blob: 0d4632f7799b2e02063c6edb2b133268bb1ffaf9 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Nicolas Pitre83a0a962014-09-04 11:32:10 -040026#include <linux/cpuidle.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020027#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020030#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000031#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020032#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020033
34#include <trace/events/sched.h>
35
36#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010037
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020038/*
Peter Zijlstra21805082007-08-25 18:41:53 +020039 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090040 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020041 *
Peter Zijlstra21805082007-08-25 18:41:53 +020042 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020043 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020046 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020047 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020049 */
Mike Galbraith21406922010-03-11 17:17:15 +010050unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020052
53/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010054 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010066 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090067 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010068 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020069unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010071
72/*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020075static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010076
77/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020078 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020079 * parent will (try to) run first.
80 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020081unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020082
83/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020084 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020085 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020086 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
Mike Galbraith172e0822009-09-09 15:41:37 +020091unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010092unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020093
Ingo Molnarda84d962007-10-15 17:00:18 +020094const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
Paul Turnera7a4f8a2010-11-15 15:47:06 -080096/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
Paul Turnerec12cb72011-07-21 09:43:30 -0700103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
Paul Gortmaker85276322013-04-19 15:10:50 -0400117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
Peter Zijlstra029632f2011-10-25 10:00:11 +0200135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
Nicholas Mc Guire58ac93e2015-05-15 21:05:42 +0200144static unsigned int get_update_sysctl_factor(void)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200145{
Nicholas Mc Guire58ac93e2015-05-15 21:05:42 +0200146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100182#define WMULT_CONST (~0U)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200183#define WMULT_SHIFT 32
184
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100185static void __update_inv_weight(struct load_weight *lw)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200186{
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100187 unsigned long w;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200188
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200198 else
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100199 lw->inv_weight = WMULT_CONST / w;
200}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200201
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100202/*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215{
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200218
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
Peter Zijlstra029632f2011-10-25 10:00:11 +0200226 }
227
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200230
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200237}
238
239
240const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200241
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246#ifdef CONFIG_FAIR_GROUP_SCHED
247
248/* cpu runqueue to which this cfs_rq is attached */
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
251 return cfs_rq->rq;
252}
253
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
256
Peter Zijlstra8f488942009-07-24 12:25:30 +0200257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
Peter Zijlstrab7581492008-04-19 19:45:00 +0200265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
Paul Turneraff3e492012-10-04 13:18:30 +0200286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200288
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800306
307 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200308 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200309 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
Peter Zijlstrab7581492008-04-19 19:45:00 +0200321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100326static inline struct cfs_rq *
Peter Zijlstrab7581492008-04-19 19:45:00 +0200327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100330 return se->cfs_rq;
Peter Zijlstrab7581492008-04-19 19:45:00 +0200331
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100332 return NULL;
Peter Zijlstrab7581492008-04-19 19:45:00 +0200333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
Peter Zijlstra464b7522008-10-24 11:06:15 +0200340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
Peter Zijlstrafed14d42012-02-11 06:05:00 +0100353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
Peter Zijlstra464b7522008-10-24 11:06:15 +0200355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
Peter Zijlstra8f488942009-07-24 12:25:30 +0200372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200378
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
382}
383
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200384#define entity_is_task(se) 1
385
Peter Zijlstrab7581492008-04-19 19:45:00 +0200386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200388
Peter Zijlstrab7581492008-04-19 19:45:00 +0200389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200390{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200391 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392}
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
Peter Zijlstrab7581492008-04-19 19:45:00 +0200416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
Peter Zijlstrab7581492008-04-19 19:45:00 +0200419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
Peter Zijlstra464b7522008-10-24 11:06:15 +0200424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
Peter Zijlstrab7581492008-04-19 19:45:00 +0200429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700431static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
Andrei Epure1bf08232013-03-12 21:12:24 +0200438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200439{
Andrei Epure1bf08232013-03-12 21:12:24 +0200440 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200441 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200442 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200443
Andrei Epure1bf08232013-03-12 21:12:24 +0200444 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200445}
446
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
Fabio Checconi54fdc582009-07-16 12:32:27 +0200456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100474 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
Andrei Epure1bf08232013-03-12 21:12:24 +0200480 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200486}
487
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200488/*
489 * Enqueue an entity into the rb-tree:
490 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200508 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200520 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200521 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200525}
526
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200528{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100534 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200535
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200537}
538
Peter Zijlstra029632f2011-10-25 10:00:11 +0200539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200540{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200547}
548
Rik van Rielac53db52011-02-01 09:51:03 -0500549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200561{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200563
Balbir Singh70eee742008-02-22 13:25:53 +0530564 if (!last)
565 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100566
567 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200568}
569
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100574int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700575 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100576 loff_t *ppos)
577{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Nicholas Mc Guire58ac93e2015-05-15 21:05:42 +0200579 unsigned int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100592#undef WRT_SYSCTL
593
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594 return 0;
595}
596#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200597
598/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200599 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200600 */
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200602{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200603 if (unlikely(se->load.weight != NICE_0_LOAD))
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200605
606 return delta;
607}
608
609/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200610 * The idea is to set a period in which each task runs once.
611 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200612 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100620 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200621
622 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100623 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200624 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200625 }
626
627 return period;
628}
629
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200634 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200635 */
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +0200636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200637{
Mike Galbraith0a582442009-01-02 12:16:42 +0100638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200639
Mike Galbraith0a582442009-01-02 12:16:42 +0100640 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100641 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200642 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200646
Mike Galbraith0a582442009-01-02 12:16:42 +0100647 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200648 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100653 slice = __calc_delta(slice, se->load.weight, load);
Mike Galbraith0a582442009-01-02 12:16:42 +0100654 }
655 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200656}
657
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200658/*
Andrei Epure660cc002013-03-11 12:03:20 +0200659 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200660 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200662 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200664{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200666}
667
Alex Shia75cdaa2013-06-20 10:18:47 +0800668#ifdef CONFIG_SMP
Rik van Rielba7e5a22014-09-04 16:35:30 -0400669static int select_idle_sibling(struct task_struct *p, int cpu);
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100670static unsigned long task_h_load(struct task_struct *p);
671
Alex Shia75cdaa2013-06-20 10:18:47 +0800672static inline void __update_task_entity_contrib(struct sched_entity *se);
Vincent Guittot36ee28e2015-02-27 16:54:04 +0100673static inline void __update_task_entity_utilization(struct sched_entity *se);
Alex Shia75cdaa2013-06-20 10:18:47 +0800674
675/* Give new task start runnable values to heavy its load in infant time */
676void init_task_runnable_average(struct task_struct *p)
677{
678 u32 slice;
679
Alex Shia75cdaa2013-06-20 10:18:47 +0800680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
Vincent Guittot36ee28e2015-02-27 16:54:04 +0100681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
Alex Shia75cdaa2013-06-20 10:18:47 +0800683 __update_task_entity_contrib(&p->se);
Vincent Guittot36ee28e2015-02-27 16:54:04 +0100684 __update_task_entity_utilization(&p->se);
Alex Shia75cdaa2013-06-20 10:18:47 +0800685}
686#else
687void init_task_runnable_average(struct task_struct *p)
688{
689}
690#endif
691
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200692/*
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100693 * Update the current task's runtime statistics.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200694 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200695static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200696{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200697 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200698 u64 now = rq_clock_task(rq_of(cfs_rq));
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100699 u64 delta_exec;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200700
701 if (unlikely(!curr))
702 return;
703
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100706 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200707
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200708 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100709
Peter Zijlstra9dbdb152013-11-18 18:27:06 +0100710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
Ingo Molnarf977bb42009-09-13 18:15:54 +0200722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100723 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700724 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100725 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200728}
729
Stanislaw Gruszka6e998912014-11-12 16:58:44 +0100730static void update_curr_fair(struct rq *rq)
731{
732 update_curr(cfs_rq_of(&rq->curr->se));
733}
734
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200735static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200737{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200739}
740
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200741/*
742 * Task is being enqueued - update stats:
743 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200745{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200750 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200751 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200752}
753
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200754static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200762#ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200766 }
767#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300768 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769}
770
771static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200773{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200778 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200779 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200780}
781
782/*
783 * We are picking a new current task - update its stats:
784 */
785static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200787{
788 /*
789 * We are starting a new run period:
790 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200794/**************************************************
795 * Scheduling class queueing methods:
796 */
797
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200798#ifdef CONFIG_NUMA_BALANCING
799/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200803 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200809
Peter Zijlstra4b96a29b2012-10-25 14:16:47 +0200810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
Mel Gorman598f0ec2013-10-07 11:28:55 +0100813static unsigned int task_nr_scan_windows(struct task_struct *p)
814{
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830}
831
832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833#define MAX_SCAN_WINDOW 2560
834
835static unsigned int task_scan_min(struct task_struct *p)
836{
Jason Low316c1608d2015-04-28 13:00:20 -0700837 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
Mel Gorman598f0ec2013-10-07 11:28:55 +0100838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
Kirill Tkhai64192652014-10-16 14:39:37 +0400841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
Mel Gorman598f0ec2013-10-07 11:28:55 +0100843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847}
848
849static unsigned int task_scan_max(struct task_struct *p)
850{
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857}
858
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863}
864
865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869}
870
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100871struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100876 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100877
878 struct rcu_head rcu;
Rik van Riel20e07de2014-01-27 17:03:43 -0500879 nodemask_t active_nodes;
Mel Gorman989348b2013-10-07 11:29:40 +0100880 unsigned long total_faults;
Rik van Riel7e2703e2014-01-27 17:03:45 -0500881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
Rik van Riel50ec8a42014-01-27 17:03:42 -0500886 unsigned long *faults_cpu;
Mel Gorman989348b2013-10-07 11:29:40 +0100887 unsigned long faults[0];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100888};
889
Rik van Rielbe1e4e72014-01-27 17:03:48 -0500890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
Mel Gormane29cf082013-10-07 11:29:22 +0100899pid_t task_numa_group_id(struct task_struct *p)
900{
901 return p->numa_group ? p->numa_group->gid : 0;
902}
903
Iulia Manda44dba3d2014-10-31 02:13:31 +0200904/*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
Mel Gormanac8e8952013-10-07 11:29:03 +0100911{
Iulia Manda44dba3d2014-10-31 02:13:31 +0200912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
Mel Gormanac8e8952013-10-07 11:29:03 +0100913}
914
915static inline unsigned long task_faults(struct task_struct *p, int nid)
916{
Iulia Manda44dba3d2014-10-31 02:13:31 +0200917 if (!p->numa_faults)
Mel Gormanac8e8952013-10-07 11:29:03 +0100918 return 0;
919
Iulia Manda44dba3d2014-10-31 02:13:31 +0200920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
Mel Gormanac8e8952013-10-07 11:29:03 +0100922}
923
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100924static inline unsigned long group_faults(struct task_struct *p, int nid)
925{
926 if (!p->numa_group)
927 return 0;
928
Iulia Manda44dba3d2014-10-31 02:13:31 +0200929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100931}
932
Rik van Riel20e07de2014-01-27 17:03:43 -0500933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934{
Iulia Manda44dba3d2014-10-31 02:13:31 +0200935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
Rik van Riel20e07de2014-01-27 17:03:43 -0500937}
938
Rik van Riel6c6b1192014-10-17 03:29:52 -0400939/* Handle placement on systems where not all nodes are directly connected. */
940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942{
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002}
1003
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
Rik van Riel7bd95322014-10-17 03:29:51 -04001010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001012{
Rik van Riel7bd95322014-10-17 03:29:51 -04001013 unsigned long faults, total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001014
Iulia Manda44dba3d2014-10-31 02:13:31 +02001015 if (!p->numa_faults)
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
Rik van Riel7bd95322014-10-17 03:29:51 -04001023 faults = task_faults(p, nid);
Rik van Riel6c6b1192014-10-17 03:29:52 -04001024 faults += score_nearby_nodes(p, nid, dist, true);
1025
Rik van Riel7bd95322014-10-17 03:29:51 -04001026 return 1000 * faults / total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001027}
1028
Rik van Riel7bd95322014-10-17 03:29:51 -04001029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001031{
Rik van Riel7bd95322014-10-17 03:29:51 -04001032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001035 return 0;
1036
Rik van Riel7bd95322014-10-17 03:29:51 -04001037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
1040 return 0;
1041
1042 faults = group_faults(p, nid);
Rik van Riel6c6b1192014-10-17 03:29:52 -04001043 faults += score_nearby_nodes(p, nid, dist, false);
1044
Rik van Riel7bd95322014-10-17 03:29:51 -04001045 return 1000 * faults / total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001046}
1047
Rik van Riel10f39042014-01-27 17:03:44 -05001048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050{
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
Mel Gormane6628d52013-10-07 11:29:02 +01001111static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +01001112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
Nicolas Pitreced549f2014-05-26 18:19:38 -04001114static unsigned long capacity_of(int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +01001115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +01001116
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001117/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +01001118struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001119 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +01001120 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001121
1122 /* Total compute capacity of CPUs on a node */
Nicolas Pitre5ef20ca2014-05-26 18:19:34 -04001123 unsigned long compute_capacity;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001124
1125 /* Approximate capacity in terms of runnable tasks on a node */
Nicolas Pitre5ef20ca2014-05-26 18:19:34 -04001126 unsigned long task_capacity;
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04001127 int has_free_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +01001128};
Mel Gormane6628d52013-10-07 11:29:02 +01001129
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
Rik van Riel83d7f242014-08-04 13:23:28 -04001135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
Nicolas Pitreced549f2014-05-26 18:19:38 -04001144 ns->compute_capacity += capacity_of(cpu);
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001145
1146 cpus++;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001147 }
1148
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04001154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
Peter Zijlstra5eca82a2013-11-06 18:47:57 +01001156 */
1157 if (!cpus)
1158 return;
1159
Rik van Riel83d7f242014-08-04 13:23:28 -04001160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04001166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001167}
1168
Mel Gorman58d081b2013-10-07 11:29:10 +01001169struct task_numa_env {
1170 struct task_struct *p;
1171
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
1174
1175 struct numa_stats src_stats, dst_stats;
1176
Wanpeng Li40ea2b42013-12-05 19:10:17 +08001177 int imbalance_pct;
Rik van Riel7bd95322014-10-17 03:29:51 -04001178 int dist;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001179
1180 struct task_struct *best_task;
1181 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001182 int best_cpu;
1183};
1184
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001185static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187{
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196}
1197
Rik van Riel28a21742014-06-23 11:46:13 -04001198static bool load_too_imbalanced(long src_load, long dst_load,
Rik van Riele63da032014-05-14 13:22:21 -04001199 struct task_numa_env *env)
1200{
Rik van Riel28a21742014-06-23 11:46:13 -04001201 long src_capacity, dst_capacity;
Rik van Riel095bebf2015-02-03 16:56:48 -05001202 long orig_src_load;
1203 long load_a, load_b;
1204 long moved_load;
1205 long imb;
Rik van Riel28a21742014-06-23 11:46:13 -04001206
1207 /*
1208 * The load is corrected for the CPU capacity available on each node.
1209 *
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1213 */
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
Rik van Riele63da032014-05-14 13:22:21 -04001216
1217 /* We care about the slope of the imbalance, not the direction. */
Rik van Riel095bebf2015-02-03 16:56:48 -05001218 load_a = dst_load;
1219 load_b = src_load;
1220 if (load_a < load_b)
1221 swap(load_a, load_b);
Rik van Riele63da032014-05-14 13:22:21 -04001222
1223 /* Is the difference below the threshold? */
Rik van Riel095bebf2015-02-03 16:56:48 -05001224 imb = load_a * src_capacity * 100 -
1225 load_b * dst_capacity * env->imbalance_pct;
Rik van Riele63da032014-05-14 13:22:21 -04001226 if (imb <= 0)
1227 return false;
1228
1229 /*
1230 * The imbalance is above the allowed threshold.
Rik van Riel095bebf2015-02-03 16:56:48 -05001231 * Allow a move that brings us closer to a balanced situation,
1232 * without moving things past the point of balance.
Rik van Riele63da032014-05-14 13:22:21 -04001233 */
Rik van Riel28a21742014-06-23 11:46:13 -04001234 orig_src_load = env->src_stats.load;
Rik van Riel28a21742014-06-23 11:46:13 -04001235
Rik van Riel095bebf2015-02-03 16:56:48 -05001236 /*
1237 * In a task swap, there will be one load moving from src to dst,
1238 * and another moving back. This is the net sum of both moves.
1239 * A simple task move will always have a positive value.
1240 * Allow the move if it brings the system closer to a balanced
1241 * situation, without crossing over the balance point.
1242 */
1243 moved_load = orig_src_load - src_load;
Rik van Riele63da032014-05-14 13:22:21 -04001244
Rik van Riel095bebf2015-02-03 16:56:48 -05001245 if (moved_load > 0)
1246 /* Moving src -> dst. Did we overshoot balance? */
1247 return src_load * dst_capacity < dst_load * src_capacity;
1248 else
1249 /* Moving dst -> src. Did we overshoot balance? */
1250 return dst_load * src_capacity < src_load * dst_capacity;
Rik van Riele63da032014-05-14 13:22:21 -04001251}
1252
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001253/*
1254 * This checks if the overall compute and NUMA accesses of the system would
1255 * be improved if the source tasks was migrated to the target dst_cpu taking
1256 * into account that it might be best if task running on the dst_cpu should
1257 * be exchanged with the source task
1258 */
Rik van Riel887c2902013-10-07 11:29:31 +01001259static void task_numa_compare(struct task_numa_env *env,
1260 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001261{
1262 struct rq *src_rq = cpu_rq(env->src_cpu);
1263 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264 struct task_struct *cur;
Rik van Riel28a21742014-06-23 11:46:13 -04001265 long src_load, dst_load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001266 long load;
Rik van Riel1c5d3eb2014-06-23 11:46:15 -04001267 long imp = env->p->numa_group ? groupimp : taskimp;
Rik van Riel0132c3e2014-06-23 11:46:16 -04001268 long moveimp = imp;
Rik van Riel7bd95322014-10-17 03:29:51 -04001269 int dist = env->dist;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001270
1271 rcu_read_lock();
Kirill Tkhai1effd9f2014-10-22 11:17:11 +04001272
1273 raw_spin_lock_irq(&dst_rq->lock);
1274 cur = dst_rq->curr;
1275 /*
1276 * No need to move the exiting task, and this ensures that ->curr
1277 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278 * is safe under RCU read lock.
1279 * Note that rcu_read_lock() itself can't protect from the final
1280 * put_task_struct() after the last schedule().
1281 */
1282 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001283 cur = NULL;
Kirill Tkhai1effd9f2014-10-22 11:17:11 +04001284 raw_spin_unlock_irq(&dst_rq->lock);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001285
1286 /*
Peter Zijlstra7af68332014-11-10 10:54:35 +01001287 * Because we have preemption enabled we can get migrated around and
1288 * end try selecting ourselves (current == env->p) as a swap candidate.
1289 */
1290 if (cur == env->p)
1291 goto unlock;
1292
1293 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001294 * "imp" is the fault differential for the source task between the
1295 * source and destination node. Calculate the total differential for
1296 * the source task and potential destination task. The more negative
1297 * the value is, the more rmeote accesses that would be expected to
1298 * be incurred if the tasks were swapped.
1299 */
1300 if (cur) {
1301 /* Skip this swap candidate if cannot move to the source cpu */
1302 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303 goto unlock;
1304
Rik van Riel887c2902013-10-07 11:29:31 +01001305 /*
1306 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa532013-10-07 11:29:32 +01001307 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001308 */
Rik van Rielca28aa532013-10-07 11:29:32 +01001309 if (cur->numa_group == env->p->numa_group) {
Rik van Riel7bd95322014-10-17 03:29:51 -04001310 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311 task_weight(cur, env->dst_nid, dist);
Rik van Rielca28aa532013-10-07 11:29:32 +01001312 /*
1313 * Add some hysteresis to prevent swapping the
1314 * tasks within a group over tiny differences.
1315 */
1316 if (cur->numa_group)
1317 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001318 } else {
Rik van Rielca28aa532013-10-07 11:29:32 +01001319 /*
1320 * Compare the group weights. If a task is all by
1321 * itself (not part of a group), use the task weight
1322 * instead.
1323 */
Rik van Rielca28aa532013-10-07 11:29:32 +01001324 if (cur->numa_group)
Rik van Riel7bd95322014-10-17 03:29:51 -04001325 imp += group_weight(cur, env->src_nid, dist) -
1326 group_weight(cur, env->dst_nid, dist);
Rik van Rielca28aa532013-10-07 11:29:32 +01001327 else
Rik van Riel7bd95322014-10-17 03:29:51 -04001328 imp += task_weight(cur, env->src_nid, dist) -
1329 task_weight(cur, env->dst_nid, dist);
Rik van Riel887c2902013-10-07 11:29:31 +01001330 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001331 }
1332
Rik van Riel0132c3e2014-06-23 11:46:16 -04001333 if (imp <= env->best_imp && moveimp <= env->best_imp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001334 goto unlock;
1335
1336 if (!cur) {
1337 /* Is there capacity at our destination? */
Rik van Rielb932c032014-08-04 13:23:27 -04001338 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
Nicolas Pitre1b6a7492014-05-26 18:19:35 -04001339 !env->dst_stats.has_free_capacity)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001340 goto unlock;
1341
1342 goto balance;
1343 }
1344
1345 /* Balance doesn't matter much if we're running a task per cpu */
Rik van Riel0132c3e2014-06-23 11:46:16 -04001346 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347 dst_rq->nr_running == 1)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001348 goto assign;
1349
1350 /*
1351 * In the overloaded case, try and keep the load balanced.
1352 */
1353balance:
Peter Zijlstrae720fff2014-07-11 16:01:53 +02001354 load = task_h_load(env->p);
1355 dst_load = env->dst_stats.load + load;
1356 src_load = env->src_stats.load - load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001357
Rik van Riel0132c3e2014-06-23 11:46:16 -04001358 if (moveimp > imp && moveimp > env->best_imp) {
1359 /*
1360 * If the improvement from just moving env->p direction is
1361 * better than swapping tasks around, check if a move is
1362 * possible. Store a slightly smaller score than moveimp,
1363 * so an actually idle CPU will win.
1364 */
1365 if (!load_too_imbalanced(src_load, dst_load, env)) {
1366 imp = moveimp - 1;
1367 cur = NULL;
1368 goto assign;
1369 }
1370 }
1371
1372 if (imp <= env->best_imp)
1373 goto unlock;
1374
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001375 if (cur) {
Peter Zijlstrae720fff2014-07-11 16:01:53 +02001376 load = task_h_load(cur);
1377 dst_load -= load;
1378 src_load += load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001379 }
1380
Rik van Riel28a21742014-06-23 11:46:13 -04001381 if (load_too_imbalanced(src_load, dst_load, env))
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001382 goto unlock;
1383
Rik van Rielba7e5a22014-09-04 16:35:30 -04001384 /*
1385 * One idle CPU per node is evaluated for a task numa move.
1386 * Call select_idle_sibling to maybe find a better one.
1387 */
1388 if (!cur)
1389 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1390
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001391assign:
1392 task_numa_assign(env, cur, imp);
1393unlock:
1394 rcu_read_unlock();
1395}
1396
Rik van Riel887c2902013-10-07 11:29:31 +01001397static void task_numa_find_cpu(struct task_numa_env *env,
1398 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001399{
1400 int cpu;
1401
1402 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403 /* Skip this CPU if the source task cannot migrate */
1404 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405 continue;
1406
1407 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001408 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001409 }
1410}
1411
Mel Gorman58d081b2013-10-07 11:29:10 +01001412static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001413{
Mel Gorman58d081b2013-10-07 11:29:10 +01001414 struct task_numa_env env = {
1415 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001416
Mel Gorman58d081b2013-10-07 11:29:10 +01001417 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001418 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001419
1420 .imbalance_pct = 112,
1421
1422 .best_task = NULL,
1423 .best_imp = 0,
1424 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001425 };
1426 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001427 unsigned long taskweight, groupweight;
Rik van Riel7bd95322014-10-17 03:29:51 -04001428 int nid, ret, dist;
Rik van Riel887c2902013-10-07 11:29:31 +01001429 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001430
Mel Gorman58d081b2013-10-07 11:29:10 +01001431 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001432 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433 * imbalance and would be the first to start moving tasks about.
1434 *
1435 * And we want to avoid any moving of tasks about, as that would create
1436 * random movement of tasks -- counter the numa conditions we're trying
1437 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001438 */
Mel Gormane6628d52013-10-07 11:29:02 +01001439 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001440 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
Rik van Riel46a73e82013-11-11 19:29:25 -05001441 if (sd)
1442 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001443 rcu_read_unlock();
1444
Rik van Riel46a73e82013-11-11 19:29:25 -05001445 /*
1446 * Cpusets can break the scheduler domain tree into smaller
1447 * balance domains, some of which do not cross NUMA boundaries.
1448 * Tasks that are "trapped" in such domains cannot be migrated
1449 * elsewhere, so there is no point in (re)trying.
1450 */
1451 if (unlikely(!sd)) {
Wanpeng Lide1b3012013-12-12 15:23:24 +08001452 p->numa_preferred_nid = task_node(p);
Rik van Riel46a73e82013-11-11 19:29:25 -05001453 return -EINVAL;
1454 }
1455
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001456 env.dst_nid = p->numa_preferred_nid;
Rik van Riel7bd95322014-10-17 03:29:51 -04001457 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458 taskweight = task_weight(p, env.src_nid, dist);
1459 groupweight = group_weight(p, env.src_nid, dist);
1460 update_numa_stats(&env.src_stats, env.src_nid);
1461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001463 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001464
Rik van Riela43455a2014-06-04 16:09:42 -04001465 /* Try to find a spot on the preferred nid. */
1466 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001467
Rik van Riel9de05d42014-10-09 17:27:47 -04001468 /*
1469 * Look at other nodes in these cases:
1470 * - there is no space available on the preferred_nid
1471 * - the task is part of a numa_group that is interleaved across
1472 * multiple NUMA nodes; in order to better consolidate the group,
1473 * we need to check other locations.
1474 */
1475 if (env.best_cpu == -1 || (p->numa_group &&
1476 nodes_weight(p->numa_group->active_nodes) > 1)) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001477 for_each_online_node(nid) {
1478 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001479 continue;
1480
Rik van Riel7bd95322014-10-17 03:29:51 -04001481 dist = node_distance(env.src_nid, env.dst_nid);
Rik van Riel6c6b1192014-10-17 03:29:52 -04001482 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483 dist != env.dist) {
1484 taskweight = task_weight(p, env.src_nid, dist);
1485 groupweight = group_weight(p, env.src_nid, dist);
1486 }
Rik van Riel7bd95322014-10-17 03:29:51 -04001487
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001488 /* Only consider nodes where both task and groups benefit */
Rik van Riel7bd95322014-10-17 03:29:51 -04001489 taskimp = task_weight(p, nid, dist) - taskweight;
1490 groupimp = group_weight(p, nid, dist) - groupweight;
Rik van Riel887c2902013-10-07 11:29:31 +01001491 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001492 continue;
1493
Rik van Riel7bd95322014-10-17 03:29:51 -04001494 env.dist = dist;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001495 env.dst_nid = nid;
1496 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001497 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001498 }
1499 }
1500
Rik van Riel68d1b022014-04-11 13:00:29 -04001501 /*
1502 * If the task is part of a workload that spans multiple NUMA nodes,
1503 * and is migrating into one of the workload's active nodes, remember
1504 * this node as the task's preferred numa node, so the workload can
1505 * settle down.
1506 * A task that migrated to a second choice node will be better off
1507 * trying for a better one later. Do not set the preferred node here.
1508 */
Rik van Rieldb015da2014-06-23 11:41:34 -04001509 if (p->numa_group) {
1510 if (env.best_cpu == -1)
1511 nid = env.src_nid;
1512 else
1513 nid = env.dst_nid;
1514
1515 if (node_isset(nid, p->numa_group->active_nodes))
1516 sched_setnuma(p, env.dst_nid);
1517 }
1518
1519 /* No better CPU than the current one was found. */
1520 if (env.best_cpu == -1)
1521 return -EAGAIN;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001522
Rik van Riel04bb2f92013-10-07 11:29:36 +01001523 /*
1524 * Reset the scan period if the task is being rescheduled on an
1525 * alternative node to recheck if the tasks is now properly placed.
1526 */
1527 p->numa_scan_period = task_scan_min(p);
1528
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001529 if (env.best_task == NULL) {
Mel Gorman286549d2014-01-21 15:51:03 -08001530 ret = migrate_task_to(p, env.best_cpu);
1531 if (ret != 0)
1532 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001533 return ret;
1534 }
1535
1536 ret = migrate_swap(p, env.best_task);
Mel Gorman286549d2014-01-21 15:51:03 -08001537 if (ret != 0)
1538 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001539 put_task_struct(env.best_task);
1540 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001541}
1542
Mel Gorman6b9a7462013-10-07 11:29:11 +01001543/* Attempt to migrate a task to a CPU on the preferred node. */
1544static void numa_migrate_preferred(struct task_struct *p)
1545{
Rik van Riel5085e2a2014-04-11 13:00:28 -04001546 unsigned long interval = HZ;
1547
Rik van Riel2739d3e2013-10-07 11:29:41 +01001548 /* This task has no NUMA fault statistics yet */
Iulia Manda44dba3d2014-10-31 02:13:31 +02001549 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
Rik van Riel2739d3e2013-10-07 11:29:41 +01001550 return;
1551
1552 /* Periodically retry migrating the task to the preferred node */
Rik van Riel5085e2a2014-04-11 13:00:28 -04001553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554 p->numa_migrate_retry = jiffies + interval;
Rik van Riel2739d3e2013-10-07 11:29:41 +01001555
Mel Gorman6b9a7462013-10-07 11:29:11 +01001556 /* Success if task is already running on preferred CPU */
Wanpeng Lide1b3012013-12-12 15:23:24 +08001557 if (task_node(p) == p->numa_preferred_nid)
Mel Gorman6b9a7462013-10-07 11:29:11 +01001558 return;
1559
Mel Gorman6b9a7462013-10-07 11:29:11 +01001560 /* Otherwise, try migrate to a CPU on the preferred node */
Rik van Riel2739d3e2013-10-07 11:29:41 +01001561 task_numa_migrate(p);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001562}
1563
Rik van Riel04bb2f92013-10-07 11:29:36 +01001564/*
Rik van Riel20e07de2014-01-27 17:03:43 -05001565 * Find the nodes on which the workload is actively running. We do this by
1566 * tracking the nodes from which NUMA hinting faults are triggered. This can
1567 * be different from the set of nodes where the workload's memory is currently
1568 * located.
1569 *
1570 * The bitmask is used to make smarter decisions on when to do NUMA page
1571 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572 * are added when they cause over 6/16 of the maximum number of faults, but
1573 * only removed when they drop below 3/16.
1574 */
1575static void update_numa_active_node_mask(struct numa_group *numa_group)
1576{
1577 unsigned long faults, max_faults = 0;
1578 int nid;
1579
1580 for_each_online_node(nid) {
1581 faults = group_faults_cpu(numa_group, nid);
1582 if (faults > max_faults)
1583 max_faults = faults;
1584 }
1585
1586 for_each_online_node(nid) {
1587 faults = group_faults_cpu(numa_group, nid);
1588 if (!node_isset(nid, numa_group->active_nodes)) {
1589 if (faults > max_faults * 6 / 16)
1590 node_set(nid, numa_group->active_nodes);
1591 } else if (faults < max_faults * 3 / 16)
1592 node_clear(nid, numa_group->active_nodes);
1593 }
1594}
1595
1596/*
Rik van Riel04bb2f92013-10-07 11:29:36 +01001597 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598 * increments. The more local the fault statistics are, the higher the scan
Rik van Riela22b4b02014-06-23 11:41:35 -04001599 * period will be for the next scan window. If local/(local+remote) ratio is
1600 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601 * the scan period will decrease. Aim for 70% local accesses.
Rik van Riel04bb2f92013-10-07 11:29:36 +01001602 */
1603#define NUMA_PERIOD_SLOTS 10
Rik van Riela22b4b02014-06-23 11:41:35 -04001604#define NUMA_PERIOD_THRESHOLD 7
Rik van Riel04bb2f92013-10-07 11:29:36 +01001605
1606/*
1607 * Increase the scan period (slow down scanning) if the majority of
1608 * our memory is already on our local node, or if the majority of
1609 * the page accesses are shared with other processes.
1610 * Otherwise, decrease the scan period.
1611 */
1612static void update_task_scan_period(struct task_struct *p,
1613 unsigned long shared, unsigned long private)
1614{
1615 unsigned int period_slot;
1616 int ratio;
1617 int diff;
1618
1619 unsigned long remote = p->numa_faults_locality[0];
1620 unsigned long local = p->numa_faults_locality[1];
1621
1622 /*
1623 * If there were no record hinting faults then either the task is
1624 * completely idle or all activity is areas that are not of interest
Mel Gorman074c2382015-03-25 15:55:42 -07001625 * to automatic numa balancing. Related to that, if there were failed
1626 * migration then it implies we are migrating too quickly or the local
1627 * node is overloaded. In either case, scan slower
Rik van Riel04bb2f92013-10-07 11:29:36 +01001628 */
Mel Gorman074c2382015-03-25 15:55:42 -07001629 if (local + shared == 0 || p->numa_faults_locality[2]) {
Rik van Riel04bb2f92013-10-07 11:29:36 +01001630 p->numa_scan_period = min(p->numa_scan_period_max,
1631 p->numa_scan_period << 1);
1632
1633 p->mm->numa_next_scan = jiffies +
1634 msecs_to_jiffies(p->numa_scan_period);
1635
1636 return;
1637 }
1638
1639 /*
1640 * Prepare to scale scan period relative to the current period.
