Zhu Yi | bb9f869 | 2009-05-21 21:20:45 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Intel Wireless Multicomm 3200 WiFi driver |
| 3 | * |
| 4 | * Copyright (C) 2009 Intel Corporation. All rights reserved. |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions |
| 8 | * are met: |
| 9 | * |
| 10 | * * Redistributions of source code must retain the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer. |
| 12 | * * Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in |
| 14 | * the documentation and/or other materials provided with the |
| 15 | * distribution. |
| 16 | * * Neither the name of Intel Corporation nor the names of its |
| 17 | * contributors may be used to endorse or promote products derived |
| 18 | * from this software without specific prior written permission. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 21 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 22 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 23 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 24 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 25 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 26 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 27 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 28 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 29 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 30 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 31 | * |
| 32 | * |
| 33 | * Intel Corporation <ilw@linux.intel.com> |
| 34 | * Samuel Ortiz <samuel.ortiz@intel.com> |
| 35 | * Zhu Yi <yi.zhu@intel.com> |
| 36 | * |
| 37 | */ |
| 38 | |
| 39 | /* |
| 40 | * Hardware Abstraction Layer for iwm. |
| 41 | * |
| 42 | * This file mostly defines an abstraction API for |
| 43 | * sending various commands to the target. |
| 44 | * |
| 45 | * We have 2 types of commands: wifi and non-wifi ones. |
| 46 | * |
| 47 | * - wifi commands: |
| 48 | * They are used for sending LMAC and UMAC commands, |
| 49 | * and thus are the most commonly used ones. |
| 50 | * There are 2 different wifi command types, the regular |
| 51 | * one and the LMAC one. The former is used to send |
| 52 | * UMAC commands (see UMAC_CMD_OPCODE_* from umac.h) |
| 53 | * while the latter is used for sending commands to the |
| 54 | * LMAC. If you look at LMAC commands you'll se that they |
| 55 | * are actually regular iwlwifi target commands encapsulated |
| 56 | * into a special UMAC command called UMAC passthrough. |
| 57 | * This is due to the fact the the host talks exclusively |
| 58 | * to the UMAC and so there needs to be a special UMAC |
| 59 | * command for talking to the LMAC. |
| 60 | * This is how a wifi command is layed out: |
| 61 | * ------------------------ |
| 62 | * | iwm_udma_out_wifi_hdr | |
| 63 | * ------------------------ |
| 64 | * | SW meta_data (32 bits) | |
| 65 | * ------------------------ |
| 66 | * | iwm_dev_cmd_hdr | |
| 67 | * ------------------------ |
| 68 | * | payload | |
| 69 | * | .... | |
