 456 | if (ret_val) |
| 457 | return ret_val; |
| 458 | |
| 459 | if (phy->revision < 4) { |
| 460 | /* Force TX_CLK in the Extended PHY Specific Control Register |
| 461 | * to 25MHz clock. |
| 462 | */ |
| 463 | ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
| 464 | if (ret_val) |
| 465 | return ret_val; |
| 466 | |
| 467 | phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| 468 | |
| 469 | if ((phy->revision == 2) && |
| 470 | (phy->id == M88E1111_I_PHY_ID)) { |
| 471 | /* 82573L PHY - set the downshift counter to 5x. */ |
| 472 | phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; |
| 473 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
| 474 | } else { |
| 475 | /* Configure Master and Slave downshift values */ |
| 476 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
| 477 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
| 478 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
| 479 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
| 480 | } |
| 481 | ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| 482 | if (ret_val) |
| 483 | return ret_val; |
| 484 | } |
| 485 | |
| 486 | /* Commit the changes. */ |
| 487 | ret_val = e1000e_commit_phy(hw); |
| 488 | if (ret_val) |
| 489 | hw_dbg(hw, "Error committing the PHY changes\n"); |
| 490 | |
| 491 | return ret_val; |
| 492 | } |
| 493 | |
| 494 | /** |
| 495 | * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link |
| 496 | * @hw: pointer to the HW structure |
| 497 | * |
| 498 | * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for |
| 499 | * igp PHY's. |
| 500 | **/ |
| 501 | s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) |
| 502 | { |
| 503 | struct e1000_phy_info *phy = &hw->phy; |
| 504 | s32 ret_val; |
| 505 | u16 data; |
| 506 | |
| 507 | ret_val = e1000_phy_hw_reset(hw); |
| 508 | if (ret_val) { |
| 509 | hw_dbg(hw, "Error resetting the PHY.\n"); |
| 510 | return ret_val; |
| 511 | } |
| 512 | |
| 513 | /* Wait 15ms for MAC to configure PHY from NVM settings. */ |
| 514 | msleep(15); |
| 515 | |
| 516 | /* disable lplu d0 during driver init */ |
| 517 | ret_val = e1000_set_d0_lplu_state(hw, 0); |
| 518 | if (ret_val) { |
| 519 | hw_dbg(hw, "Error Disabling LPLU D0\n"); |
| 520 | return ret_val; |
| 521 | } |
| 522 | /* Configure mdi-mdix settings */ |
| 523 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); |
| 524 | if (ret_val) |
| 525 | return ret_val; |
| 526 | |
| 527 | data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| 528 | |
| 529 | switch (phy->mdix) { |
| 530 | case 1: |
| 531 | data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| 532 | break; |
| 533 | case 2: |
| 534 | data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| 535 | break; |
| 536 | case 0: |
| 537 | default: |
| 538 | data |= IGP01E1000_PSCR_AUTO_MDIX; |
| 539 | break; |
| 540 | } |
| 541 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); |
| 542 | if (ret_val) |
| 543 | return ret_val; |
| 544 | |
| 545 | /* set auto-master slave resolution settings */ |
| 546 | if (hw->mac.autoneg) { |
| 547 | /* when autonegotiation advertisement is only 1000Mbps then we |
| 548 | * should disable SmartSpeed and enable Auto MasterSlave |
| 549 | * resolution as hardware default. */ |
| 550 | if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { |
| 551 | /* Disable SmartSpeed */ |
| 552 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 553 | &data); |
| 554 | if (ret_val) |
| 555 | return ret_val; |
| 556 | |
| 557 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 558 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 559 | data); |
| 560 | if (ret_val) |
| 561 | return ret_val; |
| 562 | |
| 563 | /* Set auto Master/Slave resolution process */ |
| 564 | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); |
| 565 | if (ret_val) |
| 566 | return ret_val; |
| 567 | |
| 568 | data &= ~CR_1000T_MS_ENABLE; |
| 569 | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); |
| 570 | if (ret_val) |
| 571 | return ret_val; |
| 572 | } |
| 573 | |
| 574 | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); |
| 575 | if (ret_val) |
| 576 | return ret_val; |
| 577 | |
| 578 | /* load defaults for future use */ |
| 579 | phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? |
| 580 | ((data & CR_1000T_MS_VALUE) ? |
| 581 | e1000_ms_force_master : |
| 582 | e1000_ms_force_slave) : |
| 583 | e1000_ms_auto; |
| 584 | |
| 585 | switch (phy->ms_type) { |
| 586 | case e1000_ms_force_master: |
| 587 | data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
| 588 | break; |
| 589 | case e1000_ms_force_slave: |
| 590 | data |= CR_1000T_MS_ENABLE; |
| 591 | data &= ~(CR_1000T_MS_VALUE); |
| 592 | break; |
| 593 | case e1000_ms_auto: |
| 594 | data &= ~CR_1000T_MS_ENABLE; |
| 595 | default: |
| 596 | break; |
| 597 | } |
| 598 | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); |
| 599 | } |
| 600 | |
| 601 | return ret_val; |
| 602 | } |
| 603 | |
| 604 | /** |
| 605 | * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation |
| 606 | * @hw: pointer to the HW structure |
| 607 | * |
| 608 | * Reads the MII auto-neg advertisement register and/or the 1000T control |
| 609 | * register and if the PHY is already setup for auto-negotiation, then |
| 610 | * return successful. Otherwise, setup advertisement and flow control to |
| 611 | * the appropriate values for the wanted auto-negotiation. |
| 612 | **/ |
| 613 | static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) |
| 614 | { |
| 615 | struct e1000_phy_info *phy = &hw->phy; |
| 616 | s32 ret_val; |
| 617 | u16 mii_autoneg_adv_reg; |
| 618 | u16 mii_1000t_ctrl_reg = 0; |
| 619 | |
| 620 | phy->autoneg_advertised &= phy->autoneg_mask; |
| 621 | |
| 622 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
| 623 | ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
| 624 | if (ret_val) |
| 625 | return ret_val; |
| 626 | |
| 627 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { |
| 628 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
| 629 | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
| 630 | if (ret_val) |
| 631 | return ret_val; |
| 632 | } |
| 633 | |
| 634 | /* Need to parse both autoneg_advertised and fc and set up |
| 635 | * the appropriate PHY registers. First we will parse for |
| 636 | * autoneg_advertised software override. Since we can advertise |
| 637 | * a plethora of combinations, we need to check each bit |
| 638 | * individually. |
| 639 | */ |
| 640 | |
| 641 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| 642 | * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| 643 | * the 1000Base-T Control Register (Address 9). |
| 644 | */ |
| 645 | mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | |
| 646 | NWAY_AR_100TX_HD_CAPS | |
| 647 | NWAY_AR_10T_FD_CAPS | |
| 648 | NWAY_AR_10T_HD_CAPS); |
| 649 | mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); |
| 650 | |
| 651 | hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised); |
| 652 | |
| 653 | /* Do we want to advertise 10 Mb Half Duplex? */ |
| 654 | if (phy->autoneg_advertised & ADVERTISE_10_HALF) { |
| 655 | hw_dbg(hw, "Advertise 10mb Half duplex\n"); |
| 656 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| 657 | } |
| 658 | |
| 659 | /* Do we want to advertise 10 Mb Full Duplex? */ |
| 660 | if (phy->autoneg_advertised & ADVERTISE_10_FULL) { |
| 661 | hw_dbg(hw, "Advertise 10mb Full duplex\n"); |
| 662 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| 663 | } |
| 664 | |
| 665 | /* Do we want to advertise 100 Mb Half Duplex? */ |
| 666 | if (phy->autoneg_advertised & ADVERTISE_100_HALF) { |
| 667 | hw_dbg(hw, "Advertise 100mb Half duplex\n"); |
| 668 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| 669 | } |
| 670 | |
| 671 | /* Do we want to advertise 100 Mb Full Duplex? */ |
| 672 | if (phy->autoneg_advertised & ADVERTISE_100_FULL) { |
| 673 | hw_dbg(hw, "Advertise 100mb Full duplex\n"); |
| 674 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| 675 | } |
| 676 | |
| 677 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| 678 | if (phy->autoneg_advertised & ADVERTISE_1000_HALF) |
| 679 | hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n"); |
| 680 | |
| 681 | /* Do we want to advertise 1000 Mb Full Duplex? */ |
| 682 | if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { |
| 683 | hw_dbg(hw, "Advertise 1000mb Full duplex\n"); |
| 684 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| 685 | } |
| 686 | |
| 687 | /* Check for a software override of the flow control settings, and |
| 688 | * setup the PHY advertisement registers accordingly. If |
| 689 | * auto-negotiation is enabled, then software will have to set the |
| 690 | * "PAUSE" bits to the correct value in the Auto-Negotiation |
| 691 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- |
| 692 | * negotiation. |
| 693 | * |
| 694 | * The possible values of the "fc" parameter are: |
| 695 | * 0: Flow control is completely disabled |
| 696 | * 1: Rx flow control is enabled (we can receive pause frames |
| 697 | * but not send pause frames). |
| 698 | * 2: Tx flow control is enabled (we can send pause frames |
| 699 | * but we do not support receiving pause frames). |
| 700 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
| 701 | * other: No software override. The flow control configuration |
| 702 | * in the EEPROM is used. |
| 703 | */ |
| 704 | switch (hw->mac.fc) { |
| 705 | case e1000_fc_none: |
| 706 | /* Flow control (RX & TX) is completely disabled by a |
| 707 | * software over-ride. |
| 708 | */ |
| 709 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 710 | break; |
| 711 | case e1000_fc_rx_pause: |
| 712 | /* RX Flow control is enabled, and TX Flow control is |
| 713 | * disabled, by a software over-ride. |
| 714 | */ |
| 715 | /* Since there really isn't a way to advertise that we are |
| 716 | * capable of RX Pause ONLY, we will advertise that we |
| 717 | * support both symmetric and asymmetric RX PAUSE. Later |
| 718 | * (in e1000e_config_fc_after_link_up) we will disable the |
| 719 | * hw's ability to send PAUSE frames. |
| 720 | */ |
| 721 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 722 | break; |
| 723 | case e1000_fc_tx_pause: |
| 724 | /* TX Flow control is enabled, and RX Flow control is |
| 725 | * disabled, by a software over-ride. |
| 726 | */ |
| 727 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| 728 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| 729 | break; |
| 730 | case e1000_fc_full: |
| 731 | /* Flow control (both RX and TX) is enabled by a software |
| 732 | * over-ride. |
| 733 | */ |
| 734 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 735 | break; |
| 736 | default: |
| 737 | hw_dbg(hw, "Flow control param set incorrectly\n"); |
| 738 | ret_val = -E1000_ERR_CONFIG; |
| 739 | return ret_val; |
| 740 | } |
| 741 | |
| 742 | ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
| 743 | if (ret_val) |
| 744 | return ret_val; |
| 745 | |
| 746 | hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| 747 | |
| 748 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { |
| 749 | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
| 750 | } |
| 751 | |
| 752 | return ret_val; |
| 753 | } |
| 754 | |
| 755 | /** |
| 756 | * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link |
| 757 | * @hw: pointer to the HW structure |
| 758 | * |
| 759 | * Performs initial bounds checking on autoneg advertisement parameter, then |
| 760 | * configure to advertise the full capability. Setup the PHY to autoneg |
| 761 | * and restart the negotiation process between the link partner. If |
| 762 | * wait_for_link, then wait for autoneg to complete before exiting. |
| 763 | **/ |
| 764 | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) |
| 765 | { |
| 766 | struct e1000_phy_info *phy = &hw->phy; |
| 767 | s32 ret_val; |
| 768 | u16 phy_ctrl; |
| 769 | |
| 770 | /* Perform some bounds checking on the autoneg advertisement |
