blob: 7ceea2bba1f597a6a873da3c81ca71932cfea5a8 [file] [log] [blame]
Timur Tabi17467f22008-01-11 18:15:26 +01001/*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
7 * under the terms of the GNU General Public License version 2. This
8 * program is licensed "as is" without any warranty of any kind, whether
9 * express or implied.
10 *
11 * This driver implements ASoC support for the Elo DMA controller, which is
12 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13 * the PCM driver is what handles the DMA buffer.
14 */
15
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/platform_device.h>
19#include <linux/dma-mapping.h>
20#include <linux/interrupt.h>
21#include <linux/delay.h>
22
Timur Tabi17467f22008-01-11 18:15:26 +010023#include <sound/core.h>
24#include <sound/pcm.h>
25#include <sound/pcm_params.h>
26#include <sound/soc.h>
27
28#include <asm/io.h>
29
30#include "fsl_dma.h"
31
32/*
33 * The formats that the DMA controller supports, which is anything
34 * that is 8, 16, or 32 bits.
35 */
36#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
37 SNDRV_PCM_FMTBIT_U8 | \
38 SNDRV_PCM_FMTBIT_S16_LE | \
39 SNDRV_PCM_FMTBIT_S16_BE | \
40 SNDRV_PCM_FMTBIT_U16_LE | \
41 SNDRV_PCM_FMTBIT_U16_BE | \
42 SNDRV_PCM_FMTBIT_S24_LE | \
43 SNDRV_PCM_FMTBIT_S24_BE | \
44 SNDRV_PCM_FMTBIT_U24_LE | \
45 SNDRV_PCM_FMTBIT_U24_BE | \
46 SNDRV_PCM_FMTBIT_S32_LE | \
47 SNDRV_PCM_FMTBIT_S32_BE | \
48 SNDRV_PCM_FMTBIT_U32_LE | \
49 SNDRV_PCM_FMTBIT_U32_BE)
50
51#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
52 SNDRV_PCM_RATE_CONTINUOUS)
53
54/* DMA global data. This structure is used by fsl_dma_open() to determine
55 * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
56 * not allow the machine driver to provide this information to the PCM
57 * driver in advance, and there's no way to differentiate between the two
58 * DMA controllers. So for now, this driver only supports one SSI device
59 * using two DMA channels. We cannot support multiple DMA devices.
60 *
61 * ssi_stx_phys: bus address of SSI STX register
62 * ssi_srx_phys: bus address of SSI SRX register
63 * dma_channel: pointer to the DMA channel's registers
64 * irq: IRQ for this DMA channel
65 * assigned: set to 1 if that DMA channel is assigned to a substream
66 */
67static struct {
68 dma_addr_t ssi_stx_phys;
69 dma_addr_t ssi_srx_phys;
70 struct ccsr_dma_channel __iomem *dma_channel[2];
71 unsigned int irq[2];
72 unsigned int assigned[2];
73} dma_global_data;
74
75/*
76 * The number of DMA links to use. Two is the bare minimum, but if you
77 * have really small links you might need more.
78 */
79#define NUM_DMA_LINKS 2
80
81/** fsl_dma_private: p-substream DMA data
82 *
83 * Each substream has a 1-to-1 association with a DMA channel.
84 *
85 * The link[] array is first because it needs to be aligned on a 32-byte
86 * boundary, so putting it first will ensure alignment without padding the
87 * structure.
88 *
89 * @link[]: array of link descriptors
90 * @controller_id: which DMA controller (0, 1, ...)
