blob: cb5490ec00f20f4fea3640275192f20d942a7fba [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * lib/kernel_lock.c
3 *
4 * This is the traditional BKL - big kernel lock. Largely
5 * relegated to obsolescense, but used by various less
6 * important (or lazy) subsystems.
7 */
8#include <linux/smp_lock.h>
9#include <linux/module.h>
10#include <linux/kallsyms.h>
11
Linus Torvalds1da177e2005-04-16 15:20:36 -070012#ifdef CONFIG_PREEMPT_BKL
13/*
14 * The 'big kernel semaphore'
15 *
16 * This mutex is taken and released recursively by lock_kernel()
17 * and unlock_kernel(). It is transparently dropped and reaquired
18 * over schedule(). It is used to protect legacy code that hasn't
19 * been migrated to a proper locking design yet.
20 *
21 * Note: code locked by this semaphore will only be serialized against
22 * other code using the same locking facility. The code guarantees that
23 * the task remains on the same CPU.
24 *
25 * Don't use in new code.
26 */
27static DECLARE_MUTEX(kernel_sem);
28
29/*
30 * Re-acquire the kernel semaphore.
31 *
32 * This function is called with preemption off.
33 *
34 * We are executing in schedule() so the code must be extremely careful
35 * about recursion, both due to the down() and due to the enabling of
36 * preemption. schedule() will re-check the preemption flag after
37 * reacquiring the semaphore.
38 */
39int __lockfunc __reacquire_kernel_lock(void)
40{
41 struct task_struct *task = current;
42 int saved_lock_depth = task->lock_depth;
43
44 BUG_ON(saved_lock_depth < 0);
45
46 task->lock_depth = -1;
47 preempt_enable_no_resched();
48
49 down(&kernel_sem);
50
51 preempt_disable();
52 task->lock_depth = saved_lock_depth;
53
54 return 0;
55}
56
57void __lockfunc __release_kernel_lock(void)
58{
59 up(&kernel_sem);
60}
61
62/*
63 * Getting the big kernel semaphore.
64 */
65void __lockfunc lock_kernel(void)
66{
67 struct task_struct *task = current;
68 int depth = task->lock_depth + 1;
69
70 if (likely(!depth))
71 /*
72 * No recursion worries - we set up lock_depth _after_
73 */
74 down(&kernel_sem);
75
76 task->lock_depth = depth;
77}
78
79void __lockfunc unlock_kernel(void)
80{
81 struct task_struct *task = current;
82
83 BUG_ON(task->lock_depth < 0);
84
85 if (likely(--task->lock_depth < 0))
86 up(&kernel_sem);
87}
88
89#else
90
91/*
92 * The 'big kernel lock'
93 *
94 * This spinlock is taken and released recursively by lock_kernel()
95 * and unlock_kernel(). It is transparently dropped and reaquired
96 * over schedule(). It is used to protect legacy code that hasn't
97 * been migrated to a proper locking design yet.
98 *
99 * Don't use in new code.
100 */
101static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag);
102
103
104/*
105 * Acquire/release the underlying lock from the scheduler.
106 *
107 * This is called with preemption disabled, and should
108 * return an error value if it cannot get the lock and
109 * TIF_NEED_RESCHED gets set.
110 *
111 * If it successfully gets the lock, it should increment
112 * the preemption count like any spinlock does.
113 *
114 * (This works on UP too - _raw_spin_trylock will never
115 * return false in that case)
116 */
117int __lockfunc __reacquire_kernel_lock(void)
118{
119 while (!_raw_spin_trylock(&kernel_flag)) {
120 if (test_thread_flag(TIF_NEED_RESCHED))
121 return -EAGAIN;
122 cpu_relax();
123 }
124 preempt_disable();
125 return 0;
126}
127
128void __lockfunc __release_kernel_lock(void)
129{
130 _raw_spin_unlock(&kernel_flag);
131 preempt_enable_no_resched();
132}
133
134/*
135 * These are the BKL spinlocks - we try to be polite about preemption.
136 * If SMP is not on (ie UP preemption), this all goes away because the
137 * _raw_spin_trylock() will always succeed.
138 */
139#ifdef CONFIG_PREEMPT
140static inline void __lock_kernel(void)
141{
142 preempt_disable();
143 if (unlikely(!_raw_spin_trylock(&kernel_flag))) {
144 /*
145 * If preemption was disabled even before this
146 * was called, there's nothing we can be polite
147 * about - just spin.
148 */
149 if (preempt_count() > 1) {
150 _raw_spin_lock(&kernel_flag);
151 return;
152 }
153
154 /*
155 * Otherwise, let's wait for the kernel lock
156 * with preemption enabled..
157 */
158 do {
159 preempt_enable();
160 while (spin_is_locked(&kernel_flag))
161 cpu_relax();
162 preempt_disable();
163 } while (!_raw_spin_trylock(&kernel_flag));
164 }
165}
166
167#else
168
169/*
170 * Non-preemption case - just get the spinlock
171 */
172static inline void __lock_kernel(void)
173{
174 _raw_spin_lock(&kernel_flag);
175}
176#endif
177
178static inline void __unlock_kernel(void)
179{
Ingo Molnarfb1c8f92005-09-10 00:25:56 -0700180 spin_unlock(&kernel_flag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181}
182
183/*
184 * Getting the big kernel lock.
185 *
186 * This cannot happen asynchronously, so we only need to
187 * worry about other CPU's.
188 */
189void __lockfunc lock_kernel(void)
190{
191 int depth = current->lock_depth+1;
192 if (likely(!depth))
193 __lock_kernel();
194 current->lock_depth = depth;
195}
196
197void __lockfunc unlock_kernel(void)
198{
199 BUG_ON(current->lock_depth < 0);
200 if (likely(--current->lock_depth < 0))
201 __unlock_kernel();
202}
203
204#endif
205
206EXPORT_SYMBOL(lock_kernel);
207EXPORT_SYMBOL(unlock_kernel);
208