| 771 | * parameter. |
| 772 | */ |
| 773 | phy->autoneg_advertised &= phy->autoneg_mask; |
| 774 | |
| 775 | /* If autoneg_advertised is zero, we assume it was not defaulted |
| 776 | * by the calling code so we set to advertise full capability. |
| 777 | */ |
| 778 | if (phy->autoneg_advertised == 0) |
| 779 | phy->autoneg_advertised = phy->autoneg_mask; |
| 780 | |
| 781 | hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n"); |
| 782 | ret_val = e1000_phy_setup_autoneg(hw); |
| 783 | if (ret_val) { |
| 784 | hw_dbg(hw, "Error Setting up Auto-Negotiation\n"); |
| 785 | return ret_val; |
| 786 | } |
| 787 | hw_dbg(hw, "Restarting Auto-Neg\n"); |
| 788 | |
| 789 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| 790 | * the Auto Neg Restart bit in the PHY control register. |
| 791 | */ |
| 792 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); |
| 793 | if (ret_val) |
| 794 | return ret_val; |
| 795 | |
| 796 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
| 797 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); |
| 798 | if (ret_val) |
| 799 | return ret_val; |
| 800 | |
| 801 | /* Does the user want to wait for Auto-Neg to complete here, or |
| 802 | * check at a later time (for example, callback routine). |
| 803 | */ |
| 804 | if (phy->wait_for_link) { |
| 805 | ret_val = e1000_wait_autoneg(hw); |
| 806 | if (ret_val) { |
| 807 | hw_dbg(hw, "Error while waiting for " |
| 808 | "autoneg to complete\n"); |
| 809 | return ret_val; |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | hw->mac.get_link_status = 1; |
| 814 | |
| 815 | return ret_val; |
| 816 | } |
| 817 | |
| 818 | /** |
| 819 | * e1000e_setup_copper_link - Configure copper link settings |
| 820 | * @hw: pointer to the HW structure |
| 821 | * |
| 822 | * Calls the appropriate function to configure the link for auto-neg or forced |
| 823 | * speed and duplex. Then we check for link, once link is established calls |
| 824 | * to configure collision distance and flow control are called. If link is |
| 825 | * not established, we return -E1000_ERR_PHY (-2). |
| 826 | **/ |
| 827 | s32 e1000e_setup_copper_link(struct e1000_hw *hw) |
| 828 | { |
| 829 | s32 ret_val; |
| 830 | bool link; |
| 831 | |
| 832 | if (hw->mac.autoneg) { |
| 833 | /* Setup autoneg and flow control advertisement and perform |
| 834 | * autonegotiation. */ |
| 835 | ret_val = e1000_copper_link_autoneg(hw); |
| 836 | if (ret_val) |
| 837 | return ret_val; |
| 838 | } else { |
| 839 | /* PHY will be set to 10H, 10F, 100H or 100F |
| 840 | * depending on user settings. */ |
| 841 | hw_dbg(hw, "Forcing Speed and Duplex\n"); |
| 842 | ret_val = e1000_phy_force_speed_duplex(hw); |
| 843 | if (ret_val) { |
| 844 | hw_dbg(hw, "Error Forcing Speed and Duplex\n"); |
| 845 | return ret_val; |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | /* Check link status. Wait up to 100 microseconds for link to become |
| 850 | * valid. |
| 851 | */ |
| 852 | ret_val = e1000e_phy_has_link_generic(hw, |
| 853 | COPPER_LINK_UP_LIMIT, |
| 854 | 10, |
| 855 | &link); |
| 856 | if (ret_val) |
| 857 | return ret_val; |
| 858 | |
| 859 | if (link) { |
| 860 | hw_dbg(hw, "Valid link established!!!\n"); |
| 861 | e1000e_config_collision_dist(hw); |
| 862 | ret_val = e1000e_config_fc_after_link_up(hw); |
| 863 | } else { |
| 864 | hw_dbg(hw, "Unable to establish link!!!\n"); |
| 865 | } |
| 866 | |
| 867 | return ret_val; |
| 868 | } |
| 869 | |
| 870 | /** |
| 871 | * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY |
| 872 | * @hw: pointer to the HW structure |
| 873 | * |
| 874 | * Calls the PHY setup function to force speed and duplex. Clears the |
| 875 | * auto-crossover to force MDI manually. Waits for link and returns |
| 876 | * successful if link up is successful, else -E1000_ERR_PHY (-2). |
| 877 | **/ |
| 878 | s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) |
| 879 | { |
| 880 | struct e1000_phy_info *phy = &hw->phy; |
| 881 | s32 ret_val; |
| 882 | u16 phy_data; |
| 883 | bool link; |
| 884 | |
| 885 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); |
| 886 | if (ret_val) |
| 887 | return ret_val; |
| 888 | |
| 889 | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); |
| 890 | |
| 891 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); |
| 892 | if (ret_val) |
| 893 | return ret_val; |
| 894 | |
| 895 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
| 896 | * forced whenever speed and duplex are forced. |
| 897 | */ |
| 898 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
| 899 | if (ret_val) |
| 900 | return ret_val; |
| 901 | |
| 902 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| 903 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| 904 | |
| 905 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
| 906 | if (ret_val) |
| 907 | return ret_val; |
| 908 | |
| 909 | hw_dbg(hw, "IGP PSCR: %X\n", phy_data); |
| 910 | |
| 911 | udelay(1); |
| 912 | |
| 913 | if (phy->wait_for_link) { |
| 914 | hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n"); |
| 915 | |
| 916 | ret_val = e1000e_phy_has_link_generic(hw, |
| 917 | PHY_FORCE_LIMIT, |
| 918 | 100000, |
| 919 | &link); |
| 920 | if (ret_val) |
| 921 | return ret_val; |
| 922 | |
| 923 | if (!link) |
| 924 | hw_dbg(hw, "Link taking longer than expected.\n"); |
| 925 | |
| 926 | /* Try once more */ |
| 927 | ret_val = e1000e_phy_has_link_generic(hw, |
| 928 | PHY_FORCE_LIMIT, |
| 929 | 100000, |
| 930 | &link); |
| 931 | if (ret_val) |
| 932 | return ret_val; |
| 933 | } |
| 934 | |
| 935 | return ret_val; |
| 936 | } |
| 937 | |
| 938 | /** |
| 939 | * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY |
| 940 | * @hw: pointer to the HW structure |
| 941 | * |
| 942 | * Calls the PHY setup function to force speed and duplex. Clears the |
| 943 | * auto-crossover to force MDI manually. Resets the PHY to commit the |
| 944 | * changes. If time expires while waiting for link up, we reset the DSP. |
| 945 | * After reset, TX_CLK and CRS on TX must be set. Return successful upon |