91 * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
92 * @dma_channel: pointer to the DMA channel's registers
93 * @irq: IRQ for this DMA channel
94 * @substream: pointer to the substream object, needed by the ISR
95 * @ssi_sxx_phys: bus address of the STX or SRX register to use
96 * @ld_buf_phys: physical address of the LD buffer
97 * @current_link: index into link[] of the link currently being processed
98 * @dma_buf_phys: physical address of the DMA buffer
99 * @dma_buf_next: physical address of the next period to process
100 * @dma_buf_end: physical address of the byte after the end of the DMA
101 * @buffer period_size: the size of a single period
102 * @num_periods: the number of periods in the DMA buffer
103 */
104struct fsl_dma_private {
105 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
106 unsigned int controller_id;
107 unsigned int channel_id;
108 struct ccsr_dma_channel __iomem *dma_channel;
109 unsigned int irq;
110 struct snd_pcm_substream *substream;
111 dma_addr_t ssi_sxx_phys;
112 dma_addr_t ld_buf_phys;
113 unsigned int current_link;
114 dma_addr_t dma_buf_phys;
115 dma_addr_t dma_buf_next;
116 dma_addr_t dma_buf_end;
117 size_t period_size;
118 unsigned int num_periods;
119};
120
121/**
122 * fsl_dma_hardare: define characteristics of the PCM hardware.
123 *
124 * The PCM hardware is the Freescale DMA controller. This structure defines
125 * the capabilities of that hardware.
126 *
127 * Since the sampling rate and data format are not controlled by the DMA
128 * controller, we specify no limits for those values. The only exception is
129 * period_bytes_min, which is set to a reasonably low value to prevent the
130 * DMA controller from generating too many interrupts per second.
131 *
132 * Since each link descriptor has a 32-bit byte count field, we set
133 * period_bytes_max to the largest 32-bit number. We also have no maximum
134 * number of periods.
Timur Tabibe41e942008-07-28 17:04:39 -0500135 *
136 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
137 * limitation in the SSI driver requires the sample rates for playback and
138 * capture to be the same.
Timur Tabi17467f22008-01-11 18:15:26 +0100139 */
140static const struct snd_pcm_hardware fsl_dma_hardware = {
141
Timur Tabi4052ce42008-01-17 17:44:49 +0100142 .info = SNDRV_PCM_INFO_INTERLEAVED |
143 SNDRV_PCM_INFO_MMAP |
Timur Tabibe41e942008-07-28 17:04:39 -0500144 SNDRV_PCM_INFO_MMAP_VALID |
145 SNDRV_PCM_INFO_JOINT_DUPLEX,
Timur Tabi17467f22008-01-11 18:15:26 +0100146 .formats = FSLDMA_PCM_FORMATS,
147 .rates = FSLDMA_PCM_RATES,
148 .rate_min = 5512,
149 .rate_max = 192000,
150 .period_bytes_min = 512, /* A reasonable limit */
151 .period_bytes_max = (u32) -1,
152 .periods_min = NUM_DMA_LINKS,
153 .periods_max = (unsigned int) -1,
154 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
155};
156
157/**
158 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
159 *
160 * This function should be called by the ISR whenever the DMA controller
161 * halts data transfer.
162 */
163static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
164{
165 unsigned long flags;
166
167 snd_pcm_stream_lock_irqsave(substream, flags);
168
169 if (snd_pcm_running(substream))
170 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
171
172 snd_pcm_stream_unlock_irqrestore(substream, flags);
173}
174
175/**
176 * fsl_dma_update_pointers - update LD pointers to point to the next period
177 *
178 * As each period is completed, this function changes the the link
179 * descriptor pointers for that period to point to the next period.
180 */
181static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
182{
183 struct fsl_dma_link_descriptor *link =
184 &dma_private->link[dma_private->current_link];
185
186 /* Update our link descriptors to point to the next period */
187 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
188 link->source_addr =
189 cpu_to_be32(dma_private->dma_buf_next);
190 else
191 link->dest_addr =
192 cpu_to_be32(dma_private->dma_buf_next);
193
194 /* Update our variables for next time */
195 dma_private->dma_buf_next += dma_private->period_size;
196
197 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
198 dma_private->dma_buf_next = dma_private->dma_buf_phys;
199
200 if (++dma_private->current_link >= NUM_DMA_LINKS)
201 dma_private->current_link = 0;
202}
203
204/**
205 * fsl_dma_isr: interrupt handler for the DMA controller
206 *
207 * @irq: IRQ of the DMA channel
208 * @dev_id: pointer to the dma_private structure for this DMA channel
209 */
210static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
211{
212 struct fsl_dma_private *dma_private = dev_id;
213 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
214 irqreturn_t ret = IRQ_NONE;
215 u32 sr, sr2 = 0;
216
217 /* We got an interrupt, so read the status register to see what we
218 were interrupted for.
