Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/fs/namespace.c |
| 3 | * |
| 4 | * (C) Copyright Al Viro 2000, 2001 |
| 5 | * Released under GPL v2. |
| 6 | * |
| 7 | * Based on code from fs/super.c, copyright Linus Torvalds and others. |
| 8 | * Heavily rewritten. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/config.h> |
| 12 | #include <linux/syscalls.h> |
| 13 | #include <linux/slab.h> |
| 14 | #include <linux/sched.h> |
| 15 | #include <linux/smp_lock.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/quotaops.h> |
| 18 | #include <linux/acct.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/seq_file.h> |
| 21 | #include <linux/namespace.h> |
| 22 | #include <linux/namei.h> |
| 23 | #include <linux/security.h> |
| 24 | #include <linux/mount.h> |
| 25 | #include <asm/uaccess.h> |
| 26 | #include <asm/unistd.h> |
| 27 | |
| 28 | extern int __init init_rootfs(void); |
| 29 | |
| 30 | #ifdef CONFIG_SYSFS |
| 31 | extern int __init sysfs_init(void); |
| 32 | #else |
| 33 | static inline int sysfs_init(void) |
| 34 | { |
| 35 | return 0; |
| 36 | } |
| 37 | #endif |
| 38 | |
| 39 | /* spinlock for vfsmount related operations, inplace of dcache_lock */ |
| 40 | __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); |
| 41 | |
| 42 | static struct list_head *mount_hashtable; |
| 43 | static int hash_mask, hash_bits; |
| 44 | static kmem_cache_t *mnt_cache; |
| 45 | |
| 46 | static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) |
| 47 | { |
| 48 | unsigned long tmp = ((unsigned long) mnt / L1_CACHE_BYTES); |
| 49 | tmp += ((unsigned long) dentry / L1_CACHE_BYTES); |
| 50 | tmp = tmp + (tmp >> hash_bits); |
| 51 | return tmp & hash_mask; |
| 52 | } |
| 53 | |
| 54 | struct vfsmount *alloc_vfsmnt(const char *name) |
| 55 | { |
| 56 | struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL); |
| 57 | if (mnt) { |
| 58 | memset(mnt, 0, sizeof(struct vfsmount)); |
| 59 | atomic_set(&mnt->mnt_count,1); |
| 60 | INIT_LIST_HEAD(&mnt->mnt_hash); |
| 61 | INIT_LIST_HEAD(&mnt->mnt_child); |
| 62 | INIT_LIST_HEAD(&mnt->mnt_mounts); |
| 63 | INIT_LIST_HEAD(&mnt->mnt_list); |
| 64 | INIT_LIST_HEAD(&mnt->mnt_fslink); |
| 65 | if (name) { |
| 66 | int size = strlen(name)+1; |
| 67 | char *newname = kmalloc(size, GFP_KERNEL); |
| 68 | if (newname) { |
| 69 | memcpy(newname, name, size); |
| 70 | mnt->mnt_devname = newname; |
| 71 | } |
| 72 | } |
| 73 | } |
| 74 | return mnt; |
| 75 | } |
| 76 | |
| 77 | void free_vfsmnt(struct vfsmount *mnt) |
| 78 | { |
| 79 | kfree(mnt->mnt_devname); |
| 80 | kmem_cache_free(mnt_cache, mnt); |
| 81 | } |
| 82 | |
| 83 | /* |
| 84 | * Now, lookup_mnt increments the ref count before returning |
| 85 | * the vfsmount struct. |
| 86 | */ |
| 87 | struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) |
| 88 | { |
| 89 | struct list_head * head = mount_hashtable + hash(mnt, dentry); |
| 90 | struct list_head * tmp = head; |
| 91 | struct vfsmount *p, *found = NULL; |
| 92 | |
| 93 | spin_lock(&vfsmount_lock); |
| 94 | for (;;) { |
| 95 | tmp = tmp->next; |
| 96 | p = NULL; |
| 97 | if (tmp == head) |
| 98 | break; |
| 99 | p = list_entry(tmp, struct vfsmount, mnt_hash); |
| 100 | if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { |
| 101 | found = mntget(p); |
| 102 | break; |
| 103 | } |
| 104 | } |
| 105 | spin_unlock(&vfsmount_lock); |
| 106 | return found; |
| 107 | } |
| 108 | |
| 109 | static inline int check_mnt(struct vfsmount *mnt) |
| 110 | { |
| 111 | return mnt->mnt_namespace == current->namespace; |
| 112 | } |
| 113 | |
| 114 | static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd) |
| 115 | { |
| 116 | old_nd->dentry = mnt->mnt_mountpoint; |
| 117 | old_nd->mnt = mnt->mnt_parent; |
| 118 | mnt->mnt_parent = mnt; |
| 119 | mnt->mnt_mountpoint = mnt->mnt_root; |
| 120 | list_del_init(&mnt->mnt_child); |
| 121 | list_del_init(&mnt->mnt_hash); |
| 122 | old_nd->dentry->d_mounted--; |
| 123 | } |
| 124 | |
| 125 | static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd) |
| 126 | { |
| 127 | mnt->mnt_parent = mntget(nd->mnt); |
| 128 | mnt->mnt_mountpoint = dget(nd->dentry); |
| 129 | list_add(&mnt->mnt_hash, mount_hashtable+hash(nd->mnt, nd->dentry)); |
| 130 | list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts); |
| 131 | nd->dentry->d_mounted++; |
| 132 | } |
| 133 | |
| 134 | static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) |
| 135 | { |
| 136 | struct list_head *next = p->mnt_mounts.next; |
| 137 | if (next == &p->mnt_mounts) { |
| 138 | while (1) { |
| 139 | if (p == root) |
| 140 | return NULL; |
| 141 | next = p->mnt_child.next; |
| 142 | if (next != &p->mnt_parent->mnt_mounts) |
| 143 | break; |
| 144 | p = p->mnt_parent; |
| 145 | } |
| 146 | } |
| 147 | return list_entry(next, struct vfsmount, mnt_child); |
| 148 | } |
| 149 | |
| 150 | static struct vfsmount * |
| 151 | clone_mnt(struct vfsmount *old, struct dentry *root) |
| 152 | { |
| 153 | struct super_block *sb = old->mnt_sb; |
| 154 | struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); |
| 155 | |
| 156 | if (mnt) { |
| 157 | mnt->mnt_flags = old->mnt_flags; |
| 158 | atomic_inc(&sb->s_active); |
| 159 | mnt->mnt_sb = sb; |
| 160 | mnt->mnt_root = dget(root); |
| 161 | mnt->mnt_mountpoint = mnt->mnt_root; |
| 162 | mnt->mnt_parent = mnt; |
| 163 | mnt->mnt_namespace = old->mnt_namespace; |
| 164 | |
| 165 | /* stick the duplicate mount on the same expiry list |
| 166 | * as the original if that was on one */ |
| 167 | spin_lock(&vfsmount_lock); |
| 168 | if (!list_empty(&old->mnt_fslink)) |
| 169 | list_add(&mnt->mnt_fslink, &old->mnt_fslink); |
| 170 | spin_unlock(&vfsmount_lock); |
| 171 | } |
| 172 | return mnt; |
| 173 | } |
| 174 | |
| 175 | void __mntput(struct vfsmount *mnt) |
| 176 | { |
| 177 | struct super_block *sb = mnt->mnt_sb; |
| 178 | dput(mnt->mnt_root); |
| 179 | free_vfsmnt(mnt); |
| 180 | deactivate_super(sb); |
| 181 | } |
| 182 | |
| 183 | EXPORT_SYMBOL(__mntput); |
| 184 | |
| 185 | /* iterator */ |
| 186 | static void *m_start(struct seq_file *m, loff_t *pos) |
| 187 | { |