| 946 | * successful completion, else return corresponding error code. |
| 947 | **/ |
| 948 | s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) |
| 949 | { |
| 950 | struct e1000_phy_info *phy = &hw->phy; |
| 951 | s32 ret_val; |
| 952 | u16 phy_data; |
| 953 | bool link; |
| 954 | |
| 955 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
| 956 | * forced whenever speed and duplex are forced. |
| 957 | */ |
| 958 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 959 | if (ret_val) |
| 960 | return ret_val; |
| 961 | |
| 962 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| 963 | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| 964 | if (ret_val) |
| 965 | return ret_val; |
| 966 | |
| 967 | hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data); |
| 968 | |
| 969 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); |
| 970 | if (ret_val) |
| 971 | return ret_val; |
| 972 | |
| 973 | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); |
| 974 | |
| 975 | /* Reset the phy to commit changes. */ |
| 976 | phy_data |= MII_CR_RESET; |
| 977 | |
| 978 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); |
| 979 | if (ret_val) |
| 980 | return ret_val; |
| 981 | |
| 982 | udelay(1); |
| 983 | |
| 984 | if (phy->wait_for_link) { |
| 985 | hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n"); |
| 986 | |
| 987 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 988 | 100000, &link); |
| 989 | if (ret_val) |
| 990 | return ret_val; |
| 991 | |
| 992 | if (!link) { |
| 993 | /* We didn't get link. |
| 994 | * Reset the DSP and cross our fingers. |
| 995 | */ |
| 996 | ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d); |
| 997 | if (ret_val) |
| 998 | return ret_val; |
| 999 | ret_val = e1000e_phy_reset_dsp(hw); |
| 1000 | if (ret_val) |
| 1001 | return ret_val; |
| 1002 | } |
| 1003 | |
| 1004 | /* Try once more */ |
| 1005 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 1006 | 100000, &link); |
| 1007 | if (ret_val) |
| 1008 | return ret_val; |
| 1009 | } |
| 1010 | |
| 1011 | ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
| 1012 | if (ret_val) |
| 1013 | return ret_val; |
| 1014 | |
| 1015 | /* Resetting the phy means we need to re-force TX_CLK in the |
| 1016 | * Extended PHY Specific Control Register to 25MHz clock from |
| 1017 | * the reset value of 2.5MHz. |
| 1018 | */ |
| 1019 | phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| 1020 | ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| 1021 | if (ret_val) |
| 1022 | return ret_val; |
| 1023 | |
| 1024 | /* In addition, we must re-enable CRS on Tx for both half and full |
| 1025 | * duplex. |
| 1026 | */ |
| 1027 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 1028 | if (ret_val) |
| 1029 | return ret_val; |
| 1030 | |
| 1031 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| 1032 | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| 1033 | |
| 1034 | return ret_val; |
| 1035 | } |
| 1036 | |
| 1037 | /** |
| 1038 | * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex |
| 1039 | * @hw: pointer to the HW structure |
| 1040 | * @phy_ctrl: pointer to current value of PHY_CONTROL |
| 1041 | * |
| 1042 | * Forces speed and duplex on the PHY by doing the following: disable flow |
| 1043 | * control, force speed/duplex on the MAC, disable auto speed detection, |
| 1044 | * disable auto-negotiation, configure duplex, configure speed, configure |
| 1045 | * the collision distance, write configuration to CTRL register. The |
| 1046 | * caller must write to the PHY_CONTROL register for these settings to |
| 1047 | * take affect. |
| 1048 | **/ |
| 1049 | void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) |
| 1050 | { |
| 1051 | struct e1000_mac_info *mac = &hw->mac; |
| 1052 | u32 ctrl; |
| 1053 | |
| 1054 | /* Turn off flow control when forcing speed/duplex */ |
| 1055 | mac->fc = e1000_fc_none; |
| 1056 | |
| 1057 | /* Force speed/duplex on the mac */ |
| 1058 | ctrl = er32(CTRL); |
| 1059 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 1060 | ctrl &= ~E1000_CTRL_SPD_SEL; |
| 1061 | |
| 1062 | /* Disable Auto Speed Detection */ |
| 1063 | ctrl &= ~E1000_CTRL_ASDE; |
| 1064 | |
| 1065 | /* Disable autoneg on the phy */ |
| 1066 | *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; |
| 1067 | |
| 1068 | /* Forcing Full or Half Duplex? */ |
| 1069 | if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { |
| 1070 | ctrl &= ~E1000_CTRL_FD; |
| 1071 | *phy_ctrl &= ~MII_CR_FULL_DUPLEX; |
| 1072 | hw_dbg(hw, "Half Duplex\n"); |
| 1073 | } else { |
| 1074 | ctrl |= E1000_CTRL_FD; |
| 1075 | *phy_ctrl |= MII_CR_FULL_DUPLEX; |
| 1076 | hw_dbg(hw, "Full Duplex\n"); |
| 1077 | } |
| 1078 | |
| 1079 | /* Forcing 10mb or 100mb? */ |
| 1080 | if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { |
| 1081 | ctrl |= E1000_CTRL_SPD_100; |
| 1082 | *phy_ctrl |= MII_CR_SPEED_100; |
| 1083 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); |
| 1084 | hw_dbg(hw, "Forcing 100mb\n"); |
| 1085 | } else { |
| 1086 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
| 1087 | *phy_ctrl |= MII_CR_SPEED_10; |
| 1088 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); |
| 1089 | hw_dbg(hw, "Forcing 10mb\n"); |
| 1090 | } |
| 1091 | |
| 1092 | e1000e_config_collision_dist(hw); |
| 1093 | |
| 1094 | ew32(CTRL, ctrl); |
| 1095 | } |
| 1096 | |
| 1097 | /** |
| 1098 | * e1000e_set_d3_lplu_state - Sets low power link up state for D3 |
| 1099 | * @hw: pointer to the HW structure |
| 1100 | * @active: boolean used to enable/disable lplu |
| 1101 | * |
| 1102 | * Success returns 0, Failure returns 1 |
| 1103 | * |
| 1104 | * The low power link up (lplu) state is set to the power management level D3 |
| 1105 | * and SmartSpeed is disabled when active is true, else clear lplu for D3 |
| 1106 | * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU |
| 1107 | * is used during Dx states where the power conservation is most important. |