219 */
220 sr = in_be32(&dma_channel->sr);
221
222 if (sr & CCSR_DMA_SR_TE) {
223 dev_err(dma_private->substream->pcm->card->dev,
224 "DMA transmit error (controller=%u channel=%u irq=%u\n",
225 dma_private->controller_id,
226 dma_private->channel_id, irq);
227 fsl_dma_abort_stream(dma_private->substream);
228 sr2 |= CCSR_DMA_SR_TE;
229 ret = IRQ_HANDLED;
230 }
231
232 if (sr & CCSR_DMA_SR_CH)
233 ret = IRQ_HANDLED;
234
235 if (sr & CCSR_DMA_SR_PE) {
236 dev_err(dma_private->substream->pcm->card->dev,
237 "DMA%u programming error (channel=%u irq=%u)\n",
238 dma_private->controller_id,
239 dma_private->channel_id, irq);
240 fsl_dma_abort_stream(dma_private->substream);
241 sr2 |= CCSR_DMA_SR_PE;
242 ret = IRQ_HANDLED;
243 }
244
245 if (sr & CCSR_DMA_SR_EOLNI) {
246 sr2 |= CCSR_DMA_SR_EOLNI;
247 ret = IRQ_HANDLED;
248 }
249
250 if (sr & CCSR_DMA_SR_CB)
251 ret = IRQ_HANDLED;
252
253 if (sr & CCSR_DMA_SR_EOSI) {
254 struct snd_pcm_substream *substream = dma_private->substream;
255
256 /* Tell ALSA we completed a period. */
257 snd_pcm_period_elapsed(substream);
258
259 /*
260 * Update our link descriptors to point to the next period. We
261 * only need to do this if the number of periods is not equal to
262 * the number of links.
263 */
264 if (dma_private->num_periods != NUM_DMA_LINKS)
265 fsl_dma_update_pointers(dma_private);
266
267 sr2 |= CCSR_DMA_SR_EOSI;
268 ret = IRQ_HANDLED;
269 }
270
271 if (sr & CCSR_DMA_SR_EOLSI) {
272 sr2 |= CCSR_DMA_SR_EOLSI;
273 ret = IRQ_HANDLED;
274 }
275
276 /* Clear the bits that we set */
277 if (sr2)
278 out_be32(&dma_channel->sr, sr2);
279
280 return ret;
281}
282
283/**
284 * fsl_dma_new: initialize this PCM driver.
285 *
286 * This function is called when the codec driver calls snd_soc_new_pcms(),
287 * once for each .dai_link in the machine driver's snd_soc_machine
288 * structure.
289 */
Liam Girdwood8cf7b2b2008-07-07 16:08:00 +0100290static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
Timur Tabi17467f22008-01-11 18:15:26 +0100291 struct snd_pcm *pcm)
292{
293 static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
294 int ret;
295
296 if (!card->dev->dma_mask)
297 card->dev->dma_mask = &fsl_dma_dmamask;
298
299 if (!card->dev->coherent_dma_mask)
300 card->dev->coherent_dma_mask = fsl_dma_dmamask;
301
302 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
303 fsl_dma_hardware.buffer_bytes_max,
304 &pcm->streams[0].substream->dma_buffer);
305 if (ret) {
306 dev_err(card->dev,
307 "Can't allocate playback DMA buffer (size=%u)\n",
308 fsl_dma_hardware.buffer_bytes_max);
309 return -ENOMEM;
310 }
311
312 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
313 fsl_dma_hardware.buffer_bytes_max,
314 &pcm->streams[1].substream->dma_buffer);
315 if (ret) {
316 snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
317 dev_err(card->dev,
318 "Can't allocate capture DMA buffer (size=%u)\n",
319 fsl_dma_hardware.buffer_bytes_max);
320 return -ENOMEM;
321 }
322
323 return 0;
324}
325
326/**
327 * fsl_dma_open: open a new substream.
328 *
329 * Each substream has its own DMA buffer.