1641 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1642 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1643 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1644 */
1645 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1646 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1647 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1648 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1649 if (!slot)
1650 slot = 1;
1651 diff = slot * period_slot;
1652 } else {
1653 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1654
1655 /*
1656 * Scale scan rate increases based on sharing. There is an
1657 * inverse relationship between the degree of sharing and
1658 * the adjustment made to the scanning period. Broadly
1659 * speaking the intent is that there is little point
1660 * scanning faster if shared accesses dominate as it may
1661 * simply bounce migrations uselessly
1662 */
Yasuaki Ishimatsu2847c902014-10-22 16:04:35 +09001663 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
Rik van Riel04bb2f92013-10-07 11:29:36 +01001664 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1665 }
1666
1667 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1668 task_scan_min(p), task_scan_max(p));
1669 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1670}
1671
Rik van Riel7e2703e2014-01-27 17:03:45 -05001672/*
1673 * Get the fraction of time the task has been running since the last
1674 * NUMA placement cycle. The scheduler keeps similar statistics, but
1675 * decays those on a 32ms period, which is orders of magnitude off
1676 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1677 * stats only if the task is so new there are no NUMA statistics yet.
1678 */
1679static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1680{
1681 u64 runtime, delta, now;
1682 /* Use the start of this time slice to avoid calculations. */
1683 now = p->se.exec_start;
1684 runtime = p->se.sum_exec_runtime;
1685
1686 if (p->last_task_numa_placement) {
1687 delta = runtime - p->last_sum_exec_runtime;
1688 *period = now - p->last_task_numa_placement;
1689 } else {
1690 delta = p->se.avg.runnable_avg_sum;
Vincent Guittot36ee28e2015-02-27 16:54:04 +01001691 *period = p->se.avg.avg_period;
Rik van Riel7e2703e2014-01-27 17:03:45 -05001692 }
1693
1694 p->last_sum_exec_runtime = runtime;
1695 p->last_task_numa_placement = now;
1696
1697 return delta;
1698}
1699
Rik van Riel54009412014-10-17 03:29:53 -04001700/*
1701 * Determine the preferred nid for a task in a numa_group. This needs to
1702 * be done in a way that produces consistent results with group_weight,
1703 * otherwise workloads might not converge.
1704 */
1705static int preferred_group_nid(struct task_struct *p, int nid)
1706{
1707 nodemask_t nodes;
1708 int dist;
1709
1710 /* Direct connections between all NUMA nodes. */
1711 if (sched_numa_topology_type == NUMA_DIRECT)
1712 return nid;
1713
1714 /*
1715 * On a system with glueless mesh NUMA topology, group_weight
1716 * scores nodes according to the number of NUMA hinting faults on
1717 * both the node itself, and on nearby nodes.
1718 */
1719 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1720 unsigned long score, max_score = 0;
1721 int node, max_node = nid;
1722
1723 dist = sched_max_numa_distance;
1724
1725 for_each_online_node(node) {
1726 score = group_weight(p, node, dist);
1727 if (score > max_score) {
1728 max_score = score;
1729 max_node = node;
1730 }
1731 }
1732 return max_node;
1733 }
1734
1735 /*
1736 * Finding the preferred nid in a system with NUMA backplane
1737 * interconnect topology is more involved. The goal is to locate
1738 * tasks from numa_groups near each other in the system, and
1739 * untangle workloads from different sides of the system. This requires
1740 * searching down the hierarchy of node groups, recursively searching
1741 * inside the highest scoring group of nodes. The nodemask tricks
1742 * keep the complexity of the search down.
1743 */
1744 nodes = node_online_map;
1745 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1746 unsigned long max_faults = 0;
Jan Beulich81907472015-01-23 08:25:38 +00001747 nodemask_t max_group = NODE_MASK_NONE;
Rik van Riel54009412014-10-17 03:29:53 -04001748 int a, b;
1749
1750 /* Are there nodes at this distance from each other? */
1751 if (!find_numa_distance(dist))
1752 continue;
1753
1754 for_each_node_mask(a, nodes) {
1755 unsigned long faults = 0;
1756 nodemask_t this_group;
1757 nodes_clear(this_group);
1758
1759 /* Sum group's NUMA faults; includes a==b case. */
1760 for_each_node_mask(b, nodes) {
1761 if (node_distance(a, b) < dist) {
1762 faults += group_faults(p, b);
1763 node_set(b, this_group);
1764 node_clear(b, nodes);
1765 }
1766 }
1767
1768 /* Remember the top group. */
1769 if (faults > max_faults) {
1770 max_faults = faults;
1771 max_group = this_group;
1772 /*
1773 * subtle: at the smallest distance there is
1774 * just one node left in each "group", the
1775 * winner is the preferred nid.
1776 */
1777 nid = a;
1778 }
1779 }
1780 /* Next round, evaluate the nodes within max_group. */
Jan Beulich890a5402015-02-09 12:30:00 +01001781 if (!max_faults)
1782 break;
Rik van Riel54009412014-10-17 03:29:53 -04001783 nodes = max_group;
1784 }
1785 return nid;
1786}
1787
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001788static void task_numa_placement(struct task_struct *p)
1789{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001790 int seq, nid, max_nid = -1, max_group_nid = -1;
1791 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001792 unsigned long fault_types[2] = { 0, 0 };
Rik van Riel7e2703e2014-01-27 17:03:45 -05001793 unsigned long total_faults;
1794 u64 runtime, period;
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001795 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001796
Jason Low7e5a2c12015-04-30 17:28:14 -07001797 /*
1798 * The p->mm->numa_scan_seq field gets updated without
1799 * exclusive access. Use READ_ONCE() here to ensure
1800 * that the field is read in a single access:
1801 */
Jason Low316c1608d2015-04-28 13:00:20 -07001802 seq = READ_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001803 if (p->numa_scan_seq == seq)
1804 return;
1805 p->numa_scan_seq = seq;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001806 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001807
Rik van Riel7e2703e2014-01-27 17:03:45 -05001808 total_faults = p->numa_faults_locality[0] +
1809 p->numa_faults_locality[1];
1810 runtime = numa_get_avg_runtime(p, &period);
1811
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001812 /* If the task is part of a group prevent parallel updates to group stats */
1813 if (p->numa_group) {
1814 group_lock = &p->numa_group->lock;
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001815 spin_lock_irq(group_lock);
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001816 }
1817
Mel Gorman688b7582013-10-07 11:28:58 +01001818 /* Find the node with the highest number of faults */
1819 for_each_online_node(nid) {
Iulia Manda44dba3d2014-10-31 02:13:31 +02001820 /* Keep track of the offsets in numa_faults array */
1821 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001822 unsigned long faults = 0, group_faults = 0;
Iulia Manda44dba3d2014-10-31 02:13:31 +02001823 int priv;
Mel Gorman745d6142013-10-07 11:28:59 +01001824
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001825 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
Rik van Riel7e2703e2014-01-27 17:03:45 -05001826 long diff, f_diff, f_weight;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001827
Iulia Manda44dba3d2014-10-31 02:13:31 +02001828 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1829 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1830 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1831 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
Mel Gorman745d6142013-10-07 11:28:59 +01001832
Mel Gormanac8e8952013-10-07 11:29:03 +01001833 /* Decay existing window, copy faults since last scan */
Iulia Manda44dba3d2014-10-31 02:13:31 +02001834 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1835 fault_types[priv] += p->numa_faults[membuf_idx];
1836 p->numa_faults[membuf_idx] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001837
Rik van Riel7e2703e2014-01-27 17:03:45 -05001838 /*
1839 * Normalize the faults_from, so all tasks in a group
1840 * count according to CPU use, instead of by the raw
1841 * number of faults. Tasks with little runtime have
1842 * little over-all impact on throughput, and thus their
1843 * faults are less important.
1844 */
1845 f_weight = div64_u64(runtime << 16, period + 1);
Iulia Manda44dba3d2014-10-31 02:13:31 +02001846 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
Rik van Riel7e2703e2014-01-27 17:03:45 -05001847 (total_faults + 1);
Iulia Manda44dba3d2014-10-31 02:13:31 +02001848 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1849 p->numa_faults[cpubuf_idx] = 0;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001850
Iulia Manda44dba3d2014-10-31 02:13:31 +02001851 p->numa_faults[mem_idx] += diff;
1852 p->numa_faults[cpu_idx] += f_diff;
1853 faults += p->numa_faults[mem_idx];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001854 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001855 if (p->numa_group) {
Iulia Manda44dba3d2014-10-31 02:13:31 +02001856 /*
1857 * safe because we can only change our own group
1858 *
1859 * mem_idx represents the offset for a given
1860 * nid and priv in a specific region because it
1861 * is at the beginning of the numa_faults array.
1862 */
1863 p->numa_group->faults[mem_idx] += diff;
1864 p->numa_group->faults_cpu[mem_idx] += f_diff;
Mel Gorman989348b2013-10-07 11:29:40 +01001865 p->numa_group->total_faults += diff;
Iulia Manda44dba3d2014-10-31 02:13:31 +02001866 group_faults += p->numa_group->faults[mem_idx];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001867 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001868 }
1869
Mel Gorman688b7582013-10-07 11:28:58 +01001870 if (faults > max_faults) {
1871 max_faults = faults;
1872 max_nid = nid;
1873 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001874
1875 if (group_faults > max_group_faults) {
1876 max_group_faults = group_faults;
1877 max_group_nid = nid;
1878 }
1879 }
1880
Rik van Riel04bb2f92013-10-07 11:29:36 +01001881 update_task_scan_period(p, fault_types[0], fault_types[1]);
1882
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001883 if (p->numa_group) {
Rik van Riel20e07de2014-01-27 17:03:43 -05001884 update_numa_active_node_mask(p->numa_group);
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001885 spin_unlock_irq(group_lock);
Rik van Riel54009412014-10-17 03:29:53 -04001886 max_nid = preferred_group_nid(p, max_group_nid);
Mel Gorman688b7582013-10-07 11:28:58 +01001887 }
1888
Rik van Rielbb97fc32014-06-04 16:33:15 -04001889 if (max_faults) {
1890 /* Set the new preferred node */
1891 if (max_nid != p->numa_preferred_nid)
1892 sched_setnuma(p, max_nid);
1893
1894 if (task_node(p) != p->numa_preferred_nid)
1895 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001896 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001897}
1898
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001899static inline int get_numa_group(struct numa_group *grp)
1900{
1901 return atomic_inc_not_zero(&grp->refcount);
1902}
1903
1904static inline void put_numa_group(struct numa_group *grp)
1905{
1906 if (atomic_dec_and_test(&grp->refcount))
1907 kfree_rcu(grp, rcu);
1908}
1909
Mel Gorman3e6a9412013-10-07 11:29:35 +01001910static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1911 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001912{
1913 struct numa_group *grp, *my_grp;
1914 struct task_struct *tsk;
1915 bool join = false;
1916 int cpu = cpupid_to_cpu(cpupid);
1917 int i;
1918
1919 if (unlikely(!p->numa_group)) {
1920 unsigned int size = sizeof(struct numa_group) +
Rik van Riel50ec8a42014-01-27 17:03:42 -05001921 4*nr_node_ids*sizeof(unsigned long);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001922
1923 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1924 if (!grp)
1925 return;
1926
1927 atomic_set(&grp->refcount, 1);
1928 spin_lock_init(&grp->lock);
Mel Gormane29cf082013-10-07 11:29:22 +01001929 grp->gid = p->pid;
Rik van Riel50ec8a42014-01-27 17:03:42 -05001930 /* Second half of the array tracks nids where faults happen */
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001931 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1932 nr_node_ids;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001933
Rik van Riel20e07de2014-01-27 17:03:43 -05001934 node_set(task_node(current), grp->active_nodes);
1935
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001936 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
Iulia Manda44dba3d2014-10-31 02:13:31 +02001937 grp->faults[i] = p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001938
Mel Gorman989348b2013-10-07 11:29:40 +01001939 grp->total_faults = p->total_numa_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001940
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001941 grp->nr_tasks++;
1942 rcu_assign_pointer(p->numa_group, grp);
1943 }
1944
1945 rcu_read_lock();
Jason Low316c1608d2015-04-28 13:00:20 -07001946 tsk = READ_ONCE(cpu_rq(cpu)->curr);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001947
1948 if (!cpupid_match_pid(tsk, cpupid))
Peter Zijlstra33547812013-10-09 10:24:48 +02001949 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001950
1951 grp = rcu_dereference(tsk->numa_group);
1952 if (!grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001953 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001954
1955 my_grp = p->numa_group;
1956 if (grp == my_grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001957 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001958
1959 /*
1960 * Only join the other group if its bigger; if we're the bigger group,
1961 * the other task will join us.
1962 */
1963 if (my_grp->nr_tasks > grp->nr_tasks)
Peter Zijlstra33547812013-10-09 10:24:48 +02001964 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001965
1966 /*
1967 * Tie-break on the grp address.
1968 */
1969 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
Peter Zijlstra33547812013-10-09 10:24:48 +02001970 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001971
Rik van Rieldabe1d92013-10-07 11:29:34 +01001972 /* Always join threads in the same process. */
1973 if (tsk->mm == current->mm)
1974 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001975
Rik van Rieldabe1d92013-10-07 11:29:34 +01001976 /* Simple filter to avoid false positives due to PID collisions */
1977 if (flags & TNF_SHARED)
1978 join = true;
1979
Mel Gorman3e6a9412013-10-07 11:29:35 +01001980 /* Update priv based on whether false sharing was detected */
1981 *priv = !join;
1982
Rik van Rieldabe1d92013-10-07 11:29:34 +01001983 if (join && !get_numa_group(grp))
Peter Zijlstra33547812013-10-09 10:24:48 +02001984 goto no_join;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001985
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001986 rcu_read_unlock();
1987
1988 if (!join)
1989 return;
1990
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001991 BUG_ON(irqs_disabled());
1992 double_lock_irq(&my_grp->lock, &grp->lock);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001993
Rik van Rielbe1e4e72014-01-27 17:03:48 -05001994 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
Iulia Manda44dba3d2014-10-31 02:13:31 +02001995 my_grp->faults[i] -= p->numa_faults[i];
1996 grp->faults[i] += p->numa_faults[i];
Mel Gorman989348b2013-10-07 11:29:40 +01001997 }
1998 my_grp->total_faults -= p->total_numa_faults;
1999 grp->total_faults += p->total_numa_faults;
2000
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01002001 my_grp->nr_tasks--;
2002 grp->nr_tasks++;
2003
2004 spin_unlock(&my_grp->lock);
Mike Galbraith60e69ee2014-04-07 10:55:15 +02002005 spin_unlock_irq(&grp->lock);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01002006
2007 rcu_assign_pointer(p->numa_group, grp);
2008
2009 put_numa_group(my_grp);
Peter Zijlstra33547812013-10-09 10:24:48 +02002010 return;
2011
2012no_join:
2013 rcu_read_unlock();
2014 return;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01002015}
2016
2017void task_numa_free(struct task_struct *p)
2018{
2019 struct numa_group *grp = p->numa_group;
Iulia Manda44dba3d2014-10-31 02:13:31 +02002020 void *numa_faults = p->numa_faults;
Steven Rostedte9dd6852014-05-27 17:02:04 -04002021 unsigned long flags;
2022 int i;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01002023
2024 if (grp) {
Steven Rostedte9dd6852014-05-27 17:02:04 -04002025 spin_lock_irqsave(&grp->lock, flags);
Rik van Rielbe1e4e72014-01-27 17:03:48 -05002026 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
Iulia Manda44dba3d2014-10-31 02:13:31 +02002027 grp->faults[i] -= p->numa_faults[i];
Mel Gorman989348b2013-10-07 11:29:40 +01002028 grp->total_faults -= p->total_numa_faults;
2029
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01002030 grp->nr_tasks--;
Steven Rostedte9dd6852014-05-27 17:02:04 -04002031 spin_unlock_irqrestore(&grp->lock, flags);
Andreea-Cristina Bernat35b123e2014-08-22 17:50:43 +03002032 RCU_INIT_POINTER(p->numa_group, NULL);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01002033 put_numa_group(grp);
2034 }
2035
Iulia Manda44dba3d2014-10-31 02:13:31 +02002036 p->numa_faults = NULL;
Rik van Riel82727012013-10-07 11:29:28 +01002037 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01002038}
2039
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002040/*
2041 * Got a PROT_NONE fault for a page on @node.
2042 */
Rik van Riel58b46da2014-01-27 17:03:47 -05002043void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002044{
2045 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01002046 bool migrated = flags & TNF_MIGRATED;
Rik van Riel58b46da2014-01-27 17:03:47 -05002047 int cpu_node = task_node(current);
Rik van Riel792568e2014-04-11 13:00:27 -04002048 int local = !!(flags & TNF_FAULT_LOCAL);
Mel Gormanac8e8952013-10-07 11:29:03 +01002049 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002050
Dave Kleikamp10e84b92013-07-31 13:53:35 -07002051 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00002052 return;
2053
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01002054 /* for example, ksmd faulting in a user's mm */
2055 if (!p->mm)
2056 return;
2057
Mel Gormanf809ca92013-10-07 11:28:57 +01002058 /* Allocate buffer to track faults on a per-node basis */
Iulia Manda44dba3d2014-10-31 02:13:31 +02002059 if (unlikely(!p->numa_faults)) {
2060 int size = sizeof(*p->numa_faults) *
Rik van Rielbe1e4e72014-01-27 17:03:48 -05002061 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01002062
Iulia Manda44dba3d2014-10-31 02:13:31 +02002063 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2064 if (!p->numa_faults)
Mel Gormanf809ca92013-10-07 11:28:57 +01002065 return;
Mel Gorman745d6142013-10-07 11:28:59 +01002066
Mel Gorman83e1d2c2013-10-07 11:29:27 +01002067 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01002068 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01002069 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002070
Mel Gormanfb003b82012-11-15 09:01:14 +00002071 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01002072 * First accesses are treated as private, otherwise consider accesses
2073 * to be private if the accessing pid has not changed
2074 */
2075 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2076 priv = 1;
2077 } else {
2078 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01002079 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01002080 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01002081 }
2082
Rik van Riel792568e2014-04-11 13:00:27 -04002083 /*
2084 * If a workload spans multiple NUMA nodes, a shared fault that
2085 * occurs wholly within the set of nodes that the workload is
2086 * actively using should be counted as local. This allows the
2087 * scan rate to slow down when a workload has settled down.
2088 */
2089 if (!priv && !local && p->numa_group &&
2090 node_isset(cpu_node, p->numa_group->active_nodes) &&
2091 node_isset(mem_node, p->numa_group->active_nodes))
2092 local = 1;
2093
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002094 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01002095
Rik van Riel2739d3e2013-10-07 11:29:41 +01002096 /*
2097 * Retry task to preferred node migration periodically, in case it
2098 * case it previously failed, or the scheduler moved us.
2099 */
2100 if (time_after(jiffies, p->numa_migrate_retry))
Mel Gorman6b9a7462013-10-07 11:29:11 +01002101 numa_migrate_preferred(p);
2102
Ingo Molnarb32e86b2013-10-07 11:29:30 +01002103 if (migrated)
2104 p->numa_pages_migrated += pages;
Mel Gorman074c2382015-03-25 15:55:42 -07002105 if (flags & TNF_MIGRATE_FAIL)
2106 p->numa_faults_locality[2] += pages;
Ingo Molnarb32e86b2013-10-07 11:29:30 +01002107
Iulia Manda44dba3d2014-10-31 02:13:31 +02002108 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2109 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
Rik van Riel792568e2014-04-11 13:00:27 -04002110 p->numa_faults_locality[local] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002111}
2112
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002113static void reset_ptenuma_scan(struct task_struct *p)
2114{
Jason Low7e5a2c12015-04-30 17:28:14 -07002115 /*
2116 * We only did a read acquisition of the mmap sem, so
2117 * p->mm->numa_scan_seq is written to without exclusive access
2118 * and the update is not guaranteed to be atomic. That's not
2119 * much of an issue though, since this is just used for
2120 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2121 * expensive, to avoid any form of compiler optimizations:
2122 */
Jason Low316c1608d2015-04-28 13:00:20 -07002123 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002124 p->mm->numa_scan_offset = 0;
2125}
2126
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002127/*
2128 * The expensive part of numa migration is done from task_work context.
2129 * Triggered from task_tick_numa().
2130 */
2131void task_numa_work(struct callback_head *work)
2132{
2133 unsigned long migrate, next_scan, now = jiffies;
2134 struct task_struct *p = current;
2135 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002136 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00002137 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01002138 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00002139 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002140
2141 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2142
2143 work->next = work; /* protect against double add */
2144 /*
2145 * Who cares about NUMA placement when they're dying.
2146 *
2147 * NOTE: make sure not to dereference p->mm before this check,
2148 * exit_task_work() happens _after_ exit_mm() so we could be called
2149 * without p->mm even though we still had it when we enqueued this
2150 * work.
2151 */
2152 if (p->flags & PF_EXITING)
2153 return;
2154
Mel Gorman930aa172013-10-07 11:29:37 +01002155 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01002156 mm->numa_next_scan = now +
2157 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00002158 }
2159
2160 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002161 * Enforce maximal scan/migration frequency..
2162 */
2163 migrate = mm->numa_next_scan;
2164 if (time_before(now, migrate))
2165 return;
2166
Mel Gorman598f0ec2013-10-07 11:28:55 +01002167 if (p->numa_scan_period == 0) {
2168 p->numa_scan_period_max = task_scan_max(p);
2169 p->numa_scan_period = task_scan_min(p);
2170 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002171
Mel Gormanfb003b82012-11-15 09:01:14 +00002172 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002173 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2174 return;
2175
Mel Gormane14808b2012-11-19 10:59:15 +00002176 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01002177 * Delay this task enough that another task of this mm will likely win
2178 * the next time around.
2179 */
2180 p->node_stamp += 2 * TICK_NSEC;
2181
Mel Gorman9f406042012-11-14 18:34:32 +00002182 start = mm->numa_scan_offset;
2183 pages = sysctl_numa_balancing_scan_size;
2184 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2185 if (!pages)
2186 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002187
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002188 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00002189 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002190 if (!vma) {
2191 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00002192 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002193 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002194 }
Mel Gorman9f406042012-11-14 18:34:32 +00002195 for (; vma; vma = vma->vm_next) {
Naoya Horiguchi6b79c572015-04-07 14:26:47 -07002196 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2197 is_vm_hugetlb_page(vma)) {
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002198 continue;
Naoya Horiguchi6b79c572015-04-07 14:26:47 -07002199 }
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002200
Mel Gorman4591ce4f2013-10-07 11:29:13 +01002201 /*
2202 * Shared library pages mapped by multiple processes are not
2203 * migrated as it is expected they are cache replicated. Avoid
2204 * hinting faults in read-only file-backed mappings or the vdso
2205 * as migrating the pages will be of marginal benefit.
2206 */
2207 if (!vma->vm_mm ||
2208 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2209 continue;
2210
Mel Gorman3c67f472013-12-18 17:08:40 -08002211 /*
2212 * Skip inaccessible VMAs to avoid any confusion between
2213 * PROT_NONE and NUMA hinting ptes
2214 */
2215 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2216 continue;
2217
Mel Gorman9f406042012-11-14 18:34:32 +00002218 do {
2219 start = max(start, vma->vm_start);
2220 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2221 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01002222 nr_pte_updates += change_prot_numa(vma, start, end);
2223
2224 /*
2225 * Scan sysctl_numa_balancing_scan_size but ensure that
2226 * at least one PTE is updated so that unused virtual
2227 * address space is quickly skipped.
2228 */
2229 if (nr_pte_updates)
2230 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002231
Mel Gorman9f406042012-11-14 18:34:32 +00002232 start = end;
2233 if (pages <= 0)
2234 goto out;
Rik van Riel3cf19622014-02-18 17:12:44 -05002235
2236 cond_resched();
Mel Gorman9f406042012-11-14 18:34:32 +00002237 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002238 }
2239
Mel Gorman9f406042012-11-14 18:34:32 +00002240out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002241 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01002242 * It is possible to reach the end of the VMA list but the last few
2243 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2244 * would find the !migratable VMA on the next scan but not reset the
2245 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002246 */
2247 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00002248 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02002249 else
2250 reset_ptenuma_scan(p);
2251 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002252}
2253
2254/*
2255 * Drive the periodic memory faults..
2256 */
2257void task_tick_numa(struct rq *rq, struct task_struct *curr)
2258{
2259 struct callback_head *work = &curr->numa_work;
2260 u64 period, now;
2261
2262 /*
2263 * We don't care about NUMA placement if we don't have memory.
2264 */
2265 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2266 return;
2267
2268 /*
2269 * Using runtime rather than walltime has the dual advantage that
2270 * we (mostly) drive the selection from busy threads and that the
2271 * task needs to have done some actual work before we bother with
2272 * NUMA placement.
2273 */
2274 now = curr->se.sum_exec_runtime;
2275 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2276
2277 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a29b2012-10-25 14:16:47 +02002278 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01002279 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01002280 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002281
2282 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2283 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2284 task_work_add(curr, work, true);
2285 }
2286 }
2287}
2288#else
2289static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2290{
2291}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002292
2293static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2294{
2295}
2296
2297static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2298{
2299}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02002300#endif /* CONFIG_NUMA_BALANCING */
2301
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002302static void
2303account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2304{
2305 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02002306 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02002307 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01002308#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002309 if (entity_is_task(se)) {
2310 struct rq *rq = rq_of(cfs_rq);
2311
2312 account_numa_enqueue(rq, task_of(se));
2313 list_add(&se->group_node, &rq->cfs_tasks);
2314 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01002315#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002316 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002317}
2318
2319static void
2320account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2321{
2322 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02002323 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02002324 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002325 if (entity_is_task(se)) {
2326 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05302327 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01002328 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002329 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002330}
2331
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002332#ifdef CONFIG_FAIR_GROUP_SCHED
2333# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002334static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2335{
2336 long tg_weight;
2337
2338 /*
2339 * Use this CPU's actual weight instead of the last load_contribution
2340 * to gain a more accurate current total weight. See
2341 * update_cfs_rq_load_contribution().
2342 */
Alex Shibf5b9862013-06-20 10:18:54 +08002343 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02002344 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002345 tg_weight += cfs_rq->load.weight;
2346
2347 return tg_weight;
2348}
2349
Paul Turner6d5ab292011-01-21 20:45:01 -08002350static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002351{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002352 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002353
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002354 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08002355 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002356
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002357 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02002358 if (tg_weight)
2359 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002360
2361 if (shares < MIN_SHARES)
2362 shares = MIN_SHARES;
2363 if (shares > tg->shares)
2364 shares = tg->shares;
2365
2366 return shares;
2367}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002368# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08002369static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002370{
2371 return tg->shares;
2372}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002373# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002374static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2375 unsigned long weight)
2376{
Paul Turner19e5eeb2010-12-15 19:10:18 -08002377 if (se->on_rq) {
2378 /* commit outstanding execution time */
2379 if (cfs_rq->curr == se)
2380 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002381 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08002382 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002383
2384 update_load_set(&se->load, weight);
2385
2386 if (se->on_rq)
2387 account_entity_enqueue(cfs_rq, se);
2388}
2389
Paul Turner82958362012-10-04 13:18:31 +02002390static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2391
Paul Turner6d5ab292011-01-21 20:45:01 -08002392static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002393{
2394 struct task_group *tg;
2395 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002396 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002397
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002398 tg = cfs_rq->tg;
2399 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07002400 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002401 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08002402#ifndef CONFIG_SMP
2403 if (likely(se->load.weight == tg->shares))
2404 return;
2405#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08002406 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002407
2408 reweight_entity(cfs_rq_of(se), se, shares);
2409}
2410#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08002411static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002412{
2413}
2414#endif /* CONFIG_FAIR_GROUP_SCHED */
2415
Alex Shi141965c2013-06-26 13:05:39 +08002416#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02002417/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02002418 * We choose a half-life close to 1 scheduling period.
2419 * Note: The tables below are dependent on this value.
2420 */
2421#define LOAD_AVG_PERIOD 32
2422#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2423#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2424
2425/* Precomputed fixed inverse multiplies for multiplication by y^n */
2426static const u32 runnable_avg_yN_inv[] = {
2427 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2428 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2429 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2430 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2431 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2432 0x85aac367, 0x82cd8698,
2433};
2434
2435/*
2436 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2437 * over-estimates when re-combining.
2438 */
2439static const u32 runnable_avg_yN_sum[] = {
2440 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2441 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2442 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2443};
2444
2445/*
Paul Turner9d85f212012-10-04 13:18:29 +02002446 * Approximate:
2447 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2448 */
2449static __always_inline u64 decay_load(u64 val, u64 n)
2450{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002451 unsigned int local_n;
2452
2453 if (!n)
2454 return val;
2455 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2456 return 0;
2457
2458 /* after bounds checking we can collapse to 32-bit */
2459 local_n = n;
2460
2461 /*
2462 * As y^PERIOD = 1/2, we can combine
Zhihui Zhang9c58c792014-09-20 21:24:36 -04002463 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2464 * With a look-up table which covers y^n (n<PERIOD)
Paul Turner5b51f2f2012-10-04 13:18:32 +02002465 *
2466 * To achieve constant time decay_load.
2467 */
2468 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2469 val >>= local_n / LOAD_AVG_PERIOD;
2470 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02002471 }
2472
Paul Turner5b51f2f2012-10-04 13:18:32 +02002473 val *= runnable_avg_yN_inv[local_n];
2474 /* We don't use SRR here since we always want to round down. */
2475 return val >> 32;
2476}
2477
2478/*
2479 * For updates fully spanning n periods, the contribution to runnable
2480 * average will be: \Sum 1024*y^n
2481 *
2482 * We can compute this reasonably efficiently by combining:
2483 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2484 */
2485static u32 __compute_runnable_contrib(u64 n)
2486{
2487 u32 contrib = 0;
2488
2489 if (likely(n <= LOAD_AVG_PERIOD))
2490 return runnable_avg_yN_sum[n];
2491 else if (unlikely(n >= LOAD_AVG_MAX_N))
2492 return LOAD_AVG_MAX;
2493
2494 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2495 do {
2496 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2497 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2498
2499 n -= LOAD_AVG_PERIOD;
2500 } while (n > LOAD_AVG_PERIOD);
2501
2502 contrib = decay_load(contrib, n);
2503 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002504}
2505
2506/*
2507 * We can represent the historical contribution to runnable average as the
2508 * coefficients of a geometric series. To do this we sub-divide our runnable
2509 * history into segments of approximately 1ms (1024us); label the segment that
2510 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2511 *
2512 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2513 * p0 p1 p2
2514 * (now) (~1ms ago) (~2ms ago)
2515 *
2516 * Let u_i denote the fraction of p_i that the entity was runnable.
2517 *
2518 * We then designate the fractions u_i as our co-efficients, yielding the
2519 * following representation of historical load:
2520 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2521 *
2522 * We choose y based on the with of a reasonably scheduling period, fixing:
2523 * y^32 = 0.5
2524 *
2525 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2526 * approximately half as much as the contribution to load within the last ms
2527 * (u_0).
2528 *
2529 * When a period "rolls over" and we have new u_0`, multiplying the previous
2530 * sum again by y is sufficient to update:
2531 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2532 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2533 */
Morten Rasmussen0c1dc6b2015-03-04 08:46:26 +01002534static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
Paul Turner9d85f212012-10-04 13:18:29 +02002535 struct sched_avg *sa,
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002536 int runnable,
2537 int running)
Paul Turner9d85f212012-10-04 13:18:29 +02002538{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002539 u64 delta, periods;
2540 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002541 int delta_w, decayed = 0;
Morten Rasmussen0c1dc6b2015-03-04 08:46:26 +01002542 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
Paul Turner9d85f212012-10-04 13:18:29 +02002543
2544 delta = now - sa->last_runnable_update;
2545 /*
2546 * This should only happen when time goes backwards, which it
2547 * unfortunately does during sched clock init when we swap over to TSC.
2548 */
2549 if ((s64)delta < 0) {
2550 sa->last_runnable_update = now;
2551 return 0;
2552 }
2553
2554 /*
2555 * Use 1024ns as the unit of measurement since it's a reasonable
2556 * approximation of 1us and fast to compute.
2557 */
2558 delta >>= 10;
2559 if (!delta)
2560 return 0;
2561 sa->last_runnable_update = now;
2562
2563 /* delta_w is the amount already accumulated against our next period */
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002564 delta_w = sa->avg_period % 1024;
Paul Turner9d85f212012-10-04 13:18:29 +02002565 if (delta + delta_w >= 1024) {
2566 /* period roll-over */
2567 decayed = 1;
2568
2569 /*
2570 * Now that we know we're crossing a period boundary, figure
2571 * out how much from delta we need to complete the current
2572 * period and accrue it.