| 188 | struct namespace *n = m->private; |
| 189 | struct list_head *p; |
| 190 | loff_t l = *pos; |
| 191 | |
| 192 | down_read(&n->sem); |
| 193 | list_for_each(p, &n->list) |
| 194 | if (!l--) |
| 195 | return list_entry(p, struct vfsmount, mnt_list); |
| 196 | return NULL; |
| 197 | } |
| 198 | |
| 199 | static void *m_next(struct seq_file *m, void *v, loff_t *pos) |
| 200 | { |
| 201 | struct namespace *n = m->private; |
| 202 | struct list_head *p = ((struct vfsmount *)v)->mnt_list.next; |
| 203 | (*pos)++; |
| 204 | return p==&n->list ? NULL : list_entry(p, struct vfsmount, mnt_list); |
| 205 | } |
| 206 | |
| 207 | static void m_stop(struct seq_file *m, void *v) |
| 208 | { |
| 209 | struct namespace *n = m->private; |
| 210 | up_read(&n->sem); |
| 211 | } |
| 212 | |
| 213 | static inline void mangle(struct seq_file *m, const char *s) |
| 214 | { |
| 215 | seq_escape(m, s, " \t\n\\"); |
| 216 | } |
| 217 | |
| 218 | static int show_vfsmnt(struct seq_file *m, void *v) |
| 219 | { |
| 220 | struct vfsmount *mnt = v; |
| 221 | int err = 0; |
| 222 | static struct proc_fs_info { |
| 223 | int flag; |
| 224 | char *str; |
| 225 | } fs_info[] = { |
| 226 | { MS_SYNCHRONOUS, ",sync" }, |
| 227 | { MS_DIRSYNC, ",dirsync" }, |
| 228 | { MS_MANDLOCK, ",mand" }, |
| 229 | { MS_NOATIME, ",noatime" }, |
| 230 | { MS_NODIRATIME, ",nodiratime" }, |
| 231 | { 0, NULL } |
| 232 | }; |
| 233 | static struct proc_fs_info mnt_info[] = { |
| 234 | { MNT_NOSUID, ",nosuid" }, |
| 235 | { MNT_NODEV, ",nodev" }, |
| 236 | { MNT_NOEXEC, ",noexec" }, |
| 237 | { 0, NULL } |
| 238 | }; |
| 239 | struct proc_fs_info *fs_infop; |
| 240 | |
| 241 | mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); |
| 242 | seq_putc(m, ' '); |
| 243 | seq_path(m, mnt, mnt->mnt_root, " \t\n\\"); |
| 244 | seq_putc(m, ' '); |
| 245 | mangle(m, mnt->mnt_sb->s_type->name); |
| 246 | seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw"); |
| 247 | for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { |
| 248 | if (mnt->mnt_sb->s_flags & fs_infop->flag) |
| 249 | seq_puts(m, fs_infop->str); |
| 250 | } |
| 251 | for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { |
| 252 | if (mnt->mnt_flags & fs_infop->flag) |
| 253 | seq_puts(m, fs_infop->str); |
| 254 | } |
| 255 | if (mnt->mnt_sb->s_op->show_options) |
| 256 | err = mnt->mnt_sb->s_op->show_options(m, mnt); |
| 257 | seq_puts(m, " 0 0\n"); |
| 258 | return err; |
| 259 | } |
| 260 | |
| 261 | struct seq_operations mounts_op = { |
| 262 | .start = m_start, |
| 263 | .next = m_next, |
| 264 | .stop = m_stop, |
| 265 | .show = show_vfsmnt |
| 266 | }; |
| 267 | |
| 268 | /** |
| 269 | * may_umount_tree - check if a mount tree is busy |
| 270 | * @mnt: root of mount tree |
| 271 | * |
| 272 | * This is called to check if a tree of mounts has any |
| 273 | * open files, pwds, chroots or sub mounts that are |
| 274 | * busy. |
| 275 | */ |
| 276 | int may_umount_tree(struct vfsmount *mnt) |
| 277 | { |
| 278 | struct list_head *next; |
| 279 | struct vfsmount *this_parent = mnt; |
| 280 | int actual_refs; |
| 281 | int minimum_refs; |
| 282 | |
| 283 | spin_lock(&vfsmount_lock); |
| 284 | actual_refs = atomic_read(&mnt->mnt_count); |
| 285 | minimum_refs = 2; |
| 286 | repeat: |
| 287 | next = this_parent->mnt_mounts.next; |
| 288 | resume: |
| 289 | while (next != &this_parent->mnt_mounts) { |
| 290 | struct vfsmount *p = list_entry(next, struct vfsmount, mnt_child); |
| 291 | |
| 292 | next = next->next; |
| 293 | |
| 294 | actual_refs += atomic_read(&p->mnt_count); |
| 295 | minimum_refs += 2; |
| 296 | |
| 297 | if (!list_empty(&p->mnt_mounts)) { |
| 298 | this_parent = p; |
| 299 | goto repeat; |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | if (this_parent != mnt) { |
| 304 | next = this_parent->mnt_child.next; |
| 305 | this_parent = this_parent->mnt_parent; |
| 306 | goto resume; |
| 307 | } |
| 308 | spin_unlock(&vfsmount_lock); |
| 309 | |
| 310 | if (actual_refs > minimum_refs) |
| 311 | return -EBUSY; |
| 312 | |
| 313 | return 0; |
| 314 | } |
| 315 | |
| 316 | EXPORT_SYMBOL(may_umount_tree); |
| 317 | |
| 318 | /** |
| 319 | * may_umount - check if a mount point is busy |
| 320 | * @mnt: root of mount |
| 321 | * |
| 322 | * This is called to check if a mount point has any |
| 323 | * open files, pwds, chroots or sub mounts. If the |
| 324 | * mount has sub mounts this will return busy |
| 325 | * regardless of whether the sub mounts are busy. |
| 326 | * |
| 327 | * Doesn't take quota and stuff into account. IOW, in some cases it will |
| 328 | * give false negatives. The main reason why it's here is that we need |
| 329 | * a non-destructive way to look for easily umountable filesystems. |
| 330 | */ |
| 331 | int may_umount(struct vfsmount *mnt) |
| 332 | { |
| 333 | if (atomic_read(&mnt->mnt_count) > 2) |
| 334 | return -EBUSY; |
| 335 | return 0; |
| 336 | } |
| 337 | |
| 338 | EXPORT_SYMBOL(may_umount); |
| 339 | |
Adrian Bunk | 52c1da3 | 2005-06-23 22:05:33 -0700 | [diff] [blame] | 340 | static void umount_tree(struct vfsmount *mnt) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 341 | { |
| 342 | struct vfsmount *p; |
| 343 | LIST_HEAD(kill); |
| 344 | |
| 345 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 346 | list_del(&p->mnt_list); |
| 347 | list_add(&p->mnt_list, &kill); |
| 348 | } |
| 349 | |
| 350 | while (!list_empty(&kill)) { |
| 351 | mnt = list_entry(kill.next, struct vfsmount, mnt_list); |
| 352 | list_del_init(&mnt->mnt_list); |
| 353 | list_del_init(&mnt->mnt_fslink); |
| 354 | if (mnt->mnt_parent == mnt) { |
| 355 | spin_unlock(&vfsmount_lock); |
| 356 | } else { |
| 357 | struct nameidata old_nd; |
| 358 | detach_mnt(mnt, &old_nd); |
| 359 | spin_unlock(&vfsmount_lock); |
| 360 | path_release(&old_nd); |
| 361 | } |
| 362 | mntput(mnt); |
| 363 | spin_lock(&vfsmount_lock); |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | static int do_umount(struct vfsmount *mnt, int flags) |
| 368 | { |
| 369 | struct super_block * sb = mnt->mnt_sb; |
| 370 | int retval; |
| 371 | |
| 372 | retval = security_sb_umount(mnt, flags); |
