blob: efe661a9def4db3644d0e8402e2b00295a3cd0c6 [file] [log] [blame]
Lennert Buytenhek91da11f2008-10-07 13:44:02 +00001/*
2 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
3 * Copyright (c) 2008 Marvell Semiconductor
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 */
10
11#include <linux/list.h>
12#include <linux/netdevice.h>
13#include <linux/phy.h>
14#include "dsa_priv.h"
15#include "mv88e6xxx.h"
16
17/*
18 * If the switch's ADDR[4:0] strap pins are strapped to zero, it will
19 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
20 * will be directly accessible on some {device address,register address}
21 * pair. If the ADDR[4:0] pins are not strapped to zero, the switch
22 * will only respond to SMI transactions to that specific address, and
23 * an indirect addressing mechanism needs to be used to access its
24 * registers.
25 */
26static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
27{
28 int ret;
29 int i;
30
31 for (i = 0; i < 16; i++) {
32 ret = mdiobus_read(bus, sw_addr, 0);
33 if (ret < 0)
34 return ret;
35
36 if ((ret & 0x8000) == 0)
37 return 0;
38 }
39
40 return -ETIMEDOUT;
41}
42
43int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
44{
45 int ret;
46
47 if (sw_addr == 0)
48 return mdiobus_read(bus, addr, reg);
49
50 /*
51 * Wait for the bus to become free.
52 */
53 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
54 if (ret < 0)
55 return ret;
56
57 /*
58 * Transmit the read command.
59 */
60 ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
61 if (ret < 0)
62 return ret;
63
64 /*
65 * Wait for the read command to complete.
66 */
67 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
68 if (ret < 0)
69 return ret;
70
71 /*
72 * Read the data.
73 */
74 ret = mdiobus_read(bus, sw_addr, 1);
75 if (ret < 0)
76 return ret;
77
78 return ret & 0xffff;
79}
80
81int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
82{
83 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
84 int ret;
85
86 mutex_lock(&ps->smi_mutex);
87 ret = __mv88e6xxx_reg_read(ds->master_mii_bus,
88 ds->pd->sw_addr, addr, reg);
89 mutex_unlock(&ps->smi_mutex);
90
91 return ret;
92}
93
94int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
95 int reg, u16 val)
96{
97 int ret;
98
99 if (sw_addr == 0)
100 return mdiobus_write(bus, addr, reg, val);
101
102 /*
103 * Wait for the bus to become free.
104 */
105 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
106 if (ret < 0)
107 return ret;
108
109 /*
110 * Transmit the data to write.
111 */
112 ret = mdiobus_write(bus, sw_addr, 1, val);
113 if (ret < 0)
114 return ret;
115
116 /*
117 * Transmit the write command.
118 */
119 ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
120 if (ret < 0)
121 return ret;
122
123 /*
124 * Wait for the write command to complete.
125 */
126 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
127 if (ret < 0)
128 return ret;
129
130 return 0;
131}
132
133int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
134{
135 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
136 int ret;
137
138 mutex_lock(&ps->smi_mutex);
139 ret = __mv88e6xxx_reg_write(ds->master_mii_bus,
140 ds->pd->sw_addr, addr, reg, val);
141 mutex_unlock(&ps->smi_mutex);
142
143 return ret;
144}
145
146int mv88e6xxx_config_prio(struct dsa_switch *ds)
147{
148 /*
149 * Configure the IP ToS mapping registers.
150 */
151 REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
152 REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
153 REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
154 REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
155 REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
156 REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
157 REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
158 REG_WRITE(REG_GLOBAL, 0x17, 0xffff);
159
160 /*
161 * Configure the IEEE 802.1p priority mapping register.
162 */
163 REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);
164
165 return 0;
166}
167
Lennert Buytenhek2e5f0322008-10-07 13:45:18 +0000168int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
169{
170 REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
171 REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
172 REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);
173
174 return 0;
175}
176
Lennert Buytenhek91da11f2008-10-07 13:44:02 +0000177int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
178{
179 int i;
180 int ret;
181
182 for (i = 0; i < 6; i++) {
183 int j;
184
185 /*
186 * Write the MAC address byte.