| 1108 | * During driver activity, SmartSpeed should be enabled so performance is |
| 1109 | * maintained. |
| 1110 | **/ |
| 1111 | s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) |
| 1112 | { |
| 1113 | struct e1000_phy_info *phy = &hw->phy; |
| 1114 | s32 ret_val; |
| 1115 | u16 data; |
| 1116 | |
| 1117 | ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); |
| 1118 | if (ret_val) |
| 1119 | return ret_val; |
| 1120 | |
| 1121 | if (!active) { |
| 1122 | data &= ~IGP02E1000_PM_D3_LPLU; |
| 1123 | ret_val = e1e_wphy(hw, |
| 1124 | IGP02E1000_PHY_POWER_MGMT, |
| 1125 | data); |
| 1126 | if (ret_val) |
| 1127 | return ret_val; |
| 1128 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| 1129 | * during Dx states where the power conservation is most |
| 1130 | * important. During driver activity we should enable |
| 1131 | * SmartSpeed, so performance is maintained. */ |
| 1132 | if (phy->smart_speed == e1000_smart_speed_on) { |
| 1133 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 1134 | &data); |
| 1135 | if (ret_val) |
| 1136 | return ret_val; |
| 1137 | |
| 1138 | data |= IGP01E1000_PSCFR_SMART_SPEED; |
| 1139 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 1140 | data); |
| 1141 | if (ret_val) |
| 1142 | return ret_val; |
| 1143 | } else if (phy->smart_speed == e1000_smart_speed_off) { |
| 1144 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 1145 | &data); |
| 1146 | if (ret_val) |
| 1147 | return ret_val; |
| 1148 | |
| 1149 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 1150 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 1151 | data); |
| 1152 | if (ret_val) |
| 1153 | return ret_val; |
| 1154 | } |
| 1155 | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || |
| 1156 | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || |
| 1157 | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { |
| 1158 | data |= IGP02E1000_PM_D3_LPLU; |
| 1159 | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
| 1160 | if (ret_val) |
| 1161 | return ret_val; |
| 1162 | |
| 1163 | /* When LPLU is enabled, we should disable SmartSpeed */ |
| 1164 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
| 1165 | if (ret_val) |
| 1166 | return ret_val; |
| 1167 | |
| 1168 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 1169 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
| 1170 | } |
| 1171 | |
| 1172 | return ret_val; |
| 1173 | } |
| 1174 | |
| 1175 | /** |
| 1176 | * e1000e_check_downshift - Checks whether a downshift in speed occured |
| 1177 | * @hw: pointer to the HW structure |
| 1178 | * |
| 1179 | * Success returns 0, Failure returns 1 |
| 1180 | * |
| 1181 | * A downshift is detected by querying the PHY link health. |
| 1182 | **/ |
| 1183 | s32 e1000e_check_downshift(struct e1000_hw *hw) |
| 1184 | { |
| 1185 | struct e1000_phy_info *phy = &hw->phy; |
| 1186 | s32 ret_val; |
| 1187 | u16 phy_data, offset, mask; |
| 1188 | |
| 1189 | switch (phy->type) { |
| 1190 | case e1000_phy_m88: |
| 1191 | case e1000_phy_gg82563: |
| 1192 | offset = M88E1000_PHY_SPEC_STATUS; |
| 1193 | mask = M88E1000_PSSR_DOWNSHIFT; |
| 1194 | break; |
| 1195 | case e1000_phy_igp_2: |
| 1196 | case e1000_phy_igp_3: |
| 1197 | offset = IGP01E1000_PHY_LINK_HEALTH; |
| 1198 | mask = IGP01E1000_PLHR_SS_DOWNGRADE; |
| 1199 | break; |
| 1200 | default: |
| 1201 | /* speed downshift not supported */ |
| 1202 | phy->speed_downgraded = 0; |
| 1203 | return 0; |
| 1204 | } |
| 1205 | |
| 1206 | ret_val = e1e_rphy(hw, offset, &phy_data); |
| 1207 | |
| 1208 | if (!ret_val) |
| 1209 | phy->speed_downgraded = (phy_data & mask); |
| 1210 | |
| 1211 | return ret_val; |
| 1212 | } |
| 1213 | |
| 1214 | /** |
| 1215 | * e1000_check_polarity_m88 - Checks the polarity. |
| 1216 | * @hw: pointer to the HW structure |
| 1217 | * |
| 1218 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) |
| 1219 | * |
| 1220 | * Polarity is determined based on the PHY specific status register. |
| 1221 | **/ |
| 1222 | static s32 e1000_check_polarity_m88(struct e1000_hw *hw) |
| 1223 | { |
| 1224 | struct e1000_phy_info *phy = &hw->phy; |
| 1225 | s32 ret_val; |
| 1226 | u16 data; |
| 1227 | |
| 1228 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); |
| 1229 | |
| 1230 | if (!ret_val) |
| 1231 | phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) |
| 1232 | ? e1000_rev_polarity_reversed |
| 1233 | : e1000_rev_polarity_normal; |
| 1234 | |
| 1235 | return ret_val; |
| 1236 | } |
| 1237 | |
| 1238 | /** |
| 1239 | * e1000_check_polarity_igp - Checks the polarity. |
| 1240 | * @hw: pointer to the HW structure |
| 1241 | * |
| 1242 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) |
| 1243 | * |
| 1244 | * Polarity is determined based on the PHY port status register, and the |
| 1245 | * current speed (since there is no polarity at 100Mbps). |
| 1246 | **/ |
| 1247 | static s32 e1000_check_polarity_igp(struct e1000_hw *hw) |
| 1248 | { |
| 1249 | struct e1000_phy_info *phy = &hw->phy; |
| 1250 | s32 ret_val; |
| 1251 | u16 data, offset, mask; |
| 1252 | |
| 1253 | /* Polarity is determined based on the speed of |
| 1254 | * our connection. */ |
| 1255 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); |
| 1256 | if (ret_val) |
| 1257 | return ret_val; |
| 1258 | |
| 1259 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == |
| 1260 | IGP01E1000_PSSR_SPEED_1000MBPS) { |
| 1261 | offset = IGP01E1000_PHY_PCS_INIT_REG; |
| 1262 | mask = IGP01E1000_PHY_POLARITY_MASK; |
| 1263 | } else { |
| 1264 | /* This really only applies to 10Mbps since |
| 1265 | * there is no polarity for 100Mbps (always 0). |
| 1266 | */ |
| 1267 | offset = IGP01E1000_PHY_PORT_STATUS; |
| 1268 | mask = IGP01E1000_PSSR_POLARITY_REVERSED; |
| 1269 | } |
| 1270 | |
| 1271 | ret_val = e1e_rphy(hw, offset, &data); |
| 1272 | |
| 1273 | if (!ret_val) |
| 1274 | phy->cable_polarity = (data & mask) |
| 1275 | ? e1000_rev_polarity_reversed |
| 1276 | : e1000_rev_polarity_normal; |
| 1277 | |
| 1278 | return ret_val; |