| 373 | if (retval) |
| 374 | return retval; |
| 375 | |
| 376 | /* |
| 377 | * Allow userspace to request a mountpoint be expired rather than |
| 378 | * unmounting unconditionally. Unmount only happens if: |
| 379 | * (1) the mark is already set (the mark is cleared by mntput()) |
| 380 | * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] |
| 381 | */ |
| 382 | if (flags & MNT_EXPIRE) { |
| 383 | if (mnt == current->fs->rootmnt || |
| 384 | flags & (MNT_FORCE | MNT_DETACH)) |
| 385 | return -EINVAL; |
| 386 | |
| 387 | if (atomic_read(&mnt->mnt_count) != 2) |
| 388 | return -EBUSY; |
| 389 | |
| 390 | if (!xchg(&mnt->mnt_expiry_mark, 1)) |
| 391 | return -EAGAIN; |
| 392 | } |
| 393 | |
| 394 | /* |
| 395 | * If we may have to abort operations to get out of this |
| 396 | * mount, and they will themselves hold resources we must |
| 397 | * allow the fs to do things. In the Unix tradition of |
| 398 | * 'Gee thats tricky lets do it in userspace' the umount_begin |
| 399 | * might fail to complete on the first run through as other tasks |
| 400 | * must return, and the like. Thats for the mount program to worry |
| 401 | * about for the moment. |
| 402 | */ |
| 403 | |
| 404 | lock_kernel(); |
| 405 | if( (flags&MNT_FORCE) && sb->s_op->umount_begin) |
| 406 | sb->s_op->umount_begin(sb); |
| 407 | unlock_kernel(); |
| 408 | |
| 409 | /* |
| 410 | * No sense to grab the lock for this test, but test itself looks |
| 411 | * somewhat bogus. Suggestions for better replacement? |
| 412 | * Ho-hum... In principle, we might treat that as umount + switch |
| 413 | * to rootfs. GC would eventually take care of the old vfsmount. |
| 414 | * Actually it makes sense, especially if rootfs would contain a |
| 415 | * /reboot - static binary that would close all descriptors and |
| 416 | * call reboot(9). Then init(8) could umount root and exec /reboot. |
| 417 | */ |
| 418 | if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) { |
| 419 | /* |
| 420 | * Special case for "unmounting" root ... |
| 421 | * we just try to remount it readonly. |
| 422 | */ |
| 423 | down_write(&sb->s_umount); |
| 424 | if (!(sb->s_flags & MS_RDONLY)) { |
| 425 | lock_kernel(); |
| 426 | DQUOT_OFF(sb); |
| 427 | retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); |
| 428 | unlock_kernel(); |
| 429 | } |
| 430 | up_write(&sb->s_umount); |
| 431 | return retval; |
| 432 | } |
| 433 | |
| 434 | down_write(¤t->namespace->sem); |
| 435 | spin_lock(&vfsmount_lock); |
| 436 | |
| 437 | if (atomic_read(&sb->s_active) == 1) { |
| 438 | /* last instance - try to be smart */ |
| 439 | spin_unlock(&vfsmount_lock); |
| 440 | lock_kernel(); |
| 441 | DQUOT_OFF(sb); |
| 442 | acct_auto_close(sb); |
| 443 | unlock_kernel(); |
| 444 | security_sb_umount_close(mnt); |
| 445 | spin_lock(&vfsmount_lock); |
| 446 | } |
| 447 | retval = -EBUSY; |
| 448 | if (atomic_read(&mnt->mnt_count) == 2 || flags & MNT_DETACH) { |
| 449 | if (!list_empty(&mnt->mnt_list)) |
| 450 | umount_tree(mnt); |
| 451 | retval = 0; |
| 452 | } |
| 453 | spin_unlock(&vfsmount_lock); |
| 454 | if (retval) |
| 455 | security_sb_umount_busy(mnt); |
| 456 | up_write(¤t->namespace->sem); |
| 457 | return retval; |
| 458 | } |
| 459 | |
| 460 | /* |
| 461 | * Now umount can handle mount points as well as block devices. |
| 462 | * This is important for filesystems which use unnamed block devices. |
| 463 | * |
| 464 | * We now support a flag for forced unmount like the other 'big iron' |
| 465 | * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD |
| 466 | */ |
| 467 | |
| 468 | asmlinkage long sys_umount(char __user * name, int flags) |
| 469 | { |
| 470 | struct nameidata nd; |
| 471 | int retval; |
| 472 | |
| 473 | retval = __user_walk(name, LOOKUP_FOLLOW, &nd); |
| 474 | if (retval) |
| 475 | goto out; |
| 476 | retval = -EINVAL; |
| 477 | if (nd.dentry != nd.mnt->mnt_root) |
| 478 | goto dput_and_out; |
| 479 | if (!check_mnt(nd.mnt)) |
| 480 | goto dput_and_out; |
| 481 | |
| 482 | retval = -EPERM; |
| 483 | if (!capable(CAP_SYS_ADMIN)) |
| 484 | goto dput_and_out; |
| 485 | |
| 486 | retval = do_umount(nd.mnt, flags); |
| 487 | dput_and_out: |
| 488 | path_release_on_umount(&nd); |
| 489 | out: |
| 490 | return retval; |
| 491 | } |
| 492 | |
| 493 | #ifdef __ARCH_WANT_SYS_OLDUMOUNT |
| 494 | |
| 495 | /* |
| 496 | * The 2.0 compatible umount. No flags. |
| 497 | */ |
| 498 | |
| 499 | asmlinkage long sys_oldumount(char __user * name) |
| 500 | { |
| 501 | return sys_umount(name,0); |
| 502 | } |
| 503 | |
| 504 | #endif |
| 505 | |
| 506 | static int mount_is_safe(struct nameidata *nd) |
| 507 | { |
| 508 | if (capable(CAP_SYS_ADMIN)) |
| 509 | return 0; |
| 510 | return -EPERM; |
| 511 | #ifdef notyet |
| 512 | if (S_ISLNK(nd->dentry->d_inode->i_mode)) |
| 513 | return -EPERM; |
| 514 | if (nd->dentry->d_inode->i_mode & S_ISVTX) { |
| 515 | if (current->uid != nd->dentry->d_inode->i_uid) |
| 516 | return -EPERM; |
| 517 | } |
| 518 | if (permission(nd->dentry->d_inode, MAY_WRITE, nd)) |
| 519 | return -EPERM; |
| 520 | return 0; |
| 521 | #endif |
| 522 | } |
| 523 | |
| 524 | static int |
| 525 | lives_below_in_same_fs(struct dentry *d, struct dentry *dentry) |
| 526 | { |
| 527 | while (1) { |
| 528 | if (d == dentry) |
| 529 | return 1; |
| 530 | if (d == NULL || d == d->d_parent) |
| 531 | return 0; |
| 532 | d = d->d_parent; |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | static struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry) |
| 537 | { |
| 538 | struct vfsmount *res, *p, *q, *r, *s; |
| 539 | struct list_head *h; |
| 540 | struct nameidata nd; |
| 541 | |
| 542 | res = q = clone_mnt(mnt, dentry); |
| 543 | if (!q) |
| 544 | goto Enomem; |
| 545 | q->mnt_mountpoint = mnt->mnt_mountpoint; |
| 546 | |
| 547 | p = mnt; |
| 548 | for (h = mnt->mnt_mounts.next; h != &mnt->mnt_mounts; h = h->next) { |
| 549 | r = list_entry(h, struct vfsmount, mnt_child); |
| 550 | if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry)) |
| 551 | continue; |
| 552 | |
| 553 | for (s = r; s; s = next_mnt(s, r)) { |