187 */
188 REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);
189
190 /*
191 * Wait for the write to complete.
192 */
193 for (j = 0; j < 16; j++) {
194 ret = REG_READ(REG_GLOBAL2, 0x0d);
195 if ((ret & 0x8000) == 0)
196 break;
197 }
198 if (j == 16)
199 return -ETIMEDOUT;
200 }
201
202 return 0;
203}
204
205int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
206{
207 if (addr >= 0)
208 return mv88e6xxx_reg_read(ds, addr, regnum);
209 return 0xffff;
210}
211
212int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
213{
214 if (addr >= 0)
215 return mv88e6xxx_reg_write(ds, addr, regnum, val);
216 return 0;
217}
218
Lennert Buytenhek2e5f0322008-10-07 13:45:18 +0000219#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
220static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
221{
222 int ret;
223 int i;
224
225 ret = REG_READ(REG_GLOBAL, 0x04);
226 REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);
227
228 for (i = 0; i < 1000; i++) {
229 ret = REG_READ(REG_GLOBAL, 0x00);
230 msleep(1);
231 if ((ret & 0xc000) != 0xc000)
232 return 0;
233 }
234
235 return -ETIMEDOUT;
236}
237
238static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
239{
240 int ret;
241 int i;
242
243 ret = REG_READ(REG_GLOBAL, 0x04);
244 REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);
245
246 for (i = 0; i < 1000; i++) {
247 ret = REG_READ(REG_GLOBAL, 0x00);
248 msleep(1);
249 if ((ret & 0xc000) == 0xc000)
250 return 0;
251 }
252
253 return -ETIMEDOUT;
254}
255
256static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
257{
258 struct mv88e6xxx_priv_state *ps;
259
260 ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
261 if (mutex_trylock(&ps->ppu_mutex)) {
262 struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
263
264 if (mv88e6xxx_ppu_enable(ds) == 0)
265 ps->ppu_disabled = 0;
266 mutex_unlock(&ps->ppu_mutex);
267 }
268}
269
270static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
271{
272 struct mv88e6xxx_priv_state *ps = (void *)_ps;
273
274 schedule_work(&ps->ppu_work);
275}
276
277static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
278{
279 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
280 int ret;
281
282 mutex_lock(&ps->ppu_mutex);
283
284 /*
285 * If the PHY polling unit is enabled, disable it so that
286 * we can access the PHY registers. If it was already
287 * disabled, cancel the timer that is going to re-enable
288 * it.
289 */
290 if (!ps->ppu_disabled) {
291 ret = mv88e6xxx_ppu_disable(ds);
292 if (ret < 0) {
293 mutex_unlock(&ps->ppu_mutex);
294 return ret;
295 }
296 ps->ppu_disabled = 1;
297 } else {
298 del_timer(&ps->ppu_timer);
299 ret = 0;
300 }
301
302 return ret;
303}
304
305static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
306{
307 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
308
309 /*
310 * Schedule a timer to re-enable the PHY polling unit.