| 1279 | } |
| 1280 | |
| 1281 | /** |
| 1282 | * e1000_wait_autoneg - Wait for auto-neg compeletion |
| 1283 | * @hw: pointer to the HW structure |
| 1284 | * |
| 1285 | * Waits for auto-negotiation to complete or for the auto-negotiation time |
| 1286 | * limit to expire, which ever happens first. |
| 1287 | **/ |
| 1288 | static s32 e1000_wait_autoneg(struct e1000_hw *hw) |
| 1289 | { |
| 1290 | s32 ret_val = 0; |
| 1291 | u16 i, phy_status; |
| 1292 | |
| 1293 | /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ |
| 1294 | for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { |
| 1295 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); |
| 1296 | if (ret_val) |
| 1297 | break; |
| 1298 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); |
| 1299 | if (ret_val) |
| 1300 | break; |
| 1301 | if (phy_status & MII_SR_AUTONEG_COMPLETE) |
| 1302 | break; |
| 1303 | msleep(100); |
| 1304 | } |
| 1305 | |
| 1306 | /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation |
| 1307 | * has completed. |
| 1308 | */ |
| 1309 | return ret_val; |
| 1310 | } |
| 1311 | |
| 1312 | /** |
| 1313 | * e1000e_phy_has_link_generic - Polls PHY for link |
| 1314 | * @hw: pointer to the HW structure |
| 1315 | * @iterations: number of times to poll for link |
| 1316 | * @usec_interval: delay between polling attempts |
| 1317 | * @success: pointer to whether polling was successful or not |
| 1318 | * |
| 1319 | * Polls the PHY status register for link, 'iterations' number of times. |
| 1320 | **/ |
| 1321 | s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, |
| 1322 | u32 usec_interval, bool *success) |
| 1323 | { |
| 1324 | s32 ret_val = 0; |
| 1325 | u16 i, phy_status; |
| 1326 | |
| 1327 | for (i = 0; i < iterations; i++) { |
| 1328 | /* Some PHYs require the PHY_STATUS register to be read |
| 1329 | * twice due to the link bit being sticky. No harm doing |
| 1330 | * it across the board. |
| 1331 | */ |
| 1332 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); |
| 1333 | if (ret_val) |
| 1334 | break; |
| 1335 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); |
| 1336 | if (ret_val) |
| 1337 | break; |
| 1338 | if (phy_status & MII_SR_LINK_STATUS) |
| 1339 | break; |
| 1340 | if (usec_interval >= 1000) |
| 1341 | mdelay(usec_interval/1000); |
| 1342 | else |
| 1343 | udelay(usec_interval); |
| 1344 | } |
| 1345 | |
| 1346 | *success = (i < iterations); |
| 1347 | |
| 1348 | return ret_val; |
| 1349 | } |
| 1350 | |
| 1351 | /** |
| 1352 | * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY |
| 1353 | * @hw: pointer to the HW structure |
| 1354 | * |
| 1355 | * Reads the PHY specific status register to retrieve the cable length |
| 1356 | * information. The cable length is determined by averaging the minimum and |
| 1357 | * maximum values to get the "average" cable length. The m88 PHY has four |
| 1358 | * possible cable length values, which are: |
| 1359 | * Register Value Cable Length |
| 1360 | * 0 < 50 meters |
| 1361 | * 1 50 - 80 meters |
| 1362 | * 2 80 - 110 meters |
| 1363 | * 3 110 - 140 meters |
| 1364 | * 4 > 140 meters |
| 1365 | **/ |
| 1366 | s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) |
| 1367 | { |
| 1368 | struct e1000_phy_info *phy = &hw->phy; |
| 1369 | s32 ret_val; |
| 1370 | u16 phy_data, index; |
| 1371 | |
| 1372 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| 1373 | if (ret_val) |
| 1374 | return ret_val; |
| 1375 | |
| 1376 | index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
| 1377 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; |
| 1378 | phy->min_cable_length = e1000_m88_cable_length_table[index]; |
| 1379 | phy->max_cable_length = e1000_m88_cable_length_table[index+1]; |
| 1380 | |
| 1381 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
| 1382 | |
| 1383 | return ret_val; |
| 1384 | } |
| 1385 | |
| 1386 | /** |
| 1387 | * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY |
| 1388 | * @hw: pointer to the HW structure |
| 1389 | * |
| 1390 | * The automatic gain control (agc) normalizes the amplitude of the |
| 1391 | * received signal, adjusting for the attenuation produced by the |
| 1392 | * cable. By reading the AGC registers, which reperesent the |
| 1393 | * cobination of course and fine gain value, the value can be put |
| 1394 | * into a lookup table to obtain the approximate cable length |
| 1395 | * for each channel. |
| 1396 | **/ |
| 1397 | s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) |
| 1398 | { |
| 1399 | struct e1000_phy_info *phy = &hw->phy; |
| 1400 | s32 ret_val; |
| 1401 | u16 phy_data, i, agc_value = 0; |
| 1402 | u16 cur_agc_index, max_agc_index = 0; |
| 1403 | u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; |
| 1404 | u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = |
| 1405 | {IGP02E1000_PHY_AGC_A, |
| 1406 | IGP02E1000_PHY_AGC_B, |
| 1407 | IGP02E1000_PHY_AGC_C, |
| 1408 | IGP02E1000_PHY_AGC_D}; |
| 1409 | |
| 1410 | /* Read the AGC registers for all channels */ |
| 1411 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { |
| 1412 | ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); |
| 1413 | if (ret_val) |
| 1414 | return ret_val; |
| 1415 | |
| 1416 | /* Getting bits 15:9, which represent the combination of |
| 1417 | * course and fine gain values. The result is a number |
| 1418 | * that can be put into the lookup table to obtain the |
| 1419 | * approximate cable length. */ |
| 1420 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & |
| 1421 | IGP02E1000_AGC_LENGTH_MASK; |
| 1422 | |
| 1423 | /* Array index bound check. */ |
| 1424 | if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || |
| 1425 | (cur_agc_index == 0)) |
| 1426 | return -E1000_ERR_PHY; |
| 1427 | |
| 1428 | /* Remove min & max AGC values from calculation. */ |
| 1429 | if (e1000_igp_2_cable_length_table[min_agc_index] > |
| 1430 | e1000_igp_2_cable_length_table[cur_agc_index]) |
| 1431 | min_agc_index = cur_agc_index; |
| 1432 | if (e1000_igp_2_cable_length_table[max_agc_index] < |