330 */
331static int fsl_dma_open(struct snd_pcm_substream *substream)
332{
333 struct snd_pcm_runtime *runtime = substream->runtime;
334 struct fsl_dma_private *dma_private;
335 dma_addr_t ld_buf_phys;
336 unsigned int channel;
337 int ret = 0;
338
339 /*
340 * Reject any DMA buffer whose size is not a multiple of the period
341 * size. We need to make sure that the DMA buffer can be evenly divided
342 * into periods.
343 */
344 ret = snd_pcm_hw_constraint_integer(runtime,
345 SNDRV_PCM_HW_PARAM_PERIODS);
346 if (ret < 0) {
347 dev_err(substream->pcm->card->dev, "invalid buffer size\n");
348 return ret;
349 }
350
351 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
352
353 if (dma_global_data.assigned[channel]) {
354 dev_err(substream->pcm->card->dev,
355 "DMA channel already assigned\n");
356 return -EBUSY;
357 }
358
359 dma_private = dma_alloc_coherent(substream->pcm->dev,
360 sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
361 if (!dma_private) {
362 dev_err(substream->pcm->card->dev,
363 "can't allocate DMA private data\n");
364 return -ENOMEM;
365 }
366 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
367 dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
368 else
369 dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
370
371 dma_private->dma_channel = dma_global_data.dma_channel[channel];
372 dma_private->irq = dma_global_data.irq[channel];
373 dma_private->substream = substream;
374 dma_private->ld_buf_phys = ld_buf_phys;
375 dma_private->dma_buf_phys = substream->dma_buffer.addr;
376
377 /* We only support one DMA controller for now */
378 dma_private->controller_id = 0;
379 dma_private->channel_id = channel;
380
381 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
382 if (ret) {
383 dev_err(substream->pcm->card->dev,
384 "can't register ISR for IRQ %u (ret=%i)\n",
385 dma_private->irq, ret);
386 dma_free_coherent(substream->pcm->dev,
387 sizeof(struct fsl_dma_private),
388 dma_private, dma_private->ld_buf_phys);
389 return ret;
390 }
391
392 dma_global_data.assigned[channel] = 1;
393
394 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
395 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
396 runtime->private_data = dma_private;
397
398 return 0;
399}
400
401/**
402 * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
403 *
404 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
405 * descriptors that ping-pong from one period to the next. For example, if
406 * there are six periods and two link descriptors, this is how they look
407 * before playback starts:
408 *
409 * The last link descriptor
410 * ____________ points back to the first
411 * | |
412 * V |
413 * ___ ___ |
414 * | |->| |->|
415 * |___| |___|
416 * | |
417 * | |
418 * V V
419 * _________________________________________
420 * | | | | | | | The DMA buffer is
421 * | | | | | | | divided into 6 parts
422 * |______|______|______|______|______|______|
423 *
424 * and here's how they look after the first period is finished playing:
425 *
426 * ____________
427 * | |
428 * V |
429 * ___ ___ |
430 * | |->| |->|
431 * |___| |___|
432 * | |
433 * |______________
434 * | |
435 * V V
436 * _________________________________________
437 * | | | | | | |
438 * | | | | | | |
439 * |______|______|______|______|______|______|
440 *
441 * The first link descriptor now points to the third period. The DMA
442 * controller is currently playing the second period. When it finishes, it
443 * will jump back to the first descriptor and play the third period.
444 *
445 * There are four reasons we do this:
446 *
447 * 1. The only way to get the DMA controller to automatically restart the
448 * transfer when it gets to the end of the buffer is to use chaining
449 * mode. Basic direct mode doesn't offer that feature.
450 * 2. We need to receive an interrupt at the end of every period. The DMA
451 * controller can generate an interrupt at the end of every link transfer
452 * (aka segment). Making each period into a DMA segment will give us the
453 * interrupts we need.
454 * 3. By creating only two link descriptors, regardless of the number of
455 * periods, we do not need to reallocate the link descriptors if the
456 * number of periods changes.
457 * 4. All of the audio data is still stored in a single, contiguous DMA
458 * buffer, which is what ALSA expects. We're just dividing it into
459 * contiguous parts, and creating a link descriptor for each one.