311 */
312 mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
313 mutex_unlock(&ps->ppu_mutex);
314}
315
316void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
317{
318 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
319
320 mutex_init(&ps->ppu_mutex);
321 INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
322 init_timer(&ps->ppu_timer);
323 ps->ppu_timer.data = (unsigned long)ps;
324 ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
325}
326
327int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
328{
329 int ret;
330
331 ret = mv88e6xxx_ppu_access_get(ds);
332 if (ret >= 0) {
333 ret = mv88e6xxx_reg_read(ds, addr, regnum);
334 mv88e6xxx_ppu_access_put(ds);
335 }
336
337 return ret;
338}
339
340int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
341 int regnum, u16 val)
342{
343 int ret;
344
345 ret = mv88e6xxx_ppu_access_get(ds);
346 if (ret >= 0) {
347 ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
348 mv88e6xxx_ppu_access_put(ds);
349 }
350
351 return ret;
352}
353#endif
354
Lennert Buytenhek91da11f2008-10-07 13:44:02 +0000355void mv88e6xxx_poll_link(struct dsa_switch *ds)
356{
357 int i;
358
359 for (i = 0; i < DSA_MAX_PORTS; i++) {
360 struct net_device *dev;
Ingo Molnar2a9e7972008-11-25 16:50:49 -0800361 int uninitialized_var(port_status);
Lennert Buytenhek91da11f2008-10-07 13:44:02 +0000362 int link;
363 int speed;
364 int duplex;
365 int fc;
366
367 dev = ds->ports[i];
368 if (dev == NULL)
369 continue;
370
371 link = 0;
372 if (dev->flags & IFF_UP) {
373 port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
374 if (port_status < 0)
375 continue;
376
377 link = !!(port_status & 0x0800);
378 }
379
380 if (!link) {
381 if (netif_carrier_ok(dev)) {
382 printk(KERN_INFO "%s: link down\n", dev->name);
383 netif_carrier_off(dev);
384 }
385 continue;
386 }
387
388 switch (port_status & 0x0300) {
389 case 0x0000:
390 speed = 10;
391 break;
392 case 0x0100:
393 speed = 100;
394 break;
395 case 0x0200:
396 speed = 1000;
397 break;
398 default:
399 speed = -1;
400 break;
401 }
402 duplex = (port_status & 0x0400) ? 1 : 0;
403 fc = (port_status & 0x8000) ? 1 : 0;
404
405 if (!netif_carrier_ok(dev)) {
406 printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
407 "flow control %sabled\n", dev->name,
408 speed, duplex ? "full" : "half",
409 fc ? "en" : "dis");
410 netif_carrier_on(dev);
411 }
412 }
413}
414
415static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
416{
417 int ret;
418 int i;
419
420 for (i = 0; i < 10; i++) {
Stephane Contri1ded3f52009-07-02 23:26:48 +0000421 ret = REG_READ(REG_GLOBAL, 0x1d);
Lennert Buytenhek91da11f2008-10-07 13:44:02 +0000422 if ((ret & 0x8000) == 0)
423 return 0;
424 }
425
426 return -ETIMEDOUT;
427}
428
429static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
430{
431 int ret;
432
433 /*
434 * Snapshot the hardware statistics counters for this port.
435 */
436 REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);
437
438 /*
439 * Wait for the snapshotting to complete.
440 */
441 ret = mv88e6xxx_stats_wait(ds);
442 if (ret < 0)
443 return ret;
444
445 return 0;
446}
447
448static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
449{
450 u32 _val;
451 int ret;
452
453 *val = 0;
454
455 ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
456 if (ret < 0)
457 return;
458
459 ret = mv88e6xxx_stats_wait(ds);
460 if (ret < 0)
461 return;
462
463 ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
464 if (ret < 0)
465 return;
466
467 _val = ret << 16;
468
469 ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
470 if (ret < 0)
471 return;
472
473 *val = _val | ret;
474}
475
476void mv88e6xxx_get_strings(struct dsa_switch *ds,
477 int nr_stats, struct mv88e6xxx_hw_stat *stats,
478 int port, uint8_t *data)
479{
480 int i;
481
482 for (i = 0; i < nr_stats; i++) {
483 memcpy(data + i * ETH_GSTRING_LEN,
484 stats[i].string, ETH_GSTRING_LEN);
485 }
486}
487
488void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
489 int nr_stats, struct mv88e6xxx_hw_stat *stats,
490 int port, uint64_t *data)
491{
492 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
493 int ret;
494 int i;
495
496 mutex_lock(&ps->stats_mutex);
497
498 ret = mv88e6xxx_stats_snapshot(ds, port);
499 if (ret < 0) {
500 mutex_unlock(&ps->stats_mutex);
501 return;
502 }
503
504 /*
505 * Read each of the counters.
506 */
507 for (i = 0; i < nr_stats; i++) {
508 struct mv88e6xxx_hw_stat *s = stats + i;
509 u32 low;
510 u32 high;
511
512 mv88e6xxx_stats_read(ds, s->reg, &low);
513 if (s->sizeof_stat == 8)
514 mv88e6xxx_stats_read(ds, s->reg + 1, &high);
515 else
516 high = 0;
517
518 data[i] = (((u64)high) << 32) | low;
519 }
520
521 mutex_unlock(&ps->stats_mutex);
522}