| 1433 | e1000_igp_2_cable_length_table[cur_agc_index]) |
| 1434 | max_agc_index = cur_agc_index; |
| 1435 | |
| 1436 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; |
| 1437 | } |
| 1438 | |
| 1439 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + |
| 1440 | e1000_igp_2_cable_length_table[max_agc_index]); |
| 1441 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); |
| 1442 | |
| 1443 | /* Calculate cable length with the error range of +/- 10 meters. */ |
| 1444 | phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? |
| 1445 | (agc_value - IGP02E1000_AGC_RANGE) : 0; |
| 1446 | phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; |
| 1447 | |
| 1448 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
| 1449 | |
| 1450 | return ret_val; |
| 1451 | } |
| 1452 | |
| 1453 | /** |
| 1454 | * e1000e_get_phy_info_m88 - Retrieve PHY information |
| 1455 | * @hw: pointer to the HW structure |
| 1456 | * |
| 1457 | * Valid for only copper links. Read the PHY status register (sticky read) |
| 1458 | * to verify that link is up. Read the PHY special control register to |
| 1459 | * determine the polarity and 10base-T extended distance. Read the PHY |
| 1460 | * special status register to determine MDI/MDIx and current speed. If |
| 1461 | * speed is 1000, then determine cable length, local and remote receiver. |
| 1462 | **/ |
| 1463 | s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) |
| 1464 | { |
| 1465 | struct e1000_phy_info *phy = &hw->phy; |
| 1466 | s32 ret_val; |
| 1467 | u16 phy_data; |
| 1468 | bool link; |
| 1469 | |
| 1470 | if (hw->media_type != e1000_media_type_copper) { |
| 1471 | hw_dbg(hw, "Phy info is only valid for copper media\n"); |
| 1472 | return -E1000_ERR_CONFIG; |
| 1473 | } |
| 1474 | |
| 1475 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| 1476 | if (ret_val) |
| 1477 | return ret_val; |
| 1478 | |
| 1479 | if (!link) { |
| 1480 | hw_dbg(hw, "Phy info is only valid if link is up\n"); |
| 1481 | return -E1000_ERR_CONFIG; |
| 1482 | } |
| 1483 | |
| 1484 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 1485 | if (ret_val) |
| 1486 | return ret_val; |
| 1487 | |
| 1488 | phy->polarity_correction = (phy_data & |
| 1489 | M88E1000_PSCR_POLARITY_REVERSAL); |
| 1490 | |
| 1491 | ret_val = e1000_check_polarity_m88(hw); |
| 1492 | if (ret_val) |
| 1493 | return ret_val; |
| 1494 | |
| 1495 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| 1496 | if (ret_val) |
| 1497 | return ret_val; |
| 1498 | |
| 1499 | phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX); |
| 1500 | |
| 1501 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { |
| 1502 | ret_val = e1000_get_cable_length(hw); |
| 1503 | if (ret_val) |
| 1504 | return ret_val; |
| 1505 | |
| 1506 | ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); |
| 1507 | if (ret_val) |
| 1508 | return ret_val; |
| 1509 | |
| 1510 | phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) |
| 1511 | ? e1000_1000t_rx_status_ok |
| 1512 | : e1000_1000t_rx_status_not_ok; |
| 1513 | |
| 1514 | phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) |
| 1515 | ? e1000_1000t_rx_status_ok |
| 1516 | : e1000_1000t_rx_status_not_ok; |
| 1517 | } else { |
| 1518 | /* Set values to "undefined" */ |
| 1519 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; |
| 1520 | phy->local_rx = e1000_1000t_rx_status_undefined; |
| 1521 | phy->remote_rx = e1000_1000t_rx_status_undefined; |
| 1522 | } |
| 1523 | |
| 1524 | return ret_val; |
| 1525 | } |
| 1526 | |
| 1527 | /** |
| 1528 | * e1000e_get_phy_info_igp - Retrieve igp PHY information |
| 1529 | * @hw: pointer to the HW structure |
| 1530 | * |
| 1531 | * Read PHY status to determine if link is up. If link is up, then |
| 1532 | * set/determine 10base-T extended distance and polarity correction. Read |
| 1533 | * PHY port status to determine MDI/MDIx and speed. Based on the speed, |
| 1534 | * determine on the cable length, local and remote receiver. |
| 1535 | **/ |
| 1536 | s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) |
| 1537 | { |
| 1538 | struct e1000_phy_info *phy = &hw->phy; |
| 1539 | s32 ret_val; |
| 1540 | u16 data; |
| 1541 | bool link; |
| 1542 | |
| 1543 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| 1544 | if (ret_val) |
| 1545 | return ret_val; |
| 1546 | |
| 1547 | if (!link) { |
| 1548 | hw_dbg(hw, "Phy info is only valid if link is up\n"); |
| 1549 | return -E1000_ERR_CONFIG; |
| 1550 | } |
| 1551 | |
| 1552 | phy->polarity_correction = 1; |
| 1553 | |
| 1554 | ret_val = e1000_check_polarity_igp(hw); |
| 1555 | if (ret_val) |
| 1556 | return ret_val; |
| 1557 | |
| 1558 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); |
| 1559 | if (ret_val) |
| 1560 | return ret_val; |
| 1561 | |
| 1562 | phy->is_mdix = (data & IGP01E1000_PSSR_MDIX); |
| 1563 | |
| 1564 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == |
| 1565 | IGP01E1000_PSSR_SPEED_1000MBPS) { |
| 1566 | ret_val = e1000_get_cable_length(hw); |
| 1567 | if (ret_val) |
| 1568 | return ret_val; |
| 1569 | |
| 1570 | ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); |
| 1571 | if (ret_val) |
| 1572 | return ret_val; |
| 1573 | |
| 1574 | phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) |
| 1575 | ? e1000_1000t_rx_status_ok |
| 1576 | : e1000_1000t_rx_status_not_ok; |
| 1577 | |
| 1578 | phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) |
| 1579 | ? e1000_1000t_rx_status_ok |
| 1580 | : e1000_1000t_rx_status_not_ok; |
| 1581 | } else { |
| 1582 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; |
| 1583 | phy->local_rx = e1000_1000t_rx_status_undefined; |
| 1584 | phy->remote_rx = e1000_1000t_rx_status_undefined; |
| 1585 | } |
| 1586 | |
| 1587 | return ret_val; |
| 1588 | } |
| 1589 | |
| 1590 | /** |
| 1591 | * e1000e_phy_sw_reset - PHY software reset |
| 1592 | * @hw: pointer to the HW structure |
| 1593 | * |
| 1594 | * Does a software reset of the PHY by reading the PHY control register and |