2573 */
2574 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002575 if (runnable)
2576 sa->runnable_avg_sum += delta_w;
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002577 if (running)
Morten Rasmussen0c1dc6b2015-03-04 08:46:26 +01002578 sa->running_avg_sum += delta_w * scale_freq
2579 >> SCHED_CAPACITY_SHIFT;
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002580 sa->avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002581
Paul Turner5b51f2f2012-10-04 13:18:32 +02002582 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002583
Paul Turner5b51f2f2012-10-04 13:18:32 +02002584 /* Figure out how many additional periods this update spans */
2585 periods = delta / 1024;
2586 delta %= 1024;
2587
2588 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2589 periods + 1);
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002590 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2591 periods + 1);
2592 sa->avg_period = decay_load(sa->avg_period,
Paul Turner5b51f2f2012-10-04 13:18:32 +02002593 periods + 1);
2594
2595 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2596 runnable_contrib = __compute_runnable_contrib(periods);
2597 if (runnable)
2598 sa->runnable_avg_sum += runnable_contrib;
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002599 if (running)
Morten Rasmussen0c1dc6b2015-03-04 08:46:26 +01002600 sa->running_avg_sum += runnable_contrib * scale_freq
2601 >> SCHED_CAPACITY_SHIFT;
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002602 sa->avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002603 }
2604
2605 /* Remainder of delta accrued against u_0` */
2606 if (runnable)
2607 sa->runnable_avg_sum += delta;
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002608 if (running)
Morten Rasmussen0c1dc6b2015-03-04 08:46:26 +01002609 sa->running_avg_sum += delta * scale_freq
2610 >> SCHED_CAPACITY_SHIFT;
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002611 sa->avg_period += delta;
Paul Turner9d85f212012-10-04 13:18:29 +02002612
2613 return decayed;
2614}
2615
Paul Turner9ee474f2012-10-04 13:18:30 +02002616/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002617static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002618{
2619 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2620 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2621
2622 decays -= se->avg.decay_count;
Xunlei Pang63847602014-12-16 23:58:29 +08002623 se->avg.decay_count = 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002624 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002625 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002626
2627 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002628 se->avg.utilization_avg_contrib =
2629 decay_load(se->avg.utilization_avg_contrib, decays);
Paul Turneraff3e492012-10-04 13:18:30 +02002630
2631 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002632}
2633
Paul Turnerc566e8e2012-10-04 13:18:30 +02002634#ifdef CONFIG_FAIR_GROUP_SCHED
2635static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2636 int force_update)
2637{
2638 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002639 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002640
2641 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2642 tg_contrib -= cfs_rq->tg_load_contrib;
2643
Jason Low8236d902014-09-02 00:41:24 -07002644 if (!tg_contrib)
2645 return;
2646
Alex Shibf5b9862013-06-20 10:18:54 +08002647 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2648 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002649 cfs_rq->tg_load_contrib += tg_contrib;
2650 }
2651}
Paul Turner8165e142012-10-04 13:18:31 +02002652
Paul Turnerbb17f652012-10-04 13:18:31 +02002653/*
2654 * Aggregate cfs_rq runnable averages into an equivalent task_group
2655 * representation for computing load contributions.
2656 */
2657static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2658 struct cfs_rq *cfs_rq)
2659{
2660 struct task_group *tg = cfs_rq->tg;
2661 long contrib;
2662
2663 /* The fraction of a cpu used by this cfs_rq */
Michal Nazarewicz85b088e2013-11-10 20:42:01 +01002664 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002665 sa->avg_period + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002666 contrib -= cfs_rq->tg_runnable_contrib;
2667
2668 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2669 atomic_add(contrib, &tg->runnable_avg);
2670 cfs_rq->tg_runnable_contrib += contrib;
2671 }
2672}
2673
Paul Turner8165e142012-10-04 13:18:31 +02002674static inline void __update_group_entity_contrib(struct sched_entity *se)
2675{
2676 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2677 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002678 int runnable_avg;
2679
Paul Turner8165e142012-10-04 13:18:31 +02002680 u64 contrib;
2681
2682 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002683 se->avg.load_avg_contrib = div_u64(contrib,
2684 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002685
2686 /*
2687 * For group entities we need to compute a correction term in the case
2688 * that they are consuming <1 cpu so that we would contribute the same
2689 * load as a task of equal weight.
2690 *
2691 * Explicitly co-ordinating this measurement would be expensive, but
2692 * fortunately the sum of each cpus contribution forms a usable
2693 * lower-bound on the true value.
2694 *
2695 * Consider the aggregate of 2 contributions. Either they are disjoint
2696 * (and the sum represents true value) or they are disjoint and we are
2697 * understating by the aggregate of their overlap.
2698 *
2699 * Extending this to N cpus, for a given overlap, the maximum amount we
2700 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2701 * cpus that overlap for this interval and w_i is the interval width.
2702 *
2703 * On a small machine; the first term is well-bounded which bounds the
2704 * total error since w_i is a subset of the period. Whereas on a
2705 * larger machine, while this first term can be larger, if w_i is the
2706 * of consequential size guaranteed to see n_i*w_i quickly converge to
2707 * our upper bound of 1-cpu.
2708 */
2709 runnable_avg = atomic_read(&tg->runnable_avg);
2710 if (runnable_avg < NICE_0_LOAD) {
2711 se->avg.load_avg_contrib *= runnable_avg;
2712 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2713 }
Paul Turner8165e142012-10-04 13:18:31 +02002714}
Dietmar Eggemannf5f97392014-02-26 11:19:33 +00002715
2716static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2717{
Morten Rasmussen0c1dc6b2015-03-04 08:46:26 +01002718 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2719 runnable, runnable);
Dietmar Eggemannf5f97392014-02-26 11:19:33 +00002720 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2721}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002722#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +02002723static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2724 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002725static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2726 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002727static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Dietmar Eggemannf5f97392014-02-26 11:19:33 +00002728static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002729#endif /* CONFIG_FAIR_GROUP_SCHED */
Paul Turnerc566e8e2012-10-04 13:18:30 +02002730
Paul Turner8165e142012-10-04 13:18:31 +02002731static inline void __update_task_entity_contrib(struct sched_entity *se)
2732{
2733 u32 contrib;
2734
2735 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2736 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002737 contrib /= (se->avg.avg_period + 1);
Paul Turner8165e142012-10-04 13:18:31 +02002738 se->avg.load_avg_contrib = scale_load(contrib);
2739}
2740
Paul Turner2dac7542012-10-04 13:18:30 +02002741/* Compute the current contribution to load_avg by se, return any delta */
2742static long __update_entity_load_avg_contrib(struct sched_entity *se)
2743{
2744 long old_contrib = se->avg.load_avg_contrib;
2745
Paul Turner8165e142012-10-04 13:18:31 +02002746 if (entity_is_task(se)) {
2747 __update_task_entity_contrib(se);
2748 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002749 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002750 __update_group_entity_contrib(se);
2751 }
Paul Turner2dac7542012-10-04 13:18:30 +02002752
2753 return se->avg.load_avg_contrib - old_contrib;
2754}
2755
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002756
2757static inline void __update_task_entity_utilization(struct sched_entity *se)
2758{
2759 u32 contrib;
2760
2761 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2762 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2763 contrib /= (se->avg.avg_period + 1);
2764 se->avg.utilization_avg_contrib = scale_load(contrib);
2765}
2766
2767static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2768{
2769 long old_contrib = se->avg.utilization_avg_contrib;
2770
2771 if (entity_is_task(se))
2772 __update_task_entity_utilization(se);
Morten Rasmussen21f44862015-02-27 16:54:05 +01002773 else
2774 se->avg.utilization_avg_contrib =
2775 group_cfs_rq(se)->utilization_load_avg;
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002776
2777 return se->avg.utilization_avg_contrib - old_contrib;
2778}
2779
Paul Turner9ee474f2012-10-04 13:18:30 +02002780static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2781 long load_contrib)
2782{
2783 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2784 cfs_rq->blocked_load_avg -= load_contrib;
2785 else
2786 cfs_rq->blocked_load_avg = 0;
2787}
2788
Paul Turnerf1b17282012-10-04 13:18:31 +02002789static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2790
Paul Turner9d85f212012-10-04 13:18:29 +02002791/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002792static inline void update_entity_load_avg(struct sched_entity *se,
2793 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002794{
Paul Turner2dac7542012-10-04 13:18:30 +02002795 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002796 long contrib_delta, utilization_delta;
Morten Rasmussen0c1dc6b2015-03-04 08:46:26 +01002797 int cpu = cpu_of(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02002798 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002799
Paul Turnerf1b17282012-10-04 13:18:31 +02002800 /*
2801 * For a group entity we need to use their owned cfs_rq_clock_task() in
2802 * case they are the parent of a throttled hierarchy.
2803 */
2804 if (entity_is_task(se))
2805 now = cfs_rq_clock_task(cfs_rq);
2806 else
2807 now = cfs_rq_clock_task(group_cfs_rq(se));
2808
Morten Rasmussen0c1dc6b2015-03-04 08:46:26 +01002809 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002810 cfs_rq->curr == se))
Paul Turner2dac7542012-10-04 13:18:30 +02002811 return;
2812
2813 contrib_delta = __update_entity_load_avg_contrib(se);
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002814 utilization_delta = __update_entity_utilization_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002815
2816 if (!update_cfs_rq)
2817 return;
2818
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002819 if (se->on_rq) {
Paul Turner2dac7542012-10-04 13:18:30 +02002820 cfs_rq->runnable_load_avg += contrib_delta;
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002821 cfs_rq->utilization_load_avg += utilization_delta;
2822 } else {
Paul Turner9ee474f2012-10-04 13:18:30 +02002823 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002824 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002825}
2826
2827/*
2828 * Decay the load contributed by all blocked children and account this so that
2829 * their contribution may appropriately discounted when they wake up.
2830 */
Paul Turneraff3e492012-10-04 13:18:30 +02002831static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002832{
Paul Turnerf1b17282012-10-04 13:18:31 +02002833 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002834 u64 decays;
2835
2836 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002837 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002838 return;
2839
Alex Shi25099402013-06-20 10:18:55 +08002840 if (atomic_long_read(&cfs_rq->removed_load)) {
2841 unsigned long removed_load;
2842 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002843 subtract_blocked_load_contrib(cfs_rq, removed_load);
2844 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002845
Paul Turneraff3e492012-10-04 13:18:30 +02002846 if (decays) {
2847 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2848 decays);
2849 atomic64_add(decays, &cfs_rq->decay_counter);
2850 cfs_rq->last_decay = now;
2851 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002852
2853 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002854}
Ben Segall18bf2802012-10-04 12:51:20 +02002855
Paul Turner2dac7542012-10-04 13:18:30 +02002856/* Add the load generated by se into cfs_rq's child load-average */
2857static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002858 struct sched_entity *se,
2859 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002860{
Paul Turneraff3e492012-10-04 13:18:30 +02002861 /*
2862 * We track migrations using entity decay_count <= 0, on a wake-up
2863 * migration we use a negative decay count to track the remote decays
2864 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002865 *
2866 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2867 * are seen by enqueue_entity_load_avg() as a migration with an already
2868 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002869 */
2870 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002871 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002872 if (se->avg.decay_count) {
2873 /*
2874 * In a wake-up migration we have to approximate the
2875 * time sleeping. This is because we can't synchronize
2876 * clock_task between the two cpus, and it is not
2877 * guaranteed to be read-safe. Instead, we can
2878 * approximate this using our carried decays, which are
2879 * explicitly atomically readable.
2880 */
2881 se->avg.last_runnable_update -= (-se->avg.decay_count)
2882 << 20;
2883 update_entity_load_avg(se, 0);
2884 /* Indicate that we're now synchronized and on-rq */
2885 se->avg.decay_count = 0;
2886 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002887 wakeup = 0;
2888 } else {
Vincent Guittot93906752014-01-22 08:45:34 +01002889 __synchronize_entity_decay(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002890 }
2891
Paul Turneraff3e492012-10-04 13:18:30 +02002892 /* migrated tasks did not contribute to our blocked load */
2893 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002894 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002895 update_entity_load_avg(se, 0);
2896 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002897
Paul Turner2dac7542012-10-04 13:18:30 +02002898 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002899 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002900 /* we force update consideration on load-balancer moves */
2901 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002902}
2903
Paul Turner9ee474f2012-10-04 13:18:30 +02002904/*
2905 * Remove se's load from this cfs_rq child load-average, if the entity is
2906 * transitioning to a blocked state we track its projected decay using
2907 * blocked_load_avg.
2908 */
Paul Turner2dac7542012-10-04 13:18:30 +02002909static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002910 struct sched_entity *se,
2911 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002912{
Paul Turner9ee474f2012-10-04 13:18:30 +02002913 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002914 /* we force update consideration on load-balancer moves */
2915 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002916
Paul Turner2dac7542012-10-04 13:18:30 +02002917 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Vincent Guittot36ee28e2015-02-27 16:54:04 +01002918 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002919 if (sleep) {
2920 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2921 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2922 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002923}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002924
2925/*
2926 * Update the rq's load with the elapsed running time before entering
2927 * idle. if the last scheduled task is not a CFS task, idle_enter will
2928 * be the only way to update the runnable statistic.
2929 */
2930void idle_enter_fair(struct rq *this_rq)
2931{
2932 update_rq_runnable_avg(this_rq, 1);
2933}
2934
2935/*
2936 * Update the rq's load with the elapsed idle time before a task is
2937 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2938 * be the only way to update the runnable statistic.
2939 */
2940void idle_exit_fair(struct rq *this_rq)
2941{
2942 update_rq_runnable_avg(this_rq, 0);
2943}
2944
Peter Zijlstra6e831252014-02-11 16:11:48 +01002945static int idle_balance(struct rq *this_rq);
2946
Peter Zijlstra38033c32014-01-23 20:32:21 +01002947#else /* CONFIG_SMP */
2948
Paul Turner9ee474f2012-10-04 13:18:30 +02002949static inline void update_entity_load_avg(struct sched_entity *se,
2950 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002951static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002952static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002953 struct sched_entity *se,
2954 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002955static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002956 struct sched_entity *se,
2957 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002958static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2959 int force_update) {}
Peter Zijlstra6e831252014-02-11 16:11:48 +01002960
2961static inline int idle_balance(struct rq *rq)
2962{
2963 return 0;
2964}
2965
Peter Zijlstra38033c32014-01-23 20:32:21 +01002966#endif /* CONFIG_SMP */
Paul Turner9d85f212012-10-04 13:18:29 +02002967
Ingo Molnar2396af62007-08-09 11:16:48 +02002968static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002969{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002970#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002971 struct task_struct *tsk = NULL;
2972
2973 if (entity_is_task(se))
2974 tsk = task_of(se);
2975
Lucas De Marchi41acab82010-03-10 23:37:45 -03002976 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002977 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002978
2979 if ((s64)delta < 0)
2980 delta = 0;
2981
Lucas De Marchi41acab82010-03-10 23:37:45 -03002982 if (unlikely(delta > se->statistics.sleep_max))
2983 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002984
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002985 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002986 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002987
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002988 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002989 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002990 trace_sched_stat_sleep(tsk, delta);
2991 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002992 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002993 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002994 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002995
2996 if ((s64)delta < 0)
2997 delta = 0;
2998
Lucas De Marchi41acab82010-03-10 23:37:45 -03002999 if (unlikely(delta > se->statistics.block_max))
3000 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003001
Peter Zijlstra8c79a042012-01-30 14:51:37 +01003002 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03003003 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02003004
Peter Zijlstrae4143142009-07-23 20:13:26 +02003005 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07003006 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03003007 se->statistics.iowait_sum += delta;
3008 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02003009 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07003010 }
3011
Andrew Vaginb781a602011-11-28 12:03:35 +03003012 trace_sched_stat_blocked(tsk, delta);
3013
Peter Zijlstrae4143142009-07-23 20:13:26 +02003014 /*
3015 * Blocking time is in units of nanosecs, so shift by
3016 * 20 to get a milliseconds-range estimation of the
3017 * amount of time that the task spent sleeping:
3018 */
3019 if (unlikely(prof_on == SLEEP_PROFILING)) {
3020 profile_hits(SLEEP_PROFILING,
3021 (void *)get_wchan(tsk),
3022 delta >> 20);
3023 }
3024 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02003025 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003026 }
3027#endif
3028}
3029
Peter Zijlstraddc97292007-10-15 17:00:10 +02003030static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3031{
3032#ifdef CONFIG_SCHED_DEBUG
3033 s64 d = se->vruntime - cfs_rq->min_vruntime;
3034
3035 if (d < 0)
3036 d = -d;
3037
3038 if (d > 3*sysctl_sched_latency)
3039 schedstat_inc(cfs_rq, nr_spread_over);
3040#endif
3041}
3042
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003043static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02003044place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3045{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02003046 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02003047
Peter Zijlstra2cb86002007-11-09 22:39:37 +01003048 /*
3049 * The 'current' period is already promised to the current tasks,
3050 * however the extra weight of the new task will slow them down a
3051 * little, place the new task so that it fits in the slot that
3052 * stays open at the end.
3053 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02003054 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02003055 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02003056
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02003057 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01003058 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02003059 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02003060
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02003061 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02003062 * Halve their sleep time's effect, to allow
3063 * for a gentler effect of sleepers:
3064 */
3065 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3066 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02003067
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02003068 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02003069 }
3070
Mike Galbraithb5d9d732009-09-08 11:12:28 +02003071 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05303072 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02003073}
3074
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003075static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3076
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02003077static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003078enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003079{
3080 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003081 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05303082 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003083 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003084 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003085 se->vruntime += cfs_rq->min_vruntime;
3086
3087 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02003088 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003089 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02003090 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02003091 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003092 account_entity_enqueue(cfs_rq, se);
3093 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003094
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003095 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02003096 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02003097 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02003098 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003099
Ingo Molnard2417e52007-08-09 11:16:47 +02003100 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02003101 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003102 if (se != cfs_rq->curr)
3103 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003104 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08003105
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003106 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08003107 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003108 check_enqueue_throttle(cfs_rq);
3109 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003110}
3111
Rik van Riel2c13c9192011-02-01 09:48:37 -05003112static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01003113{
Rik van Riel2c13c9192011-02-01 09:48:37 -05003114 for_each_sched_entity(se) {
3115 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01003116 if (cfs_rq->last != se)
Rik van Riel2c13c9192011-02-01 09:48:37 -05003117 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01003118
3119 cfs_rq->last = NULL;
Rik van Riel2c13c9192011-02-01 09:48:37 -05003120 }
3121}
Peter Zijlstra2002c692008-11-11 11:52:33 +01003122
Rik van Riel2c13c9192011-02-01 09:48:37 -05003123static void __clear_buddies_next(struct sched_entity *se)
3124{
3125 for_each_sched_entity(se) {
3126 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01003127 if (cfs_rq->next != se)
Rik van Riel2c13c9192011-02-01 09:48:37 -05003128 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01003129
3130 cfs_rq->next = NULL;
Rik van Riel2c13c9192011-02-01 09:48:37 -05003131 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01003132}
3133
Rik van Rielac53db52011-02-01 09:51:03 -05003134static void __clear_buddies_skip(struct sched_entity *se)
3135{
3136 for_each_sched_entity(se) {
3137 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstraf1044792012-02-11 06:05:00 +01003138 if (cfs_rq->skip != se)
Rik van Rielac53db52011-02-01 09:51:03 -05003139 break;
Peter Zijlstraf1044792012-02-11 06:05:00 +01003140
3141 cfs_rq->skip = NULL;
Rik van Rielac53db52011-02-01 09:51:03 -05003142 }
3143}
3144
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01003145static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3146{
Rik van Riel2c13c9192011-02-01 09:48:37 -05003147 if (cfs_rq->last == se)
3148 __clear_buddies_last(se);
3149
3150 if (cfs_rq->next == se)
3151 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05003152
3153 if (cfs_rq->skip == se)
3154 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01003155}
3156
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003157static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07003158
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003159static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003160dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003161{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02003162 /*
3163 * Update run-time statistics of the 'current'.
3164 */
3165 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003166 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02003167
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02003168 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003169 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02003170#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003171 if (entity_is_task(se)) {
3172 struct task_struct *tsk = task_of(se);
3173
3174 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003175 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003176 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003177 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003178 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02003179#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02003180 }
3181
Peter Zijlstra2002c692008-11-11 11:52:33 +01003182 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01003183
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003184 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003185 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003186 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003187 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003188
3189 /*
3190 * Normalize the entity after updating the min_vruntime because the
3191 * update can refer to the ->curr item and we need to reflect this
3192 * movement in our normalized position.
3193 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003194 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003195 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07003196
Paul Turnerd8b49862011-07-21 09:43:41 -07003197 /* return excess runtime on last dequeue */
3198 return_cfs_rq_runtime(cfs_rq);
3199
Peter Zijlstra1e876232011-05-17 16:21:10 -07003200 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003201 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003202}
3203
3204/*
3205 * Preempt the current task with a newly woken task if needed:
3206 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02003207static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02003208check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003209{
Peter Zijlstra11697832007-09-05 14:32:49 +02003210 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04003211 struct sched_entity *se;
3212 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02003213
Peter Zijlstra6d0f0ebd2007-10-15 17:00:05 +02003214 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02003215 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01003216 if (delta_exec > ideal_runtime) {
Kirill Tkhai88751252014-06-29 00:03:57 +04003217 resched_curr(rq_of(cfs_rq));
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01003218 /*
3219 * The current task ran long enough, ensure it doesn't get
3220 * re-elected due to buddy favours.
3221 */
3222 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02003223 return;
3224 }
3225
3226 /*
3227 * Ensure that a task that missed wakeup preemption by a
3228 * narrow margin doesn't have to wait for a full slice.
3229 * This also mitigates buddy induced latencies under load.
3230 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02003231 if (delta_exec < sysctl_sched_min_granularity)
3232 return;
3233
Wang Xingchaof4cfb332011-09-16 13:35:52 -04003234 se = __pick_first_entity(cfs_rq);
3235 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02003236
Wang Xingchaof4cfb332011-09-16 13:35:52 -04003237 if (delta < 0)
3238 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01003239
Wang Xingchaof4cfb332011-09-16 13:35:52 -04003240 if (delta > ideal_runtime)
Kirill Tkhai88751252014-06-29 00:03:57 +04003241 resched_curr(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003242}
3243
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003244static void
Ingo Molnar8494f412007-08-09 11:16:48 +02003245set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003246{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003247 /* 'current' is not kept within the tree. */
3248 if (se->on_rq) {
3249 /*
3250 * Any task has to be enqueued before it get to execute on
3251 * a CPU. So account for the time it spent waiting on the
3252 * runqueue.
3253 */
3254 update_stats_wait_end(cfs_rq, se);
3255 __dequeue_entity(cfs_rq, se);
Vincent Guittot36ee28e2015-02-27 16:54:04 +01003256 update_entity_load_avg(se, 1);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003257 }
3258
Ingo Molnar79303e92007-08-09 11:16:47 +02003259 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02003260 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02003261#ifdef CONFIG_SCHEDSTATS
3262 /*
3263 * Track our maximum slice length, if the CPU's load is at
3264 * least twice that of our own weight (i.e. dont track it
3265 * when there are only lesser-weight tasks around):
3266 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02003267 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03003268 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02003269 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3270 }
3271#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02003272 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003273}
3274
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02003275static int
3276wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3277
Rik van Rielac53db52011-02-01 09:51:03 -05003278/*
3279 * Pick the next process, keeping these things in mind, in this order:
3280 * 1) keep things fair between processes/task groups
3281 * 2) pick the "next" process, since someone really wants that to run
3282 * 3) pick the "last" process, for cache locality
3283 * 4) do not run the "skip" process, if something else is available
3284 */
Peter Zijlstra678d5712012-02-11 06:05:00 +01003285static struct sched_entity *
3286pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01003287{
Peter Zijlstra678d5712012-02-11 06:05:00 +01003288 struct sched_entity *left = __pick_first_entity(cfs_rq);
3289 struct sched_entity *se;
3290
3291 /*
3292 * If curr is set we have to see if its left of the leftmost entity
3293 * still in the tree, provided there was anything in the tree at all.
3294 */
3295 if (!left || (curr && entity_before(curr, left)))
3296 left = curr;
3297
3298 se = left; /* ideally we run the leftmost entity */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01003299
Rik van Rielac53db52011-02-01 09:51:03 -05003300 /*
3301 * Avoid running the skip buddy, if running something else can
3302 * be done without getting too unfair.
3303 */
3304 if (cfs_rq->skip == se) {
Peter Zijlstra678d5712012-02-11 06:05:00 +01003305 struct sched_entity *second;
3306
3307 if (se == curr) {
3308 second = __pick_first_entity(cfs_rq);
3309 } else {
3310 second = __pick_next_entity(se);
3311 if (!second || (curr && entity_before(curr, second)))
3312 second = curr;
3313 }
3314
Rik van Rielac53db52011-02-01 09:51:03 -05003315 if (second && wakeup_preempt_entity(second, left) < 1)
3316 se = second;
3317 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01003318
Mike Galbraithf685cea2009-10-23 23:09:22 +02003319 /*
3320 * Prefer last buddy, try to return the CPU to a preempted task.
3321 */
3322 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3323 se = cfs_rq->last;
3324
Rik van Rielac53db52011-02-01 09:51:03 -05003325 /*
3326 * Someone really wants this to run. If it's not unfair, run it.
3327 */
3328 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3329 se = cfs_rq->next;
3330
Mike Galbraithf685cea2009-10-23 23:09:22 +02003331 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01003332
3333 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01003334}
3335
Peter Zijlstra678d5712012-02-11 06:05:00 +01003336static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003337
Ingo Molnarab6cde22007-08-09 11:16:48 +02003338static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003339{
3340 /*
3341 * If still on the runqueue then deactivate_task()
3342 * was not called and update_curr() has to be done:
3343 */
3344 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02003345 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003346
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003347 /* throttle cfs_rqs exceeding runtime */
3348 check_cfs_rq_runtime(cfs_rq);
3349
Peter Zijlstraddc97292007-10-15 17:00:10 +02003350 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003351 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02003352 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003353 /* Put 'current' back into the tree. */
3354 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02003355 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02003356 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003357 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02003358 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003359}
3360
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003361static void
3362entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003363{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003364 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003365 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003366 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02003367 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003368
Paul Turner43365bd2010-12-15 19:10:17 -08003369 /*
Paul Turner9d85f212012-10-04 13:18:29 +02003370 * Ensure that runnable average is periodically updated.
3371 */
Paul Turner9ee474f2012-10-04 13:18:30 +02003372 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02003373 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02003374 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02003375
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003376#ifdef CONFIG_SCHED_HRTICK
3377 /*
3378 * queued ticks are scheduled to match the slice, so don't bother
3379 * validating it and just reschedule.
3380 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07003381 if (queued) {
Kirill Tkhai88751252014-06-29 00:03:57 +04003382 resched_curr(rq_of(cfs_rq));
Harvey Harrison983ed7a2008-04-24 18:17:55 -07003383 return;
3384 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003385 /*
3386 * don't let the period tick interfere with the hrtick preemption
3387 */
3388 if (!sched_feat(DOUBLE_TICK) &&
3389 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3390 return;
3391#endif
3392
Yong Zhang2c2efae2011-07-29 16:20:33 +08003393 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02003394 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003395}
3396
Paul Turnerab84d312011-07-21 09:43:28 -07003397
3398/**************************************************
3399 * CFS bandwidth control machinery
3400 */
3401
3402#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02003403
3404#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01003405static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003406
3407static inline bool cfs_bandwidth_used(void)
3408{
Ingo Molnarc5905af2012-02-24 08:31:31 +01003409 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003410}
3411
Ben Segall1ee14e62013-10-16 11:16:12 -07003412void cfs_bandwidth_usage_inc(void)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003413{
Ben Segall1ee14e62013-10-16 11:16:12 -07003414 static_key_slow_inc(&__cfs_bandwidth_used);
3415}
3416
3417void cfs_bandwidth_usage_dec(void)
3418{
3419 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02003420}
3421#else /* HAVE_JUMP_LABEL */
3422static bool cfs_bandwidth_used(void)
3423{
3424 return true;
3425}
3426
Ben Segall1ee14e62013-10-16 11:16:12 -07003427void cfs_bandwidth_usage_inc(void) {}
3428void cfs_bandwidth_usage_dec(void) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003429#endif /* HAVE_JUMP_LABEL */
3430
Paul Turnerab84d312011-07-21 09:43:28 -07003431/*
3432 * default period for cfs group bandwidth.
3433 * default: 0.1s, units: nanoseconds
3434 */
3435static inline u64 default_cfs_period(void)
3436{
3437 return 100000000ULL;
3438}
Paul Turnerec12cb72011-07-21 09:43:30 -07003439
3440static inline u64 sched_cfs_bandwidth_slice(void)
3441{
3442 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3443}
3444
Paul Turnera9cf55b2011-07-21 09:43:32 -07003445/*
3446 * Replenish runtime according to assigned quota and update expiration time.
3447 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3448 * additional synchronization around rq->lock.
3449 *
3450 * requires cfs_b->lock
3451 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02003452void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07003453{
3454 u64 now;
3455
3456 if (cfs_b->quota == RUNTIME_INF)
3457 return;
3458
3459 now = sched_clock_cpu(smp_processor_id());
3460 cfs_b->runtime = cfs_b->quota;
3461 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3462}
3463
Peter Zijlstra029632f2011-10-25 10:00:11 +02003464static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3465{
3466 return &tg->cfs_bandwidth;
3467}
3468
Paul Turnerf1b17282012-10-04 13:18:31 +02003469/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3470static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3471{
3472 if (unlikely(cfs_rq->throttle_count))
3473 return cfs_rq->throttled_clock_task;
3474
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003475 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02003476}
3477
Paul Turner85dac902011-07-21 09:43:33 -07003478/* returns 0 on failure to allocate runtime */
3479static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07003480{
3481 struct task_group *tg = cfs_rq->tg;
3482 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003483 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07003484
3485 /* note: this is a positive sum as runtime_remaining <= 0 */
3486 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3487
3488 raw_spin_lock(&cfs_b->lock);
3489 if (cfs_b->quota == RUNTIME_INF)
3490 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07003491 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07003492 /*
3493 * If the bandwidth pool has become inactive, then at least one
3494 * period must have elapsed since the last consumption.
3495 * Refresh the global state and ensure bandwidth timer becomes
3496 * active.
3497 */
3498 if (!cfs_b->timer_active) {
3499 __refill_cfs_bandwidth_runtime(cfs_b);
Roman Gushchin09dc4ab2014-05-19 15:10:09 +04003500 __start_cfs_bandwidth(cfs_b, false);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003501 }
Paul Turner58088ad2011-07-21 09:43:31 -07003502
3503 if (cfs_b->runtime > 0) {
3504 amount = min(cfs_b->runtime, min_amount);
3505 cfs_b->runtime -= amount;
3506 cfs_b->idle = 0;
3507 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003508 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07003509 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07003510 raw_spin_unlock(&cfs_b->lock);
3511
3512 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003513 /*
3514 * we may have advanced our local expiration to account for allowed
3515 * spread between our sched_clock and the one on which runtime was
3516 * issued.
3517 */
3518 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3519 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07003520
3521 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003522}
3523
3524/*
3525 * Note: This depends on the synchronization provided by sched_clock and the
3526 * fact that rq->clock snapshots this value.
3527 */
3528static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3529{
3530 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07003531
3532 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003533 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07003534 return;
3535
3536 if (cfs_rq->runtime_remaining < 0)
3537 return;
3538
3539 /*
3540 * If the local deadline has passed we have to consider the
3541 * possibility that our sched_clock is 'fast' and the global deadline
3542 * has not truly expired.
3543 *
3544 * Fortunately we can check determine whether this the case by checking
Ben Segall51f21762014-05-19 15:49:45 -07003545 * whether the global deadline has advanced. It is valid to compare
3546 * cfs_b->runtime_expires without any locks since we only care about
3547 * exact equality, so a partial write will still work.
Paul Turnera9cf55b2011-07-21 09:43:32 -07003548 */
3549
Ben Segall51f21762014-05-19 15:49:45 -07003550 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
Paul Turnera9cf55b2011-07-21 09:43:32 -07003551 /* extend local deadline, drift is bounded above by 2 ticks */
3552 cfs_rq->runtime_expires += TICK_NSEC;
3553 } else {
3554 /* global deadline is ahead, expiration has passed */
3555 cfs_rq->runtime_remaining = 0;
3556 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003557}
3558
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003559static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003560{
Paul Turnera9cf55b2011-07-21 09:43:32 -07003561 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07003562 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003563 expire_cfs_rq_runtime(cfs_rq);
3564
3565 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003566 return;
3567
Paul Turner85dac902011-07-21 09:43:33 -07003568 /*
3569 * if we're unable to extend our runtime we resched so that the active
3570 * hierarchy can be throttled
3571 */
3572 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
Kirill Tkhai88751252014-06-29 00:03:57 +04003573 resched_curr(rq_of(cfs_rq));
Paul Turnerec12cb72011-07-21 09:43:30 -07003574}
3575
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003576static __always_inline
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01003577void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003578{
Paul Turner56f570e2011-11-07 20:26:33 -08003579 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003580 return;
3581
3582 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3583}
3584
Paul Turner85dac902011-07-21 09:43:33 -07003585static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3586{
Paul Turner56f570e2011-11-07 20:26:33 -08003587 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003588}
3589
Paul Turner64660c82011-07-21 09:43:36 -07003590/* check whether cfs_rq, or any parent, is throttled */
3591static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3592{
Paul Turner56f570e2011-11-07 20:26:33 -08003593 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003594}
3595
3596/*
3597 * Ensure that neither of the group entities corresponding to src_cpu or
3598 * dest_cpu are members of a throttled hierarchy when performing group
3599 * load-balance operations.