460 *
461 * Note that due to a quirk of the SSI's STX register, the target address
462 * for the DMA operations depends on the sample size. So we don't program
463 * the dest_addr (for playback -- source_addr for capture) fields in the
464 * link descriptors here. We do that in fsl_dma_prepare()
465 */
466static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
467 struct snd_pcm_hw_params *hw_params)
468{
469 struct snd_pcm_runtime *runtime = substream->runtime;
470 struct fsl_dma_private *dma_private = runtime->private_data;
471 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
472
473 dma_addr_t temp_addr; /* Pointer to next period */
474 u64 temp_link; /* Pointer to next link descriptor */
475 u32 mr; /* Temporary variable for MR register */
476
477 unsigned int i;
478
479 /* Get all the parameters we need */
480 size_t buffer_size = params_buffer_bytes(hw_params);
481 size_t period_size = params_period_bytes(hw_params);
482
483 /* Initialize our DMA tracking variables */
484 dma_private->period_size = period_size;
485 dma_private->num_periods = params_periods(hw_params);
486 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
487 dma_private->dma_buf_next = dma_private->dma_buf_phys +
488 (NUM_DMA_LINKS * period_size);
489 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
490 dma_private->dma_buf_next = dma_private->dma_buf_phys;
491
492 /*
493 * Initialize each link descriptor.
494 *
495 * The actual address in STX0 (destination for playback, source for
496 * capture) is based on the sample size, but we don't know the sample
497 * size in this function, so we'll have to adjust that later. See
498 * comments in fsl_dma_prepare().
499 *
500 * The DMA controller does not have a cache, so the CPU does not
501 * need to tell it to flush its cache. However, the DMA
502 * controller does need to tell the CPU to flush its cache.
503 * That's what the SNOOP bit does.
504 *
505 * Also, even though the DMA controller supports 36-bit addressing, for
506 * simplicity we currently support only 32-bit addresses for the audio
507 * buffer itself.
508 */
509 temp_addr = substream->dma_buffer.addr;
510 temp_link = dma_private->ld_buf_phys +
511 sizeof(struct fsl_dma_link_descriptor);
512
513 for (i = 0; i < NUM_DMA_LINKS; i++) {
514 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
515
516 link->count = cpu_to_be32(period_size);
517 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
518 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
519 link->next = cpu_to_be64(temp_link);
520
521 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
522 link->source_addr = cpu_to_be32(temp_addr);
523 else
524 link->dest_addr = cpu_to_be32(temp_addr);
525
526 temp_addr += period_size;
527 temp_link += sizeof(struct fsl_dma_link_descriptor);
528 }
529 /* The last link descriptor points to the first */
530 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
531
532 /* Tell the DMA controller where the first link descriptor is */
533 out_be32(&dma_channel->clndar,
534 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
535 out_be32(&dma_channel->eclndar,
536 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
537
538 /* The manual says the BCR must be clear before enabling EMP */
539 out_be32(&dma_channel->bcr, 0);
540
541 /*
542 * Program the mode register for interrupts, external master control,
543 * and source/destination hold. Also clear the Channel Abort bit.
544 */
545 mr = in_be32(&dma_channel->mr) &
546 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
547
548 /*
549 * We want External Master Start and External Master Pause enabled,
550 * because the SSI is controlling the DMA controller. We want the DMA
551 * controller to be set up in advance, and then we signal only the SSI
552 * to start transfering.
553 *
554 * We want End-Of-Segment Interrupts enabled, because this will generate
555 * an interrupt at the end of each segment (each link descriptor
556 * represents one segment). Each DMA segment is the same thing as an
557 * ALSA period, so this is how we get an interrupt at the end of every
558 * period.
559 *
560 * We want Error Interrupt enabled, so that we can get an error if
561 * the DMA controller is mis-programmed somehow.
562 */
563 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
564 CCSR_DMA_MR_EMS_EN;
565
566 /* For playback, we want the destination address to be held. For
567 capture, set the source address to be held. */
568 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
569 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
570
571 out_be32(&dma_channel->mr, mr);
572
573 return 0;
574}
575
576/**
577 * fsl_dma_prepare - prepare the DMA registers for playback.