| 70 | * |
| 71 | * - non-wifi, or general commands: |
| 72 | * Those commands are handled by the device's bootrom, |
| 73 | * and are typically sent when the UMAC and the LMAC |
| 74 | * are not yet available. |
| 75 | * * This is how a non-wifi command is layed out: |
| 76 | * --------------------------- |
| 77 | * | iwm_udma_out_nonwifi_hdr | |
| 78 | * --------------------------- |
| 79 | * | payload | |
| 80 | * | .... | |
| 81 | |
| 82 | * |
| 83 | * All the commands start with a UDMA header, which is |
| 84 | * basically a 32 bits field. The 4 LSB there define |
| 85 | * an opcode that allows the target to differentiate |
| 86 | * between wifi (opcode is 0xf) and non-wifi commands |
| 87 | * (opcode is [0..0xe]). |
| 88 | * |
| 89 | * When a command (wifi or non-wifi) is supposed to receive |
| 90 | * an answer, we queue the command buffer. When we do receive |
| 91 | * a command response from the UMAC, we go through the list |
| 92 | * of pending command, and pass both the command and the answer |
| 93 | * to the rx handler. Each command is sent with a unique |
| 94 | * sequence id, and the answer is sent with the same one. This |
| 95 | * is how we're supposed to match an answer with its command. |
| 96 | * See rx.c:iwm_rx_handle_[non]wifi() and iwm_get_pending_[non]wifi() |
| 97 | * for the implementation details. |
| 98 | */ |
| 99 | #include <linux/kernel.h> |
| 100 | #include <linux/netdevice.h> |
| 101 | |
| 102 | #include "iwm.h" |
| 103 | #include "bus.h" |
| 104 | #include "hal.h" |
| 105 | #include "umac.h" |
| 106 | #include "debug.h" |
| 107 | |
| 108 | static void iwm_nonwifi_cmd_init(struct iwm_priv *iwm, |
| 109 | struct iwm_nonwifi_cmd *cmd, |
| 110 | struct iwm_udma_nonwifi_cmd *udma_cmd) |
| 111 | { |
| 112 | INIT_LIST_HEAD(&cmd->pending); |
| 113 | |
| 114 | spin_lock(&iwm->cmd_lock); |
| 115 | |
| 116 | cmd->resp_received = 0; |
| 117 | |
| 118 | cmd->seq_num = iwm->nonwifi_seq_num; |
| 119 | udma_cmd->seq_num = cpu_to_le16(cmd->seq_num); |
| 120 | |
| 121 | cmd->seq_num = iwm->nonwifi_seq_num++; |
| 122 | iwm->nonwifi_seq_num %= UMAC_NONWIFI_SEQ_NUM_MAX; |
| 123 | |
| 124 | if (udma_cmd->resp) |
| 125 | list_add_tail(&cmd->pending, &iwm->nonwifi_pending_cmd); |
| 126 | |
| 127 | spin_unlock(&iwm->cmd_lock); |
| 128 | |
| 129 | cmd->buf.start = cmd->buf.payload; |
| 130 | cmd->buf.len = 0; |
| 131 | |
| 132 | memcpy(&cmd->udma_cmd, udma_cmd, sizeof(*udma_cmd)); |
| 133 | } |
| 134 | |
| 135 | u16 iwm_alloc_wifi_cmd_seq(struct iwm_priv *iwm) |
| 136 | { |
| 137 | u16 seq_num = iwm->wifi_seq_num; |
| 138 | |
| 139 | iwm->wifi_seq_num++; |
| 140 | iwm->wifi_seq_num %= UMAC_WIFI_SEQ_NUM_MAX; |
| 141 | |
| 142 | return seq_num; |
| 143 | } |
| 144 | |
| 145 | static void iwm_wifi_cmd_init(struct iwm_priv *iwm, |
| 146 | struct iwm_wifi_cmd *cmd, |
| 147 | struct iwm_udma_wifi_cmd *udma_cmd, |
| 148 | struct iwm_umac_cmd *umac_cmd, |
| 149 | struct iwm_lmac_cmd *lmac_cmd, |
| 150 | u16 payload_size) |