3600 */
3601static inline int throttled_lb_pair(struct task_group *tg,
3602 int src_cpu, int dest_cpu)
3603{
3604 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3605
3606 src_cfs_rq = tg->cfs_rq[src_cpu];
3607 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3608
3609 return throttled_hierarchy(src_cfs_rq) ||
3610 throttled_hierarchy(dest_cfs_rq);
3611}
3612
3613/* updated child weight may affect parent so we have to do this bottom up */
3614static int tg_unthrottle_up(struct task_group *tg, void *data)
3615{
3616 struct rq *rq = data;
3617 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3618
3619 cfs_rq->throttle_count--;
3620#ifdef CONFIG_SMP
3621 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003622 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003623 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003624 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003625 }
3626#endif
3627
3628 return 0;
3629}
3630
3631static int tg_throttle_down(struct task_group *tg, void *data)
3632{
3633 struct rq *rq = data;
3634 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3635
Paul Turner82958362012-10-04 13:18:31 +02003636 /* group is entering throttled state, stop time */
3637 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003638 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003639 cfs_rq->throttle_count++;
3640
3641 return 0;
3642}
3643
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003644static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003645{
3646 struct rq *rq = rq_of(cfs_rq);
3647 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3648 struct sched_entity *se;
3649 long task_delta, dequeue = 1;
3650
3651 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3652
Paul Turnerf1b17282012-10-04 13:18:31 +02003653 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003654 rcu_read_lock();
3655 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3656 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003657
3658 task_delta = cfs_rq->h_nr_running;
3659 for_each_sched_entity(se) {
3660 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3661 /* throttled entity or throttle-on-deactivate */
3662 if (!se->on_rq)
3663 break;
3664
3665 if (dequeue)
3666 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3667 qcfs_rq->h_nr_running -= task_delta;
3668
3669 if (qcfs_rq->load.weight)
3670 dequeue = 0;
3671 }
3672
3673 if (!se)
Kirill Tkhai72465442014-05-09 03:00:14 +04003674 sub_nr_running(rq, task_delta);
Paul Turner85dac902011-07-21 09:43:33 -07003675
3676 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003677 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003678 raw_spin_lock(&cfs_b->lock);
Ben Segallc06f04c2014-06-20 15:21:20 -07003679 /*
3680 * Add to the _head_ of the list, so that an already-started
3681 * distribute_cfs_runtime will not see us
3682 */
3683 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
Ben Segallf9f9ffc2013-10-16 11:16:32 -07003684 if (!cfs_b->timer_active)
Roman Gushchin09dc4ab2014-05-19 15:10:09 +04003685 __start_cfs_bandwidth(cfs_b, false);
Paul Turner85dac902011-07-21 09:43:33 -07003686 raw_spin_unlock(&cfs_b->lock);
3687}
3688
Peter Zijlstra029632f2011-10-25 10:00:11 +02003689void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003690{
3691 struct rq *rq = rq_of(cfs_rq);
3692 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3693 struct sched_entity *se;
3694 int enqueue = 1;
3695 long task_delta;
3696
Michael Wang22b958d2013-06-04 14:23:39 +08003697 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003698
3699 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003700
3701 update_rq_clock(rq);
3702
Paul Turner671fd9d2011-07-21 09:43:34 -07003703 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003704 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003705 list_del_rcu(&cfs_rq->throttled_list);
3706 raw_spin_unlock(&cfs_b->lock);
3707
Paul Turner64660c82011-07-21 09:43:36 -07003708 /* update hierarchical throttle state */
3709 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3710
Paul Turner671fd9d2011-07-21 09:43:34 -07003711 if (!cfs_rq->load.weight)
3712 return;
3713
3714 task_delta = cfs_rq->h_nr_running;
3715 for_each_sched_entity(se) {
3716 if (se->on_rq)
3717 enqueue = 0;
3718
3719 cfs_rq = cfs_rq_of(se);
3720 if (enqueue)
3721 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3722 cfs_rq->h_nr_running += task_delta;
3723
3724 if (cfs_rq_throttled(cfs_rq))
3725 break;
3726 }
3727
3728 if (!se)
Kirill Tkhai72465442014-05-09 03:00:14 +04003729 add_nr_running(rq, task_delta);
Paul Turner671fd9d2011-07-21 09:43:34 -07003730
3731 /* determine whether we need to wake up potentially idle cpu */
3732 if (rq->curr == rq->idle && rq->cfs.nr_running)
Kirill Tkhai88751252014-06-29 00:03:57 +04003733 resched_curr(rq);
Paul Turner671fd9d2011-07-21 09:43:34 -07003734}
3735
3736static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3737 u64 remaining, u64 expires)
3738{
3739 struct cfs_rq *cfs_rq;
Ben Segallc06f04c2014-06-20 15:21:20 -07003740 u64 runtime;
3741 u64 starting_runtime = remaining;
Paul Turner671fd9d2011-07-21 09:43:34 -07003742
3743 rcu_read_lock();
3744 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3745 throttled_list) {
3746 struct rq *rq = rq_of(cfs_rq);
3747
3748 raw_spin_lock(&rq->lock);
3749 if (!cfs_rq_throttled(cfs_rq))
3750 goto next;
3751
3752 runtime = -cfs_rq->runtime_remaining + 1;
3753 if (runtime > remaining)
3754 runtime = remaining;
3755 remaining -= runtime;
3756
3757 cfs_rq->runtime_remaining += runtime;
3758 cfs_rq->runtime_expires = expires;
3759
3760 /* we check whether we're throttled above */
3761 if (cfs_rq->runtime_remaining > 0)
3762 unthrottle_cfs_rq(cfs_rq);
3763
3764next:
3765 raw_spin_unlock(&rq->lock);
3766
3767 if (!remaining)
3768 break;
3769 }
3770 rcu_read_unlock();
3771
Ben Segallc06f04c2014-06-20 15:21:20 -07003772 return starting_runtime - remaining;
Paul Turner671fd9d2011-07-21 09:43:34 -07003773}
3774
Paul Turner58088ad2011-07-21 09:43:31 -07003775/*
3776 * Responsible for refilling a task_group's bandwidth and unthrottling its
3777 * cfs_rqs as appropriate. If there has been no activity within the last
3778 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3779 * used to track this state.
3780 */
3781static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3782{
Paul Turner671fd9d2011-07-21 09:43:34 -07003783 u64 runtime, runtime_expires;
Ben Segall51f21762014-05-19 15:49:45 -07003784 int throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003785
Paul Turner58088ad2011-07-21 09:43:31 -07003786 /* no need to continue the timer with no bandwidth constraint */
3787 if (cfs_b->quota == RUNTIME_INF)
Ben Segall51f21762014-05-19 15:49:45 -07003788 goto out_deactivate;
Paul Turner58088ad2011-07-21 09:43:31 -07003789
Paul Turner671fd9d2011-07-21 09:43:34 -07003790 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003791 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003792
Ben Segall51f21762014-05-19 15:49:45 -07003793 /*
3794 * idle depends on !throttled (for the case of a large deficit), and if
3795 * we're going inactive then everything else can be deferred
3796 */
3797 if (cfs_b->idle && !throttled)
3798 goto out_deactivate;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003799
Ben Segall927b54f2013-10-16 11:16:22 -07003800 /*
3801 * if we have relooped after returning idle once, we need to update our
3802 * status as actually running, so that other cpus doing
3803 * __start_cfs_bandwidth will stop trying to cancel us.
3804 */
3805 cfs_b->timer_active = 1;
3806
Paul Turnera9cf55b2011-07-21 09:43:32 -07003807 __refill_cfs_bandwidth_runtime(cfs_b);
3808
Paul Turner671fd9d2011-07-21 09:43:34 -07003809 if (!throttled) {
3810 /* mark as potentially idle for the upcoming period */
3811 cfs_b->idle = 1;
Ben Segall51f21762014-05-19 15:49:45 -07003812 return 0;
Paul Turner671fd9d2011-07-21 09:43:34 -07003813 }
Paul Turner58088ad2011-07-21 09:43:31 -07003814
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003815 /* account preceding periods in which throttling occurred */
3816 cfs_b->nr_throttled += overrun;
3817
Paul Turner671fd9d2011-07-21 09:43:34 -07003818 runtime_expires = cfs_b->runtime_expires;
Paul Turner671fd9d2011-07-21 09:43:34 -07003819
3820 /*
Ben Segallc06f04c2014-06-20 15:21:20 -07003821 * This check is repeated as we are holding onto the new bandwidth while
3822 * we unthrottle. This can potentially race with an unthrottled group
3823 * trying to acquire new bandwidth from the global pool. This can result
3824 * in us over-using our runtime if it is all used during this loop, but
3825 * only by limited amounts in that extreme case.
Paul Turner671fd9d2011-07-21 09:43:34 -07003826 */
Ben Segallc06f04c2014-06-20 15:21:20 -07003827 while (throttled && cfs_b->runtime > 0) {
3828 runtime = cfs_b->runtime;
Paul Turner671fd9d2011-07-21 09:43:34 -07003829 raw_spin_unlock(&cfs_b->lock);
3830 /* we can't nest cfs_b->lock while distributing bandwidth */
3831 runtime = distribute_cfs_runtime(cfs_b, runtime,
3832 runtime_expires);
3833 raw_spin_lock(&cfs_b->lock);
3834
3835 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
Ben Segallc06f04c2014-06-20 15:21:20 -07003836
3837 cfs_b->runtime -= min(runtime, cfs_b->runtime);
Paul Turner671fd9d2011-07-21 09:43:34 -07003838 }
3839
Paul Turner671fd9d2011-07-21 09:43:34 -07003840 /*
3841 * While we are ensured activity in the period following an
3842 * unthrottle, this also covers the case in which the new bandwidth is
3843 * insufficient to cover the existing bandwidth deficit. (Forcing the
3844 * timer to remain active while there are any throttled entities.)
3845 */
3846 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003847
Ben Segall51f21762014-05-19 15:49:45 -07003848 return 0;
3849
3850out_deactivate:
3851 cfs_b->timer_active = 0;
3852 return 1;
Paul Turner58088ad2011-07-21 09:43:31 -07003853}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003854
Paul Turnerd8b49862011-07-21 09:43:41 -07003855/* a cfs_rq won't donate quota below this amount */
3856static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3857/* minimum remaining period time to redistribute slack quota */
3858static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3859/* how long we wait to gather additional slack before distributing */
3860static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3861
Ben Segalldb06e782013-10-16 11:16:17 -07003862/*
3863 * Are we near the end of the current quota period?
3864 *
3865 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3866 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3867 * migrate_hrtimers, base is never cleared, so we are fine.
3868 */
Paul Turnerd8b49862011-07-21 09:43:41 -07003869static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3870{
3871 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3872 u64 remaining;
3873
3874 /* if the call-back is running a quota refresh is already occurring */
3875 if (hrtimer_callback_running(refresh_timer))
3876 return 1;
3877
3878 /* is a quota refresh about to occur? */
3879 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3880 if (remaining < min_expire)
3881 return 1;
3882
3883 return 0;
3884}
3885
3886static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3887{
3888 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3889
3890 /* if there's a quota refresh soon don't bother with slack */
3891 if (runtime_refresh_within(cfs_b, min_left))
3892 return;
3893
3894 start_bandwidth_timer(&cfs_b->slack_timer,
3895 ns_to_ktime(cfs_bandwidth_slack_period));
3896}
3897
3898/* we know any runtime found here is valid as update_curr() precedes return */
3899static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3900{
3901 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3902 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3903
3904 if (slack_runtime <= 0)
3905 return;
3906
3907 raw_spin_lock(&cfs_b->lock);
3908 if (cfs_b->quota != RUNTIME_INF &&
3909 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3910 cfs_b->runtime += slack_runtime;
3911
3912 /* we are under rq->lock, defer unthrottling using a timer */
3913 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3914 !list_empty(&cfs_b->throttled_cfs_rq))
3915 start_cfs_slack_bandwidth(cfs_b);
3916 }
3917 raw_spin_unlock(&cfs_b->lock);
3918
3919 /* even if it's not valid for return we don't want to try again */
3920 cfs_rq->runtime_remaining -= slack_runtime;
3921}
3922
3923static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3924{
Paul Turner56f570e2011-11-07 20:26:33 -08003925 if (!cfs_bandwidth_used())
3926 return;
3927
Paul Turnerfccfdc62011-11-07 20:26:34 -08003928 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003929 return;
3930
3931 __return_cfs_rq_runtime(cfs_rq);
3932}
3933
3934/*
3935 * This is done with a timer (instead of inline with bandwidth return) since
3936 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3937 */
3938static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3939{
3940 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3941 u64 expires;
3942
3943 /* confirm we're still not at a refresh boundary */
Paul Turnerd8b49862011-07-21 09:43:41 -07003944 raw_spin_lock(&cfs_b->lock);
Ben Segalldb06e782013-10-16 11:16:17 -07003945 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3946 raw_spin_unlock(&cfs_b->lock);
3947 return;
3948 }
3949
Ben Segallc06f04c2014-06-20 15:21:20 -07003950 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
Paul Turnerd8b49862011-07-21 09:43:41 -07003951 runtime = cfs_b->runtime;
Ben Segallc06f04c2014-06-20 15:21:20 -07003952
Paul Turnerd8b49862011-07-21 09:43:41 -07003953 expires = cfs_b->runtime_expires;
3954 raw_spin_unlock(&cfs_b->lock);
3955
3956 if (!runtime)
3957 return;
3958
3959 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3960
3961 raw_spin_lock(&cfs_b->lock);
3962 if (expires == cfs_b->runtime_expires)
Ben Segallc06f04c2014-06-20 15:21:20 -07003963 cfs_b->runtime -= min(runtime, cfs_b->runtime);
Paul Turnerd8b49862011-07-21 09:43:41 -07003964 raw_spin_unlock(&cfs_b->lock);
3965}
3966
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003967/*
3968 * When a group wakes up we want to make sure that its quota is not already
3969 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3970 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3971 */
3972static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3973{
Paul Turner56f570e2011-11-07 20:26:33 -08003974 if (!cfs_bandwidth_used())
3975 return;
3976
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003977 /* an active group must be handled by the update_curr()->put() path */
3978 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3979 return;
3980
3981 /* ensure the group is not already throttled */
3982 if (cfs_rq_throttled(cfs_rq))
3983 return;
3984
3985 /* update runtime allocation */
3986 account_cfs_rq_runtime(cfs_rq, 0);
3987 if (cfs_rq->runtime_remaining <= 0)
3988 throttle_cfs_rq(cfs_rq);
3989}
3990
3991/* conditionally throttle active cfs_rq's from put_prev_entity() */
Peter Zijlstra678d5712012-02-11 06:05:00 +01003992static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003993{
Paul Turner56f570e2011-11-07 20:26:33 -08003994 if (!cfs_bandwidth_used())
Peter Zijlstra678d5712012-02-11 06:05:00 +01003995 return false;
Paul Turner56f570e2011-11-07 20:26:33 -08003996
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003997 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
Peter Zijlstra678d5712012-02-11 06:05:00 +01003998 return false;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003999
4000 /*
4001 * it's possible for a throttled entity to be forced into a running
4002 * state (e.g. set_curr_task), in this case we're finished.
4003 */
4004 if (cfs_rq_throttled(cfs_rq))
Peter Zijlstra678d5712012-02-11 06:05:00 +01004005 return true;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07004006
4007 throttle_cfs_rq(cfs_rq);
Peter Zijlstra678d5712012-02-11 06:05:00 +01004008 return true;
Paul Turnerd3d9dc32011-07-21 09:43:39 -07004009}
Peter Zijlstra029632f2011-10-25 10:00:11 +02004010
Peter Zijlstra029632f2011-10-25 10:00:11 +02004011static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4012{
4013 struct cfs_bandwidth *cfs_b =
4014 container_of(timer, struct cfs_bandwidth, slack_timer);
4015 do_sched_cfs_slack_timer(cfs_b);
4016
4017 return HRTIMER_NORESTART;
4018}
4019
4020static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4021{
4022 struct cfs_bandwidth *cfs_b =
4023 container_of(timer, struct cfs_bandwidth, period_timer);
4024 ktime_t now;
4025 int overrun;
4026 int idle = 0;
4027
Ben Segall51f21762014-05-19 15:49:45 -07004028 raw_spin_lock(&cfs_b->lock);
Peter Zijlstra029632f2011-10-25 10:00:11 +02004029 for (;;) {
4030 now = hrtimer_cb_get_time(timer);
4031 overrun = hrtimer_forward(timer, now, cfs_b->period);
4032
4033 if (!overrun)
4034 break;
4035
4036 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4037 }
Ben Segall51f21762014-05-19 15:49:45 -07004038 raw_spin_unlock(&cfs_b->lock);
Peter Zijlstra029632f2011-10-25 10:00:11 +02004039
4040 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4041}
4042
4043void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4044{
4045 raw_spin_lock_init(&cfs_b->lock);
4046 cfs_b->runtime = 0;
4047 cfs_b->quota = RUNTIME_INF;
4048 cfs_b->period = ns_to_ktime(default_cfs_period());
4049
4050 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4051 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4052 cfs_b->period_timer.function = sched_cfs_period_timer;
4053 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4054 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4055}
4056
4057static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4058{
4059 cfs_rq->runtime_enabled = 0;
4060 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4061}
4062
4063/* requires cfs_b->lock, may release to reprogram timer */
Roman Gushchin09dc4ab2014-05-19 15:10:09 +04004064void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
Peter Zijlstra029632f2011-10-25 10:00:11 +02004065{
4066 /*
4067 * The timer may be active because we're trying to set a new bandwidth
4068 * period or because we're racing with the tear-down path
4069 * (timer_active==0 becomes visible before the hrtimer call-back
4070 * terminates). In either case we ensure that it's re-programmed
4071 */
Ben Segall927b54f2013-10-16 11:16:22 -07004072 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4073 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4074 /* bounce the lock to allow do_sched_cfs_period_timer to run */
Peter Zijlstra029632f2011-10-25 10:00:11 +02004075 raw_spin_unlock(&cfs_b->lock);
Ben Segall927b54f2013-10-16 11:16:22 -07004076 cpu_relax();
Peter Zijlstra029632f2011-10-25 10:00:11 +02004077 raw_spin_lock(&cfs_b->lock);
4078 /* if someone else restarted the timer then we're done */
Roman Gushchin09dc4ab2014-05-19 15:10:09 +04004079 if (!force && cfs_b->timer_active)
Peter Zijlstra029632f2011-10-25 10:00:11 +02004080 return;
4081 }
4082
4083 cfs_b->timer_active = 1;
4084 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4085}
4086
4087static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4088{
Tetsuo Handa7f1a1692014-12-25 15:51:21 +09004089 /* init_cfs_bandwidth() was not called */
4090 if (!cfs_b->throttled_cfs_rq.next)
4091 return;
4092
Peter Zijlstra029632f2011-10-25 10:00:11 +02004093 hrtimer_cancel(&cfs_b->period_timer);
4094 hrtimer_cancel(&cfs_b->slack_timer);
4095}
4096
Kirill Tkhai0e59bda2014-06-25 12:19:42 +04004097static void __maybe_unused update_runtime_enabled(struct rq *rq)
4098{
4099 struct cfs_rq *cfs_rq;
4100
4101 for_each_leaf_cfs_rq(rq, cfs_rq) {
4102 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4103
4104 raw_spin_lock(&cfs_b->lock);
4105 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4106 raw_spin_unlock(&cfs_b->lock);
4107 }
4108}
4109
Arnd Bergmann38dc3342013-01-25 14:14:22 +00004110static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02004111{
4112 struct cfs_rq *cfs_rq;
4113
4114 for_each_leaf_cfs_rq(rq, cfs_rq) {
Peter Zijlstra029632f2011-10-25 10:00:11 +02004115 if (!cfs_rq->runtime_enabled)
4116 continue;
4117
4118 /*
4119 * clock_task is not advancing so we just need to make sure
4120 * there's some valid quota amount
4121 */
Ben Segall51f21762014-05-19 15:49:45 -07004122 cfs_rq->runtime_remaining = 1;
Kirill Tkhai0e59bda2014-06-25 12:19:42 +04004123 /*
4124 * Offline rq is schedulable till cpu is completely disabled
4125 * in take_cpu_down(), so we prevent new cfs throttling here.
4126 */
4127 cfs_rq->runtime_enabled = 0;
4128
Peter Zijlstra029632f2011-10-25 10:00:11 +02004129 if (cfs_rq_throttled(cfs_rq))
4130 unthrottle_cfs_rq(cfs_rq);
4131 }
4132}
4133
4134#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02004135static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4136{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004137 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02004138}
4139
Peter Zijlstra9dbdb152013-11-18 18:27:06 +01004140static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
Peter Zijlstra678d5712012-02-11 06:05:00 +01004141static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
Paul Turnerd3d9dc32011-07-21 09:43:39 -07004142static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07004143static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07004144
4145static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4146{
4147 return 0;
4148}
Paul Turner64660c82011-07-21 09:43:36 -07004149
4150static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4151{
4152 return 0;
4153}
4154
4155static inline int throttled_lb_pair(struct task_group *tg,
4156 int src_cpu, int dest_cpu)
4157{
4158 return 0;
4159}
Peter Zijlstra029632f2011-10-25 10:00:11 +02004160
4161void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4162
4163#ifdef CONFIG_FAIR_GROUP_SCHED
4164static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07004165#endif
4166
Peter Zijlstra029632f2011-10-25 10:00:11 +02004167static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4168{
4169 return NULL;
4170}
4171static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Kirill Tkhai0e59bda2014-06-25 12:19:42 +04004172static inline void update_runtime_enabled(struct rq *rq) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07004173static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02004174
4175#endif /* CONFIG_CFS_BANDWIDTH */
4176
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004177/**************************************************
4178 * CFS operations on tasks:
4179 */
4180
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004181#ifdef CONFIG_SCHED_HRTICK
4182static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4183{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004184 struct sched_entity *se = &p->se;
4185 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4186
4187 WARN_ON(task_rq(p) != rq);
4188
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004189 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004190 u64 slice = sched_slice(cfs_rq, se);
4191 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4192 s64 delta = slice - ran;
4193
4194 if (delta < 0) {
4195 if (rq->curr == p)
Kirill Tkhai88751252014-06-29 00:03:57 +04004196 resched_curr(rq);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004197 return;
4198 }
Peter Zijlstra31656512008-07-18 18:01:23 +02004199 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004200 }
4201}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02004202
4203/*
4204 * called from enqueue/dequeue and updates the hrtick when the
4205 * current task is from our class and nr_running is low enough
4206 * to matter.
4207 */
4208static void hrtick_update(struct rq *rq)
4209{
4210 struct task_struct *curr = rq->curr;
4211
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004212 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02004213 return;
4214
4215 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4216 hrtick_start_fair(rq, curr);
4217}
Dhaval Giani55e12e52008-06-24 23:39:43 +05304218#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004219static inline void
4220hrtick_start_fair(struct rq *rq, struct task_struct *p)
4221{
4222}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02004223
4224static inline void hrtick_update(struct rq *rq)
4225{
4226}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004227#endif
4228
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004229/*
4230 * The enqueue_task method is called before nr_running is
4231 * increased. Here we update the fair scheduling stats and
4232 * then put the task into the rbtree:
4233 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00004234static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01004235enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004236{
4237 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01004238 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004239
4240 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01004241 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004242 break;
4243 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004244 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07004245
4246 /*
4247 * end evaluation on encountering a throttled cfs_rq
4248 *
4249 * note: in the case of encountering a throttled cfs_rq we will
4250 * post the final h_nr_running increment below.
4251 */
4252 if (cfs_rq_throttled(cfs_rq))
4253 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07004254 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07004255
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004256 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004257 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004258
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004259 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08004260 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07004261 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004262
Paul Turner85dac902011-07-21 09:43:33 -07004263 if (cfs_rq_throttled(cfs_rq))
4264 break;
4265
Linus Torvalds17bc14b2012-12-14 07:20:43 -08004266 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02004267 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004268 }
4269
Ben Segall18bf2802012-10-04 12:51:20 +02004270 if (!se) {
4271 update_rq_runnable_avg(rq, rq->nr_running);
Kirill Tkhai72465442014-05-09 03:00:14 +04004272 add_nr_running(rq, 1);
Ben Segall18bf2802012-10-04 12:51:20 +02004273 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02004274 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004275}
4276
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004277static void set_next_buddy(struct sched_entity *se);
4278
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004279/*
4280 * The dequeue_task method is called before nr_running is
4281 * decreased. We remove the task from the rbtree and
4282 * update the fair scheduling stats:
4283 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01004284static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004285{
4286 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01004287 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004288 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004289
4290 for_each_sched_entity(se) {
4291 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01004292 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07004293
4294 /*
4295 * end evaluation on encountering a throttled cfs_rq
4296 *
4297 * note: in the case of encountering a throttled cfs_rq we will
4298 * post the final h_nr_running decrement below.
4299 */
4300 if (cfs_rq_throttled(cfs_rq))
4301 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07004302 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004303
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004304 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004305 if (cfs_rq->load.weight) {
4306 /*
4307 * Bias pick_next to pick a task from this cfs_rq, as
4308 * p is sleeping when it is within its sched_slice.
4309 */
4310 if (task_sleep && parent_entity(se))
4311 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07004312
4313 /* avoid re-evaluating load for this entity */
4314 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004315 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004316 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01004317 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004318 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004319
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004320 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08004321 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07004322 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004323
Paul Turner85dac902011-07-21 09:43:33 -07004324 if (cfs_rq_throttled(cfs_rq))
4325 break;
4326
Linus Torvalds17bc14b2012-12-14 07:20:43 -08004327 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02004328 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004329 }
4330
Ben Segall18bf2802012-10-04 12:51:20 +02004331 if (!se) {
Kirill Tkhai72465442014-05-09 03:00:14 +04004332 sub_nr_running(rq, 1);
Ben Segall18bf2802012-10-04 12:51:20 +02004333 update_rq_runnable_avg(rq, 1);
4334 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02004335 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004336}
4337
Gregory Haskinse7693a32008-01-25 21:08:09 +01004338#ifdef CONFIG_SMP
Peter Zijlstra3289bdb2015-04-14 13:19:42 +02004339
4340/*
4341 * per rq 'load' arrray crap; XXX kill this.
4342 */
4343
4344/*
4345 * The exact cpuload at various idx values, calculated at every tick would be
4346 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4347 *
4348 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4349 * on nth tick when cpu may be busy, then we have:
4350 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4351 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4352 *
4353 * decay_load_missed() below does efficient calculation of
4354 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4355 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4356 *
4357 * The calculation is approximated on a 128 point scale.
4358 * degrade_zero_ticks is the number of ticks after which load at any
4359 * particular idx is approximated to be zero.
4360 * degrade_factor is a precomputed table, a row for each load idx.
4361 * Each column corresponds to degradation factor for a power of two ticks,
4362 * based on 128 point scale.
4363 * Example:
4364 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4365 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4366 *
4367 * With this power of 2 load factors, we can degrade the load n times
4368 * by looking at 1 bits in n and doing as many mult/shift instead of
4369 * n mult/shifts needed by the exact degradation.
4370 */
4371#define DEGRADE_SHIFT 7
4372static const unsigned char
4373 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4374static const unsigned char
4375 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4376 {0, 0, 0, 0, 0, 0, 0, 0},
4377 {64, 32, 8, 0, 0, 0, 0, 0},
4378 {96, 72, 40, 12, 1, 0, 0},
4379 {112, 98, 75, 43, 15, 1, 0},
4380 {120, 112, 98, 76, 45, 16, 2} };
4381
4382/*
4383 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4384 * would be when CPU is idle and so we just decay the old load without
4385 * adding any new load.
4386 */
4387static unsigned long
4388decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4389{
4390 int j = 0;
4391
4392 if (!missed_updates)
4393 return load;
4394
4395 if (missed_updates >= degrade_zero_ticks[idx])
4396 return 0;
4397
4398 if (idx == 1)
4399 return load >> missed_updates;
4400
4401 while (missed_updates) {
4402 if (missed_updates % 2)
4403 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4404
4405 missed_updates >>= 1;
4406 j++;
4407 }
4408 return load;
4409}
4410
4411/*
4412 * Update rq->cpu_load[] statistics. This function is usually called every
4413 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4414 * every tick. We fix it up based on jiffies.
4415 */
4416static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4417 unsigned long pending_updates)
4418{
4419 int i, scale;
4420
4421 this_rq->nr_load_updates++;
4422
4423 /* Update our load: */
4424 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4425 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4426 unsigned long old_load, new_load;
4427
4428 /* scale is effectively 1 << i now, and >> i divides by scale */
4429
4430 old_load = this_rq->cpu_load[i];
4431 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4432 new_load = this_load;
4433 /*
4434 * Round up the averaging division if load is increasing. This
4435 * prevents us from getting stuck on 9 if the load is 10, for
4436 * example.
4437 */
4438 if (new_load > old_load)
4439 new_load += scale - 1;
4440
4441 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4442 }
4443
4444 sched_avg_update(this_rq);
4445}
4446
4447#ifdef CONFIG_NO_HZ_COMMON
4448/*
4449 * There is no sane way to deal with nohz on smp when using jiffies because the
4450 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4451 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4452 *
4453 * Therefore we cannot use the delta approach from the regular tick since that
4454 * would seriously skew the load calculation. However we'll make do for those
4455 * updates happening while idle (nohz_idle_balance) or coming out of idle
4456 * (tick_nohz_idle_exit).
4457 *
4458 * This means we might still be one tick off for nohz periods.
4459 */
4460
4461/*
4462 * Called from nohz_idle_balance() to update the load ratings before doing the
4463 * idle balance.
4464 */
4465static void update_idle_cpu_load(struct rq *this_rq)
4466{
Jason Low316c1608d2015-04-28 13:00:20 -07004467 unsigned long curr_jiffies = READ_ONCE(jiffies);
Peter Zijlstra3289bdb2015-04-14 13:19:42 +02004468 unsigned long load = this_rq->cfs.runnable_load_avg;
4469 unsigned long pending_updates;
4470
4471 /*
4472 * bail if there's load or we're actually up-to-date.
4473 */
4474 if (load || curr_jiffies == this_rq->last_load_update_tick)
4475 return;
4476
4477 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4478 this_rq->last_load_update_tick = curr_jiffies;
4479
4480 __update_cpu_load(this_rq, load, pending_updates);
4481}
4482
4483/*
4484 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4485 */
4486void update_cpu_load_nohz(void)
4487{
4488 struct rq *this_rq = this_rq();
Jason Low316c1608d2015-04-28 13:00:20 -07004489 unsigned long curr_jiffies = READ_ONCE(jiffies);
Peter Zijlstra3289bdb2015-04-14 13:19:42 +02004490 unsigned long pending_updates;
4491
4492 if (curr_jiffies == this_rq->last_load_update_tick)
4493 return;
4494
4495 raw_spin_lock(&this_rq->lock);
4496 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4497 if (pending_updates) {
4498 this_rq->last_load_update_tick = curr_jiffies;
4499 /*
4500 * We were idle, this means load 0, the current load might be
4501 * !0 due to remote wakeups and the sort.
4502 */
4503 __update_cpu_load(this_rq, 0, pending_updates);
4504 }
4505 raw_spin_unlock(&this_rq->lock);
4506}
4507#endif /* CONFIG_NO_HZ */
4508
4509/*
4510 * Called from scheduler_tick()
4511 */
4512void update_cpu_load_active(struct rq *this_rq)
4513{
4514 unsigned long load = this_rq->cfs.runnable_load_avg;
4515 /*
4516 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4517 */
4518 this_rq->last_load_update_tick = jiffies;
4519 __update_cpu_load(this_rq, load, 1);
4520}
4521
Peter Zijlstra029632f2011-10-25 10:00:11 +02004522/* Used instead of source_load when we know the type == 0 */
4523static unsigned long weighted_cpuload(const int cpu)
4524{
Alex Shib92486c2013-06-20 10:18:50 +08004525 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004526}
4527
4528/*
4529 * Return a low guess at the load of a migration-source cpu weighted
4530 * according to the scheduling class and "nice" value.
4531 *
4532 * We want to under-estimate the load of migration sources, to
4533 * balance conservatively.
4534 */
4535static unsigned long source_load(int cpu, int type)
4536{
4537 struct rq *rq = cpu_rq(cpu);
4538 unsigned long total = weighted_cpuload(cpu);
4539
4540 if (type == 0 || !sched_feat(LB_BIAS))
4541 return total;
4542
4543 return min(rq->cpu_load[type-1], total);
4544}
4545
4546/*
4547 * Return a high guess at the load of a migration-target cpu weighted
4548 * according to the scheduling class and "nice" value.
4549 */
4550static unsigned long target_load(int cpu, int type)
4551{
4552 struct rq *rq = cpu_rq(cpu);
4553 unsigned long total = weighted_cpuload(cpu);
4554
4555 if (type == 0 || !sched_feat(LB_BIAS))
4556 return total;
4557
4558 return max(rq->cpu_load[type-1], total);
4559}
4560
Nicolas Pitreced549f2014-05-26 18:19:38 -04004561static unsigned long capacity_of(int cpu)
Peter Zijlstra029632f2011-10-25 10:00:11 +02004562{
Nicolas Pitreced549f2014-05-26 18:19:38 -04004563 return cpu_rq(cpu)->cpu_capacity;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004564}
4565
Vincent Guittotca6d75e2015-02-27 16:54:09 +01004566static unsigned long capacity_orig_of(int cpu)
4567{
4568 return cpu_rq(cpu)->cpu_capacity_orig;
4569}
4570
Peter Zijlstra029632f2011-10-25 10:00:11 +02004571static unsigned long cpu_avg_load_per_task(int cpu)
4572{
4573 struct rq *rq = cpu_rq(cpu);
Jason Low316c1608d2015-04-28 13:00:20 -07004574 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08004575 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004576
4577 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08004578 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02004579
4580 return 0;
4581}
4582
Michael Wang62470412013-07-04 12:55:51 +08004583static void record_wakee(struct task_struct *p)
4584{
4585 /*
4586 * Rough decay (wiping) for cost saving, don't worry
4587 * about the boundary, really active task won't care
4588 * about the loss.