578 *
579 * This function is called after the specifics of the audio data are known,
580 * i.e. snd_pcm_runtime is initialized.
581 *
582 * In this function, we finish programming the registers of the DMA
583 * controller that are dependent on the sample size.
584 *
585 * One of the drawbacks with big-endian is that when copying integers of
586 * different sizes to a fixed-sized register, the address to which the
587 * integer must be copied is dependent on the size of the integer.
588 *
589 * For example, if P is the address of a 32-bit register, and X is a 32-bit
590 * integer, then X should be copied to address P. However, if X is a 16-bit
591 * integer, then it should be copied to P+2. If X is an 8-bit register,
592 * then it should be copied to P+3.
593 *
594 * So for playback of 8-bit samples, the DMA controller must transfer single
595 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
596 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
597 *
598 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
599 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
600 * and 8 bytes at a time). So we do not support packed 24-bit samples.
601 * 24-bit data must be padded to 32 bits.
602 */
603static int fsl_dma_prepare(struct snd_pcm_substream *substream)
604{
605 struct snd_pcm_runtime *runtime = substream->runtime;
606 struct fsl_dma_private *dma_private = runtime->private_data;
607 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
608 u32 mr;
609 unsigned int i;
610 dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
611 unsigned int frame_size; /* Number of bytes per frame */
612
613 ssi_sxx_phys = dma_private->ssi_sxx_phys;
614
615 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
616 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
617
618 switch (runtime->sample_bits) {
619 case 8:
620 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
621 ssi_sxx_phys += 3;
622 break;
623 case 16:
624 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
625 ssi_sxx_phys += 2;
626 break;
627 case 32:
628 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
629 break;
630 default:
631 dev_err(substream->pcm->card->dev,
632 "unsupported sample size %u\n", runtime->sample_bits);
633 return -EINVAL;
634 }
635
636 frame_size = runtime->frame_bits / 8;
637 /*
638 * BWC should always be a multiple of the frame size. BWC determines
639 * how many bytes are sent/received before the DMA controller checks the
640 * SSI to see if it needs to stop. For playback, the transmit FIFO can
641 * hold three frames, so we want to send two frames at a time. For
642 * capture, the receive FIFO is triggered when it contains one frame, so
643 * we want to receive one frame at a time.
644 */
645
646 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
647 mr |= CCSR_DMA_MR_BWC(2 * frame_size);
648 else
649 mr |= CCSR_DMA_MR_BWC(frame_size);
650
651 out_be32(&dma_channel->mr, mr);
652
653 /*
654 * Program the address of the DMA transfer to/from the SSI.
655 */
656 for (i = 0; i < NUM_DMA_LINKS; i++) {
657 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
658
659 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
660 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
661 else
662 link->source_addr = cpu_to_be32(ssi_sxx_phys);
663 }
664
665 return 0;
666}
667
668/**
669 * fsl_dma_pointer: determine the current position of the DMA transfer
670 *
671 * This function is called by ALSA when ALSA wants to know where in the
672 * stream buffer the hardware currently is.
673 *
674 * For playback, the SAR register contains the physical address of the most
675 * recent DMA transfer. For capture, the value is in the DAR register.
676 *
677 * The base address of the buffer is stored in the source_addr field of the
678 * first link descriptor.
679 */
680static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
681{
682 struct snd_pcm_runtime *runtime = substream->runtime;
683 struct fsl_dma_private *dma_private = runtime->private_data;
684 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
685 dma_addr_t position;
686 snd_pcm_uframes_t frames;
687
688 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
689 position = in_be32(&dma_channel->sar);
690 else
691 position = in_be32(&dma_channel->dar);
692
693 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
694
695 /*
696 * If the current address is just past the end of the buffer, wrap it
697 * around.
698 */
699 if (frames == runtime->buffer_size)
700 frames = 0;
701
702 return frames;
703}
704
705/**
706 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
707 *
708 * Release the resources allocated in fsl_dma_hw_params() and de-program the
709 * registers.
710 *
711 * This function can be called multiple times.
