blob: 98e9d2395598c41c2446a1f76e468a86e7b38615 [file] [log] [blame]
Markos Chandrasc6610de2014-04-08 12:47:14 +01001/*
2 * Just-In-Time compiler for BPF filters on MIPS
3 *
4 * Copyright (c) 2014 Imagination Technologies Ltd.
5 * Author: Markos Chandras <markos.chandras@imgtec.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; version 2 of the License.
10 */
11
12#include <linux/bitops.h>
13#include <linux/compiler.h>
14#include <linux/errno.h>
15#include <linux/filter.h>
16#include <linux/if_vlan.h>
17#include <linux/kconfig.h>
18#include <linux/moduleloader.h>
19#include <linux/netdevice.h>
20#include <linux/string.h>
21#include <linux/slab.h>
22#include <linux/types.h>
23#include <asm/bitops.h>
24#include <asm/cacheflush.h>
25#include <asm/cpu-features.h>
26#include <asm/uasm.h>
27
28#include "bpf_jit.h"
29
30/* ABI
31 *
32 * s0 1st scratch register
33 * s1 2nd scratch register
34 * s2 offset register
35 * s3 BPF register A
36 * s4 BPF register X
37 * s5 *skb
38 * s6 *scratch memory
39 *
40 * On entry (*bpf_func)(*skb, *filter)
41 * a0 = MIPS_R_A0 = skb;
42 * a1 = MIPS_R_A1 = filter;
43 *
44 * Stack
45 * ...
46 * M[15]
47 * M[14]
48 * M[13]
49 * ...
50 * M[0] <-- r_M
51 * saved reg k-1
52 * saved reg k-2
53 * ...
54 * saved reg 0 <-- r_sp
55 * <no argument area>
56 *
57 * Packet layout
58 *
59 * <--------------------- len ------------------------>
60 * <--skb-len(r_skb_hl)-->< ----- skb->data_len ------>
61 * ----------------------------------------------------
62 * | skb->data |
63 * ----------------------------------------------------
64 */
65
66#define RSIZE (sizeof(unsigned long))
67#define ptr typeof(unsigned long)
68
69/* ABI specific return values */
70#ifdef CONFIG_32BIT /* O32 */
71#ifdef CONFIG_CPU_LITTLE_ENDIAN
72#define r_err MIPS_R_V1
73#define r_val MIPS_R_V0
74#else /* CONFIG_CPU_LITTLE_ENDIAN */
75#define r_err MIPS_R_V0
76#define r_val MIPS_R_V1
77#endif
78#else /* N64 */
79#define r_err MIPS_R_V0
80#define r_val MIPS_R_V0
81#endif
82
83#define r_ret MIPS_R_V0
84
85/*
86 * Use 2 scratch registers to avoid pipeline interlocks.
87 * There is no overhead during epilogue and prologue since
88 * any of the $s0-$s6 registers will only be preserved if
89 * they are going to actually be used.
90 */
91#define r_s0 MIPS_R_S0 /* scratch reg 1 */
92#define r_s1 MIPS_R_S1 /* scratch reg 2 */
93#define r_off MIPS_R_S2
94#define r_A MIPS_R_S3
95#define r_X MIPS_R_S4
96#define r_skb MIPS_R_S5
97#define r_M MIPS_R_S6
98#define r_tmp_imm MIPS_R_T6 /* No need to preserve this */
99#define r_tmp MIPS_R_T7 /* No need to preserve this */
100#define r_zero MIPS_R_ZERO
101#define r_sp MIPS_R_SP
102#define r_ra MIPS_R_RA
103
104#define SCRATCH_OFF(k) (4 * (k))
105
106/* JIT flags */
107#define SEEN_CALL (1 << BPF_MEMWORDS)
108#define SEEN_SREG_SFT (BPF_MEMWORDS + 1)
109#define SEEN_SREG_BASE (1 << SEEN_SREG_SFT)
110#define SEEN_SREG(x) (SEEN_SREG_BASE << (x))
111#define SEEN_S0 SEEN_SREG(0)
112#define SEEN_S1 SEEN_SREG(1)
113#define SEEN_OFF SEEN_SREG(2)
114#define SEEN_A SEEN_SREG(3)
115#define SEEN_X SEEN_SREG(4)
116#define SEEN_SKB SEEN_SREG(5)