| 554 | while (p != s->mnt_parent) { |
| 555 | p = p->mnt_parent; |
| 556 | q = q->mnt_parent; |
| 557 | } |
| 558 | p = s; |
| 559 | nd.mnt = q; |
| 560 | nd.dentry = p->mnt_mountpoint; |
| 561 | q = clone_mnt(p, p->mnt_root); |
| 562 | if (!q) |
| 563 | goto Enomem; |
| 564 | spin_lock(&vfsmount_lock); |
| 565 | list_add_tail(&q->mnt_list, &res->mnt_list); |
| 566 | attach_mnt(q, &nd); |
| 567 | spin_unlock(&vfsmount_lock); |
| 568 | } |
| 569 | } |
| 570 | return res; |
| 571 | Enomem: |
| 572 | if (res) { |
| 573 | spin_lock(&vfsmount_lock); |
| 574 | umount_tree(res); |
| 575 | spin_unlock(&vfsmount_lock); |
| 576 | } |
| 577 | return NULL; |
| 578 | } |
| 579 | |
| 580 | static int graft_tree(struct vfsmount *mnt, struct nameidata *nd) |
| 581 | { |
| 582 | int err; |
| 583 | if (mnt->mnt_sb->s_flags & MS_NOUSER) |
| 584 | return -EINVAL; |
| 585 | |
| 586 | if (S_ISDIR(nd->dentry->d_inode->i_mode) != |
| 587 | S_ISDIR(mnt->mnt_root->d_inode->i_mode)) |
| 588 | return -ENOTDIR; |
| 589 | |
| 590 | err = -ENOENT; |
| 591 | down(&nd->dentry->d_inode->i_sem); |
| 592 | if (IS_DEADDIR(nd->dentry->d_inode)) |
| 593 | goto out_unlock; |
| 594 | |
| 595 | err = security_sb_check_sb(mnt, nd); |
| 596 | if (err) |
| 597 | goto out_unlock; |
| 598 | |
| 599 | err = -ENOENT; |
| 600 | spin_lock(&vfsmount_lock); |
| 601 | if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry)) { |
| 602 | struct list_head head; |
| 603 | |
| 604 | attach_mnt(mnt, nd); |
| 605 | list_add_tail(&head, &mnt->mnt_list); |
| 606 | list_splice(&head, current->namespace->list.prev); |
| 607 | mntget(mnt); |
| 608 | err = 0; |
| 609 | } |
| 610 | spin_unlock(&vfsmount_lock); |
| 611 | out_unlock: |
| 612 | up(&nd->dentry->d_inode->i_sem); |
| 613 | if (!err) |
| 614 | security_sb_post_addmount(mnt, nd); |
| 615 | return err; |
| 616 | } |
| 617 | |
| 618 | /* |
| 619 | * do loopback mount. |
| 620 | */ |
| 621 | static int do_loopback(struct nameidata *nd, char *old_name, int recurse) |
| 622 | { |
| 623 | struct nameidata old_nd; |
| 624 | struct vfsmount *mnt = NULL; |
| 625 | int err = mount_is_safe(nd); |
| 626 | if (err) |
| 627 | return err; |
| 628 | if (!old_name || !*old_name) |
| 629 | return -EINVAL; |
| 630 | err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); |
| 631 | if (err) |
| 632 | return err; |
| 633 | |
| 634 | down_write(¤t->namespace->sem); |
| 635 | err = -EINVAL; |
| 636 | if (check_mnt(nd->mnt) && (!recurse || check_mnt(old_nd.mnt))) { |
| 637 | err = -ENOMEM; |
| 638 | if (recurse) |
| 639 | mnt = copy_tree(old_nd.mnt, old_nd.dentry); |
| 640 | else |
| 641 | mnt = clone_mnt(old_nd.mnt, old_nd.dentry); |
| 642 | } |
| 643 | |
| 644 | if (mnt) { |
| 645 | /* stop bind mounts from expiring */ |
| 646 | spin_lock(&vfsmount_lock); |
| 647 | list_del_init(&mnt->mnt_fslink); |
| 648 | spin_unlock(&vfsmount_lock); |
| 649 | |
| 650 | err = graft_tree(mnt, nd); |
| 651 | if (err) { |
| 652 | spin_lock(&vfsmount_lock); |
| 653 | umount_tree(mnt); |
| 654 | spin_unlock(&vfsmount_lock); |
| 655 | } else |
| 656 | mntput(mnt); |
| 657 | } |
| 658 | |
| 659 | up_write(¤t->namespace->sem); |
| 660 | path_release(&old_nd); |
| 661 | return err; |
| 662 | } |
| 663 | |
| 664 | /* |
| 665 | * change filesystem flags. dir should be a physical root of filesystem. |
| 666 | * If you've mounted a non-root directory somewhere and want to do remount |
| 667 | * on it - tough luck. |
| 668 | */ |
| 669 | |
| 670 | static int do_remount(struct nameidata *nd, int flags, int mnt_flags, |
| 671 | void *data) |
| 672 | { |
| 673 | int err; |
| 674 | struct super_block * sb = nd->mnt->mnt_sb; |
| 675 | |
| 676 | if (!capable(CAP_SYS_ADMIN)) |
| 677 | return -EPERM; |
| 678 | |
| 679 | if (!check_mnt(nd->mnt)) |
| 680 | return -EINVAL; |
| 681 | |
| 682 | if (nd->dentry != nd->mnt->mnt_root) |
| 683 | return -EINVAL; |
| 684 | |
| 685 | down_write(&sb->s_umount); |
| 686 | err = do_remount_sb(sb, flags, data, 0); |
| 687 | if (!err) |
| 688 | nd->mnt->mnt_flags=mnt_flags; |
| 689 | up_write(&sb->s_umount); |
| 690 | if (!err) |
| 691 | security_sb_post_remount(nd->mnt, flags, data); |
| 692 | return err; |
| 693 | } |
| 694 | |
| 695 | static int do_move_mount(struct nameidata *nd, char *old_name) |
| 696 | { |
| 697 | struct nameidata old_nd, parent_nd; |
| 698 | struct vfsmount *p; |
| 699 | int err = 0; |
| 700 | if (!capable(CAP_SYS_ADMIN)) |
| 701 | return -EPERM; |
| 702 | if (!old_name || !*old_name) |
| 703 | return -EINVAL; |
| 704 | err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); |
| 705 | if (err) |
| 706 | return err; |
| 707 | |
| 708 | down_write(¤t->namespace->sem); |
| 709 | while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) |
| 710 | ; |
| 711 | err = -EINVAL; |
| 712 | if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt)) |
| 713 | goto out; |
| 714 | |
| 715 | err = -ENOENT; |
| 716 | down(&nd->dentry->d_inode->i_sem); |
| 717 | if (IS_DEADDIR(nd->dentry->d_inode)) |
| 718 | goto out1; |
| 719 | |
| 720 | spin_lock(&vfsmount_lock); |
| 721 | if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry)) |
| 722 | goto out2; |
| 723 | |
| 724 | err = -EINVAL; |
| 725 | if (old_nd.dentry != old_nd.mnt->mnt_root) |
| 726 | goto out2; |
| 727 | |
| 728 | if (old_nd.mnt == old_nd.mnt->mnt_parent) |
| 729 | goto out2; |
| 730 | |
| 731 | if (S_ISDIR(nd->dentry->d_inode->i_mode) != |
| 732 | S_ISDIR(old_nd.dentry->d_inode->i_mode)) |
| 733 | goto out2; |
| 734 | |
| 735 | err = -ELOOP; |
| 736 | for (p = nd->mnt; p->mnt_parent!=p; p = p->mnt_parent) |
| 737 | if (p == old_nd.mnt) |
| 738 | goto out2; |
| 739 | err = 0; |
| 740 | |
| 741 | detach_mnt(old_nd.mnt, &parent_nd); |
| 742 | attach_mnt(old_nd.mnt, nd); |
| 743 | |
| 744 | /* if the mount is moved, it should no longer be expire |
| 745 | * automatically */ |
| 746 | list_del_init(&old_nd.mnt->mnt_fslink); |
| 747 | out2: |
| 748 | spin_unlock(&vfsmount_lock); |
| 749 | out1: |
| 750 | up(&nd->dentry->d_inode->i_sem); |
| 751 | out: |
| 752 | up_write(¤t->namespace->sem); |
| 753 | if (!err) |