| 151 | { |
| 152 | INIT_LIST_HEAD(&cmd->pending); |
| 153 | |
| 154 | spin_lock(&iwm->cmd_lock); |
| 155 | |
| 156 | cmd->seq_num = iwm_alloc_wifi_cmd_seq(iwm); |
| 157 | umac_cmd->seq_num = cpu_to_le16(cmd->seq_num); |
| 158 | |
| 159 | if (umac_cmd->resp) |
| 160 | list_add_tail(&cmd->pending, &iwm->wifi_pending_cmd); |
| 161 | |
| 162 | spin_unlock(&iwm->cmd_lock); |
| 163 | |
| 164 | cmd->buf.start = cmd->buf.payload; |
| 165 | cmd->buf.len = 0; |
| 166 | |
| 167 | if (lmac_cmd) { |
| 168 | cmd->buf.start -= sizeof(struct iwm_lmac_hdr); |
| 169 | |
| 170 | lmac_cmd->seq_num = cpu_to_le16(cmd->seq_num); |
| 171 | lmac_cmd->count = cpu_to_le16(payload_size); |
| 172 | |
| 173 | memcpy(&cmd->lmac_cmd, lmac_cmd, sizeof(*lmac_cmd)); |
| 174 | |
| 175 | umac_cmd->count = cpu_to_le16(sizeof(struct iwm_lmac_hdr)); |
| 176 | } else |
| 177 | umac_cmd->count = 0; |
| 178 | |
| 179 | umac_cmd->count = cpu_to_le16(payload_size + |
| 180 | le16_to_cpu(umac_cmd->count)); |
| 181 | udma_cmd->count = cpu_to_le16(sizeof(struct iwm_umac_fw_cmd_hdr) + |
| 182 | le16_to_cpu(umac_cmd->count)); |
| 183 | |
| 184 | memcpy(&cmd->udma_cmd, udma_cmd, sizeof(*udma_cmd)); |
| 185 | memcpy(&cmd->umac_cmd, umac_cmd, sizeof(*umac_cmd)); |
| 186 | } |
| 187 | |
| 188 | void iwm_cmd_flush(struct iwm_priv *iwm) |
| 189 | { |
| 190 | struct iwm_wifi_cmd *wcmd, *wnext; |
| 191 | struct iwm_nonwifi_cmd *nwcmd, *nwnext; |
| 192 | |
| 193 | list_for_each_entry_safe(wcmd, wnext, &iwm->wifi_pending_cmd, pending) { |
| 194 | list_del(&wcmd->pending); |
| 195 | kfree(wcmd); |
| 196 | } |
| 197 | |
| 198 | list_for_each_entry_safe(nwcmd, nwnext, &iwm->nonwifi_pending_cmd, |
| 199 | pending) { |
| 200 | list_del(&nwcmd->pending); |
| 201 | kfree(nwcmd); |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | struct iwm_wifi_cmd *iwm_get_pending_wifi_cmd(struct iwm_priv *iwm, u16 seq_num) |
| 206 | { |
| 207 | struct iwm_wifi_cmd *cmd, *next; |
| 208 | |
| 209 | list_for_each_entry_safe(cmd, next, &iwm->wifi_pending_cmd, pending) |
| 210 | if (cmd->seq_num == seq_num) { |
| 211 | list_del(&cmd->pending); |
| 212 | return cmd; |
| 213 | } |
| 214 | |
| 215 | return NULL; |
| 216 | } |
| 217 | |
| 218 | struct iwm_nonwifi_cmd * |
| 219 | iwm_get_pending_nonwifi_cmd(struct iwm_priv *iwm, u8 seq_num, u8 cmd_opcode) |
| 220 | { |
| 221 | struct iwm_nonwifi_cmd *cmd, *next; |
| 222 | |
| 223 | list_for_each_entry_safe(cmd, next, &iwm->nonwifi_pending_cmd, pending) |
| 224 | if ((cmd->seq_num == seq_num) && |
| 225 | (cmd->udma_cmd.opcode == cmd_opcode) && |
| 226 | (cmd->resp_received)) { |
| 227 | list_del(&cmd->pending); |
| 228 | return cmd; |
| 229 | } |
| 230 | |
| 231 | return NULL; |
| 232 | } |
| 233 | |
| 234 | static void iwm_build_udma_nonwifi_hdr(struct iwm_priv *iwm, |
| 235 | struct iwm_udma_out_nonwifi_hdr *hdr, |
| 236 | struct iwm_udma_nonwifi_cmd *cmd) |
| 237 | { |
| 238 | memset(hdr, 0, sizeof(*hdr)); |
| 239 | |