4589 */
Manuel Schölling2538d962014-05-22 19:45:23 +02004590 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
Rik van Riel096aa332014-05-16 00:13:32 -04004591 current->wakee_flips >>= 1;
Michael Wang62470412013-07-04 12:55:51 +08004592 current->wakee_flip_decay_ts = jiffies;
4593 }
4594
4595 if (current->last_wakee != p) {
4596 current->last_wakee = p;
4597 current->wakee_flips++;
4598 }
4599}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004600
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02004601static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004602{
4603 struct sched_entity *se = &p->se;
4604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004605 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004606
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004607#ifndef CONFIG_64BIT
4608 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02004609
Peter Zijlstra3fe16982011-04-05 17:23:48 +02004610 do {
4611 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4612 smp_rmb();
4613 min_vruntime = cfs_rq->min_vruntime;
4614 } while (min_vruntime != min_vruntime_copy);
4615#else
4616 min_vruntime = cfs_rq->min_vruntime;
4617#endif
4618
4619 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08004620 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01004621}
4622
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004623#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02004624/*
4625 * effective_load() calculates the load change as seen from the root_task_group
4626 *
4627 * Adding load to a group doesn't make a group heavier, but can cause movement
4628 * of group shares between cpus. Assuming the shares were perfectly aligned one
4629 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004630 *
4631 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4632 * on this @cpu and results in a total addition (subtraction) of @wg to the
4633 * total group weight.
4634 *
4635 * Given a runqueue weight distribution (rw_i) we can compute a shares
4636 * distribution (s_i) using:
4637 *
4638 * s_i = rw_i / \Sum rw_j (1)
4639 *
4640 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4641 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4642 * shares distribution (s_i):
4643 *
4644 * rw_i = { 2, 4, 1, 0 }
4645 * s_i = { 2/7, 4/7, 1/7, 0 }
4646 *
4647 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4648 * task used to run on and the CPU the waker is running on), we need to
4649 * compute the effect of waking a task on either CPU and, in case of a sync
4650 * wakeup, compute the effect of the current task going to sleep.
4651 *
4652 * So for a change of @wl to the local @cpu with an overall group weight change
4653 * of @wl we can compute the new shares distribution (s'_i) using:
4654 *
4655 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4656 *
4657 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4658 * differences in waking a task to CPU 0. The additional task changes the
4659 * weight and shares distributions like:
4660 *
4661 * rw'_i = { 3, 4, 1, 0 }
4662 * s'_i = { 3/8, 4/8, 1/8, 0 }
4663 *
4664 * We can then compute the difference in effective weight by using:
4665 *
4666 * dw_i = S * (s'_i - s_i) (3)
4667 *
4668 * Where 'S' is the group weight as seen by its parent.
4669 *
4670 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4671 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4672 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02004673 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08004674static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004675{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004676 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02004677
Rik van Riel9722c2d2014-01-06 11:39:12 +00004678 if (!tg->parent) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02004679 return wl;
4680
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004681 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004682 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004683
Paul Turner977dda72011-01-14 17:57:50 -08004684 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004685
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004686 /*
4687 * W = @wg + \Sum rw_j
4688 */
4689 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004690
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004691 /*
4692 * w = rw_i + @wl
4693 */
4694 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02004695
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004696 /*
4697 * wl = S * s'_i; see (2)
4698 */
4699 if (W > 0 && w < W)
Yuyang Du32a8df42014-12-19 08:29:56 +08004700 wl = (w * (long)tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08004701 else
4702 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02004703
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004704 /*
4705 * Per the above, wl is the new se->load.weight value; since
4706 * those are clipped to [MIN_SHARES, ...) do so now. See
4707 * calc_cfs_shares().
4708 */
Paul Turner977dda72011-01-14 17:57:50 -08004709 if (wl < MIN_SHARES)
4710 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004711
4712 /*
4713 * wl = dw_i = S * (s'_i - s_i); see (3)
4714 */
Paul Turner977dda72011-01-14 17:57:50 -08004715 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02004716
4717 /*
4718 * Recursively apply this logic to all parent groups to compute
4719 * the final effective load change on the root group. Since
4720 * only the @tg group gets extra weight, all parent groups can
4721 * only redistribute existing shares. @wl is the shift in shares
4722 * resulting from this level per the above.
4723 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004724 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004725 }
4726
4727 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004728}
4729#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004730
Mel Gorman58d081b2013-10-07 11:29:10 +01004731static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004732{
Peter Zijlstra83378262008-06-27 13:41:37 +02004733 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004734}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02004735
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02004736#endif
4737
Michael Wang62470412013-07-04 12:55:51 +08004738static int wake_wide(struct task_struct *p)
4739{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08004740 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08004741
4742 /*
4743 * Yeah, it's the switching-frequency, could means many wakee or
4744 * rapidly switch, use factor here will just help to automatically
4745 * adjust the loose-degree, so bigger node will lead to more pull.
4746 */
4747 if (p->wakee_flips > factor) {
4748 /*
4749 * wakee is somewhat hot, it needs certain amount of cpu
4750 * resource, so if waker is far more hot, prefer to leave
4751 * it alone.
4752 */
4753 if (current->wakee_flips > (factor * p->wakee_flips))
4754 return 1;
4755 }
4756
4757 return 0;
4758}
4759
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004760static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004761{
Paul Turnere37b6a72011-01-21 20:44:59 -08004762 s64 this_load, load;
Vincent Guittotbd61c982014-08-26 13:06:50 +02004763 s64 this_eff_load, prev_eff_load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004764 int idx, this_cpu, prev_cpu;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004765 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02004766 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004767 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004768
Michael Wang62470412013-07-04 12:55:51 +08004769 /*
4770 * If we wake multiple tasks be careful to not bounce
4771 * ourselves around too much.
4772 */
4773 if (wake_wide(p))
4774 return 0;
4775
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004776 idx = sd->wake_idx;
4777 this_cpu = smp_processor_id();
4778 prev_cpu = task_cpu(p);
4779 load = source_load(prev_cpu, idx);
4780 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004781
4782 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004783 * If sync wakeup then subtract the (maximum possible)
4784 * effect of the currently running task from the load
4785 * of the current CPU:
4786 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004787 if (sync) {
4788 tg = task_group(current);
4789 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004790
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004791 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004792 load += effective_load(tg, prev_cpu, 0, -weight);
4793 }
4794
4795 tg = task_group(p);
4796 weight = p->se.load.weight;
4797
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004798 /*
4799 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004800 * due to the sync cause above having dropped this_load to 0, we'll
4801 * always have an imbalance, but there's really nothing you can do
4802 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004803 *
4804 * Otherwise check if either cpus are near enough in load to allow this
4805 * task to be woken on this_cpu.
4806 */
Vincent Guittotbd61c982014-08-26 13:06:50 +02004807 this_eff_load = 100;
4808 this_eff_load *= capacity_of(prev_cpu);
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004809
Vincent Guittotbd61c982014-08-26 13:06:50 +02004810 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4811 prev_eff_load *= capacity_of(this_cpu);
4812
4813 if (this_load > 0) {
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004814 this_eff_load *= this_load +
4815 effective_load(tg, this_cpu, weight, weight);
4816
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004817 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
Vincent Guittotbd61c982014-08-26 13:06:50 +02004818 }
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004819
Vincent Guittotbd61c982014-08-26 13:06:50 +02004820 balanced = this_eff_load <= prev_eff_load;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004821
Lucas De Marchi41acab82010-03-10 23:37:45 -03004822 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004823
Vincent Guittot05bfb652014-08-26 13:06:45 +02004824 if (!balanced)
4825 return 0;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004826
Vincent Guittot05bfb652014-08-26 13:06:45 +02004827 schedstat_inc(sd, ttwu_move_affine);
4828 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4829
4830 return 1;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004831}
4832
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004833/*
4834 * find_idlest_group finds and returns the least busy CPU group within the
4835 * domain.
4836 */
4837static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004838find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004839 int this_cpu, int sd_flag)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004840{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004841 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004842 unsigned long min_load = ULONG_MAX, this_load = 0;
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004843 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004844 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004845
Vincent Guittotc44f2a02013-10-18 13:52:21 +02004846 if (sd_flag & SD_BALANCE_WAKE)
4847 load_idx = sd->wake_idx;
4848
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004849 do {
4850 unsigned long load, avg_load;
4851 int local_group;
4852 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004853
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004854 /* Skip over this group if it has no CPUs allowed */
4855 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004856 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004857 continue;
4858
4859 local_group = cpumask_test_cpu(this_cpu,
4860 sched_group_cpus(group));
4861
4862 /* Tally up the load of all CPUs in the group */
4863 avg_load = 0;
4864
4865 for_each_cpu(i, sched_group_cpus(group)) {
4866 /* Bias balancing toward cpus of our domain */
4867 if (local_group)
4868 load = source_load(i, load_idx);
4869 else
4870 load = target_load(i, load_idx);
4871
4872 avg_load += load;
4873 }
4874
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04004875 /* Adjust by relative CPU capacity of the group */
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04004876 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004877
4878 if (local_group) {
4879 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004880 } else if (avg_load < min_load) {
4881 min_load = avg_load;
4882 idlest = group;
4883 }
4884 } while (group = group->next, group != sd->groups);
4885
4886 if (!idlest || 100*this_load < imbalance*min_load)
4887 return NULL;
4888 return idlest;
4889}
4890
4891/*
4892 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4893 */
4894static int
4895find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4896{
4897 unsigned long load, min_load = ULONG_MAX;
Nicolas Pitre83a0a962014-09-04 11:32:10 -04004898 unsigned int min_exit_latency = UINT_MAX;
4899 u64 latest_idle_timestamp = 0;
4900 int least_loaded_cpu = this_cpu;
4901 int shallowest_idle_cpu = -1;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004902 int i;
4903
4904 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004905 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Nicolas Pitre83a0a962014-09-04 11:32:10 -04004906 if (idle_cpu(i)) {
4907 struct rq *rq = cpu_rq(i);
4908 struct cpuidle_state *idle = idle_get_state(rq);
4909 if (idle && idle->exit_latency < min_exit_latency) {
4910 /*
4911 * We give priority to a CPU whose idle state
4912 * has the smallest exit latency irrespective
4913 * of any idle timestamp.
4914 */
4915 min_exit_latency = idle->exit_latency;
4916 latest_idle_timestamp = rq->idle_stamp;
4917 shallowest_idle_cpu = i;
4918 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4919 rq->idle_stamp > latest_idle_timestamp) {
4920 /*
4921 * If equal or no active idle state, then
4922 * the most recently idled CPU might have
4923 * a warmer cache.
4924 */
4925 latest_idle_timestamp = rq->idle_stamp;
4926 shallowest_idle_cpu = i;
4927 }
Yao Dongdong9f967422014-10-28 04:08:06 +00004928 } else if (shallowest_idle_cpu == -1) {
Nicolas Pitre83a0a962014-09-04 11:32:10 -04004929 load = weighted_cpuload(i);
4930 if (load < min_load || (load == min_load && i == this_cpu)) {
4931 min_load = load;
4932 least_loaded_cpu = i;
4933 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004934 }
4935 }
4936
Nicolas Pitre83a0a962014-09-04 11:32:10 -04004937 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004938}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004939
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004940/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004941 * Try and locate an idle CPU in the sched_domain.
4942 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004943static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004944{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004945 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004946 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004947 int i = task_cpu(p);
4948
4949 if (idle_cpu(target))
4950 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004951
4952 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004953 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004954 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004955 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4956 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004957
4958 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004959 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004960 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004961 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004962 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004963 sg = sd->groups;
4964 do {
4965 if (!cpumask_intersects(sched_group_cpus(sg),
4966 tsk_cpus_allowed(p)))
4967 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004968
Linus Torvalds37407ea2012-09-16 12:29:43 -07004969 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004970 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004971 goto next;
4972 }
4973
4974 target = cpumask_first_and(sched_group_cpus(sg),
4975 tsk_cpus_allowed(p));
4976 goto done;
4977next:
4978 sg = sg->next;
4979 } while (sg != sd->groups);
4980 }
4981done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004982 return target;
4983}
Vincent Guittot8bb5b002015-03-04 08:48:47 +01004984/*
4985 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4986 * tasks. The unit of the return value must be the one of capacity so we can
4987 * compare the usage with the capacity of the CPU that is available for CFS
4988 * task (ie cpu_capacity).
4989 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4990 * CPU. It represents the amount of utilization of a CPU in the range
4991 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4992 * capacity of the CPU because it's about the running time on this CPU.
4993 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4994 * because of unfortunate rounding in avg_period and running_load_avg or just
4995 * after migrating tasks until the average stabilizes with the new running
4996 * time. So we need to check that the usage stays into the range
4997 * [0..cpu_capacity_orig] and cap if necessary.
4998 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4999 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
5000 */
5001static int get_cpu_usage(int cpu)
5002{
5003 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
5004 unsigned long capacity = capacity_orig_of(cpu);
5005
5006 if (usage >= SCHED_LOAD_SCALE)
5007 return capacity;
5008
5009 return (usage * capacity) >> SCHED_LOAD_SHIFT;
5010}
Peter Zijlstraa50bde52009-11-12 15:55:28 +01005011
5012/*
Morten Rasmussende91b9c2014-02-18 14:14:24 +00005013 * select_task_rq_fair: Select target runqueue for the waking task in domains
5014 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5015 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005016 *
Morten Rasmussende91b9c2014-02-18 14:14:24 +00005017 * Balances load by selecting the idlest cpu in the idlest group, or under
5018 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005019 *
Morten Rasmussende91b9c2014-02-18 14:14:24 +00005020 * Returns the target cpu number.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005021 *
5022 * preempt must be disabled.
5023 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01005024static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01005025select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005026{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02005027 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02005028 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02005029 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07005030 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02005031 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01005032
Kirill Tkhaia8edd072014-09-12 17:41:16 +04005033 if (sd_flag & SD_BALANCE_WAKE)
5034 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
Gregory Haskinse7693a32008-01-25 21:08:09 +01005035
Peter Zijlstradce840a2011-04-07 14:09:50 +02005036 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005037 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f428882009-12-16 18:04:34 +01005038 if (!(tmp->flags & SD_LOAD_BALANCE))
5039 continue;
5040
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005041 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07005042 * If both cpu and prev_cpu are part of this domain,
5043 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01005044 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07005045 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5046 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5047 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08005048 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02005049 }
5050
Alex Shif03542a2012-07-26 08:55:34 +08005051 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02005052 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02005053 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005054
Rik van Riel8bf21432014-05-14 11:40:37 -04005055 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5056 prev_cpu = cpu;
Peter Zijlstradce840a2011-04-07 14:09:50 +02005057
Rik van Riel8bf21432014-05-14 11:40:37 -04005058 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstradce840a2011-04-07 14:09:50 +02005059 new_cpu = select_idle_sibling(p, prev_cpu);
5060 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01005061 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02005062
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005063 while (sd) {
5064 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02005065 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005066
Peter Zijlstra0763a662009-09-14 19:37:39 +02005067 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005068 sd = sd->child;
5069 continue;
5070 }
5071
Vincent Guittotc44f2a02013-10-18 13:52:21 +02005072 group = find_idlest_group(sd, p, cpu, sd_flag);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005073 if (!group) {
5074 sd = sd->child;
5075 continue;
5076 }
5077
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02005078 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005079 if (new_cpu == -1 || new_cpu == cpu) {
5080 /* Now try balancing at a lower domain level of cpu */
5081 sd = sd->child;
5082 continue;
5083 }
5084
5085 /* Now try balancing at a lower domain level of new_cpu */
5086 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005087 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005088 sd = NULL;
5089 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005090 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005091 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02005092 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02005093 sd = tmp;
5094 }
5095 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01005096 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02005097unlock:
5098 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01005099
Peter Zijlstrac88d5912009-09-10 13:50:02 +02005100 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01005101}
Paul Turner0a74bef2012-10-04 13:18:30 +02005102
5103/*
5104 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5105 * cfs_rq_of(p) references at time of call are still valid and identify the
5106 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5107 * other assumptions, including the state of rq->lock, should be made.
5108 */
5109static void
5110migrate_task_rq_fair(struct task_struct *p, int next_cpu)
5111{
Paul Turneraff3e492012-10-04 13:18:30 +02005112 struct sched_entity *se = &p->se;
5113 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5114
5115 /*
5116 * Load tracking: accumulate removed load so that it can be processed
5117 * when we next update owning cfs_rq under rq->lock. Tasks contribute
5118 * to blocked load iff they have a positive decay-count. It can never
5119 * be negative here since on-rq tasks have decay-count == 0.
5120 */
5121 if (se->avg.decay_count) {
5122 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08005123 atomic_long_add(se->avg.load_avg_contrib,
5124 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02005125 }
Ben Segall3944a922014-05-15 15:59:20 -07005126
5127 /* We have migrated, no longer consider this task hot */
5128 se->exec_start = 0;
Paul Turner0a74bef2012-10-04 13:18:30 +02005129}
Gregory Haskinse7693a32008-01-25 21:08:09 +01005130#endif /* CONFIG_SMP */
5131
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01005132static unsigned long
5133wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02005134{
5135 unsigned long gran = sysctl_sched_wakeup_granularity;
5136
5137 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01005138 * Since its curr running now, convert the gran from real-time
5139 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01005140 *
5141 * By using 'se' instead of 'curr' we penalize light tasks, so
5142 * they get preempted easier. That is, if 'se' < 'curr' then
5143 * the resulting gran will be larger, therefore penalizing the
5144 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5145 * be smaller, again penalizing the lighter task.
5146 *
5147 * This is especially important for buddies when the leftmost
5148 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02005149 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08005150 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02005151}
5152
5153/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02005154 * Should 'se' preempt 'curr'.
5155 *
5156 * |s1
5157 * |s2
5158 * |s3
5159 * g
5160 * |<--->|c
5161 *
5162 * w(c, s1) = -1
5163 * w(c, s2) = 0
5164 * w(c, s3) = 1
5165 *
5166 */
5167static int
5168wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5169{
5170 s64 gran, vdiff = curr->vruntime - se->vruntime;
5171
5172 if (vdiff <= 0)
5173 return -1;
5174
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01005175 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02005176 if (vdiff > gran)
5177 return 1;
5178
5179 return 0;
5180}
5181
Peter Zijlstra02479092008-11-04 21:25:10 +01005182static void set_last_buddy(struct sched_entity *se)
5183{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07005184 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5185 return;
5186
5187 for_each_sched_entity(se)
5188 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01005189}
5190
5191static void set_next_buddy(struct sched_entity *se)
5192{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07005193 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5194 return;
5195
5196 for_each_sched_entity(se)
5197 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01005198}
5199
Rik van Rielac53db52011-02-01 09:51:03 -05005200static void set_skip_buddy(struct sched_entity *se)
5201{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07005202 for_each_sched_entity(se)
5203 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05005204}
5205
Peter Zijlstra464b7522008-10-24 11:06:15 +02005206/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005207 * Preempt the current task with a newly woken task if needed:
5208 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02005209static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005210{
5211 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02005212 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01005213 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02005214 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07005215 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01005216
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01005217 if (unlikely(se == pse))
5218 return;
5219
Paul Turner5238cdd2011-07-21 09:43:37 -07005220 /*
Kirill Tkhai163122b2014-08-20 13:48:29 +04005221 * This is possible from callers such as attach_tasks(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07005222 * unconditionally check_prempt_curr() after an enqueue (which may have
5223 * lead to a throttle). This both saves work and prevents false
5224 * next-buddy nomination below.
5225 */
5226 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5227 return;
5228
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07005229 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02005230 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07005231 next_buddy_marked = 1;
5232 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02005233
Bharata B Raoaec0a512008-08-28 14:42:49 +05305234 /*
5235 * We can come here with TIF_NEED_RESCHED already set from new task
5236 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07005237 *
5238 * Note: this also catches the edge-case of curr being in a throttled
5239 * group (e.g. via set_curr_task), since update_curr() (in the
5240 * enqueue of curr) will have resulted in resched being set. This
5241 * prevents us from potentially nominating it as a false LAST_BUDDY
5242 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05305243 */
5244 if (test_tsk_need_resched(curr))
5245 return;
5246
Darren Harta2f5c9a2011-02-22 13:04:33 -08005247 /* Idle tasks are by definition preempted by non-idle tasks. */
5248 if (unlikely(curr->policy == SCHED_IDLE) &&
5249 likely(p->policy != SCHED_IDLE))
5250 goto preempt;
5251
Ingo Molnar91c234b2007-10-15 17:00:18 +02005252 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08005253 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5254 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02005255 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02005256 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02005257 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005258
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01005259 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07005260 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01005261 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07005262 if (wakeup_preempt_entity(se, pse) == 1) {
5263 /*
5264 * Bias pick_next to pick the sched entity that is
5265 * triggering this preemption.
5266 */
5267 if (!next_buddy_marked)
5268 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01005269 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07005270 }
Jupyung Leea65ac742009-11-17 18:51:40 +09005271
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01005272 return;
5273
5274preempt:
Kirill Tkhai88751252014-06-29 00:03:57 +04005275 resched_curr(rq);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01005276 /*
5277 * Only set the backward buddy when the current task is still
5278 * on the rq. This can happen when a wakeup gets interleaved
5279 * with schedule on the ->pre_schedule() or idle_balance()
5280 * point, either of which can * drop the rq lock.
5281 *
5282 * Also, during early boot the idle thread is in the fair class,
5283 * for obvious reasons its a bad idea to schedule back to it.
5284 */
5285 if (unlikely(!se->on_rq || curr == rq->idle))
5286 return;
5287
5288 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5289 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005290}
5291
Peter Zijlstra606dba22012-02-11 06:05:00 +01005292static struct task_struct *
5293pick_next_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005294{
5295 struct cfs_rq *cfs_rq = &rq->cfs;
5296 struct sched_entity *se;
Peter Zijlstra678d5712012-02-11 06:05:00 +01005297 struct task_struct *p;
Peter Zijlstra37e117c2014-02-14 12:25:08 +01005298 int new_tasks;
Peter Zijlstra678d5712012-02-11 06:05:00 +01005299
Peter Zijlstra6e831252014-02-11 16:11:48 +01005300again:
Peter Zijlstra678d5712012-02-11 06:05:00 +01005301#ifdef CONFIG_FAIR_GROUP_SCHED
5302 if (!cfs_rq->nr_running)
Peter Zijlstra38033c32014-01-23 20:32:21 +01005303 goto idle;
Peter Zijlstra678d5712012-02-11 06:05:00 +01005304
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01005305 if (prev->sched_class != &fair_sched_class)
Peter Zijlstra678d5712012-02-11 06:05:00 +01005306 goto simple;
5307
5308 /*
5309 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5310 * likely that a next task is from the same cgroup as the current.
5311 *
5312 * Therefore attempt to avoid putting and setting the entire cgroup
5313 * hierarchy, only change the part that actually changes.
5314 */
5315
5316 do {
5317 struct sched_entity *curr = cfs_rq->curr;
5318
5319 /*
5320 * Since we got here without doing put_prev_entity() we also
5321 * have to consider cfs_rq->curr. If it is still a runnable
5322 * entity, update_curr() will update its vruntime, otherwise
5323 * forget we've ever seen it.
5324 */
5325 if (curr && curr->on_rq)
5326 update_curr(cfs_rq);
5327 else
5328 curr = NULL;
5329
5330 /*
5331 * This call to check_cfs_rq_runtime() will do the throttle and
5332 * dequeue its entity in the parent(s). Therefore the 'simple'
5333 * nr_running test will indeed be correct.
5334 */
5335 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5336 goto simple;
5337
5338 se = pick_next_entity(cfs_rq, curr);
5339 cfs_rq = group_cfs_rq(se);
5340 } while (cfs_rq);
5341
5342 p = task_of(se);
5343
5344 /*
5345 * Since we haven't yet done put_prev_entity and if the selected task
5346 * is a different task than we started out with, try and touch the
5347 * least amount of cfs_rqs.
5348 */
5349 if (prev != p) {
5350 struct sched_entity *pse = &prev->se;
5351
5352 while (!(cfs_rq = is_same_group(se, pse))) {
5353 int se_depth = se->depth;
5354 int pse_depth = pse->depth;
5355
5356 if (se_depth <= pse_depth) {
5357 put_prev_entity(cfs_rq_of(pse), pse);
5358 pse = parent_entity(pse);
5359 }
5360 if (se_depth >= pse_depth) {
5361 set_next_entity(cfs_rq_of(se), se);
5362 se = parent_entity(se);
5363 }
5364 }
5365
5366 put_prev_entity(cfs_rq, pse);
5367 set_next_entity(cfs_rq, se);
5368 }
5369
5370 if (hrtick_enabled(rq))
5371 hrtick_start_fair(rq, p);
5372
5373 return p;
5374simple:
5375 cfs_rq = &rq->cfs;
5376#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005377
Tim Blechmann36ace272009-11-24 11:55:45 +01005378 if (!cfs_rq->nr_running)
Peter Zijlstra38033c32014-01-23 20:32:21 +01005379 goto idle;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005380
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01005381 put_prev_task(rq, prev);
Peter Zijlstra606dba22012-02-11 06:05:00 +01005382
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005383 do {
Peter Zijlstra678d5712012-02-11 06:05:00 +01005384 se = pick_next_entity(cfs_rq, NULL);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01005385 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005386 cfs_rq = group_cfs_rq(se);
5387 } while (cfs_rq);
5388
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01005389 p = task_of(se);
Peter Zijlstra678d5712012-02-11 06:05:00 +01005390
Mike Galbraithb39e66e2011-11-22 15:20:07 +01005391 if (hrtick_enabled(rq))
5392 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01005393
5394 return p;
Peter Zijlstra38033c32014-01-23 20:32:21 +01005395
5396idle:
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04005397 new_tasks = idle_balance(rq);
Peter Zijlstra37e117c2014-02-14 12:25:08 +01005398 /*
5399 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5400 * possible for any higher priority task to appear. In that case we
5401 * must re-start the pick_next_entity() loop.
5402 */
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04005403 if (new_tasks < 0)
Peter Zijlstra37e117c2014-02-14 12:25:08 +01005404 return RETRY_TASK;
5405
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04005406 if (new_tasks > 0)
Peter Zijlstra38033c32014-01-23 20:32:21 +01005407 goto again;
Peter Zijlstra38033c32014-01-23 20:32:21 +01005408
5409 return NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005410}
5411
5412/*
5413 * Account for a descheduled task:
5414 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02005415static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005416{
5417 struct sched_entity *se = &prev->se;
5418 struct cfs_rq *cfs_rq;
5419
5420 for_each_sched_entity(se) {
5421 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02005422 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005423 }
5424}
5425
Rik van Rielac53db52011-02-01 09:51:03 -05005426/*
5427 * sched_yield() is very simple
5428 *
5429 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5430 */
5431static void yield_task_fair(struct rq *rq)
5432{
5433 struct task_struct *curr = rq->curr;
5434 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5435 struct sched_entity *se = &curr->se;
5436
5437 /*
5438 * Are we the only task in the tree?
5439 */
5440 if (unlikely(rq->nr_running == 1))
5441 return;
5442
5443 clear_buddies(cfs_rq, se);
5444
5445 if (curr->policy != SCHED_BATCH) {
5446 update_rq_clock(rq);
5447 /*
5448 * Update run-time statistics of the 'current'.
5449 */
5450 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01005451 /*
5452 * Tell update_rq_clock() that we've just updated,
5453 * so we don't do microscopic update in schedule()
5454 * and double the fastpath cost.
5455 */
Peter Zijlstra9edfbfe2015-01-05 11:18:11 +01005456 rq_clock_skip_update(rq, true);
Rik van Rielac53db52011-02-01 09:51:03 -05005457 }
5458
5459 set_skip_buddy(se);
5460}
5461
Mike Galbraithd95f4122011-02-01 09:50:51 -05005462static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5463{
5464 struct sched_entity *se = &p->se;
5465
Paul Turner5238cdd2011-07-21 09:43:37 -07005466 /* throttled hierarchies are not runnable */
5467 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05005468 return false;
5469
5470 /* Tell the scheduler that we'd really like pse to run next. */
5471 set_next_buddy(se);
5472
Mike Galbraithd95f4122011-02-01 09:50:51 -05005473 yield_task_fair(rq);
5474
5475 return true;
5476}
5477
Peter Williams681f3e62007-10-24 18:23:51 +02005478#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005479/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02005480 * Fair scheduling class load-balancing methods.
5481 *
5482 * BASICS
5483 *
5484 * The purpose of load-balancing is to achieve the same basic fairness the
5485 * per-cpu scheduler provides, namely provide a proportional amount of compute
5486 * time to each task. This is expressed in the following equation:
5487 *
5488 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5489 *
5490 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5491 * W_i,0 is defined as:
5492 *
5493 * W_i,0 = \Sum_j w_i,j (2)
5494 *
5495 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5496 * is derived from the nice value as per prio_to_weight[].
5497 *
5498 * The weight average is an exponential decay average of the instantaneous
5499 * weight:
5500 *
5501 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5502 *
Nicolas Pitreced549f2014-05-26 18:19:38 -04005503 * C_i is the compute capacity of cpu i, typically it is the
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02005504 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5505 * can also include other factors [XXX].
5506 *
5507 * To achieve this balance we define a measure of imbalance which follows
5508 * directly from (1):
5509 *
Nicolas Pitreced549f2014-05-26 18:19:38 -04005510 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02005511 *
5512 * We them move tasks around to minimize the imbalance. In the continuous
5513 * function space it is obvious this converges, in the discrete case we get
5514 * a few fun cases generally called infeasible weight scenarios.
5515 *
5516 * [XXX expand on:
5517 * - infeasible weights;
5518 * - local vs global optima in the discrete case. ]
5519 *
5520 *
5521 * SCHED DOMAINS
5522 *
5523 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5524 * for all i,j solution, we create a tree of cpus that follows the hardware
5525 * topology where each level pairs two lower groups (or better). This results
5526 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5527 * tree to only the first of the previous level and we decrease the frequency
5528 * of load-balance at each level inv. proportional to the number of cpus in
5529 * the groups.
5530 *
5531 * This yields:
5532 *
5533 * log_2 n 1 n
5534 * \Sum { --- * --- * 2^i } = O(n) (5)
5535 * i = 0 2^i 2^i
5536 * `- size of each group
5537 * | | `- number of cpus doing load-balance
5538 * | `- freq
5539 * `- sum over all levels
5540 *
5541 * Coupled with a limit on how many tasks we can migrate every balance pass,
5542 * this makes (5) the runtime complexity of the balancer.
5543 *
5544 * An important property here is that each CPU is still (indirectly) connected
5545 * to every other cpu in at most O(log n) steps:
5546 *
5547 * The adjacency matrix of the resulting graph is given by:
5548 *
5549 * log_2 n
5550 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5551 * k = 0
5552 *
5553 * And you'll find that:
5554 *
5555 * A^(log_2 n)_i,j != 0 for all i,j (7)
5556 *
5557 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5558 * The task movement gives a factor of O(m), giving a convergence complexity
5559 * of:
5560 *
5561 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5562 *
5563 *
5564 * WORK CONSERVING
5565 *
5566 * In order to avoid CPUs going idle while there's still work to do, new idle
5567 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5568 * tree itself instead of relying on other CPUs to bring it work.
5569 *
5570 * This adds some complexity to both (5) and (8) but it reduces the total idle
5571 * time.
5572 *
5573 * [XXX more?]
5574 *
5575 *
5576 * CGROUPS
5577 *
5578 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5579 *
5580 * s_k,i
5581 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5582 * S_k
5583 *
5584 * Where
5585 *
5586 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5587 *
5588 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5589 *
5590 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5591 * property.
5592 *
5593 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5594 * rewrite all of this once again.]