| 754 | path_release(&parent_nd); |
| 755 | path_release(&old_nd); |
| 756 | return err; |
| 757 | } |
| 758 | |
| 759 | /* |
| 760 | * create a new mount for userspace and request it to be added into the |
| 761 | * namespace's tree |
| 762 | */ |
| 763 | static int do_new_mount(struct nameidata *nd, char *type, int flags, |
| 764 | int mnt_flags, char *name, void *data) |
| 765 | { |
| 766 | struct vfsmount *mnt; |
| 767 | |
| 768 | if (!type || !memchr(type, 0, PAGE_SIZE)) |
| 769 | return -EINVAL; |
| 770 | |
| 771 | /* we need capabilities... */ |
| 772 | if (!capable(CAP_SYS_ADMIN)) |
| 773 | return -EPERM; |
| 774 | |
| 775 | mnt = do_kern_mount(type, flags, name, data); |
| 776 | if (IS_ERR(mnt)) |
| 777 | return PTR_ERR(mnt); |
| 778 | |
| 779 | return do_add_mount(mnt, nd, mnt_flags, NULL); |
| 780 | } |
| 781 | |
| 782 | /* |
| 783 | * add a mount into a namespace's mount tree |
| 784 | * - provide the option of adding the new mount to an expiration list |
| 785 | */ |
| 786 | int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd, |
| 787 | int mnt_flags, struct list_head *fslist) |
| 788 | { |
| 789 | int err; |
| 790 | |
| 791 | down_write(¤t->namespace->sem); |
| 792 | /* Something was mounted here while we slept */ |
| 793 | while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) |
| 794 | ; |
| 795 | err = -EINVAL; |
| 796 | if (!check_mnt(nd->mnt)) |
| 797 | goto unlock; |
| 798 | |
| 799 | /* Refuse the same filesystem on the same mount point */ |
| 800 | err = -EBUSY; |
| 801 | if (nd->mnt->mnt_sb == newmnt->mnt_sb && |
| 802 | nd->mnt->mnt_root == nd->dentry) |
| 803 | goto unlock; |
| 804 | |
| 805 | err = -EINVAL; |
| 806 | if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) |
| 807 | goto unlock; |
| 808 | |
| 809 | newmnt->mnt_flags = mnt_flags; |
| 810 | err = graft_tree(newmnt, nd); |
| 811 | |
| 812 | if (err == 0 && fslist) { |
| 813 | /* add to the specified expiration list */ |
| 814 | spin_lock(&vfsmount_lock); |
| 815 | list_add_tail(&newmnt->mnt_fslink, fslist); |
| 816 | spin_unlock(&vfsmount_lock); |
| 817 | } |
| 818 | |
| 819 | unlock: |
| 820 | up_write(¤t->namespace->sem); |
| 821 | mntput(newmnt); |
| 822 | return err; |
| 823 | } |
| 824 | |
| 825 | EXPORT_SYMBOL_GPL(do_add_mount); |
| 826 | |
| 827 | /* |
| 828 | * process a list of expirable mountpoints with the intent of discarding any |
| 829 | * mountpoints that aren't in use and haven't been touched since last we came |
| 830 | * here |
| 831 | */ |
| 832 | void mark_mounts_for_expiry(struct list_head *mounts) |
| 833 | { |
| 834 | struct namespace *namespace; |
| 835 | struct vfsmount *mnt, *next; |
| 836 | LIST_HEAD(graveyard); |
| 837 | |
| 838 | if (list_empty(mounts)) |
| 839 | return; |
| 840 | |
| 841 | spin_lock(&vfsmount_lock); |
| 842 | |
| 843 | /* extract from the expiration list every vfsmount that matches the |
| 844 | * following criteria: |
| 845 | * - only referenced by its parent vfsmount |
| 846 | * - still marked for expiry (marked on the last call here; marks are |
| 847 | * cleared by mntput()) |
| 848 | */ |
| 849 | list_for_each_entry_safe(mnt, next, mounts, mnt_fslink) { |
| 850 | if (!xchg(&mnt->mnt_expiry_mark, 1) || |
| 851 | atomic_read(&mnt->mnt_count) != 1) |
| 852 | continue; |
| 853 | |
| 854 | mntget(mnt); |
| 855 | list_move(&mnt->mnt_fslink, &graveyard); |
| 856 | } |
| 857 | |
| 858 | /* |
| 859 | * go through the vfsmounts we've just consigned to the graveyard to |
| 860 | * - check that they're still dead |
| 861 | * - delete the vfsmount from the appropriate namespace under lock |
| 862 | * - dispose of the corpse |
| 863 | */ |
| 864 | while (!list_empty(&graveyard)) { |
| 865 | mnt = list_entry(graveyard.next, struct vfsmount, mnt_fslink); |
| 866 | list_del_init(&mnt->mnt_fslink); |
| 867 | |
| 868 | /* don't do anything if the namespace is dead - all the |
| 869 | * vfsmounts from it are going away anyway */ |
| 870 | namespace = mnt->mnt_namespace; |
| 871 | if (!namespace || atomic_read(&namespace->count) <= 0) |
| 872 | continue; |
| 873 | get_namespace(namespace); |
| 874 | |
| 875 | spin_unlock(&vfsmount_lock); |
| 876 | down_write(&namespace->sem); |
| 877 | spin_lock(&vfsmount_lock); |
| 878 | |
| 879 | /* check that it is still dead: the count should now be 2 - as |
| 880 | * contributed by the vfsmount parent and the mntget above */ |
| 881 | if (atomic_read(&mnt->mnt_count) == 2) { |
| 882 | struct vfsmount *xdmnt; |
| 883 | struct dentry *xdentry; |
| 884 | |
| 885 | /* delete from the namespace */ |
| 886 | list_del_init(&mnt->mnt_list); |
| 887 | list_del_init(&mnt->mnt_child); |
| 888 | list_del_init(&mnt->mnt_hash); |
| 889 | mnt->mnt_mountpoint->d_mounted--; |
| 890 | |
| 891 | xdentry = mnt->mnt_mountpoint; |
| 892 | mnt->mnt_mountpoint = mnt->mnt_root; |
| 893 | xdmnt = mnt->mnt_parent; |
| 894 | mnt->mnt_parent = mnt; |
| 895 | |
| 896 | spin_unlock(&vfsmount_lock); |
| 897 | |
| 898 | mntput(xdmnt); |
| 899 | dput(xdentry); |
| 900 | |
| 901 | /* now lay it to rest if this was the last ref on the |
| 902 | * superblock */ |
| 903 | if (atomic_read(&mnt->mnt_sb->s_active) == 1) { |
| 904 | /* last instance - try to be smart */ |
| 905 | lock_kernel(); |
| 906 | DQUOT_OFF(mnt->mnt_sb); |
| 907 | acct_auto_close(mnt->mnt_sb); |
| 908 | unlock_kernel(); |
| 909 | } |
| 910 | |
| 911 | mntput(mnt); |
| 912 | } else { |
| 913 | /* someone brought it back to life whilst we didn't |
| 914 | * have any locks held so return it to the expiration |
| 915 | * list */ |
| 916 | list_add_tail(&mnt->mnt_fslink, mounts); |
| 917 | spin_unlock(&vfsmount_lock); |
| 918 | } |
| 919 | |
| 920 | up_write(&namespace->sem); |
| 921 | |
| 922 | mntput(mnt); |
| 923 | put_namespace(namespace); |
| 924 | |
| 925 | spin_lock(&vfsmount_lock); |
| 926 | } |
| 927 | |
| 928 | spin_unlock(&vfsmount_lock); |
| 929 | } |
| 930 | |
| 931 | EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); |
| 932 | |
| 933 | /* |
| 934 | * Some copy_from_user() implementations do not return the exact number of |
| 935 | * bytes remaining to copy on a fault. But copy_mount_options() requires that. |