712 */
713static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
714{
715 struct snd_pcm_runtime *runtime = substream->runtime;
716 struct fsl_dma_private *dma_private = runtime->private_data;
717
718 if (dma_private) {
719 struct ccsr_dma_channel __iomem *dma_channel;
720
721 dma_channel = dma_private->dma_channel;
722
723 /* Stop the DMA */
724 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
725 out_be32(&dma_channel->mr, 0);
726
727 /* Reset all the other registers */
728 out_be32(&dma_channel->sr, -1);
729 out_be32(&dma_channel->clndar, 0);
730 out_be32(&dma_channel->eclndar, 0);
731 out_be32(&dma_channel->satr, 0);
732 out_be32(&dma_channel->sar, 0);
733 out_be32(&dma_channel->datr, 0);
734 out_be32(&dma_channel->dar, 0);
735 out_be32(&dma_channel->bcr, 0);
736 out_be32(&dma_channel->nlndar, 0);
737 out_be32(&dma_channel->enlndar, 0);
738 }
739
740 return 0;
741}
742
743/**
744 * fsl_dma_close: close the stream.
745 */
746static int fsl_dma_close(struct snd_pcm_substream *substream)
747{
748 struct snd_pcm_runtime *runtime = substream->runtime;
749 struct fsl_dma_private *dma_private = runtime->private_data;
750 int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
751
752 if (dma_private) {
753 if (dma_private->irq)
754 free_irq(dma_private->irq, dma_private);
755
756 if (dma_private->ld_buf_phys) {
757 dma_unmap_single(substream->pcm->dev,
758 dma_private->ld_buf_phys,
759 sizeof(dma_private->link), DMA_TO_DEVICE);
760 }
761
762 /* Deallocate the fsl_dma_private structure */
763 dma_free_coherent(substream->pcm->dev,
764 sizeof(struct fsl_dma_private),
765 dma_private, dma_private->ld_buf_phys);
766 substream->runtime->private_data = NULL;
767 }
768
769 dma_global_data.assigned[dir] = 0;
770
771 return 0;
772}
773
774/*
775 * Remove this PCM driver.
776 */
777static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
778{
779 struct snd_pcm_substream *substream;
780 unsigned int i;
781
782 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
783 substream = pcm->streams[i].substream;
784 if (substream) {
785 snd_dma_free_pages(&substream->dma_buffer);
786 substream->dma_buffer.area = NULL;
787 substream->dma_buffer.addr = 0;
788 }
789 }
790}
791
792static struct snd_pcm_ops fsl_dma_ops = {
793 .open = fsl_dma_open,
794 .close = fsl_dma_close,
795 .ioctl = snd_pcm_lib_ioctl,
796 .hw_params = fsl_dma_hw_params,
797 .hw_free = fsl_dma_hw_free,
798 .prepare = fsl_dma_prepare,
799 .pointer = fsl_dma_pointer,
800};
801
802struct snd_soc_platform fsl_soc_platform = {
803 .name = "fsl-dma",
804 .pcm_ops = &fsl_dma_ops,
805 .pcm_new = fsl_dma_new,
806 .pcm_free = fsl_dma_free_dma_buffers,
807};
808EXPORT_SYMBOL_GPL(fsl_soc_platform);
809
810/**
811 * fsl_dma_configure: store the DMA parameters from the fabric driver.
812 *
813 * This function is called by the ASoC fabric driver to give us the DMA and
814 * SSI channel information.
815 *
816 * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
817 * data when a substream is created, so for now we need to store this data
818 * into a global variable. This means that we can only support one DMA
819 * controller, and hence only one SSI.
820 */
821int fsl_dma_configure(struct fsl_dma_info *dma_info)
822{
823 static int initialized;
824
825 /* We only support one DMA controller for now */
826 if (initialized)
827 return 0;
828
829 dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
830 dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
831 dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
832 dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
833 dma_global_data.irq[0] = dma_info->dma_irq[0];
834 dma_global_data.irq[1] = dma_info->dma_irq[1];
835 dma_global_data.assigned[0] = 0;
836 dma_global_data.assigned[1] = 0;
837
838 initialized = 1;
839 return 1;
840}
841EXPORT_SYMBOL_GPL(fsl_dma_configure);
842
843MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
844MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
845MODULE_LICENSE("GPL");