5595 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02005596
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09005597static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5598
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005599enum fbq_type { regular, remote, all };
5600
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005601#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01005602#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02005603#define LBF_DST_PINNED 0x04
5604#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005605
5606struct lb_env {
5607 struct sched_domain *sd;
5608
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005609 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05305610 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005611
5612 int dst_cpu;
5613 struct rq *dst_rq;
5614
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305615 struct cpumask *dst_grpmask;
5616 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005617 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005618 long imbalance;
Michael Wangb94031302012-07-12 16:10:13 +08005619 /* The set of CPUs under consideration for load-balancing */
5620 struct cpumask *cpus;
5621
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005622 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01005623
5624 unsigned int loop;
5625 unsigned int loop_break;
5626 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005627
5628 enum fbq_type fbq_type;
Kirill Tkhai163122b2014-08-20 13:48:29 +04005629 struct list_head tasks;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005630};
5631
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005632/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02005633 * Is this task likely cache-hot:
5634 */
Hillf Danton5d5e2b12014-06-10 10:58:43 +02005635static int task_hot(struct task_struct *p, struct lb_env *env)
Peter Zijlstra029632f2011-10-25 10:00:11 +02005636{
5637 s64 delta;
5638
Kirill Tkhaie5673f22014-08-20 13:48:01 +04005639 lockdep_assert_held(&env->src_rq->lock);
5640
Peter Zijlstra029632f2011-10-25 10:00:11 +02005641 if (p->sched_class != &fair_sched_class)
5642 return 0;
5643
5644 if (unlikely(p->policy == SCHED_IDLE))
5645 return 0;
5646
5647 /*
5648 * Buddy candidates are cache hot:
5649 */
Hillf Danton5d5e2b12014-06-10 10:58:43 +02005650 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
Peter Zijlstra029632f2011-10-25 10:00:11 +02005651 (&p->se == cfs_rq_of(&p->se)->next ||
5652 &p->se == cfs_rq_of(&p->se)->last))
5653 return 1;
5654
5655 if (sysctl_sched_migration_cost == -1)
5656 return 1;
5657 if (sysctl_sched_migration_cost == 0)
5658 return 0;
5659
Hillf Danton5d5e2b12014-06-10 10:58:43 +02005660 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
Peter Zijlstra029632f2011-10-25 10:00:11 +02005661
5662 return delta < (s64)sysctl_sched_migration_cost;
5663}
5664
Mel Gorman3a7053b2013-10-07 11:29:00 +01005665#ifdef CONFIG_NUMA_BALANCING
Rik van Rielc1ceac62015-05-14 22:59:36 -04005666/*
5667 * Returns true if the destination node is the preferred node.
5668 * Needs to match fbq_classify_rq(): if there is a runnable task
5669 * that is not on its preferred node, we should identify it.
5670 */
Mel Gorman3a7053b2013-10-07 11:29:00 +01005671static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5672{
Rik van Rielb1ad0652014-05-15 13:03:06 -04005673 struct numa_group *numa_group = rcu_dereference(p->numa_group);
Rik van Rielc1ceac62015-05-14 22:59:36 -04005674 unsigned long src_faults, dst_faults;
Mel Gorman3a7053b2013-10-07 11:29:00 +01005675 int src_nid, dst_nid;
5676
Iulia Manda44dba3d2014-10-31 02:13:31 +02005677 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
Mel Gorman3a7053b2013-10-07 11:29:00 +01005678 !(env->sd->flags & SD_NUMA)) {
5679 return false;
5680 }
5681
5682 src_nid = cpu_to_node(env->src_cpu);
5683 dst_nid = cpu_to_node(env->dst_cpu);
5684
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005685 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01005686 return false;
5687
Rik van Rielb1ad0652014-05-15 13:03:06 -04005688 /* Encourage migration to the preferred node. */
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005689 if (dst_nid == p->numa_preferred_nid)
5690 return true;
5691
Rik van Rielc1ceac62015-05-14 22:59:36 -04005692 /* Migrating away from the preferred node is bad. */
5693 if (src_nid == p->numa_preferred_nid)
5694 return false;
5695
5696 if (numa_group) {
5697 src_faults = group_faults(p, src_nid);
5698 dst_faults = group_faults(p, dst_nid);
5699 } else {
5700 src_faults = task_faults(p, src_nid);
5701 dst_faults = task_faults(p, dst_nid);
5702 }
5703
5704 return dst_faults > src_faults;
Mel Gorman3a7053b2013-10-07 11:29:00 +01005705}
Mel Gorman7a0f3082013-10-07 11:29:01 +01005706
5707
5708static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5709{
Rik van Rielb1ad0652014-05-15 13:03:06 -04005710 struct numa_group *numa_group = rcu_dereference(p->numa_group);
Rik van Rielc1ceac62015-05-14 22:59:36 -04005711 unsigned long src_faults, dst_faults;
Mel Gorman7a0f3082013-10-07 11:29:01 +01005712 int src_nid, dst_nid;
5713
5714 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5715 return false;
5716
Iulia Manda44dba3d2014-10-31 02:13:31 +02005717 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
Mel Gorman7a0f3082013-10-07 11:29:01 +01005718 return false;
5719
5720 src_nid = cpu_to_node(env->src_cpu);
5721 dst_nid = cpu_to_node(env->dst_cpu);
5722
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005723 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01005724 return false;
5725
Rik van Rielc1ceac62015-05-14 22:59:36 -04005726 /* Migrating away from the preferred node is bad. */
Mel Gorman83e1d2c2013-10-07 11:29:27 +01005727 if (src_nid == p->numa_preferred_nid)
5728 return true;
5729
Rik van Rielc1ceac62015-05-14 22:59:36 -04005730 /* Encourage migration to the preferred node. */
5731 if (dst_nid == p->numa_preferred_nid)
5732 return false;
5733
5734 if (numa_group) {
5735 src_faults = group_faults(p, src_nid);
5736 dst_faults = group_faults(p, dst_nid);
5737 } else {
5738 src_faults = task_faults(p, src_nid);
5739 dst_faults = task_faults(p, dst_nid);
5740 }
5741
5742 return dst_faults < src_faults;
Mel Gorman7a0f3082013-10-07 11:29:01 +01005743}
5744
Mel Gorman3a7053b2013-10-07 11:29:00 +01005745#else
5746static inline bool migrate_improves_locality(struct task_struct *p,
5747 struct lb_env *env)
5748{
5749 return false;
5750}
Mel Gorman7a0f3082013-10-07 11:29:01 +01005751
5752static inline bool migrate_degrades_locality(struct task_struct *p,
5753 struct lb_env *env)
5754{
5755 return false;
5756}
Mel Gorman3a7053b2013-10-07 11:29:00 +01005757#endif
5758
Peter Zijlstra029632f2011-10-25 10:00:11 +02005759/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005760 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5761 */
5762static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005763int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005764{
5765 int tsk_cache_hot = 0;
Kirill Tkhaie5673f22014-08-20 13:48:01 +04005766
5767 lockdep_assert_held(&env->src_rq->lock);
5768
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005769 /*
5770 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09005771 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005772 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09005773 * 3) running (obviously), or
5774 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005775 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09005776 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5777 return 0;
5778
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005779 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005780 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305781
Lucas De Marchi41acab82010-03-10 23:37:45 -03005782 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305783
Peter Zijlstra62633222013-08-19 12:41:09 +02005784 env->flags |= LBF_SOME_PINNED;
5785
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305786 /*
5787 * Remember if this task can be migrated to any other cpu in
5788 * our sched_group. We may want to revisit it if we couldn't
5789 * meet load balance goals by pulling other tasks on src_cpu.
5790 *
5791 * Also avoid computing new_dst_cpu if we have already computed
5792 * one in current iteration.
5793 */
Peter Zijlstra62633222013-08-19 12:41:09 +02005794 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305795 return 0;
5796
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005797 /* Prevent to re-select dst_cpu via env's cpus */
5798 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5799 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02005800 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005801 env->new_dst_cpu = cpu;
5802 break;
5803 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305804 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005805
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005806 return 0;
5807 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305808
5809 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005810 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005811
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005812 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03005813 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005814 return 0;
5815 }
5816
5817 /*
5818 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01005819 * 1) destination numa is preferred
5820 * 2) task is cache cold, or
5821 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005822 */
Hillf Danton5d5e2b12014-06-10 10:58:43 +02005823 tsk_cache_hot = task_hot(p, env);
Mel Gorman7a0f3082013-10-07 11:29:01 +01005824 if (!tsk_cache_hot)
5825 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01005826
Kirill Tkhai7a96c232014-09-22 22:36:12 +04005827 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5828 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Mel Gorman3a7053b2013-10-07 11:29:00 +01005829 if (tsk_cache_hot) {
5830 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5831 schedstat_inc(p, se.statistics.nr_forced_migrations);
5832 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005833 return 1;
5834 }
5835
Zhang Hang4e2dcb72013-04-10 14:04:55 +08005836 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5837 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005838}
5839
Peter Zijlstra897c3952009-12-17 17:45:42 +01005840/*
Kirill Tkhai163122b2014-08-20 13:48:29 +04005841 * detach_task() -- detach the task for the migration specified in env
Peter Zijlstra897c3952009-12-17 17:45:42 +01005842 */
Kirill Tkhai163122b2014-08-20 13:48:29 +04005843static void detach_task(struct task_struct *p, struct lb_env *env)
5844{
5845 lockdep_assert_held(&env->src_rq->lock);
5846
5847 deactivate_task(env->src_rq, p, 0);
5848 p->on_rq = TASK_ON_RQ_MIGRATING;
5849 set_task_cpu(p, env->dst_cpu);
5850}
5851
5852/*
Kirill Tkhaie5673f22014-08-20 13:48:01 +04005853 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
Peter Zijlstra897c3952009-12-17 17:45:42 +01005854 * part of active balancing operations within "domain".
Peter Zijlstra897c3952009-12-17 17:45:42 +01005855 *
Kirill Tkhaie5673f22014-08-20 13:48:01 +04005856 * Returns a task if successful and NULL otherwise.
Peter Zijlstra897c3952009-12-17 17:45:42 +01005857 */
Kirill Tkhaie5673f22014-08-20 13:48:01 +04005858static struct task_struct *detach_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01005859{
5860 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005861
Kirill Tkhaie5673f22014-08-20 13:48:01 +04005862 lockdep_assert_held(&env->src_rq->lock);
5863
Peter Zijlstra367456c2012-02-20 21:49:09 +01005864 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01005865 if (!can_migrate_task(p, env))
5866 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005867
Kirill Tkhai163122b2014-08-20 13:48:29 +04005868 detach_task(p, env);
Kirill Tkhaie5673f22014-08-20 13:48:01 +04005869
Peter Zijlstra367456c2012-02-20 21:49:09 +01005870 /*
Kirill Tkhaie5673f22014-08-20 13:48:01 +04005871 * Right now, this is only the second place where
Kirill Tkhai163122b2014-08-20 13:48:29 +04005872 * lb_gained[env->idle] is updated (other is detach_tasks)
Kirill Tkhaie5673f22014-08-20 13:48:01 +04005873 * so we can safely collect stats here rather than
Kirill Tkhai163122b2014-08-20 13:48:29 +04005874 * inside detach_tasks().
Peter Zijlstra367456c2012-02-20 21:49:09 +01005875 */
5876 schedstat_inc(env->sd, lb_gained[env->idle]);
Kirill Tkhaie5673f22014-08-20 13:48:01 +04005877 return p;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005878 }
Kirill Tkhaie5673f22014-08-20 13:48:01 +04005879 return NULL;
Peter Zijlstra897c3952009-12-17 17:45:42 +01005880}
5881
Peter Zijlstraeb953082012-04-17 13:38:40 +02005882static const unsigned int sched_nr_migrate_break = 32;
5883
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005884/*
Kirill Tkhai163122b2014-08-20 13:48:29 +04005885 * detach_tasks() -- tries to detach up to imbalance weighted load from
5886 * busiest_rq, as part of a balancing operation within domain "sd".
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005887 *
Kirill Tkhai163122b2014-08-20 13:48:29 +04005888 * Returns number of detached tasks if successful and 0 otherwise.
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005889 */
Kirill Tkhai163122b2014-08-20 13:48:29 +04005890static int detach_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005891{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005892 struct list_head *tasks = &env->src_rq->cfs_tasks;
5893 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01005894 unsigned long load;
Kirill Tkhai163122b2014-08-20 13:48:29 +04005895 int detached = 0;
5896
5897 lockdep_assert_held(&env->src_rq->lock);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005898
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005899 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005900 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005901
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005902 while (!list_empty(tasks)) {
5903 p = list_first_entry(tasks, struct task_struct, se.group_node);
5904
Peter Zijlstra367456c2012-02-20 21:49:09 +01005905 env->loop++;
5906 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005907 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005908 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005909
5910 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01005911 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02005912 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005913 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01005914 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02005915 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005916
Joonsoo Kimd3198082013-04-23 17:27:40 +09005917 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01005918 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005919
Peter Zijlstra367456c2012-02-20 21:49:09 +01005920 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005921
Peter Zijlstraeb953082012-04-17 13:38:40 +02005922 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005923 goto next;
5924
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005925 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005926 goto next;
5927
Kirill Tkhai163122b2014-08-20 13:48:29 +04005928 detach_task(p, env);
5929 list_add(&p->se.group_node, &env->tasks);
5930
5931 detached++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005932 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005933
5934#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01005935 /*
5936 * NEWIDLE balancing is a source of latency, so preemptible
Kirill Tkhai163122b2014-08-20 13:48:29 +04005937 * kernels will stop after the first task is detached to minimize
Peter Zijlstraee00e662009-12-17 17:25:20 +01005938 * the critical section.
5939 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005940 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005941 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005942#endif
5943
Peter Zijlstraee00e662009-12-17 17:25:20 +01005944 /*
5945 * We only want to steal up to the prescribed amount of
5946 * weighted load.
5947 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005948 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005949 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005950
Peter Zijlstra367456c2012-02-20 21:49:09 +01005951 continue;
5952next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005953 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005954 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005955
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005956 /*
Kirill Tkhai163122b2014-08-20 13:48:29 +04005957 * Right now, this is one of only two places we collect this stat
5958 * so we can safely collect detach_one_task() stats here rather
5959 * than inside detach_one_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005960 */
Kirill Tkhai163122b2014-08-20 13:48:29 +04005961 schedstat_add(env->sd, lb_gained[env->idle], detached);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005962
Kirill Tkhai163122b2014-08-20 13:48:29 +04005963 return detached;
5964}
5965
5966/*
5967 * attach_task() -- attach the task detached by detach_task() to its new rq.
5968 */
5969static void attach_task(struct rq *rq, struct task_struct *p)
5970{
5971 lockdep_assert_held(&rq->lock);
5972
5973 BUG_ON(task_rq(p) != rq);
5974 p->on_rq = TASK_ON_RQ_QUEUED;
5975 activate_task(rq, p, 0);
5976 check_preempt_curr(rq, p, 0);
5977}
5978
5979/*
5980 * attach_one_task() -- attaches the task returned from detach_one_task() to
5981 * its new rq.
5982 */
5983static void attach_one_task(struct rq *rq, struct task_struct *p)
5984{
5985 raw_spin_lock(&rq->lock);
5986 attach_task(rq, p);
5987 raw_spin_unlock(&rq->lock);
5988}
5989
5990/*
5991 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5992 * new rq.
5993 */
5994static void attach_tasks(struct lb_env *env)
5995{
5996 struct list_head *tasks = &env->tasks;
5997 struct task_struct *p;
5998
5999 raw_spin_lock(&env->dst_rq->lock);
6000
6001 while (!list_empty(tasks)) {
6002 p = list_first_entry(tasks, struct task_struct, se.group_node);
6003 list_del_init(&p->se.group_node);
6004
6005 attach_task(env->dst_rq, p);
6006 }
6007
6008 raw_spin_unlock(&env->dst_rq->lock);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006009}
6010
Peter Zijlstra230059de2009-12-17 17:47:12 +01006011#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08006012/*
6013 * update tg->load_weight by folding this cpu's load_avg
6014 */
Paul Turner48a16752012-10-04 13:18:31 +02006015static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08006016{
Paul Turner48a16752012-10-04 13:18:31 +02006017 struct sched_entity *se = tg->se[cpu];
6018 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08006019
Paul Turner48a16752012-10-04 13:18:31 +02006020 /* throttled entities do not contribute to load */
6021 if (throttled_hierarchy(cfs_rq))
6022 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08006023
Paul Turneraff3e492012-10-04 13:18:30 +02006024 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08006025
Paul Turner82958362012-10-04 13:18:31 +02006026 if (se) {
6027 update_entity_load_avg(se, 1);
6028 /*
6029 * We pivot on our runnable average having decayed to zero for
6030 * list removal. This generally implies that all our children
6031 * have also been removed (modulo rounding error or bandwidth
6032 * control); however, such cases are rare and we can fix these
6033 * at enqueue.
6034 *
6035 * TODO: fix up out-of-order children on enqueue.
6036 */
6037 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
6038 list_del_leaf_cfs_rq(cfs_rq);
6039 } else {
Paul Turner48a16752012-10-04 13:18:31 +02006040 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02006041 update_rq_runnable_avg(rq, rq->nr_running);
6042 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08006043}
6044
Paul Turner48a16752012-10-04 13:18:31 +02006045static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08006046{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08006047 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02006048 struct cfs_rq *cfs_rq;
6049 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08006050
Paul Turner48a16752012-10-04 13:18:31 +02006051 raw_spin_lock_irqsave(&rq->lock, flags);
6052 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02006053 /*
6054 * Iterates the task_group tree in a bottom up fashion, see
6055 * list_add_leaf_cfs_rq() for details.
6056 */
Paul Turner64660c82011-07-21 09:43:36 -07006057 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02006058 /*
6059 * Note: We may want to consider periodically releasing
6060 * rq->lock about these updates so that creating many task
6061 * groups does not result in continually extending hold time.
6062 */
6063 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07006064 }
Paul Turner48a16752012-10-04 13:18:31 +02006065
6066 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08006067}
6068
Peter Zijlstra9763b672011-07-13 13:09:25 +02006069/*
Vladimir Davydov68520792013-07-15 17:49:19 +04006070 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02006071 * This needs to be done in a top-down fashion because the load of a child
6072 * group is a fraction of its parents load.
6073 */
Vladimir Davydov68520792013-07-15 17:49:19 +04006074static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02006075{
Vladimir Davydov68520792013-07-15 17:49:19 +04006076 struct rq *rq = rq_of(cfs_rq);
6077 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02006078 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04006079 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02006080
Vladimir Davydov68520792013-07-15 17:49:19 +04006081 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02006082 return;
6083
Vladimir Davydov68520792013-07-15 17:49:19 +04006084 cfs_rq->h_load_next = NULL;
6085 for_each_sched_entity(se) {
6086 cfs_rq = cfs_rq_of(se);
6087 cfs_rq->h_load_next = se;
6088 if (cfs_rq->last_h_load_update == now)
6089 break;
6090 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02006091
Vladimir Davydov68520792013-07-15 17:49:19 +04006092 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04006093 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04006094 cfs_rq->last_h_load_update = now;
6095 }
6096
6097 while ((se = cfs_rq->h_load_next) != NULL) {
6098 load = cfs_rq->h_load;
6099 load = div64_ul(load * se->avg.load_avg_contrib,
6100 cfs_rq->runnable_load_avg + 1);
6101 cfs_rq = group_cfs_rq(se);
6102 cfs_rq->h_load = load;
6103 cfs_rq->last_h_load_update = now;
6104 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02006105}
6106
Peter Zijlstra367456c2012-02-20 21:49:09 +01006107static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01006108{
Peter Zijlstra367456c2012-02-20 21:49:09 +01006109 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01006110
Vladimir Davydov68520792013-07-15 17:49:19 +04006111 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08006112 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
6113 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01006114}
6115#else
Paul Turner48a16752012-10-04 13:18:31 +02006116static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08006117{
6118}
6119
Peter Zijlstra367456c2012-02-20 21:49:09 +01006120static unsigned long task_h_load(struct task_struct *p)
6121{
Alex Shia003a252013-06-20 10:18:51 +08006122 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01006123}
6124#endif
6125
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006126/********** Helpers for find_busiest_group ************************/
Rik van Rielcaeb1782014-07-28 14:16:28 -04006127
6128enum group_type {
6129 group_other = 0,
6130 group_imbalanced,
6131 group_overloaded,
6132};
6133
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006134/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006135 * sg_lb_stats - stats of a sched_group required for load_balancing
6136 */
6137struct sg_lb_stats {
6138 unsigned long avg_load; /*Avg load across the CPUs of the group */
6139 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006140 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006141 unsigned long load_per_task;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006142 unsigned long group_capacity;
Vincent Guittot8bb5b002015-03-04 08:48:47 +01006143 unsigned long group_usage; /* Total usage of the group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006144 unsigned int sum_nr_running; /* Nr tasks running in the group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006145 unsigned int idle_cpus;
6146 unsigned int group_weight;
Rik van Rielcaeb1782014-07-28 14:16:28 -04006147 enum group_type group_type;
Vincent Guittotea678212015-02-27 16:54:11 +01006148 int group_no_capacity;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006149#ifdef CONFIG_NUMA_BALANCING
6150 unsigned int nr_numa_running;
6151 unsigned int nr_preferred_running;
6152#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006153};
6154
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006155/*
6156 * sd_lb_stats - Structure to store the statistics of a sched_domain
6157 * during load balancing.
6158 */
6159struct sd_lb_stats {
6160 struct sched_group *busiest; /* Busiest group in this sd */
6161 struct sched_group *local; /* Local group in this sd */
6162 unsigned long total_load; /* Total load of all groups in sd */
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006163 unsigned long total_capacity; /* Total capacity of all groups in sd */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006164 unsigned long avg_load; /* Average load across all groups in sd */
6165
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006166 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006167 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006168};
6169
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006170static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6171{
6172 /*
6173 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6174 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6175 * We must however clear busiest_stat::avg_load because
6176 * update_sd_pick_busiest() reads this before assignment.
6177 */
6178 *sds = (struct sd_lb_stats){
6179 .busiest = NULL,
6180 .local = NULL,
6181 .total_load = 0UL,
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006182 .total_capacity = 0UL,
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006183 .busiest_stat = {
6184 .avg_load = 0UL,
Rik van Rielcaeb1782014-07-28 14:16:28 -04006185 .sum_nr_running = 0,
6186 .group_type = group_other,
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006187 },
6188 };
6189}
6190
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006191/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006192 * get_sd_load_idx - Obtain the load index for a given sched domain.
6193 * @sd: The sched_domain whose load_idx is to be obtained.
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05306194 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02006195 *
6196 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006197 */
6198static inline int get_sd_load_idx(struct sched_domain *sd,
6199 enum cpu_idle_type idle)
6200{
6201 int load_idx;
6202
6203 switch (idle) {
6204 case CPU_NOT_IDLE:
6205 load_idx = sd->busy_idx;
6206 break;
6207
6208 case CPU_NEWLY_IDLE:
6209 load_idx = sd->newidle_idx;
6210 break;
6211 default:
6212 load_idx = sd->idle_idx;
6213 break;
6214 }
6215
6216 return load_idx;
6217}
6218
Vincent Guittot26bc3c52014-08-26 13:06:47 +02006219static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006220{
Vincent Guittot26bc3c52014-08-26 13:06:47 +02006221 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6222 return sd->smt_gain / sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006223
Vincent Guittot26bc3c52014-08-26 13:06:47 +02006224 return SCHED_CAPACITY_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006225}
6226
Vincent Guittot26bc3c52014-08-26 13:06:47 +02006227unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006228{
Vincent Guittot26bc3c52014-08-26 13:06:47 +02006229 return default_scale_cpu_capacity(sd, cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006230}
6231
Nicolas Pitreced549f2014-05-26 18:19:38 -04006232static unsigned long scale_rt_capacity(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006233{
6234 struct rq *rq = cpu_rq(cpu);
Vincent Guittotb5b48602015-02-27 16:54:08 +01006235 u64 total, used, age_stamp, avg;
Peter Zijlstracadefd32014-02-27 10:40:35 +01006236 s64 delta;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006237
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02006238 /*
6239 * Since we're reading these variables without serialization make sure
6240 * we read them once before doing sanity checks on them.
6241 */
Jason Low316c1608d2015-04-28 13:00:20 -07006242 age_stamp = READ_ONCE(rq->age_stamp);
6243 avg = READ_ONCE(rq->rt_avg);
Peter Zijlstracebde6d2015-01-05 11:18:10 +01006244 delta = __rq_clock_broken(rq) - age_stamp;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07006245
Peter Zijlstracadefd32014-02-27 10:40:35 +01006246 if (unlikely(delta < 0))
6247 delta = 0;
6248
6249 total = sched_avg_period() + delta;
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02006250
Vincent Guittotb5b48602015-02-27 16:54:08 +01006251 used = div_u64(avg, total);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006252
Vincent Guittotb5b48602015-02-27 16:54:08 +01006253 if (likely(used < SCHED_CAPACITY_SCALE))
6254 return SCHED_CAPACITY_SCALE - used;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006255
Vincent Guittotb5b48602015-02-27 16:54:08 +01006256 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006257}
6258
Nicolas Pitreced549f2014-05-26 18:19:38 -04006259static void update_cpu_capacity(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006260{
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04006261 unsigned long capacity = SCHED_CAPACITY_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006262 struct sched_group *sdg = sd->groups;
6263
Vincent Guittot26bc3c52014-08-26 13:06:47 +02006264 if (sched_feat(ARCH_CAPACITY))
6265 capacity *= arch_scale_cpu_capacity(sd, cpu);
6266 else
6267 capacity *= default_scale_cpu_capacity(sd, cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006268
Vincent Guittot26bc3c52014-08-26 13:06:47 +02006269 capacity >>= SCHED_CAPACITY_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006270
Vincent Guittotca6d75e2015-02-27 16:54:09 +01006271 cpu_rq(cpu)->cpu_capacity_orig = capacity;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006272
Nicolas Pitreced549f2014-05-26 18:19:38 -04006273 capacity *= scale_rt_capacity(cpu);
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04006274 capacity >>= SCHED_CAPACITY_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006275
Nicolas Pitreced549f2014-05-26 18:19:38 -04006276 if (!capacity)
6277 capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006278
Nicolas Pitreced549f2014-05-26 18:19:38 -04006279 cpu_rq(cpu)->cpu_capacity = capacity;
6280 sdg->sgc->capacity = capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006281}
6282
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006283void update_group_capacity(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006284{
6285 struct sched_domain *child = sd->child;
6286 struct sched_group *group, *sdg = sd->groups;
Vincent Guittotdc7ff762015-03-03 11:35:03 +01006287 unsigned long capacity;
Vincent Guittot4ec44122011-12-12 20:21:08 +01006288 unsigned long interval;
6289
6290 interval = msecs_to_jiffies(sd->balance_interval);
6291 interval = clamp(interval, 1UL, max_load_balance_interval);
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006292 sdg->sgc->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006293
6294 if (!child) {
Nicolas Pitreced549f2014-05-26 18:19:38 -04006295 update_cpu_capacity(sd, cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006296 return;
6297 }
6298
Vincent Guittotdc7ff762015-03-03 11:35:03 +01006299 capacity = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006300
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02006301 if (child->flags & SD_OVERLAP) {
6302 /*
6303 * SD_OVERLAP domains cannot assume that child groups
6304 * span the current group.
6305 */
6306
Peter Zijlstra863bffc2013-08-28 11:44:39 +02006307 for_each_cpu(cpu, sched_group_cpus(sdg)) {
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006308 struct sched_group_capacity *sgc;
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05306309 struct rq *rq = cpu_rq(cpu);
Peter Zijlstra863bffc2013-08-28 11:44:39 +02006310
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05306311 /*
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006312 * build_sched_domains() -> init_sched_groups_capacity()
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05306313 * gets here before we've attached the domains to the
6314 * runqueues.
6315 *
Nicolas Pitreced549f2014-05-26 18:19:38 -04006316 * Use capacity_of(), which is set irrespective of domains
6317 * in update_cpu_capacity().
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05306318 *
Vincent Guittotdc7ff762015-03-03 11:35:03 +01006319 * This avoids capacity from being 0 and
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05306320 * causing divide-by-zero issues on boot.
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05306321 */
6322 if (unlikely(!rq->sd)) {
Nicolas Pitreced549f2014-05-26 18:19:38 -04006323 capacity += capacity_of(cpu);
Srikar Dronamraju9abf24d2013-11-12 22:11:26 +05306324 continue;
6325 }
6326
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006327 sgc = rq->sd->groups->sgc;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006328 capacity += sgc->capacity;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02006329 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02006330 } else {
6331 /*
6332 * !SD_OVERLAP domains can assume that child groups
6333 * span the current group.
6334 */
6335
6336 group = child->groups;
6337 do {
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006338 capacity += group->sgc->capacity;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02006339 group = group->next;
6340 } while (group != child->groups);
6341 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006342
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006343 sdg->sgc->capacity = capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006344}
6345
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006346/*
Vincent Guittotea678212015-02-27 16:54:11 +01006347 * Check whether the capacity of the rq has been noticeably reduced by side
6348 * activity. The imbalance_pct is used for the threshold.
6349 * Return true is the capacity is reduced
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006350 */
6351static inline int
Vincent Guittotea678212015-02-27 16:54:11 +01006352check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006353{
Vincent Guittotea678212015-02-27 16:54:11 +01006354 return ((rq->cpu_capacity * sd->imbalance_pct) <
6355 (rq->cpu_capacity_orig * 100));
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006356}
6357
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006358/*
6359 * Group imbalance indicates (and tries to solve) the problem where balancing
6360 * groups is inadequate due to tsk_cpus_allowed() constraints.
6361 *
6362 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6363 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6364 * Something like:
6365 *
6366 * { 0 1 2 3 } { 4 5 6 7 }
6367 * * * * *
6368 *
6369 * If we were to balance group-wise we'd place two tasks in the first group and
6370 * two tasks in the second group. Clearly this is undesired as it will overload
6371 * cpu 3 and leave one of the cpus in the second group unused.
6372 *
6373 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02006374 * by noticing the lower domain failed to reach balance and had difficulty
6375 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006376 *
6377 * When this is so detected; this group becomes a candidate for busiest; see
Kamalesh Babulaled1b7732013-10-13 23:06:15 +05306378 * update_sd_pick_busiest(). And calculate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02006379 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006380 * to create an effective group imbalance.
6381 *
6382 * This is a somewhat tricky proposition since the next run might not find the
6383 * group imbalance and decide the groups need to be balanced again. A most
6384 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006385 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006386
Peter Zijlstra62633222013-08-19 12:41:09 +02006387static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006388{
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006389 return group->sgc->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006390}
6391
Peter Zijlstrab37d9312013-08-28 11:50:34 +02006392/*
Vincent Guittotea678212015-02-27 16:54:11 +01006393 * group_has_capacity returns true if the group has spare capacity that could
6394 * be used by some tasks.
6395 * We consider that a group has spare capacity if the * number of task is
6396 * smaller than the number of CPUs or if the usage is lower than the available
6397 * capacity for CFS tasks.
6398 * For the latter, we use a threshold to stabilize the state, to take into
6399 * account the variance of the tasks' load and to return true if the available
6400 * capacity in meaningful for the load balancer.
6401 * As an example, an available capacity of 1% can appear but it doesn't make
6402 * any benefit for the load balance.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02006403 */
Vincent Guittotea678212015-02-27 16:54:11 +01006404static inline bool
6405group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
Peter Zijlstrab37d9312013-08-28 11:50:34 +02006406{
Vincent Guittotea678212015-02-27 16:54:11 +01006407 if (sgs->sum_nr_running < sgs->group_weight)
6408 return true;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02006409
Vincent Guittotea678212015-02-27 16:54:11 +01006410 if ((sgs->group_capacity * 100) >
6411 (sgs->group_usage * env->sd->imbalance_pct))
6412 return true;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02006413
Vincent Guittotea678212015-02-27 16:54:11 +01006414 return false;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02006415}
6416
Vincent Guittotea678212015-02-27 16:54:11 +01006417/*
6418 * group_is_overloaded returns true if the group has more tasks than it can
6419 * handle.
6420 * group_is_overloaded is not equals to !group_has_capacity because a group
6421 * with the exact right number of tasks, has no more spare capacity but is not
6422 * overloaded so both group_has_capacity and group_is_overloaded return
6423 * false.
6424 */
6425static inline bool
6426group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
Rik van Rielcaeb1782014-07-28 14:16:28 -04006427{
Vincent Guittotea678212015-02-27 16:54:11 +01006428 if (sgs->sum_nr_running <= sgs->group_weight)
6429 return false;
6430
6431 if ((sgs->group_capacity * 100) <
6432 (sgs->group_usage * env->sd->imbalance_pct))
6433 return true;
6434
6435 return false;
6436}
6437
6438static enum group_type group_classify(struct lb_env *env,
6439 struct sched_group *group,
6440 struct sg_lb_stats *sgs)
6441{
6442 if (sgs->group_no_capacity)
Rik van Rielcaeb1782014-07-28 14:16:28 -04006443 return group_overloaded;
6444
6445 if (sg_imbalanced(group))
6446 return group_imbalanced;
6447
6448 return group_other;
6449}
6450
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006451/**
6452 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6453 * @env: The load balancing environment.
6454 * @group: sched_group whose statistics are to be updated.
6455 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6456 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006457 * @sgs: variable to hold the statistics for this group.