| 240 | SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_OPCODE, cmd->opcode); |
| 241 | SET_VAL32(hdr->cmd, UDMA_HDI_OUT_NW_CMD_RESP, cmd->resp); |
| 242 | SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_EOT, 1); |
| 243 | SET_VAL32(hdr->cmd, UDMA_HDI_OUT_NW_CMD_HANDLE_BY_HW, |
| 244 | cmd->handle_by_hw); |
| 245 | SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_SIGNATURE, UMAC_HDI_OUT_SIGNATURE); |
| 246 | SET_VAL32(hdr->cmd, UDMA_HDI_OUT_CMD_NON_WIFI_HW_SEQ_NUM, |
| 247 | le16_to_cpu(cmd->seq_num)); |
| 248 | |
| 249 | hdr->addr = cmd->addr; |
| 250 | hdr->op1_sz = cmd->op1_sz; |
| 251 | hdr->op2 = cmd->op2; |
| 252 | } |
| 253 | |
| 254 | static int iwm_send_udma_nonwifi_cmd(struct iwm_priv *iwm, |
| 255 | struct iwm_nonwifi_cmd *cmd) |
| 256 | { |
| 257 | struct iwm_udma_out_nonwifi_hdr *udma_hdr; |
| 258 | struct iwm_nonwifi_cmd_buff *buf; |
| 259 | struct iwm_udma_nonwifi_cmd *udma_cmd = &cmd->udma_cmd; |
| 260 | |
| 261 | buf = &cmd->buf; |
| 262 | |
| 263 | buf->start -= sizeof(struct iwm_umac_nonwifi_out_hdr); |
| 264 | buf->len += sizeof(struct iwm_umac_nonwifi_out_hdr); |
| 265 | |
| 266 | udma_hdr = (struct iwm_udma_out_nonwifi_hdr *)(buf->start); |
| 267 | |
| 268 | iwm_build_udma_nonwifi_hdr(iwm, udma_hdr, udma_cmd); |
| 269 | |
| 270 | IWM_DBG_CMD(iwm, DBG, |
| 271 | "Send UDMA nonwifi cmd: opcode = 0x%x, resp = 0x%x, " |
| 272 | "hw = 0x%x, seqnum = %d, addr = 0x%x, op1_sz = 0x%x, " |
| 273 | "op2 = 0x%x\n", udma_cmd->opcode, udma_cmd->resp, |
| 274 | udma_cmd->handle_by_hw, cmd->seq_num, udma_cmd->addr, |
| 275 | udma_cmd->op1_sz, udma_cmd->op2); |
| 276 | |
| 277 | return iwm_bus_send_chunk(iwm, buf->start, buf->len); |
| 278 | } |
| 279 | |
| 280 | void iwm_udma_wifi_hdr_set_eop(struct iwm_priv *iwm, u8 *buf, u8 eop) |
| 281 | { |
| 282 | struct iwm_udma_out_wifi_hdr *hdr = (struct iwm_udma_out_wifi_hdr *)buf; |
| 283 | |
| 284 | SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_EOT, eop); |
| 285 | } |
| 286 | |
| 287 | void iwm_build_udma_wifi_hdr(struct iwm_priv *iwm, |
| 288 | struct iwm_udma_out_wifi_hdr *hdr, |
| 289 | struct iwm_udma_wifi_cmd *cmd) |
| 290 | { |
| 291 | memset(hdr, 0, sizeof(*hdr)); |
| 292 | |
| 293 | SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_OPCODE, UMAC_HDI_OUT_OPCODE_WIFI); |
| 294 | SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_EOT, cmd->eop); |
| 295 | SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_SIGNATURE, UMAC_HDI_OUT_SIGNATURE); |
| 296 | |
| 297 | SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_BYTE_COUNT, |
| 298 | le16_to_cpu(cmd->count)); |
| 299 | SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_CREDIT_GRP, cmd->credit_group); |
| 300 | SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_RATID, cmd->ra_tid); |
| 301 | SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_LMAC_OFFSET, cmd->lmac_offset); |
| 302 | } |
| 303 | |
| 304 | void iwm_build_umac_hdr(struct iwm_priv *iwm, |
| 305 | struct iwm_umac_fw_cmd_hdr *hdr, |