| 936 | * Note that this function differs from copy_from_user() in that it will oops |
| 937 | * on bad values of `to', rather than returning a short copy. |
| 938 | */ |
| 939 | static long |
| 940 | exact_copy_from_user(void *to, const void __user *from, unsigned long n) |
| 941 | { |
| 942 | char *t = to; |
| 943 | const char __user *f = from; |
| 944 | char c; |
| 945 | |
| 946 | if (!access_ok(VERIFY_READ, from, n)) |
| 947 | return n; |
| 948 | |
| 949 | while (n) { |
| 950 | if (__get_user(c, f)) { |
| 951 | memset(t, 0, n); |
| 952 | break; |
| 953 | } |
| 954 | *t++ = c; |
| 955 | f++; |
| 956 | n--; |
| 957 | } |
| 958 | return n; |
| 959 | } |
| 960 | |
| 961 | int copy_mount_options(const void __user *data, unsigned long *where) |
| 962 | { |
| 963 | int i; |
| 964 | unsigned long page; |
| 965 | unsigned long size; |
| 966 | |
| 967 | *where = 0; |
| 968 | if (!data) |
| 969 | return 0; |
| 970 | |
| 971 | if (!(page = __get_free_page(GFP_KERNEL))) |
| 972 | return -ENOMEM; |
| 973 | |
| 974 | /* We only care that *some* data at the address the user |
| 975 | * gave us is valid. Just in case, we'll zero |
| 976 | * the remainder of the page. |
| 977 | */ |
| 978 | /* copy_from_user cannot cross TASK_SIZE ! */ |
| 979 | size = TASK_SIZE - (unsigned long)data; |
| 980 | if (size > PAGE_SIZE) |
| 981 | size = PAGE_SIZE; |
| 982 | |
| 983 | i = size - exact_copy_from_user((void *)page, data, size); |
| 984 | if (!i) { |
| 985 | free_page(page); |
| 986 | return -EFAULT; |
| 987 | } |
| 988 | if (i != PAGE_SIZE) |
| 989 | memset((char *)page + i, 0, PAGE_SIZE - i); |
| 990 | *where = page; |
| 991 | return 0; |
| 992 | } |
| 993 | |
| 994 | /* |
| 995 | * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to |
| 996 | * be given to the mount() call (ie: read-only, no-dev, no-suid etc). |
| 997 | * |
| 998 | * data is a (void *) that can point to any structure up to |
| 999 | * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent |
| 1000 | * information (or be NULL). |
| 1001 | * |
| 1002 | * Pre-0.97 versions of mount() didn't have a flags word. |
| 1003 | * When the flags word was introduced its top half was required |
| 1004 | * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. |
| 1005 | * Therefore, if this magic number is present, it carries no information |
| 1006 | * and must be discarded. |
| 1007 | */ |
| 1008 | long do_mount(char * dev_name, char * dir_name, char *type_page, |
| 1009 | unsigned long flags, void *data_page) |
| 1010 | { |
| 1011 | struct nameidata nd; |
| 1012 | int retval = 0; |
| 1013 | int mnt_flags = 0; |
| 1014 | |
| 1015 | /* Discard magic */ |
| 1016 | if ((flags & MS_MGC_MSK) == MS_MGC_VAL) |
| 1017 | flags &= ~MS_MGC_MSK; |
| 1018 | |
| 1019 | /* Basic sanity checks */ |
| 1020 | |
| 1021 | if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) |
| 1022 | return -EINVAL; |
| 1023 | if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) |
| 1024 | return -EINVAL; |
| 1025 | |
| 1026 | if (data_page) |
| 1027 | ((char *)data_page)[PAGE_SIZE - 1] = 0; |
| 1028 | |
| 1029 | /* Separate the per-mountpoint flags */ |
| 1030 | if (flags & MS_NOSUID) |
| 1031 | mnt_flags |= MNT_NOSUID; |
| 1032 | if (flags & MS_NODEV) |
| 1033 | mnt_flags |= MNT_NODEV; |
| 1034 | if (flags & MS_NOEXEC) |
| 1035 | mnt_flags |= MNT_NOEXEC; |
| 1036 | flags &= ~(MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_ACTIVE); |
| 1037 | |
| 1038 | /* ... and get the mountpoint */ |
| 1039 | retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd); |
| 1040 | if (retval) |
| 1041 | return retval; |
| 1042 | |
| 1043 | retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page); |
| 1044 | if (retval) |
| 1045 | goto dput_out; |
| 1046 | |
| 1047 | if (flags & MS_REMOUNT) |
| 1048 | retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags, |
| 1049 | data_page); |
| 1050 | else if (flags & MS_BIND) |
| 1051 | retval = do_loopback(&nd, dev_name, flags & MS_REC); |
| 1052 | else if (flags & MS_MOVE) |
| 1053 | retval = do_move_mount(&nd, dev_name); |
| 1054 | else |
| 1055 | retval = do_new_mount(&nd, type_page, flags, mnt_flags, |
| 1056 | dev_name, data_page); |
| 1057 | dput_out: |
| 1058 | path_release(&nd); |
| 1059 | return retval; |
| 1060 | } |
| 1061 | |
| 1062 | int copy_namespace(int flags, struct task_struct *tsk) |
| 1063 | { |
| 1064 | struct namespace *namespace = tsk->namespace; |
| 1065 | struct namespace *new_ns; |
| 1066 | struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL; |
| 1067 | struct fs_struct *fs = tsk->fs; |
| 1068 | struct vfsmount *p, *q; |
| 1069 | |
| 1070 | if (!namespace) |
| 1071 | return 0; |
| 1072 | |
| 1073 | get_namespace(namespace); |
| 1074 | |
| 1075 | if (!(flags & CLONE_NEWNS)) |
| 1076 | return 0; |
| 1077 | |
| 1078 | if (!capable(CAP_SYS_ADMIN)) { |
| 1079 | put_namespace(namespace); |
| 1080 | return -EPERM; |
| 1081 | } |
| 1082 | |
| 1083 | new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL); |
| 1084 | if (!new_ns) |
| 1085 | goto out; |
| 1086 | |
| 1087 | atomic_set(&new_ns->count, 1); |
| 1088 | init_rwsem(&new_ns->sem); |
| 1089 | INIT_LIST_HEAD(&new_ns->list); |
| 1090 | |
| 1091 | down_write(&tsk->namespace->sem); |
| 1092 | /* First pass: copy the tree topology */ |
| 1093 | new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root); |
| 1094 | if (!new_ns->root) { |
| 1095 | up_write(&tsk->namespace->sem); |
| 1096 | kfree(new_ns); |
| 1097 | goto out; |
| 1098 | } |
| 1099 | spin_lock(&vfsmount_lock); |
| 1100 | list_add_tail(&new_ns->list, &new_ns->root->mnt_list); |
| 1101 | spin_unlock(&vfsmount_lock); |
| 1102 | |
| 1103 | /* |
| 1104 | * Second pass: switch the tsk->fs->* elements and mark new vfsmounts |
| 1105 | * as belonging to new namespace. We have already acquired a private |
| 1106 | * fs_struct, so tsk->fs->lock is not needed. |
| 1107 | */ |
| 1108 | p = namespace->root; |
| 1109 | q = new_ns->root; |
| 1110 | while (p) { |
| 1111 | q->mnt_namespace = new_ns; |
| 1112 | if (fs) { |
| 1113 | if (p == fs->rootmnt) { |