Masanari Iidacd3bd4e2014-07-28 12:38:06 +09006458 * @overload: Indicate more than one runnable task for any CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006459 */
6460static inline void update_sg_lb_stats(struct lb_env *env,
6461 struct sched_group *group, int load_idx,
Tim Chen4486edd2014-06-23 12:16:49 -07006462 int local_group, struct sg_lb_stats *sgs,
6463 bool *overload)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006464{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006465 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006466 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006467
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006468 memset(sgs, 0, sizeof(*sgs));
6469
Michael Wangb94031302012-07-12 16:10:13 +08006470 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006471 struct rq *rq = cpu_rq(i);
6472
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006473 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02006474 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006475 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02006476 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006477 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006478
6479 sgs->group_load += load;
Vincent Guittot8bb5b002015-03-04 08:48:47 +01006480 sgs->group_usage += get_cpu_usage(i);
Vincent Guittot65fdac02014-08-26 13:06:46 +02006481 sgs->sum_nr_running += rq->cfs.h_nr_running;
Tim Chen4486edd2014-06-23 12:16:49 -07006482
6483 if (rq->nr_running > 1)
6484 *overload = true;
6485
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006486#ifdef CONFIG_NUMA_BALANCING
6487 sgs->nr_numa_running += rq->nr_numa_running;
6488 sgs->nr_preferred_running += rq->nr_preferred_running;
6489#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006490 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006491 if (idle_cpu(i))
6492 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006493 }
6494
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006495 /* Adjust by relative CPU capacity of the group */
6496 sgs->group_capacity = group->sgc->capacity;
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04006497 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006498
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006499 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02006500 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006501
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006502 sgs->group_weight = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02006503
Vincent Guittotea678212015-02-27 16:54:11 +01006504 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6505 sgs->group_type = group_classify(env, group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006506}
6507
6508/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10006509 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07006510 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10006511 * @sds: sched_domain statistics
6512 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10006513 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10006514 *
6515 * Determine if @sg is a busier group than the previously selected
6516 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02006517 *
6518 * Return: %true if @sg is a busier group than the previously selected
6519 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10006520 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006521static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10006522 struct sd_lb_stats *sds,
6523 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006524 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006525{
Rik van Rielcaeb1782014-07-28 14:16:28 -04006526 struct sg_lb_stats *busiest = &sds->busiest_stat;
Michael Neuling532cb4c2010-06-08 14:57:02 +10006527
Rik van Rielcaeb1782014-07-28 14:16:28 -04006528 if (sgs->group_type > busiest->group_type)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006529 return true;
6530
Rik van Rielcaeb1782014-07-28 14:16:28 -04006531 if (sgs->group_type < busiest->group_type)
6532 return false;
6533
6534 if (sgs->avg_load <= busiest->avg_load)
6535 return false;
6536
6537 /* This is the busiest node in its class. */
6538 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10006539 return true;
6540
6541 /*
6542 * ASYM_PACKING needs to move all the work to the lowest
6543 * numbered CPUs in the group, therefore mark all groups
6544 * higher than ourself as busy.
6545 */
Rik van Rielcaeb1782014-07-28 14:16:28 -04006546 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006547 if (!sds->busiest)
6548 return true;
6549
6550 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6551 return true;
6552 }
6553
6554 return false;
6555}
6556
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006557#ifdef CONFIG_NUMA_BALANCING
6558static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6559{
6560 if (sgs->sum_nr_running > sgs->nr_numa_running)
6561 return regular;
6562 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6563 return remote;
6564 return all;
6565}
6566
6567static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6568{
6569 if (rq->nr_running > rq->nr_numa_running)
6570 return regular;
6571 if (rq->nr_running > rq->nr_preferred_running)
6572 return remote;
6573 return all;
6574}
6575#else
6576static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6577{
6578 return all;
6579}
6580
6581static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6582{
6583 return regular;
6584}
6585#endif /* CONFIG_NUMA_BALANCING */
6586
Michael Neuling532cb4c2010-06-08 14:57:02 +10006587/**
Hui Kang461819a2011-10-11 23:00:59 -04006588 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07006589 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006590 * @sds: variable to hold the statistics for this sched_domain.
6591 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006592static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006593{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006594 struct sched_domain *child = env->sd->child;
6595 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006596 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006597 int load_idx, prefer_sibling = 0;
Tim Chen4486edd2014-06-23 12:16:49 -07006598 bool overload = false;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006599
6600 if (child && child->flags & SD_PREFER_SIBLING)
6601 prefer_sibling = 1;
6602
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006603 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006604
6605 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006606 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006607 int local_group;
6608
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006609 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006610 if (local_group) {
6611 sds->local = sg;
6612 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006613
6614 if (env->idle != CPU_NEWLY_IDLE ||
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006615 time_after_eq(jiffies, sg->sgc->next_update))
6616 update_group_capacity(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006617 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006618
Tim Chen4486edd2014-06-23 12:16:49 -07006619 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6620 &overload);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006621
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006622 if (local_group)
6623 goto next_group;
6624
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006625 /*
6626 * In case the child domain prefers tasks go to siblings
Vincent Guittotea678212015-02-27 16:54:11 +01006627 * first, lower the sg capacity so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07006628 * and move all the excess tasks away. We lower the capacity
6629 * of a group only if the local group has the capacity to fit
Vincent Guittotea678212015-02-27 16:54:11 +01006630 * these excess tasks. The extra check prevents the case where
6631 * you always pull from the heaviest group when it is already
6632 * under-utilized (possible with a large weight task outweighs
6633 * the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006634 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006635 if (prefer_sibling && sds->local &&
Vincent Guittotea678212015-02-27 16:54:11 +01006636 group_has_capacity(env, &sds->local_stat) &&
6637 (sgs->sum_nr_running > 1)) {
6638 sgs->group_no_capacity = 1;
6639 sgs->group_type = group_overloaded;
Wanpeng Licb0b9f22014-11-05 07:44:50 +08006640 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006641
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006642 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006643 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006644 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006645 }
6646
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006647next_group:
6648 /* Now, start updating sd_lb_stats */
6649 sds->total_load += sgs->group_load;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006650 sds->total_capacity += sgs->group_capacity;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02006651
Michael Neuling532cb4c2010-06-08 14:57:02 +10006652 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006653 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006654
6655 if (env->sd->flags & SD_NUMA)
6656 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Tim Chen4486edd2014-06-23 12:16:49 -07006657
6658 if (!env->sd->parent) {
6659 /* update overload indicator if we are at root domain */
6660 if (env->dst_rq->rd->overload != overload)
6661 env->dst_rq->rd->overload = overload;
6662 }
6663
Michael Neuling532cb4c2010-06-08 14:57:02 +10006664}
6665
Michael Neuling532cb4c2010-06-08 14:57:02 +10006666/**
6667 * check_asym_packing - Check to see if the group is packed into the
6668 * sched doman.
6669 *
6670 * This is primarily intended to used at the sibling level. Some
6671 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6672 * case of POWER7, it can move to lower SMT modes only when higher
6673 * threads are idle. When in lower SMT modes, the threads will
6674 * perform better since they share less core resources. Hence when we
6675 * have idle threads, we want them to be the higher ones.
6676 *
6677 * This packing function is run on idle threads. It checks to see if
6678 * the busiest CPU in this domain (core in the P7 case) has a higher
6679 * CPU number than the packing function is being run on. Here we are
6680 * assuming lower CPU number will be equivalent to lower a SMT thread
6681 * number.
6682 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02006683 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10006684 * this CPU. The amount of the imbalance is returned in *imbalance.
6685 *
Randy Dunlapcd968912012-06-08 13:18:33 -07006686 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10006687 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10006688 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006689static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006690{
6691 int busiest_cpu;
6692
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006693 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10006694 return 0;
6695
6696 if (!sds->busiest)
6697 return 0;
6698
6699 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006700 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006701 return 0;
6702
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006703 env->imbalance = DIV_ROUND_CLOSEST(
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006704 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04006705 SCHED_CAPACITY_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006706
Michael Neuling532cb4c2010-06-08 14:57:02 +10006707 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006708}
6709
6710/**
6711 * fix_small_imbalance - Calculate the minor imbalance that exists
6712 * amongst the groups of a sched_domain, during
6713 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07006714 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006715 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006716 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006717static inline
6718void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006719{
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006720 unsigned long tmp, capa_now = 0, capa_move = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006721 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006722 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006723 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006724
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006725 local = &sds->local_stat;
6726 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006727
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006728 if (!local->sum_nr_running)
6729 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6730 else if (busiest->load_per_task > local->load_per_task)
6731 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006732
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006733 scaled_busy_load_per_task =
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04006734 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006735 busiest->group_capacity;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006736
Vladimir Davydov3029ede2013-09-15 17:49:14 +04006737 if (busiest->avg_load + scaled_busy_load_per_task >=
6738 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006739 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006740 return;
6741 }
6742
6743 /*
6744 * OK, we don't have enough imbalance to justify moving tasks,
Nicolas Pitreced549f2014-05-26 18:19:38 -04006745 * however we may be able to increase total CPU capacity used by
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006746 * moving them.
6747 */
6748
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006749 capa_now += busiest->group_capacity *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006750 min(busiest->load_per_task, busiest->avg_load);
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006751 capa_now += local->group_capacity *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006752 min(local->load_per_task, local->avg_load);
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04006753 capa_now /= SCHED_CAPACITY_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006754
6755 /* Amount of load we'd subtract */
Vincent Guittota2cd4262014-03-11 17:26:06 +01006756 if (busiest->avg_load > scaled_busy_load_per_task) {
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006757 capa_move += busiest->group_capacity *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006758 min(busiest->load_per_task,
Vincent Guittota2cd4262014-03-11 17:26:06 +01006759 busiest->avg_load - scaled_busy_load_per_task);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006760 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006761
6762 /* Amount of load we'd add */
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006763 if (busiest->avg_load * busiest->group_capacity <
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04006764 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006765 tmp = (busiest->avg_load * busiest->group_capacity) /
6766 local->group_capacity;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006767 } else {
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04006768 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006769 local->group_capacity;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006770 }
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006771 capa_move += local->group_capacity *
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02006772 min(local->load_per_task, local->avg_load + tmp);
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04006773 capa_move /= SCHED_CAPACITY_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006774
6775 /* Move if we gain throughput */
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006776 if (capa_move > capa_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006777 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006778}
6779
6780/**
6781 * calculate_imbalance - Calculate the amount of imbalance present within the
6782 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006783 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006784 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006785 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006786static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006787{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006788 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006789 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006790
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006791 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006792 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006793
Rik van Rielcaeb1782014-07-28 14:16:28 -04006794 if (busiest->group_type == group_imbalanced) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006795 /*
6796 * In the group_imb case we cannot rely on group-wide averages
6797 * to ensure cpu-load equilibrium, look at wider averages. XXX
6798 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006799 busiest->load_per_task =
6800 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006801 }
6802
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006803 /*
6804 * In the presence of smp nice balancing, certain scenarios can have
6805 * max load less than avg load(as we skip the groups at or below
Nicolas Pitreced549f2014-05-26 18:19:38 -04006806 * its cpu_capacity, while calculating max_load..)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006807 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04006808 if (busiest->avg_load <= sds->avg_load ||
6809 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006810 env->imbalance = 0;
6811 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006812 }
6813
Peter Zijlstra9a5d9ba2014-07-29 17:15:11 +02006814 /*
6815 * If there aren't any idle cpus, avoid creating some.
6816 */
6817 if (busiest->group_type == group_overloaded &&
6818 local->group_type == group_overloaded) {
Vincent Guittotea678212015-02-27 16:54:11 +01006819 load_above_capacity = busiest->sum_nr_running *
6820 SCHED_LOAD_SCALE;
6821 if (load_above_capacity > busiest->group_capacity)
6822 load_above_capacity -= busiest->group_capacity;
6823 else
6824 load_above_capacity = ~0UL;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006825 }
6826
6827 /*
6828 * We're trying to get all the cpus to the average_load, so we don't
6829 * want to push ourselves above the average load, nor do we wish to
6830 * reduce the max loaded cpu below the average load. At the same time,
6831 * we also don't want to reduce the group load below the group capacity
6832 * (so that we can implement power-savings policies etc). Thus we look
6833 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08006834 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006835 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006836
6837 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006838 env->imbalance = min(
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04006839 max_pull * busiest->group_capacity,
6840 (sds->avg_load - local->avg_load) * local->group_capacity
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04006841 ) / SCHED_CAPACITY_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006842
6843 /*
6844 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03006845 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006846 * a think about bumping its value to force at least one task to be
6847 * moved
6848 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006849 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006850 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006851}
Nikhil Raofab47622010-10-15 13:12:29 -07006852
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006853/******* find_busiest_group() helpers end here *********************/
6854
6855/**
6856 * find_busiest_group - Returns the busiest group within the sched_domain
6857 * if there is an imbalance. If there isn't an imbalance, and
6858 * the user has opted for power-savings, it returns a group whose
6859 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6860 * such a group exists.
6861 *
6862 * Also calculates the amount of weighted load which should be moved
6863 * to restore balance.
6864 *
Randy Dunlapcd968912012-06-08 13:18:33 -07006865 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006866 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02006867 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006868 * - If no imbalance and user has opted for power-savings balance,
6869 * return the least loaded group whose CPUs can be
6870 * put to idle by rebalancing its tasks onto our group.
6871 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006872static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006873{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006874 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006875 struct sd_lb_stats sds;
6876
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02006877 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006878
6879 /*
6880 * Compute the various statistics relavent for load balancing at
6881 * this level.
6882 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006883 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006884 local = &sds.local_stat;
6885 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006886
Vincent Guittotea678212015-02-27 16:54:11 +01006887 /* ASYM feature bypasses nice load balance check */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006888 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6889 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10006890 return sds.busiest;
6891
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006892 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006893 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006894 goto out_balanced;
6895
Nicolas Pitreca8ce3d2014-05-26 18:19:39 -04006896 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6897 / sds.total_capacity;
Ken Chenb0432d82011-04-07 17:23:22 -07006898
Peter Zijlstra866ab432011-02-21 18:56:47 +01006899 /*
6900 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02006901 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01006902 * isn't true due to cpus_allowed constraints and the like.
6903 */
Rik van Rielcaeb1782014-07-28 14:16:28 -04006904 if (busiest->group_type == group_imbalanced)
Peter Zijlstra866ab432011-02-21 18:56:47 +01006905 goto force_balance;
6906
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006907 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Vincent Guittotea678212015-02-27 16:54:11 +01006908 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6909 busiest->group_no_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07006910 goto force_balance;
6911
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006912 /*
Zhihui Zhang9c58c792014-09-20 21:24:36 -04006913 * If the local group is busier than the selected busiest group
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006914 * don't try and pull any tasks.
6915 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006916 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006917 goto out_balanced;
6918
Peter Zijlstracc57aa82011-02-21 18:55:32 +01006919 /*
6920 * Don't pull any tasks if this group is already above the domain
6921 * average load.
6922 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006923 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006924 goto out_balanced;
6925
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006926 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006927 /*
Vincent Guittot43f4d662014-10-01 15:38:55 +02006928 * This cpu is idle. If the busiest group is not overloaded
6929 * and there is no imbalance between this and busiest group
6930 * wrt idle cpus, it is balanced. The imbalance becomes
6931 * significant if the diff is greater than 1 otherwise we
6932 * might end up to just move the imbalance on another group
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006933 */
Vincent Guittot43f4d662014-10-01 15:38:55 +02006934 if ((busiest->group_type != group_overloaded) &&
6935 (local->idle_cpus <= (busiest->idle_cpus + 1)))
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006936 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01006937 } else {
6938 /*
6939 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6940 * imbalance_pct to be conservative.
6941 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09006942 if (100 * busiest->avg_load <=
6943 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01006944 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07006945 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006946
Nikhil Raofab47622010-10-15 13:12:29 -07006947force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006948 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006949 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006950 return sds.busiest;
6951
6952out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006953 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006954 return NULL;
6955}
6956
6957/*
6958 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6959 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006960static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb94031302012-07-12 16:10:13 +08006961 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006962{
6963 struct rq *busiest = NULL, *rq;
Nicolas Pitreced549f2014-05-26 18:19:38 -04006964 unsigned long busiest_load = 0, busiest_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006965 int i;
6966
Peter Zijlstra6906a402013-08-19 15:20:21 +02006967 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Vincent Guittotea678212015-02-27 16:54:11 +01006968 unsigned long capacity, wl;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006969 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006970
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006971 rq = cpu_rq(i);
6972 rt = fbq_classify_rq(rq);
6973
6974 /*
6975 * We classify groups/runqueues into three groups:
6976 * - regular: there are !numa tasks
6977 * - remote: there are numa tasks that run on the 'wrong' node
6978 * - all: there is no distinction
6979 *
6980 * In order to avoid migrating ideally placed numa tasks,
6981 * ignore those when there's better options.
6982 *
6983 * If we ignore the actual busiest queue to migrate another
6984 * task, the next balance pass can still reduce the busiest
6985 * queue by moving tasks around inside the node.
6986 *
6987 * If we cannot move enough load due to this classification
6988 * the next pass will adjust the group classification and
6989 * allow migration of more tasks.
6990 *
6991 * Both cases only affect the total convergence complexity.
6992 */
6993 if (rt > env->fbq_type)
6994 continue;
6995
Nicolas Pitreced549f2014-05-26 18:19:38 -04006996 capacity = capacity_of(i);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006997
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006998 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006999
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01007000 /*
7001 * When comparing with imbalance, use weighted_cpuload()
Nicolas Pitreced549f2014-05-26 18:19:38 -04007002 * which is not scaled with the cpu capacity.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01007003 */
Vincent Guittotea678212015-02-27 16:54:11 +01007004
7005 if (rq->nr_running == 1 && wl > env->imbalance &&
7006 !check_cpu_capacity(rq, env->sd))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007007 continue;
7008
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01007009 /*
7010 * For the load comparisons with the other cpu's, consider
Nicolas Pitreced549f2014-05-26 18:19:38 -04007011 * the weighted_cpuload() scaled with the cpu capacity, so
7012 * that the load can be moved away from the cpu that is
7013 * potentially running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09007014 *
Nicolas Pitreced549f2014-05-26 18:19:38 -04007015 * Thus we're looking for max(wl_i / capacity_i), crosswise
Joonsoo Kim95a79b82013-08-06 17:36:41 +09007016 * multiplication to rid ourselves of the division works out
Nicolas Pitreced549f2014-05-26 18:19:38 -04007017 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7018 * our previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01007019 */
Nicolas Pitreced549f2014-05-26 18:19:38 -04007020 if (wl * busiest_capacity > busiest_load * capacity) {
Joonsoo Kim95a79b82013-08-06 17:36:41 +09007021 busiest_load = wl;
Nicolas Pitreced549f2014-05-26 18:19:38 -04007022 busiest_capacity = capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007023 busiest = rq;
7024 }
7025 }
7026
7027 return busiest;
7028}
7029
7030/*
7031 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7032 * so long as it is large enough.
7033 */
7034#define MAX_PINNED_INTERVAL 512
7035
7036/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09007037DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007038
Peter Zijlstrabd939f42012-05-02 14:20:37 +02007039static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01007040{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02007041 struct sched_domain *sd = env->sd;
7042
7043 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10007044
7045 /*
7046 * ASYM_PACKING needs to force migrate tasks from busy but
7047 * higher numbered CPUs in order to pack all tasks in the
7048 * lowest numbered CPUs.
7049 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02007050 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10007051 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01007052 }
7053
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007054 /*
7055 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7056 * It's worth migrating the task if the src_cpu's capacity is reduced
7057 * because of other sched_class or IRQs if more capacity stays
7058 * available on dst_cpu.
7059 */
7060 if ((env->idle != CPU_NOT_IDLE) &&
7061 (env->src_rq->cfs.h_nr_running == 1)) {
7062 if ((check_cpu_capacity(env->src_rq, sd)) &&
7063 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7064 return 1;
7065 }
7066
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01007067 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7068}
7069
Tejun Heo969c7922010-05-06 18:49:21 +02007070static int active_load_balance_cpu_stop(void *data);
7071
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007072static int should_we_balance(struct lb_env *env)
7073{
7074 struct sched_group *sg = env->sd->groups;
7075 struct cpumask *sg_cpus, *sg_mask;
7076 int cpu, balance_cpu = -1;
7077
7078 /*
7079 * In the newly idle case, we will allow all the cpu's
7080 * to do the newly idle load balance.
7081 */
7082 if (env->idle == CPU_NEWLY_IDLE)
7083 return 1;
7084
7085 sg_cpus = sched_group_cpus(sg);
7086 sg_mask = sched_group_mask(sg);
7087 /* Try to find first idle cpu */
7088 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7089 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7090 continue;
7091
7092 balance_cpu = cpu;
7093 break;
7094 }
7095
7096 if (balance_cpu == -1)
7097 balance_cpu = group_balance_cpu(sg);
7098
7099 /*
7100 * First idle cpu or the first cpu(busiest) in this sched group
7101 * is eligible for doing load balancing at this and above domains.
7102 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09007103 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007104}
7105
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007106/*
7107 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7108 * tasks if there is an imbalance.
7109 */
7110static int load_balance(int this_cpu, struct rq *this_rq,
7111 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007112 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007113{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05307114 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02007115 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007116 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007117 struct rq *busiest;
7118 unsigned long flags;
Christoph Lameter4ba29682014-08-26 19:12:21 -05007119 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007120
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01007121 struct lb_env env = {
7122 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01007123 .dst_cpu = this_cpu,
7124 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05307125 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01007126 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02007127 .loop_break = sched_nr_migrate_break,
Michael Wangb94031302012-07-12 16:10:13 +08007128 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01007129 .fbq_type = all,
Kirill Tkhai163122b2014-08-20 13:48:29 +04007130 .tasks = LIST_HEAD_INIT(env.tasks),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01007131 };
7132
Joonsoo Kimcfc03112013-04-23 17:27:39 +09007133 /*
7134 * For NEWLY_IDLE load_balancing, we don't need to consider
7135 * other cpus in our group
7136 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09007137 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09007138 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09007139
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007140 cpumask_copy(cpus, cpu_active_mask);
7141
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007142 schedstat_inc(sd, lb_count[idle]);
7143
7144redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007145 if (!should_we_balance(&env)) {
7146 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007147 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007148 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007149
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007150 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007151 if (!group) {
7152 schedstat_inc(sd, lb_nobusyg[idle]);
7153 goto out_balanced;
7154 }
7155
Michael Wangb94031302012-07-12 16:10:13 +08007156 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007157 if (!busiest) {
7158 schedstat_inc(sd, lb_nobusyq[idle]);
7159 goto out_balanced;
7160 }
7161
Michael Wang78feefc2012-08-06 16:41:59 +08007162 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007163
Peter Zijlstrabd939f42012-05-02 14:20:37 +02007164 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007165
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007166 env.src_cpu = busiest->cpu;
7167 env.src_rq = busiest;
7168
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007169 ld_moved = 0;
7170 if (busiest->nr_running > 1) {
7171 /*
7172 * Attempt to move tasks. If find_busiest_group has found
7173 * an imbalance but busiest->nr_running <= 1, the group is
7174 * still unbalanced. ld_moved simply stays zero, so it is
7175 * correctly treated as an imbalance.
7176 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01007177 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02007178 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01007179
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01007180more_balance:
Kirill Tkhai163122b2014-08-20 13:48:29 +04007181 raw_spin_lock_irqsave(&busiest->lock, flags);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05307182
7183 /*
7184 * cur_ld_moved - load moved in current iteration
7185 * ld_moved - cumulative load moved across iterations
7186 */
Kirill Tkhai163122b2014-08-20 13:48:29 +04007187 cur_ld_moved = detach_tasks(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007188
7189 /*
Kirill Tkhai163122b2014-08-20 13:48:29 +04007190 * We've detached some tasks from busiest_rq. Every
7191 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7192 * unlock busiest->lock, and we are able to be sure
7193 * that nobody can manipulate the tasks in parallel.
7194 * See task_rq_lock() family for the details.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007195 */
Kirill Tkhai163122b2014-08-20 13:48:29 +04007196
7197 raw_spin_unlock(&busiest->lock);
7198
7199 if (cur_ld_moved) {
7200 attach_tasks(&env);
7201 ld_moved += cur_ld_moved;
7202 }
7203
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007204 local_irq_restore(flags);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05307205
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09007206 if (env.flags & LBF_NEED_BREAK) {
7207 env.flags &= ~LBF_NEED_BREAK;
7208 goto more_balance;
7209 }
7210
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05307211 /*
7212 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7213 * us and move them to an alternate dst_cpu in our sched_group
7214 * where they can run. The upper limit on how many times we
7215 * iterate on same src_cpu is dependent on number of cpus in our
7216 * sched_group.
7217 *
7218 * This changes load balance semantics a bit on who can move
7219 * load to a given_cpu. In addition to the given_cpu itself
7220 * (or a ilb_cpu acting on its behalf where given_cpu is
7221 * nohz-idle), we now have balance_cpu in a position to move
7222 * load to given_cpu. In rare situations, this may cause
7223 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7224 * _independently_ and at _same_ time to move some load to
7225 * given_cpu) causing exceess load to be moved to given_cpu.
7226 * This however should not happen so much in practice and
7227 * moreover subsequent load balance cycles should correct the
7228 * excess load moved.
7229 */
Peter Zijlstra62633222013-08-19 12:41:09 +02007230 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05307231
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04007232 /* Prevent to re-select dst_cpu via env's cpus */
7233 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7234
Michael Wang78feefc2012-08-06 16:41:59 +08007235 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05307236 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02007237 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05307238 env.loop = 0;
7239 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09007240
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05307241 /*
7242 * Go back to "more_balance" rather than "redo" since we
7243 * need to continue with same src_cpu.
7244 */
7245 goto more_balance;
7246 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007247
Peter Zijlstra62633222013-08-19 12:41:09 +02007248 /*
7249 * We failed to reach balance because of affinity.
7250 */
7251 if (sd_parent) {
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04007252 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
Peter Zijlstra62633222013-08-19 12:41:09 +02007253
Vincent Guittotafdeee02014-08-26 13:06:44 +02007254 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
Peter Zijlstra62633222013-08-19 12:41:09 +02007255 *group_imbalance = 1;
Peter Zijlstra62633222013-08-19 12:41:09 +02007256 }
7257
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007258 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01007259 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007260 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05307261 if (!cpumask_empty(cpus)) {
7262 env.loop = 0;
7263 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007264 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05307265 }
Vincent Guittotafdeee02014-08-26 13:06:44 +02007266 goto out_all_pinned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007267 }
7268 }
7269
7270 if (!ld_moved) {
7271 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07007272 /*
7273 * Increment the failure counter only on periodic balance.
7274 * We do not want newidle balance, which can be very
7275 * frequent, pollute the failure counter causing
7276 * excessive cache_hot migrations and active balances.
7277 */
7278 if (idle != CPU_NEWLY_IDLE)
7279 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007280
Peter Zijlstrabd939f42012-05-02 14:20:37 +02007281 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007282 raw_spin_lock_irqsave(&busiest->lock, flags);
7283
Tejun Heo969c7922010-05-06 18:49:21 +02007284 /* don't kick the active_load_balance_cpu_stop,
7285 * if the curr task on busiest cpu can't be
7286 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007287 */
7288 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02007289 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007290 raw_spin_unlock_irqrestore(&busiest->lock,
7291 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01007292 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007293 goto out_one_pinned;
7294 }
7295
Tejun Heo969c7922010-05-06 18:49:21 +02007296 /*
7297 * ->active_balance synchronizes accesses to
7298 * ->active_balance_work. Once set, it's cleared
7299 * only after active load balance is finished.
7300 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007301 if (!busiest->active_balance) {
7302 busiest->active_balance = 1;
7303 busiest->push_cpu = this_cpu;
7304 active_balance = 1;
7305 }
7306 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02007307
Peter Zijlstrabd939f42012-05-02 14:20:37 +02007308 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02007309 stop_one_cpu_nowait(cpu_of(busiest),
7310 active_load_balance_cpu_stop, busiest,
7311 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02007312 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007313
7314 /*
7315 * We've kicked active balancing, reset the failure
7316 * counter.
7317 */
7318 sd->nr_balance_failed = sd->cache_nice_tries+1;
7319 }
7320 } else
7321 sd->nr_balance_failed = 0;
7322
7323 if (likely(!active_balance)) {
7324 /* We were unbalanced, so reset the balancing interval */
7325 sd->balance_interval = sd->min_interval;
7326 } else {
7327 /*
7328 * If we've begun active balancing, start to back off. This
7329 * case may not be covered by the all_pinned logic if there
7330 * is only 1 task on the busy runqueue (because we don't call
Kirill Tkhai163122b2014-08-20 13:48:29 +04007331 * detach_tasks).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007332 */
7333 if (sd->balance_interval < sd->max_interval)
7334 sd->balance_interval *= 2;
7335 }
7336
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007337 goto out;
7338
7339out_balanced:
Vincent Guittotafdeee02014-08-26 13:06:44 +02007340 /*
7341 * We reach balance although we may have faced some affinity
7342 * constraints. Clear the imbalance flag if it was set.
7343 */
7344 if (sd_parent) {
7345 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7346
7347 if (*group_imbalance)
7348 *group_imbalance = 0;
7349 }
7350
7351out_all_pinned:
7352 /*
7353 * We reach balance because all tasks are pinned at this level so
7354 * we can't migrate them. Let the imbalance flag set so parent level
7355 * can try to migrate them.
7356 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007357 schedstat_inc(sd, lb_balanced[idle]);
7358
7359 sd->nr_balance_failed = 0;
7360
7361out_one_pinned:
7362 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01007363 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02007364 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007365 (sd->balance_interval < sd->max_interval))
7366 sd->balance_interval *= 2;
7367
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08007368 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007369out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007370 return ld_moved;
7371}
7372
Jason Low52a08ef2014-05-08 17:49:22 -07007373static inline unsigned long
7374get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7375{
7376 unsigned long interval = sd->balance_interval;
7377
7378 if (cpu_busy)
7379 interval *= sd->busy_factor;
7380
7381 /* scale ms to jiffies */
7382 interval = msecs_to_jiffies(interval);
7383 interval = clamp(interval, 1UL, max_load_balance_interval);
7384
7385 return interval;
7386}
7387
7388static inline void
7389update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7390{
7391 unsigned long interval, next;
7392
7393 interval = get_sd_balance_interval(sd, cpu_busy);
7394 next = sd->last_balance + interval;
7395
7396 if (time_after(*next_balance, next))
7397 *next_balance = next;
7398}
7399
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007400/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007401 * idle_balance is called by schedule() if this_cpu is about to become
7402 * idle. Attempts to pull tasks from other CPUs.
7403 */
Peter Zijlstra6e831252014-02-11 16:11:48 +01007404static int idle_balance(struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007405{
Jason Low52a08ef2014-05-08 17:49:22 -07007406 unsigned long next_balance = jiffies + HZ;
7407 int this_cpu = this_rq->cpu;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007408 struct sched_domain *sd;
7409 int pulled_task = 0;
Jason Low9bd721c2013-09-13 11:26:52 -07007410 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007411
Peter Zijlstra6e831252014-02-11 16:11:48 +01007412 idle_enter_fair(this_rq);
Jason Low0e5b5332014-04-28 15:45:54 -07007413
Peter Zijlstra6e831252014-02-11 16:11:48 +01007414 /*
7415 * We must set idle_stamp _before_ calling idle_balance(), such that we
7416 * measure the duration of idle_balance() as idle time.
7417 */
7418 this_rq->idle_stamp = rq_clock(this_rq);
7419
Tim Chen4486edd2014-06-23 12:16:49 -07007420 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7421 !this_rq->rd->overload) {
Jason Low52a08ef2014-05-08 17:49:22 -07007422 rcu_read_lock();
7423 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7424 if (sd)
7425 update_next_balance(sd, 0, &next_balance);
7426 rcu_read_unlock();
7427
Peter Zijlstra6e831252014-02-11 16:11:48 +01007428 goto out;
Jason Low52a08ef2014-05-08 17:49:22 -07007429 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007430
Peter Zijlstraf492e122009-12-23 15:29:42 +01007431 /*
7432 * Drop the rq->lock, but keep IRQ/preempt disabled.
7433 */
7434 raw_spin_unlock(&this_rq->lock);
7435
Paul Turner48a16752012-10-04 13:18:31 +02007436 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02007437 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007438 for_each_domain(this_cpu, sd) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007439 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07007440 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007441
7442 if (!(sd->flags & SD_LOAD_BALANCE))
7443 continue;
7444
Jason Low52a08ef2014-05-08 17:49:22 -07007445 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7446 update_next_balance(sd, 0, &next_balance);
Jason Low9bd721c2013-09-13 11:26:52 -07007447 break;
Jason Low52a08ef2014-05-08 17:49:22 -07007448 }
Jason Low9bd721c2013-09-13 11:26:52 -07007449
Peter Zijlstraf492e122009-12-23 15:29:42 +01007450 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07007451 t0 = sched_clock_cpu(this_cpu);
7452
Peter Zijlstraf492e122009-12-23 15:29:42 +01007453 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007454 sd, CPU_NEWLY_IDLE,
7455 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07007456
7457 domain_cost = sched_clock_cpu(this_cpu) - t0;
7458 if (domain_cost > sd->max_newidle_lb_cost)
7459 sd->max_newidle_lb_cost = domain_cost;
7460
7461 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01007462 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007463
Jason Low52a08ef2014-05-08 17:49:22 -07007464 update_next_balance(sd, 0, &next_balance);
Jason Low39a4d9c2014-04-23 18:30:35 -07007465
7466 /*
7467 * Stop searching for tasks to pull if there are
7468 * now runnable tasks on this rq.
7469 */
7470 if (pulled_task || this_rq->nr_running > 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007471 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007472 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02007473 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01007474
7475 raw_spin_lock(&this_rq->lock);
7476
Jason Low0e5b5332014-04-28 15:45:54 -07007477 if (curr_cost > this_rq->max_idle_balance_cost)
7478 this_rq->max_idle_balance_cost = curr_cost;
7479
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01007480 /*
Jason Low0e5b5332014-04-28 15:45:54 -07007481 * While browsing the domains, we released the rq lock, a task could
7482 * have been enqueued in the meantime. Since we're not going idle,
7483 * pretend we pulled a task.