| 306 | struct iwm_umac_cmd *cmd) |
| 307 | { |
| 308 | memset(hdr, 0, sizeof(*hdr)); |
| 309 | |
| 310 | SET_VAL32(hdr->meta_data, UMAC_FW_CMD_BYTE_COUNT, |
| 311 | le16_to_cpu(cmd->count)); |
| 312 | SET_VAL32(hdr->meta_data, UMAC_FW_CMD_TX_STA_COLOR, cmd->color); |
| 313 | SET_VAL8(hdr->cmd.flags, UMAC_DEV_CMD_FLAGS_RESP_REQ, cmd->resp); |
| 314 | |
| 315 | hdr->cmd.cmd = cmd->id; |
| 316 | hdr->cmd.seq_num = cmd->seq_num; |
| 317 | } |
| 318 | |
| 319 | static int iwm_send_udma_wifi_cmd(struct iwm_priv *iwm, |
| 320 | struct iwm_wifi_cmd *cmd) |
| 321 | { |
| 322 | struct iwm_umac_wifi_out_hdr *umac_hdr; |
| 323 | struct iwm_wifi_cmd_buff *buf; |
| 324 | struct iwm_udma_wifi_cmd *udma_cmd = &cmd->udma_cmd; |
| 325 | struct iwm_umac_cmd *umac_cmd = &cmd->umac_cmd; |
| 326 | int ret; |
| 327 | |
| 328 | buf = &cmd->buf; |
| 329 | |
| 330 | buf->start -= sizeof(struct iwm_umac_wifi_out_hdr); |
| 331 | buf->len += sizeof(struct iwm_umac_wifi_out_hdr); |
| 332 | |
| 333 | umac_hdr = (struct iwm_umac_wifi_out_hdr *)(buf->start); |
| 334 | |
| 335 | iwm_build_udma_wifi_hdr(iwm, &umac_hdr->hw_hdr, udma_cmd); |
| 336 | iwm_build_umac_hdr(iwm, &umac_hdr->sw_hdr, umac_cmd); |
| 337 | |
| 338 | IWM_DBG_CMD(iwm, DBG, |
| 339 | "Send UDMA wifi cmd: opcode = 0x%x, UMAC opcode = 0x%x, " |
| 340 | "eop = 0x%x, count = 0x%x, credit_group = 0x%x, " |
| 341 | "ra_tid = 0x%x, lmac_offset = 0x%x, seqnum = %d\n", |
| 342 | UMAC_HDI_OUT_OPCODE_WIFI, umac_cmd->id, |
| 343 | udma_cmd->eop, udma_cmd->count, udma_cmd->credit_group, |
| 344 | udma_cmd->ra_tid, udma_cmd->lmac_offset, cmd->seq_num); |
| 345 | |
| 346 | if (umac_cmd->id == UMAC_CMD_OPCODE_WIFI_PASS_THROUGH) |
| 347 | IWM_DBG_CMD(iwm, DBG, "\tLMAC opcode: 0x%x\n", |
| 348 | cmd->lmac_cmd.id); |
| 349 | |
| 350 | ret = iwm_tx_credit_alloc(iwm, udma_cmd->credit_group, buf->len); |
| 351 | |
| 352 | /* We keep sending UMAC reset regardless of the command credits. |
| 353 | * The UMAC is supposed to be reset anyway and the Tx credits are |
| 354 | * reinitialized afterwards. If we are lucky, the reset could |
| 355 | * still be done even though we have run out of credits for the |
| 356 | * command pool at this moment.*/ |
| 357 | if (ret && (umac_cmd->id != UMAC_CMD_OPCODE_RESET)) { |
| 358 | IWM_DBG_TX(iwm, DBG, "Failed to alloc tx credit for cmd %d\n", |
| 359 | umac_cmd->id); |
| 360 | return ret; |
| 361 | } |
| 362 | |
| 363 | return iwm_bus_send_chunk(iwm, buf->start, buf->len); |
| 364 | } |
| 365 | |
| 366 | /* target_cmd a.k.a udma_nonwifi_cmd can be sent when UMAC is not available */ |
| 367 | int iwm_hal_send_target_cmd(struct iwm_priv *iwm, |
| 368 | struct iwm_udma_nonwifi_cmd *udma_cmd, |
| 369 | const void *payload) |
| 370 | { |
| 371 | struct iwm_nonwifi_cmd *cmd; |
| 372 | int ret; |
| 373 | |
| 374 | cmd = kzalloc(sizeof(struct iwm_nonwifi_cmd), GFP_KERNEL); |
| 375 | if (!cmd) { |
| 376 | IWM_ERR(iwm, "Couldn't alloc memory for hal cmd\n"); |
| 377 | return -ENOMEM; |