| 1114 | rootmnt = p; |
| 1115 | fs->rootmnt = mntget(q); |
| 1116 | } |
| 1117 | if (p == fs->pwdmnt) { |
| 1118 | pwdmnt = p; |
| 1119 | fs->pwdmnt = mntget(q); |
| 1120 | } |
| 1121 | if (p == fs->altrootmnt) { |
| 1122 | altrootmnt = p; |
| 1123 | fs->altrootmnt = mntget(q); |
| 1124 | } |
| 1125 | } |
| 1126 | p = next_mnt(p, namespace->root); |
| 1127 | q = next_mnt(q, new_ns->root); |
| 1128 | } |
| 1129 | up_write(&tsk->namespace->sem); |
| 1130 | |
| 1131 | tsk->namespace = new_ns; |
| 1132 | |
| 1133 | if (rootmnt) |
| 1134 | mntput(rootmnt); |
| 1135 | if (pwdmnt) |
| 1136 | mntput(pwdmnt); |
| 1137 | if (altrootmnt) |
| 1138 | mntput(altrootmnt); |
| 1139 | |
| 1140 | put_namespace(namespace); |
| 1141 | return 0; |
| 1142 | |
| 1143 | out: |
| 1144 | put_namespace(namespace); |
| 1145 | return -ENOMEM; |
| 1146 | } |
| 1147 | |
| 1148 | asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name, |
| 1149 | char __user * type, unsigned long flags, |
| 1150 | void __user * data) |
| 1151 | { |
| 1152 | int retval; |
| 1153 | unsigned long data_page; |
| 1154 | unsigned long type_page; |
| 1155 | unsigned long dev_page; |
| 1156 | char *dir_page; |
| 1157 | |
| 1158 | retval = copy_mount_options (type, &type_page); |
| 1159 | if (retval < 0) |
| 1160 | return retval; |
| 1161 | |
| 1162 | dir_page = getname(dir_name); |
| 1163 | retval = PTR_ERR(dir_page); |
| 1164 | if (IS_ERR(dir_page)) |
| 1165 | goto out1; |
| 1166 | |
| 1167 | retval = copy_mount_options (dev_name, &dev_page); |
| 1168 | if (retval < 0) |
| 1169 | goto out2; |
| 1170 | |
| 1171 | retval = copy_mount_options (data, &data_page); |
| 1172 | if (retval < 0) |
| 1173 | goto out3; |
| 1174 | |
| 1175 | lock_kernel(); |
| 1176 | retval = do_mount((char*)dev_page, dir_page, (char*)type_page, |
| 1177 | flags, (void*)data_page); |
| 1178 | unlock_kernel(); |
| 1179 | free_page(data_page); |
| 1180 | |
| 1181 | out3: |
| 1182 | free_page(dev_page); |
| 1183 | out2: |
| 1184 | putname(dir_page); |
| 1185 | out1: |
| 1186 | free_page(type_page); |
| 1187 | return retval; |
| 1188 | } |
| 1189 | |
| 1190 | /* |
| 1191 | * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values. |
| 1192 | * It can block. Requires the big lock held. |
| 1193 | */ |
| 1194 | void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt, |
| 1195 | struct dentry *dentry) |
| 1196 | { |
| 1197 | struct dentry *old_root; |
| 1198 | struct vfsmount *old_rootmnt; |
| 1199 | write_lock(&fs->lock); |
| 1200 | old_root = fs->root; |
| 1201 | old_rootmnt = fs->rootmnt; |
| 1202 | fs->rootmnt = mntget(mnt); |
| 1203 | fs->root = dget(dentry); |
| 1204 | write_unlock(&fs->lock); |
| 1205 | if (old_root) { |
| 1206 | dput(old_root); |
| 1207 | mntput(old_rootmnt); |
| 1208 | } |
| 1209 | } |
| 1210 | |
| 1211 | /* |
| 1212 | * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values. |
| 1213 | * It can block. Requires the big lock held. |
| 1214 | */ |
| 1215 | void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt, |
| 1216 | struct dentry *dentry) |
| 1217 | { |
| 1218 | struct dentry *old_pwd; |
| 1219 | struct vfsmount *old_pwdmnt; |
| 1220 | |
| 1221 | write_lock(&fs->lock); |
| 1222 | old_pwd = fs->pwd; |
| 1223 | old_pwdmnt = fs->pwdmnt; |
| 1224 | fs->pwdmnt = mntget(mnt); |
| 1225 | fs->pwd = dget(dentry); |
| 1226 | write_unlock(&fs->lock); |
| 1227 | |
| 1228 | if (old_pwd) { |
| 1229 | dput(old_pwd); |
| 1230 | mntput(old_pwdmnt); |
| 1231 | } |
| 1232 | } |
| 1233 | |
| 1234 | static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd) |
| 1235 | { |
| 1236 | struct task_struct *g, *p; |
| 1237 | struct fs_struct *fs; |
| 1238 | |
| 1239 | read_lock(&tasklist_lock); |
| 1240 | do_each_thread(g, p) { |
| 1241 | task_lock(p); |
| 1242 | fs = p->fs; |
| 1243 | if (fs) { |
| 1244 | atomic_inc(&fs->count); |
| 1245 | task_unlock(p); |
| 1246 | if (fs->root==old_nd->dentry&&fs->rootmnt==old_nd->mnt) |
| 1247 | set_fs_root(fs, new_nd->mnt, new_nd->dentry); |
| 1248 | if (fs->pwd==old_nd->dentry&&fs->pwdmnt==old_nd->mnt) |
| 1249 | set_fs_pwd(fs, new_nd->mnt, new_nd->dentry); |
| 1250 | put_fs_struct(fs); |
| 1251 | } else |
| 1252 | task_unlock(p); |
| 1253 | } while_each_thread(g, p); |
| 1254 | read_unlock(&tasklist_lock); |
| 1255 | } |
| 1256 | |
| 1257 | /* |
| 1258 | * pivot_root Semantics: |
| 1259 | * Moves the root file system of the current process to the directory put_old, |
| 1260 | * makes new_root as the new root file system of the current process, and sets |
| 1261 | * root/cwd of all processes which had them on the current root to new_root. |
| 1262 | * |
| 1263 | * Restrictions: |
| 1264 | * The new_root and put_old must be directories, and must not be on the |
| 1265 | * same file system as the current process root. The put_old must be |
| 1266 | * underneath new_root, i.e. adding a non-zero number of /.. to the string |
| 1267 | * pointed to by put_old must yield the same directory as new_root. No other |
| 1268 | * file system may be mounted on put_old. After all, new_root is a mountpoint. |
| 1269 | * |
| 1270 | * Notes: |
| 1271 | * - we don't move root/cwd if they are not at the root (reason: if something |
| 1272 | * cared enough to change them, it's probably wrong to force them elsewhere) |
| 1273 | * - it's okay to pick a root that isn't the root of a file system, e.g. |
| 1274 | * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, |
| 1275 | * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root |
| 1276 | * first. |
| 1277 | */ |
| 1278 | |
| 1279 | asmlinkage long sys_pivot_root(const char __user *new_root, const char __user *put_old) |
| 1280 | { |
| 1281 | struct vfsmount *tmp; |
| 1282 | struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd; |
| 1283 | int error; |
| 1284 | |
| 1285 | if (!capable(CAP_SYS_ADMIN)) |
| 1286 | return -EPERM; |
| 1287 | |
| 1288 | lock_kernel(); |
| 1289 | |
| 1290 | error = __user_walk(new_root, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &new_nd); |
| 1291 | if (error) |
| 1292 | goto out0; |
| 1293 | error = -EINVAL; |
| 1294 | if (!check_mnt(new_nd.mnt)) |