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01007484 */
Jason Low0e5b5332014-04-28 15:45:54 -07007485 if (this_rq->cfs.h_nr_running && !pulled_task)
Peter Zijlstra6e831252014-02-11 16:11:48 +01007486 pulled_task = 1;
Daniel Lezcanoe5fc6612014-01-17 10:04:02 +01007487
Peter Zijlstra6e831252014-02-11 16:11:48 +01007488out:
Jason Low52a08ef2014-05-08 17:49:22 -07007489 /* Move the next balance forward */
7490 if (time_after(this_rq->next_balance, next_balance))
7491 this_rq->next_balance = next_balance;
7492
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04007493 /* Is there a task of a high priority class? */
Kirill Tkhai46383642014-03-15 02:15:07 +04007494 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04007495 pulled_task = -1;
7496
7497 if (pulled_task) {
7498 idle_exit_fair(this_rq);
Peter Zijlstra6e831252014-02-11 16:11:48 +01007499 this_rq->idle_stamp = 0;
Kirill Tkhaie4aa3582014-03-06 13:31:55 +04007500 }
Peter Zijlstra6e831252014-02-11 16:11:48 +01007501
Daniel Lezcano3c4017c2014-01-17 10:04:03 +01007502 return pulled_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007503}
7504
7505/*
Tejun Heo969c7922010-05-06 18:49:21 +02007506 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7507 * running tasks off the busiest CPU onto idle CPUs. It requires at
7508 * least 1 task to be running on each physical CPU where possible, and
7509 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007510 */
Tejun Heo969c7922010-05-06 18:49:21 +02007511static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007512{
Tejun Heo969c7922010-05-06 18:49:21 +02007513 struct rq *busiest_rq = data;
7514 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007515 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02007516 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007517 struct sched_domain *sd;
Kirill Tkhaie5673f22014-08-20 13:48:01 +04007518 struct task_struct *p = NULL;
Tejun Heo969c7922010-05-06 18:49:21 +02007519
7520 raw_spin_lock_irq(&busiest_rq->lock);
7521
7522 /* make sure the requested cpu hasn't gone down in the meantime */
7523 if (unlikely(busiest_cpu != smp_processor_id() ||
7524 !busiest_rq->active_balance))
7525 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007526
7527 /* Is there any task to move? */
7528 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02007529 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007530
7531 /*
7532 * This condition is "impossible", if it occurs
7533 * we need to fix it. Originally reported by
7534 * Bjorn Helgaas on a 128-cpu setup.
7535 */
7536 BUG_ON(busiest_rq == target_rq);
7537
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007538 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02007539 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007540 for_each_domain(target_cpu, sd) {
7541 if ((sd->flags & SD_LOAD_BALANCE) &&
7542 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7543 break;
7544 }
7545
7546 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01007547 struct lb_env env = {
7548 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01007549 .dst_cpu = target_cpu,
7550 .dst_rq = target_rq,
7551 .src_cpu = busiest_rq->cpu,
7552 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01007553 .idle = CPU_IDLE,
7554 };
7555
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007556 schedstat_inc(sd, alb_count);
7557
Kirill Tkhaie5673f22014-08-20 13:48:01 +04007558 p = detach_one_task(&env);
7559 if (p)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007560 schedstat_inc(sd, alb_pushed);
7561 else
7562 schedstat_inc(sd, alb_failed);
7563 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02007564 rcu_read_unlock();
Tejun Heo969c7922010-05-06 18:49:21 +02007565out_unlock:
7566 busiest_rq->active_balance = 0;
Kirill Tkhaie5673f22014-08-20 13:48:01 +04007567 raw_spin_unlock(&busiest_rq->lock);
7568
7569 if (p)
7570 attach_one_task(target_rq, p);
7571
7572 local_irq_enable();
7573
Tejun Heo969c7922010-05-06 18:49:21 +02007574 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007575}
7576
Mike Galbraithd987fc72011-12-05 10:01:47 +01007577static inline int on_null_domain(struct rq *rq)
7578{
7579 return unlikely(!rcu_dereference_sched(rq->sd));
7580}
7581
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007582#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007583/*
7584 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007585 * - When one of the busy CPUs notice that there may be an idle rebalancing
7586 * needed, they will kick the idle load balancer, which then does idle
7587 * load balancing for all the idle CPUs.
7588 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007589static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007590 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007591 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007592 unsigned long next_balance; /* in jiffy units */
7593} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007594
Daniel Lezcano3dd03372014-01-06 12:34:41 +01007595static inline int find_new_ilb(void)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007596{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007597 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007598
Suresh Siddha786d6dc72011-12-01 17:07:35 -08007599 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7600 return ilb;
7601
7602 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007603}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007604
7605/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007606 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7607 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7608 * CPU (if there is one).
7609 */
Daniel Lezcano0aeeeeb2014-01-06 12:34:42 +01007610static void nohz_balancer_kick(void)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007611{
7612 int ilb_cpu;
7613
7614 nohz.next_balance++;
7615
Daniel Lezcano3dd03372014-01-06 12:34:41 +01007616 ilb_cpu = find_new_ilb();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007617
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007618 if (ilb_cpu >= nr_cpu_ids)
7619 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007620
Suresh Siddhacd490c52011-12-06 11:26:34 -08007621 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08007622 return;
7623 /*
7624 * Use smp_send_reschedule() instead of resched_cpu().
7625 * This way we generate a sched IPI on the target cpu which
7626 * is idle. And the softirq performing nohz idle load balance
7627 * will be run before returning from the IPI.
7628 */
7629 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007630 return;
7631}
7632
Alex Shic1cc0172012-09-10 15:10:58 +08007633static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08007634{
7635 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
Mike Galbraithd987fc72011-12-05 10:01:47 +01007636 /*
7637 * Completely isolated CPUs don't ever set, so we must test.
7638 */
7639 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7640 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7641 atomic_dec(&nohz.nr_cpus);
7642 }
Suresh Siddha71325962012-01-19 18:28:57 -08007643 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7644 }
7645}
7646
Suresh Siddha69e1e812011-12-01 17:07:33 -08007647static inline void set_cpu_sd_state_busy(void)
7648{
7649 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307650 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08007651
Suresh Siddha69e1e812011-12-01 17:07:33 -08007652 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307653 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02007654
7655 if (!sd || !sd->nohz_idle)
7656 goto unlock;
7657 sd->nohz_idle = 0;
7658
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04007659 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02007660unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08007661 rcu_read_unlock();
7662}
7663
7664void set_cpu_sd_state_idle(void)
7665{
7666 struct sched_domain *sd;
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307667 int cpu = smp_processor_id();
Suresh Siddha69e1e812011-12-01 17:07:33 -08007668
Suresh Siddha69e1e812011-12-01 17:07:33 -08007669 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307670 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Vincent Guittot25f55d92013-04-23 16:59:02 +02007671
7672 if (!sd || sd->nohz_idle)
7673 goto unlock;
7674 sd->nohz_idle = 1;
7675
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04007676 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02007677unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08007678 rcu_read_unlock();
7679}
7680
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007681/*
Alex Shic1cc0172012-09-10 15:10:58 +08007682 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007683 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007684 */
Alex Shic1cc0172012-09-10 15:10:58 +08007685void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007686{
Suresh Siddha71325962012-01-19 18:28:57 -08007687 /*
7688 * If this cpu is going down, then nothing needs to be done.
7689 */
7690 if (!cpu_active(cpu))
7691 return;
7692
Alex Shic1cc0172012-09-10 15:10:58 +08007693 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7694 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007695
Mike Galbraithd987fc72011-12-05 10:01:47 +01007696 /*
7697 * If we're a completely isolated CPU, we don't play.
7698 */
7699 if (on_null_domain(cpu_rq(cpu)))
7700 return;
7701
Alex Shic1cc0172012-09-10 15:10:58 +08007702 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7703 atomic_inc(&nohz.nr_cpus);
7704 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007705}
Suresh Siddha71325962012-01-19 18:28:57 -08007706
Paul Gortmaker0db06282013-06-19 14:53:51 -04007707static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08007708 unsigned long action, void *hcpu)
7709{
7710 switch (action & ~CPU_TASKS_FROZEN) {
7711 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08007712 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08007713 return NOTIFY_OK;
7714 default:
7715 return NOTIFY_DONE;
7716 }
7717}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007718#endif
7719
7720static DEFINE_SPINLOCK(balancing);
7721
Peter Zijlstra49c022e2011-04-05 10:14:25 +02007722/*
7723 * Scale the max load_balance interval with the number of CPUs in the system.
7724 * This trades load-balance latency on larger machines for less cross talk.
7725 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007726void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02007727{
7728 max_load_balance_interval = HZ*num_online_cpus()/10;
7729}
7730
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007731/*
7732 * It checks each scheduling domain to see if it is due to be balanced,
7733 * and initiates a balancing operation if so.
7734 *
Libinb9b08532013-04-01 19:14:01 +08007735 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007736 */
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007737static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007738{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007739 int continue_balancing = 1;
Daniel Lezcanof7ed0a82014-01-06 12:34:43 +01007740 int cpu = rq->cpu;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007741 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02007742 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007743 /* Earliest time when we have to do rebalance again */
7744 unsigned long next_balance = jiffies + 60*HZ;
7745 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07007746 int need_serialize, need_decay = 0;
7747 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007748
Paul Turner48a16752012-10-04 13:18:31 +02007749 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08007750
Peter Zijlstradce840a2011-04-07 14:09:50 +02007751 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007752 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07007753 /*
7754 * Decay the newidle max times here because this is a regular
7755 * visit to all the domains. Decay ~1% per second.
7756 */
7757 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7758 sd->max_newidle_lb_cost =
7759 (sd->max_newidle_lb_cost * 253) / 256;
7760 sd->next_decay_max_lb_cost = jiffies + HZ;
7761 need_decay = 1;
7762 }
7763 max_cost += sd->max_newidle_lb_cost;
7764
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007765 if (!(sd->flags & SD_LOAD_BALANCE))
7766 continue;
7767
Jason Lowf48627e2013-09-13 11:26:53 -07007768 /*
7769 * Stop the load balance at this level. There is another
7770 * CPU in our sched group which is doing load balancing more
7771 * actively.
7772 */
7773 if (!continue_balancing) {
7774 if (need_decay)
7775 continue;
7776 break;
7777 }
7778
Jason Low52a08ef2014-05-08 17:49:22 -07007779 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007780
7781 need_serialize = sd->flags & SD_SERIALIZE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007782 if (need_serialize) {
7783 if (!spin_trylock(&balancing))
7784 goto out;
7785 }
7786
7787 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09007788 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007789 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02007790 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09007791 * env->dst_cpu, so we can't know our idle
7792 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007793 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09007794 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007795 }
7796 sd->last_balance = jiffies;
Jason Low52a08ef2014-05-08 17:49:22 -07007797 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007798 }
7799 if (need_serialize)
7800 spin_unlock(&balancing);
7801out:
7802 if (time_after(next_balance, sd->last_balance + interval)) {
7803 next_balance = sd->last_balance + interval;
7804 update_next_balance = 1;
7805 }
Jason Lowf48627e2013-09-13 11:26:53 -07007806 }
7807 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007808 /*
Jason Lowf48627e2013-09-13 11:26:53 -07007809 * Ensure the rq-wide value also decays but keep it at a
7810 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007811 */
Jason Lowf48627e2013-09-13 11:26:53 -07007812 rq->max_idle_balance_cost =
7813 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007814 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02007815 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007816
7817 /*
7818 * next_balance will be updated only when there is a need.
7819 * When the cpu is attached to null domain for ex, it will not be
7820 * updated.
7821 */
7822 if (likely(update_next_balance))
7823 rq->next_balance = next_balance;
7824}
7825
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007826#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007827/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007828 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007829 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7830 */
Daniel Lezcano208cb162014-01-06 12:34:44 +01007831static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007832{
Daniel Lezcano208cb162014-01-06 12:34:44 +01007833 int this_cpu = this_rq->cpu;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007834 struct rq *rq;
7835 int balance_cpu;
7836
Suresh Siddha1c792db2011-12-01 17:07:32 -08007837 if (idle != CPU_IDLE ||
7838 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7839 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007840
7841 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08007842 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007843 continue;
7844
7845 /*
7846 * If this cpu gets work to do, stop the load balancing
7847 * work being done for other cpus. Next load
7848 * balancing owner will pick it up.
7849 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08007850 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007851 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007852
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02007853 rq = cpu_rq(balance_cpu);
7854
Tim Chened61bbc2014-05-20 14:39:27 -07007855 /*
7856 * If time for next balance is due,
7857 * do the balance.
7858 */
7859 if (time_after_eq(jiffies, rq->next_balance)) {
7860 raw_spin_lock_irq(&rq->lock);
7861 update_rq_clock(rq);
7862 update_idle_cpu_load(rq);
7863 raw_spin_unlock_irq(&rq->lock);
7864 rebalance_domains(rq, CPU_IDLE);
7865 }
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007866
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007867 if (time_after(this_rq->next_balance, rq->next_balance))
7868 this_rq->next_balance = rq->next_balance;
7869 }
7870 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08007871end:
7872 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007873}
7874
7875/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007876 * Current heuristic for kicking the idle load balancer in the presence
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007877 * of an idle cpu in the system.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007878 * - This rq has more than one task.
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007879 * - This rq has at least one CFS task and the capacity of the CPU is
7880 * significantly reduced because of RT tasks or IRQs.
7881 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7882 * multiple busy cpu.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007883 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7884 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007885 */
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007886static inline bool nohz_kick_needed(struct rq *rq)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007887{
7888 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007889 struct sched_domain *sd;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04007890 struct sched_group_capacity *sgc;
Daniel Lezcano4a725622014-01-06 12:34:39 +01007891 int nr_busy, cpu = rq->cpu;
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007892 bool kick = false;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007893
Daniel Lezcano4a725622014-01-06 12:34:39 +01007894 if (unlikely(rq->idle_balance))
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007895 return false;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007896
Suresh Siddha1c792db2011-12-01 17:07:32 -08007897 /*
7898 * We may be recently in ticked or tickless idle mode. At the first
7899 * busy tick after returning from idle, we will update the busy stats.
7900 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08007901 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08007902 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007903
7904 /*
7905 * None are in tickless mode and hence no need for NOHZ idle load
7906 * balancing.
7907 */
7908 if (likely(!atomic_read(&nohz.nr_cpus)))
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007909 return false;
Suresh Siddha1c792db2011-12-01 17:07:32 -08007910
7911 if (time_before(now, nohz.next_balance))
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007912 return false;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007913
Suresh Siddha0b005cf2011-12-01 17:07:34 -08007914 if (rq->nr_running >= 2)
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007915 return true;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007916
Peter Zijlstra067491b2011-12-07 14:32:08 +01007917 rcu_read_lock();
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307918 sd = rcu_dereference(per_cpu(sd_busy, cpu));
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307919 if (sd) {
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04007920 sgc = sd->groups->sgc;
7921 nr_busy = atomic_read(&sgc->nr_busy_cpus);
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307922
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007923 if (nr_busy > 1) {
7924 kick = true;
7925 goto unlock;
7926 }
7927
7928 }
7929
7930 sd = rcu_dereference(rq->sd);
7931 if (sd) {
7932 if ((rq->cfs.h_nr_running >= 1) &&
7933 check_cpu_capacity(rq, sd)) {
7934 kick = true;
7935 goto unlock;
7936 }
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007937 }
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307938
7939 sd = rcu_dereference(per_cpu(sd_asym, cpu));
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307940 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007941 sched_domain_span(sd)) < cpu)) {
7942 kick = true;
7943 goto unlock;
7944 }
Preeti U Murthy37dc6b52013-10-30 08:42:52 +05307945
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007946unlock:
Peter Zijlstra067491b2011-12-07 14:32:08 +01007947 rcu_read_unlock();
Vincent Guittot1aaf90a2015-02-27 16:54:14 +01007948 return kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007949}
7950#else
Daniel Lezcano208cb162014-01-06 12:34:44 +01007951static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007952#endif
7953
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007954/*
7955 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007956 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007957 */
7958static void run_rebalance_domains(struct softirq_action *h)
7959{
Daniel Lezcano208cb162014-01-06 12:34:44 +01007960 struct rq *this_rq = this_rq();
Suresh Siddha6eb57e02011-10-03 15:09:01 -07007961 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007962 CPU_IDLE : CPU_NOT_IDLE;
7963
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007964 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007965 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007966 * balancing on behalf of the other idle cpus whose ticks are
Preeti U Murthyd4573c32015-03-26 18:32:44 +05307967 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7968 * give the idle cpus a chance to load balance. Else we may
7969 * load balance only within the local sched_domain hierarchy
7970 * and abort nohz_idle_balance altogether if we pull some load.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007971 */
Daniel Lezcano208cb162014-01-06 12:34:44 +01007972 nohz_idle_balance(this_rq, idle);
Preeti U Murthyd4573c32015-03-26 18:32:44 +05307973 rebalance_domains(this_rq, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007974}
7975
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007976/*
7977 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007978 */
Daniel Lezcano7caff662014-01-06 12:34:38 +01007979void trigger_load_balance(struct rq *rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007980{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007981 /* Don't need to rebalance while attached to NULL domain */
Daniel Lezcanoc7260992014-01-06 12:34:45 +01007982 if (unlikely(on_null_domain(rq)))
7983 return;
7984
7985 if (time_after_eq(jiffies, rq->next_balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007986 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007987#ifdef CONFIG_NO_HZ_COMMON
Daniel Lezcanoc7260992014-01-06 12:34:45 +01007988 if (nohz_kick_needed(rq))
Daniel Lezcano0aeeeeb2014-01-06 12:34:42 +01007989 nohz_balancer_kick();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07007990#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01007991}
7992
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007993static void rq_online_fair(struct rq *rq)
7994{
7995 update_sysctl();
Kirill Tkhai0e59bda2014-06-25 12:19:42 +04007996
7997 update_runtime_enabled(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007998}
7999
8000static void rq_offline_fair(struct rq *rq)
8001{
8002 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07008003
8004 /* Ensure any throttled groups are reachable by pick_next_task */
8005 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01008006}
8007
Dhaval Giani55e12e52008-06-24 23:39:43 +05308008#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02008009
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008010/*
8011 * scheduler tick hitting a task of our scheduling class:
8012 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01008013static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008014{
8015 struct cfs_rq *cfs_rq;
8016 struct sched_entity *se = &curr->se;
8017
8018 for_each_sched_entity(se) {
8019 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01008020 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008021 }
Ben Segall18bf2802012-10-04 12:51:20 +02008022
Dave Kleikamp10e84b92013-07-31 13:53:35 -07008023 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02008024 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08008025
Ben Segall18bf2802012-10-04 12:51:20 +02008026 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008027}
8028
8029/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01008030 * called on fork with the child task as argument from the parent's context
8031 * - child not yet on the tasklist
8032 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008033 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01008034static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008035{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09008036 struct cfs_rq *cfs_rq;
8037 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02008038 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01008039 struct rq *rq = this_rq();
8040 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008041
Thomas Gleixner05fa7852009-11-17 14:28:38 +01008042 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01008043
Peter Zijlstra861d0342010-08-19 13:31:43 +02008044 update_rq_clock(rq);
8045
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09008046 cfs_rq = task_cfs_rq(current);
8047 curr = cfs_rq->curr;
8048
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09008049 /*
8050 * Not only the cpu but also the task_group of the parent might have
8051 * been changed after parent->se.parent,cfs_rq were copied to
8052 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8053 * of child point to valid ones.
8054 */
8055 rcu_read_lock();
8056 __set_task_cpu(p, this_cpu);
8057 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008058
Ting Yang7109c4422007-08-28 12:53:24 +02008059 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01008060
Mike Galbraithb5d9d732009-09-08 11:12:28 +02008061 if (curr)
8062 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02008063 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02008064
Peter Zijlstracd29fe62009-11-27 17:32:46 +01008065 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02008066 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02008067 * Upon rescheduling, sched_class::put_prev_task() will place
8068 * 'current' within the tree based on its new key value.
8069 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02008070 swap(curr->vruntime, se->vruntime);
Kirill Tkhai88751252014-06-29 00:03:57 +04008071 resched_curr(rq);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02008072 }
8073
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01008074 se->vruntime -= cfs_rq->min_vruntime;
8075
Thomas Gleixner05fa7852009-11-17 14:28:38 +01008076 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008077}
8078
Steven Rostedtcb469842008-01-25 21:08:22 +01008079/*
8080 * Priority of the task has changed. Check to see if we preempt
8081 * the current task.
8082 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008083static void
8084prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01008085{
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04008086 if (!task_on_rq_queued(p))
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008087 return;
8088
Steven Rostedtcb469842008-01-25 21:08:22 +01008089 /*
8090 * Reschedule if we are currently running on this runqueue and
8091 * our priority decreased, or if we are not currently running on
8092 * this runqueue and our priority is higher than the current's
8093 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008094 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01008095 if (p->prio > oldprio)
Kirill Tkhai88751252014-06-29 00:03:57 +04008096 resched_curr(rq);
Steven Rostedtcb469842008-01-25 21:08:22 +01008097 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02008098 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01008099}
8100
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008101static void switched_from_fair(struct rq *rq, struct task_struct *p)
8102{
8103 struct sched_entity *se = &p->se;
8104 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8105
8106 /*
George McCollister791c9e02014-02-18 17:56:51 -06008107 * Ensure the task's vruntime is normalized, so that when it's
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008108 * switched back to the fair class the enqueue_entity(.flags=0) will
8109 * do the right thing.
8110 *
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04008111 * If it's queued, then the dequeue_entity(.flags=0) will already
8112 * have normalized the vruntime, if it's !queued, then only when
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008113 * the task is sleeping will it still have non-normalized vruntime.
8114 */
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04008115 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008116 /*
8117 * Fix up our vruntime so that the current sleep doesn't
8118 * cause 'unlimited' sleep bonus.
8119 */
8120 place_entity(cfs_rq, se, 0);
8121 se->vruntime -= cfs_rq->min_vruntime;
8122 }
Paul Turner9ee474f2012-10-04 13:18:30 +02008123
Alex Shi141965c2013-06-26 13:05:39 +08008124#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02008125 /*
8126 * Remove our load from contribution when we leave sched_fair
8127 * and ensure we don't carry in an old decay_count if we
8128 * switch back.
8129 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04008130 if (se->avg.decay_count) {
8131 __synchronize_entity_decay(se);
8132 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02008133 }
8134#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008135}
8136
Steven Rostedtcb469842008-01-25 21:08:22 +01008137/*
8138 * We switched to the sched_fair class.
8139 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008140static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01008141{
Michael wangeb7a59b2014-02-20 11:14:53 +08008142#ifdef CONFIG_FAIR_GROUP_SCHED
Kirill Tkhaif36c0192014-08-06 12:06:01 +04008143 struct sched_entity *se = &p->se;
Michael wangeb7a59b2014-02-20 11:14:53 +08008144 /*
8145 * Since the real-depth could have been changed (only FAIR
8146 * class maintain depth value), reset depth properly.
8147 */
8148 se->depth = se->parent ? se->parent->depth + 1 : 0;
8149#endif
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04008150 if (!task_on_rq_queued(p))
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008151 return;
8152
Steven Rostedtcb469842008-01-25 21:08:22 +01008153 /*
8154 * We were most likely switched from sched_rt, so
8155 * kick off the schedule if running, otherwise just see
8156 * if we can still preempt the current task.
8157 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008158 if (rq->curr == p)
Kirill Tkhai88751252014-06-29 00:03:57 +04008159 resched_curr(rq);
Steven Rostedtcb469842008-01-25 21:08:22 +01008160 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02008161 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01008162}
8163
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02008164/* Account for a task changing its policy or group.
8165 *
8166 * This routine is mostly called to set cfs_rq->curr field when a task
8167 * migrates between groups/classes.
8168 */
8169static void set_curr_task_fair(struct rq *rq)
8170{
8171 struct sched_entity *se = &rq->curr->se;
8172
Paul Turnerec12cb72011-07-21 09:43:30 -07008173 for_each_sched_entity(se) {
8174 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8175
8176 set_next_entity(cfs_rq, se);
8177 /* ensure bandwidth has been allocated on our new cfs_rq */
8178 account_cfs_rq_runtime(cfs_rq, 0);
8179 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02008180}
8181
Peter Zijlstra029632f2011-10-25 10:00:11 +02008182void init_cfs_rq(struct cfs_rq *cfs_rq)
8183{
8184 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02008185 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8186#ifndef CONFIG_64BIT
8187 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8188#endif
Alex Shi141965c2013-06-26 13:05:39 +08008189#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02008190 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08008191 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02008192#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02008193}
8194
Peter Zijlstra810b3812008-02-29 15:21:01 -05008195#ifdef CONFIG_FAIR_GROUP_SCHED
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04008196static void task_move_group_fair(struct task_struct *p, int queued)
Peter Zijlstra810b3812008-02-29 15:21:01 -05008197{
Peter Zijlstrafed14d42012-02-11 06:05:00 +01008198 struct sched_entity *se = &p->se;
Paul Turneraff3e492012-10-04 13:18:30 +02008199 struct cfs_rq *cfs_rq;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01008200
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02008201 /*
8202 * If the task was not on the rq at the time of this cgroup movement
8203 * it must have been asleep, sleeping tasks keep their ->vruntime
8204 * absolute on their old rq until wakeup (needed for the fair sleeper
8205 * bonus in place_entity()).
8206 *
8207 * If it was on the rq, we've just 'preempted' it, which does convert
8208 * ->vruntime to a relative base.
8209 *
8210 * Make sure both cases convert their relative position when migrating
8211 * to another cgroup's rq. This does somewhat interfere with the
8212 * fair sleeper stuff for the first placement, but who cares.
8213 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09008214 /*
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04008215 * When !queued, vruntime of the task has usually NOT been normalized.
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09008216 * But there are some cases where it has already been normalized:
8217 *
8218 * - Moving a forked child which is waiting for being woken up by
8219 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09008220 * - Moving a task which has been woken up by try_to_wake_up() and
8221 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09008222 *
8223 * To prevent boost or penalty in the new cfs_rq caused by delta
8224 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8225 */
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04008226 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8227 queued = 1;
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09008228
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04008229 if (!queued)
Peter Zijlstrafed14d42012-02-11 06:05:00 +01008230 se->vruntime -= cfs_rq_of(se)->min_vruntime;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02008231 set_task_rq(p, task_cpu(p));
Peter Zijlstrafed14d42012-02-11 06:05:00 +01008232 se->depth = se->parent ? se->parent->depth + 1 : 0;
Kirill Tkhaida0c1e62014-08-20 13:47:32 +04008233 if (!queued) {
Peter Zijlstrafed14d42012-02-11 06:05:00 +01008234 cfs_rq = cfs_rq_of(se);
8235 se->vruntime += cfs_rq->min_vruntime;
Paul Turneraff3e492012-10-04 13:18:30 +02008236#ifdef CONFIG_SMP
8237 /*
8238 * migrate_task_rq_fair() will have removed our previous
8239 * contribution, but we must synchronize for ongoing future
8240 * decay.
8241 */
Peter Zijlstrafed14d42012-02-11 06:05:00 +01008242 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8243 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02008244#endif
8245 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05008246}
Peter Zijlstra029632f2011-10-25 10:00:11 +02008247
8248void free_fair_sched_group(struct task_group *tg)
8249{
8250 int i;
8251
8252 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8253
8254 for_each_possible_cpu(i) {
8255 if (tg->cfs_rq)
8256 kfree(tg->cfs_rq[i]);
8257 if (tg->se)
8258 kfree(tg->se[i]);
8259 }
8260
8261 kfree(tg->cfs_rq);
8262 kfree(tg->se);
8263}
8264
8265int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8266{
8267 struct cfs_rq *cfs_rq;
8268 struct sched_entity *se;
8269 int i;
8270
8271 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8272 if (!tg->cfs_rq)
8273 goto err;
8274 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8275 if (!tg->se)
8276 goto err;
8277
8278 tg->shares = NICE_0_LOAD;
8279
8280 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8281
8282 for_each_possible_cpu(i) {
8283 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8284 GFP_KERNEL, cpu_to_node(i));
8285 if (!cfs_rq)
8286 goto err;
8287
8288 se = kzalloc_node(sizeof(struct sched_entity),
8289 GFP_KERNEL, cpu_to_node(i));
8290 if (!se)
8291 goto err_free_rq;
8292
8293 init_cfs_rq(cfs_rq);
8294 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8295 }
8296
8297 return 1;
8298
8299err_free_rq:
8300 kfree(cfs_rq);
8301err:
8302 return 0;
8303}
8304
8305void unregister_fair_sched_group(struct task_group *tg, int cpu)
8306{
8307 struct rq *rq = cpu_rq(cpu);
8308 unsigned long flags;
8309
8310 /*
8311 * Only empty task groups can be destroyed; so we can speculatively
8312 * check on_list without danger of it being re-added.
8313 */
8314 if (!tg->cfs_rq[cpu]->on_list)
8315 return;
8316
8317 raw_spin_lock_irqsave(&rq->lock, flags);
8318 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8319 raw_spin_unlock_irqrestore(&rq->lock, flags);
8320}
8321
8322void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8323 struct sched_entity *se, int cpu,
8324 struct sched_entity *parent)
8325{
8326 struct rq *rq = cpu_rq(cpu);
8327
8328 cfs_rq->tg = tg;
8329 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02008330 init_cfs_rq_runtime(cfs_rq);
8331
8332 tg->cfs_rq[cpu] = cfs_rq;
8333 tg->se[cpu] = se;
8334
8335 /* se could be NULL for root_task_group */
8336 if (!se)
8337 return;
8338
Peter Zijlstrafed14d42012-02-11 06:05:00 +01008339 if (!parent) {
Peter Zijlstra029632f2011-10-25 10:00:11 +02008340 se->cfs_rq = &rq->cfs;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01008341 se->depth = 0;
8342 } else {
Peter Zijlstra029632f2011-10-25 10:00:11 +02008343 se->cfs_rq = parent->my_q;
Peter Zijlstrafed14d42012-02-11 06:05:00 +01008344 se->depth = parent->depth + 1;
8345 }
Peter Zijlstra029632f2011-10-25 10:00:11 +02008346
8347 se->my_q = cfs_rq;
Paul Turner0ac9b1c2013-10-16 11:16:27 -07008348 /* guarantee group entities always have weight */
8349 update_load_set(&se->load, NICE_0_LOAD);
Peter Zijlstra029632f2011-10-25 10:00:11 +02008350 se->parent = parent;
8351}
8352
8353static DEFINE_MUTEX(shares_mutex);
8354
8355int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8356{
8357 int i;
8358 unsigned long flags;
8359
8360 /*
8361 * We can't change the weight of the root cgroup.
8362 */
8363 if (!tg->se[0])
8364 return -EINVAL;
8365
8366 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8367
8368 mutex_lock(&shares_mutex);
8369 if (tg->shares == shares)
8370 goto done;
8371
8372 tg->shares = shares;
8373 for_each_possible_cpu(i) {
8374 struct rq *rq = cpu_rq(i);
8375 struct sched_entity *se;
8376
8377 se = tg->se[i];
8378 /* Propagate contribution to hierarchy */
8379 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02008380
8381 /* Possible calls to update_curr() need rq clock */
8382 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08008383 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02008384 update_cfs_shares(group_cfs_rq(se));
8385 raw_spin_unlock_irqrestore(&rq->lock, flags);
8386 }
8387
8388done:
8389 mutex_unlock(&shares_mutex);
8390 return 0;
8391}
8392#else /* CONFIG_FAIR_GROUP_SCHED */
8393
8394void free_fair_sched_group(struct task_group *tg) { }
8395
8396int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8397{
8398 return 1;
8399}
8400
8401void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8402
8403#endif /* CONFIG_FAIR_GROUP_SCHED */
8404
Peter Zijlstra810b3812008-02-29 15:21:01 -05008405
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07008406static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00008407{
8408 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00008409 unsigned int rr_interval = 0;
8410
8411 /*
8412 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8413 * idle runqueue:
8414 */
Peter Williams0d721ce2009-09-21 01:31:53 +00008415 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08008416 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00008417
8418 return rr_interval;
8419}
8420
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008421/*
8422 * All the scheduling class methods:
8423 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02008424const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02008425 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008426 .enqueue_task = enqueue_task_fair,
8427 .dequeue_task = dequeue_task_fair,
8428 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05008429 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008430
Ingo Molnar2e09bf52007-10-15 17:00:05 +02008431 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008432
8433 .pick_next_task = pick_next_task_fair,
8434 .put_prev_task = put_prev_task_fair,
8435
Peter Williams681f3e62007-10-24 18:23:51 +02008436#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08008437 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02008438 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08008439
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01008440 .rq_online = rq_online_fair,
8441 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01008442
8443 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02008444#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008445
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02008446 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008447 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01008448 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01008449
8450 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01008451 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01008452 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05008453
Peter Williams0d721ce2009-09-21 01:31:53 +00008454 .get_rr_interval = get_rr_interval_fair,
8455
Stanislaw Gruszka6e998912014-11-12 16:58:44 +01008456 .update_curr = update_curr_fair,
8457
Peter Zijlstra810b3812008-02-29 15:21:01 -05008458#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02008459 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05008460#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008461};
8462
8463#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02008464void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008465{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008466 struct cfs_rq *cfs_rq;
8467
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01008468 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02008469 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02008470 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01008471 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02008472}
8473#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02008474
8475__init void init_sched_fair_class(void)
8476{
8477#ifdef CONFIG_SMP
8478 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8479
Frederic Weisbecker3451d022011-08-10 23:21:01 +02008480#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08008481 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02008482 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08008483 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02008484#endif
8485#endif /* SMP */
8486
8487}