| 378 | } |
| 379 | |
| 380 | iwm_nonwifi_cmd_init(iwm, cmd, udma_cmd); |
| 381 | |
| 382 | if (cmd->udma_cmd.opcode == UMAC_HDI_OUT_OPCODE_WRITE || |
| 383 | cmd->udma_cmd.opcode == UMAC_HDI_OUT_OPCODE_WRITE_PERSISTENT) { |
| 384 | cmd->buf.len = le32_to_cpu(cmd->udma_cmd.op1_sz); |
| 385 | memcpy(&cmd->buf.payload, payload, cmd->buf.len); |
| 386 | } |
| 387 | |
| 388 | ret = iwm_send_udma_nonwifi_cmd(iwm, cmd); |
| 389 | |
| 390 | if (!udma_cmd->resp) |
| 391 | kfree(cmd); |
| 392 | |
| 393 | if (ret < 0) |
| 394 | return ret; |
| 395 | |
| 396 | return cmd->seq_num; |
| 397 | } |
| 398 | |
| 399 | static void iwm_build_lmac_hdr(struct iwm_priv *iwm, struct iwm_lmac_hdr *hdr, |
| 400 | struct iwm_lmac_cmd *cmd) |
| 401 | { |
| 402 | memset(hdr, 0, sizeof(*hdr)); |
| 403 | |
| 404 | hdr->id = cmd->id; |
| 405 | hdr->flags = 0; /* Is this ever used? */ |
| 406 | hdr->seq_num = cmd->seq_num; |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * iwm_hal_send_host_cmd(): sends commands to the UMAC or the LMAC. |
| 411 | * Sending command to the LMAC is equivalent to sending a |
| 412 | * regular UMAC command with the LMAC passtrough or the LMAC |
| 413 | * wrapper UMAC command IDs. |
| 414 | */ |
| 415 | int iwm_hal_send_host_cmd(struct iwm_priv *iwm, |
| 416 | struct iwm_udma_wifi_cmd *udma_cmd, |
| 417 | struct iwm_umac_cmd *umac_cmd, |
| 418 | struct iwm_lmac_cmd *lmac_cmd, |
| 419 | const void *payload, u16 payload_size) |
| 420 | { |
| 421 | struct iwm_wifi_cmd *cmd; |
| 422 | struct iwm_lmac_hdr *hdr; |
| 423 | int lmac_hdr_len = 0; |
| 424 | int ret; |
| 425 | |
| 426 | cmd = kzalloc(sizeof(struct iwm_wifi_cmd), GFP_KERNEL); |
| 427 | if (!cmd) { |
| 428 | IWM_ERR(iwm, "Couldn't alloc memory for wifi hal cmd\n"); |
| 429 | return -ENOMEM; |
| 430 | } |
| 431 | |
| 432 | iwm_wifi_cmd_init(iwm, cmd, udma_cmd, umac_cmd, lmac_cmd, payload_size); |
| 433 | |
| 434 | if (lmac_cmd) { |
| 435 | hdr = (struct iwm_lmac_hdr *)(cmd->buf.start); |
| 436 | |
| 437 | iwm_build_lmac_hdr(iwm, hdr, &cmd->lmac_cmd); |
| 438 | lmac_hdr_len = sizeof(struct iwm_lmac_hdr); |
| 439 | } |
| 440 | |
| 441 | memcpy(cmd->buf.payload, payload, payload_size); |
| 442 | cmd->buf.len = le16_to_cpu(umac_cmd->count); |
| 443 | |
| 444 | ret = iwm_send_udma_wifi_cmd(iwm, cmd); |
| 445 | |
| 446 | /* We free the cmd if we're not expecting any response */ |
| 447 | if (!umac_cmd->resp) |
| 448 | kfree(cmd); |
| 449 | return ret; |
| 450 | } |
| 451 | |
| 452 | /* |
| 453 | * iwm_hal_send_umac_cmd(): This is a special case for |
| 454 | * iwm_hal_send_host_cmd() to send direct UMAC cmd (without |
| 455 | * LMAC involved). |
| 456 | */ |
| 457 | int iwm_hal_send_umac_cmd(struct iwm_priv *iwm, |
| 458 | struct iwm_udma_wifi_cmd *udma_cmd, |
| 459 | struct iwm_umac_cmd *umac_cmd, |
| 460 | const void *payload, u16 payload_size) |
| 461 | { |
| 462 | return iwm_hal_send_host_cmd(iwm, udma_cmd, umac_cmd, NULL, |
| 463 | payload, payload_size); |
| 464 | } |