| 1595 | * setting/write the control register reset bit to the PHY. |
| 1596 | **/ |
| 1597 | s32 e1000e_phy_sw_reset(struct e1000_hw *hw) |
| 1598 | { |
| 1599 | s32 ret_val; |
| 1600 | u16 phy_ctrl; |
| 1601 | |
| 1602 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); |
| 1603 | if (ret_val) |
| 1604 | return ret_val; |
| 1605 | |
| 1606 | phy_ctrl |= MII_CR_RESET; |
| 1607 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); |
| 1608 | if (ret_val) |
| 1609 | return ret_val; |
| 1610 | |
| 1611 | udelay(1); |
| 1612 | |
| 1613 | return ret_val; |
| 1614 | } |
| 1615 | |
| 1616 | /** |
| 1617 | * e1000e_phy_hw_reset_generic - PHY hardware reset |
| 1618 | * @hw: pointer to the HW structure |
| 1619 | * |
| 1620 | * Verify the reset block is not blocking us from resetting. Acquire |
| 1621 | * semaphore (if necessary) and read/set/write the device control reset |
| 1622 | * bit in the PHY. Wait the appropriate delay time for the device to |
| 1623 | * reset and relase the semaphore (if necessary). |
| 1624 | **/ |
| 1625 | s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) |
| 1626 | { |
| 1627 | struct e1000_phy_info *phy = &hw->phy; |
| 1628 | s32 ret_val; |
| 1629 | u32 ctrl; |
| 1630 | |
| 1631 | ret_val = e1000_check_reset_block(hw); |
| 1632 | if (ret_val) |
| 1633 | return 0; |
| 1634 | |
| 1635 | ret_val = phy->ops.acquire_phy(hw); |
| 1636 | if (ret_val) |
| 1637 | return ret_val; |
| 1638 | |
| 1639 | ctrl = er32(CTRL); |
| 1640 | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); |
| 1641 | e1e_flush(); |
| 1642 | |
| 1643 | udelay(phy->reset_delay_us); |
| 1644 | |
| 1645 | ew32(CTRL, ctrl); |
| 1646 | e1e_flush(); |
| 1647 | |
| 1648 | udelay(150); |
| 1649 | |
| 1650 | phy->ops.release_phy(hw); |
| 1651 | |
| 1652 | return e1000_get_phy_cfg_done(hw); |
| 1653 | } |
| 1654 | |
| 1655 | /** |
| 1656 | * e1000e_get_cfg_done - Generic configuration done |
| 1657 | * @hw: pointer to the HW structure |
| 1658 | * |
| 1659 | * Generic function to wait 10 milli-seconds for configuration to complete |
| 1660 | * and return success. |
| 1661 | **/ |
| 1662 | s32 e1000e_get_cfg_done(struct e1000_hw *hw) |
| 1663 | { |
| 1664 | mdelay(10); |
| 1665 | return 0; |
| 1666 | } |
| 1667 | |
| 1668 | /* Internal function pointers */ |
| 1669 | |
| 1670 | /** |
| 1671 | * e1000_get_phy_cfg_done - Generic PHY configuration done |
| 1672 | * @hw: pointer to the HW structure |
| 1673 | * |
| 1674 | * Return success if silicon family did not implement a family specific |
| 1675 | * get_cfg_done function. |
| 1676 | **/ |
| 1677 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) |
| 1678 | { |
| 1679 | if (hw->phy.ops.get_cfg_done) |
| 1680 | return hw->phy.ops.get_cfg_done(hw); |
| 1681 | |
| 1682 | return 0; |
| 1683 | } |
| 1684 | |
| 1685 | /** |
| 1686 | * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex |
| 1687 | * @hw: pointer to the HW structure |
| 1688 | * |
| 1689 | * When the silicon family has not implemented a forced speed/duplex |
| 1690 | * function for the PHY, simply return 0. |
| 1691 | **/ |
| 1692 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) |
| 1693 | { |
| 1694 | if (hw->phy.ops.force_speed_duplex) |
| 1695 | return hw->phy.ops.force_speed_duplex(hw); |
| 1696 | |
| 1697 | return 0; |
| 1698 | } |
| 1699 | |
| 1700 | /** |
| 1701 | * e1000e_get_phy_type_from_id - Get PHY type from id |
| 1702 | * @phy_id: phy_id read from the phy |
| 1703 | * |
| 1704 | * Returns the phy type from the id. |
| 1705 | **/ |
| 1706 | enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) |
| 1707 | { |
| 1708 | enum e1000_phy_type phy_type = e1000_phy_unknown; |
| 1709 | |
| 1710 | switch (phy_id) { |
| 1711 | case M88E1000_I_PHY_ID: |
| 1712 | case M88E1000_E_PHY_ID: |
| 1713 | case M88E1111_I_PHY_ID: |
| 1714 | case M88E1011_I_PHY_ID: |
| 1715 | phy_type = e1000_phy_m88; |
| 1716 | break; |
| 1717 | case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ |
| 1718 | phy_type = e1000_phy_igp_2; |
| 1719 | break; |
| 1720 | case GG82563_E_PHY_ID: |
| 1721 | phy_type = e1000_phy_gg82563; |
| 1722 | break; |
| 1723 | case IGP03E1000_E_PHY_ID: |
| 1724 | phy_type = e1000_phy_igp_3; |
| 1725 | break; |
| 1726 | case IFE_E_PHY_ID: |
| 1727 | case IFE_PLUS_E_PHY_ID: |
| 1728 | case IFE_C_E_PHY_ID: |
| 1729 | phy_type = e1000_phy_ife; |
| 1730 | break; |
| 1731 | default: |
| 1732 | phy_type = e1000_phy_unknown; |
| 1733 | break; |
| 1734 | } |
| 1735 | return phy_type; |
| 1736 | } |
| 1737 | |
| 1738 | /** |
| 1739 | * e1000e_commit_phy - Soft PHY reset |
| 1740 | * @hw: pointer to the HW structure |
| 1741 | * |
| 1742 | * Performs a soft PHY reset on those that apply. This is a function pointer |
| 1743 | * entry point called by drivers. |
| 1744 | **/ |
| 1745 | s32 e1000e_commit_phy(struct e1000_hw *hw) |
| 1746 | { |
| 1747 | if (hw->phy.ops.commit_phy) |
| 1748 | return hw->phy.ops.commit_phy(hw); |
| 1749 | |
| 1750 | return 0; |
| 1751 | } |
| 1752 | |
| 1753 | /** |
| 1754 | * e1000_set_d0_lplu_state - Sets low power link up state for D0 |
| 1755 | * @hw: pointer to the HW structure |
| 1756 | * @active: boolean used to enable/disable lplu |
| 1757 | * |
| 1758 | * Success returns 0, Failure returns 1 |
| 1759 | * |
| 1760 | * The low power link up (lplu) state is set to the power management level D0 |
| 1761 | * and SmartSpeed is disabled when active is true, else clear lplu for D0 |
| 1762 | * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU |
| 1763 | * is used during Dx states where the power conservation is most important. |
| 1764 | * During driver activity, SmartSpeed should be enabled so performance is |
| 1765 | * maintained. This is a function pointer entry point called by drivers. |
| 1766 | **/ |
| 1767 | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) |
| 1768 | { |
| 1769 | if (hw->phy.ops.set_d0_lplu_state) |
| 1770 | return hw->phy.ops.set_d0_lplu_state(hw, active); |
| 1771 | |
| 1772 | return 0; |
| 1773 | } |