| 1295 | goto out1; |
| 1296 | |
| 1297 | error = __user_walk(put_old, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &old_nd); |
| 1298 | if (error) |
| 1299 | goto out1; |
| 1300 | |
| 1301 | error = security_sb_pivotroot(&old_nd, &new_nd); |
| 1302 | if (error) { |
| 1303 | path_release(&old_nd); |
| 1304 | goto out1; |
| 1305 | } |
| 1306 | |
| 1307 | read_lock(¤t->fs->lock); |
| 1308 | user_nd.mnt = mntget(current->fs->rootmnt); |
| 1309 | user_nd.dentry = dget(current->fs->root); |
| 1310 | read_unlock(¤t->fs->lock); |
| 1311 | down_write(¤t->namespace->sem); |
| 1312 | down(&old_nd.dentry->d_inode->i_sem); |
| 1313 | error = -EINVAL; |
| 1314 | if (!check_mnt(user_nd.mnt)) |
| 1315 | goto out2; |
| 1316 | error = -ENOENT; |
| 1317 | if (IS_DEADDIR(new_nd.dentry->d_inode)) |
| 1318 | goto out2; |
| 1319 | if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry)) |
| 1320 | goto out2; |
| 1321 | if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry)) |
| 1322 | goto out2; |
| 1323 | error = -EBUSY; |
| 1324 | if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt) |
| 1325 | goto out2; /* loop, on the same file system */ |
| 1326 | error = -EINVAL; |
| 1327 | if (user_nd.mnt->mnt_root != user_nd.dentry) |
| 1328 | goto out2; /* not a mountpoint */ |
| 1329 | if (new_nd.mnt->mnt_root != new_nd.dentry) |
| 1330 | goto out2; /* not a mountpoint */ |
| 1331 | tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */ |
| 1332 | spin_lock(&vfsmount_lock); |
| 1333 | if (tmp != new_nd.mnt) { |
| 1334 | for (;;) { |
| 1335 | if (tmp->mnt_parent == tmp) |
| 1336 | goto out3; /* already mounted on put_old */ |
| 1337 | if (tmp->mnt_parent == new_nd.mnt) |
| 1338 | break; |
| 1339 | tmp = tmp->mnt_parent; |
| 1340 | } |
| 1341 | if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry)) |
| 1342 | goto out3; |
| 1343 | } else if (!is_subdir(old_nd.dentry, new_nd.dentry)) |
| 1344 | goto out3; |
| 1345 | detach_mnt(new_nd.mnt, &parent_nd); |
| 1346 | detach_mnt(user_nd.mnt, &root_parent); |
| 1347 | attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */ |
| 1348 | attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */ |
| 1349 | spin_unlock(&vfsmount_lock); |
| 1350 | chroot_fs_refs(&user_nd, &new_nd); |
| 1351 | security_sb_post_pivotroot(&user_nd, &new_nd); |
| 1352 | error = 0; |
| 1353 | path_release(&root_parent); |
| 1354 | path_release(&parent_nd); |
| 1355 | out2: |
| 1356 | up(&old_nd.dentry->d_inode->i_sem); |
| 1357 | up_write(¤t->namespace->sem); |
| 1358 | path_release(&user_nd); |
| 1359 | path_release(&old_nd); |
| 1360 | out1: |
| 1361 | path_release(&new_nd); |
| 1362 | out0: |
| 1363 | unlock_kernel(); |
| 1364 | return error; |
| 1365 | out3: |
| 1366 | spin_unlock(&vfsmount_lock); |
| 1367 | goto out2; |
| 1368 | } |
| 1369 | |
| 1370 | static void __init init_mount_tree(void) |
| 1371 | { |
| 1372 | struct vfsmount *mnt; |
| 1373 | struct namespace *namespace; |
| 1374 | struct task_struct *g, *p; |
| 1375 | |
| 1376 | mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); |
| 1377 | if (IS_ERR(mnt)) |
| 1378 | panic("Can't create rootfs"); |
| 1379 | namespace = kmalloc(sizeof(*namespace), GFP_KERNEL); |
| 1380 | if (!namespace) |
| 1381 | panic("Can't allocate initial namespace"); |
| 1382 | atomic_set(&namespace->count, 1); |
| 1383 | INIT_LIST_HEAD(&namespace->list); |
| 1384 | init_rwsem(&namespace->sem); |
| 1385 | list_add(&mnt->mnt_list, &namespace->list); |
| 1386 | namespace->root = mnt; |
| 1387 | mnt->mnt_namespace = namespace; |
| 1388 | |
| 1389 | init_task.namespace = namespace; |
| 1390 | read_lock(&tasklist_lock); |
| 1391 | do_each_thread(g, p) { |
| 1392 | get_namespace(namespace); |
| 1393 | p->namespace = namespace; |
| 1394 | } while_each_thread(g, p); |
| 1395 | read_unlock(&tasklist_lock); |
| 1396 | |
| 1397 | set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root); |
| 1398 | set_fs_root(current->fs, namespace->root, namespace->root->mnt_root); |
| 1399 | } |
| 1400 | |
| 1401 | void __init mnt_init(unsigned long mempages) |
| 1402 | { |
| 1403 | struct list_head *d; |
| 1404 | unsigned int nr_hash; |
| 1405 | int i; |
| 1406 | |
| 1407 | mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), |
| 1408 | 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); |
| 1409 | |
| 1410 | mount_hashtable = (struct list_head *) |
| 1411 | __get_free_page(GFP_ATOMIC); |
| 1412 | |
| 1413 | if (!mount_hashtable) |
| 1414 | panic("Failed to allocate mount hash table\n"); |
| 1415 | |
| 1416 | /* |
| 1417 | * Find the power-of-two list-heads that can fit into the allocation.. |
| 1418 | * We don't guarantee that "sizeof(struct list_head)" is necessarily |
| 1419 | * a power-of-two. |
| 1420 | */ |
| 1421 | nr_hash = PAGE_SIZE / sizeof(struct list_head); |
| 1422 | hash_bits = 0; |
| 1423 | do { |
| 1424 | hash_bits++; |
| 1425 | } while ((nr_hash >> hash_bits) != 0); |
| 1426 | hash_bits--; |
| 1427 | |
| 1428 | /* |
| 1429 | * Re-calculate the actual number of entries and the mask |
| 1430 | * from the number of bits we can fit. |
| 1431 | */ |
| 1432 | nr_hash = 1UL << hash_bits; |
| 1433 | hash_mask = nr_hash-1; |
| 1434 | |
| 1435 | printk("Mount-cache hash table entries: %d\n", nr_hash); |
| 1436 | |
| 1437 | /* And initialize the newly allocated array */ |
| 1438 | d = mount_hashtable; |
| 1439 | i = nr_hash; |
| 1440 | do { |
| 1441 | INIT_LIST_HEAD(d); |
| 1442 | d++; |
| 1443 | i--; |
| 1444 | } while (i); |
| 1445 | sysfs_init(); |
| 1446 | init_rootfs(); |
| 1447 | init_mount_tree(); |
| 1448 | } |
| 1449 | |
| 1450 | void __put_namespace(struct namespace *namespace) |
| 1451 | { |
| 1452 | struct vfsmount *mnt; |
| 1453 | |
| 1454 | down_write(&namespace->sem); |
| 1455 | spin_lock(&vfsmount_lock); |
| 1456 | |
| 1457 | list_for_each_entry(mnt, &namespace->list, mnt_list) { |
| 1458 | mnt->mnt_namespace = NULL; |
| 1459 | } |
| 1460 | |
| 1461 | umount_tree(namespace->root); |
| 1462 | spin_unlock(&vfsmount_lock); |
| 1463 | up_write(&namespace->sem); |
| 1464 | kfree(namespace); |
| 1465 | } |