117#define SEEN_MEM SEEN_SREG(6)
118
119/* Arguments used by JIT */
120#define ARGS_USED_BY_JIT 2 /* only applicable to 64-bit */
121
122#define FLAG_NEED_X_RESET (1 << 0)
123
124#define SBIT(x) (1 << (x)) /* Signed version of BIT() */
125
126/**
127 * struct jit_ctx - JIT context
128 * @skf: The sk_filter
129 * @prologue_bytes: Number of bytes for prologue
130 * @idx: Instruction index
131 * @flags: JIT flags
132 * @offsets: Instruction offsets
133 * @target: Memory location for the compiled filter
134 */
135struct jit_ctx {
136 const struct sk_filter *skf;
137 unsigned int prologue_bytes;
138 u32 idx;
139 u32 flags;
140 u32 *offsets;
141 u32 *target;
142};
143
144
145static inline int optimize_div(u32 *k)
146{
147 /* power of 2 divides can be implemented with right shift */
148 if (!(*k & (*k-1))) {
149 *k = ilog2(*k);
150 return 1;
151 }
152
153 return 0;
154}
155
156/* Simply emit the instruction if the JIT memory space has been allocated */
157#define emit_instr(ctx, func, ...) \
158do { \
159 if ((ctx)->target != NULL) { \
160 u32 *p = &(ctx)->target[ctx->idx]; \
161 uasm_i_##func(&p, ##__VA_ARGS__); \
162 } \
163 (ctx)->idx++; \
164} while (0)
165
166/* Determine if immediate is within the 16-bit signed range */
167static inline bool is_range16(s32 imm)
168{
169 if (imm >= SBIT(15) || imm < -SBIT(15))
170 return true;
171 return false;
172}
173
174static inline void emit_addu(unsigned int dst, unsigned int src1,
175 unsigned int src2, struct jit_ctx *ctx)
176{
177 emit_instr(ctx, addu, dst, src1, src2);
178}
179
180static inline void emit_nop(struct jit_ctx *ctx)
181{
182 emit_instr(ctx, nop);
183}
184
185/* Load a u32 immediate to a register */
186static inline void emit_load_imm(unsigned int dst, u32 imm, struct jit_ctx *ctx)
187{
188 if (ctx->target != NULL) {
189 /* addiu can only handle s16 */
190 if (is_range16(imm)) {
191 u32 *p = &ctx->target[ctx->idx];
192 uasm_i_lui(&p, r_tmp_imm, (s32)imm >> 16);
193 p = &ctx->target[ctx->idx + 1];
194 uasm_i_ori(&p, dst, r_tmp_imm, imm & 0xffff);
195 } else {
196 u32 *p = &ctx->target[ctx->idx];
197 uasm_i_addiu(&p, dst, r_zero, imm);
198 }
199 }
200 ctx->idx++;
201
202 if (is_range16(imm))
203 ctx->idx++;
204}
205
206static inline void emit_or(unsigned int dst, unsigned int src1,
207 unsigned int src2, struct jit_ctx *ctx)
208{
209 emit_instr(ctx, or, dst, src1, src2);
210}
211
212static inline void emit_ori(unsigned int dst, unsigned src, u32 imm,
213 struct jit_ctx *ctx)
214{
215 if (imm >= BIT(16)) {
216 emit_load_imm(r_tmp, imm, ctx);
217 emit_or(dst, src, r_tmp, ctx);
218 } else {
219 emit_instr(ctx, ori, dst, src, imm);
220 }
221}
222
223
224static inline void emit_daddu(unsigned int dst, unsigned int src1,
225 unsigned int src2, struct jit_ctx *ctx)
226{
227 emit_instr(ctx, daddu, dst, src1, src2);
228}
229
230static inline void emit_daddiu(unsigned int dst, unsigned int src,
231 int imm, struct jit_ctx *ctx)
232{
233 /*
234 * Only used for stack, so the imm is relatively small
235 * and it fits in 15-bits
236 */
237 emit_instr(ctx, daddiu, dst, src, imm);
238}
239
240static inline void emit_addiu(unsigned int dst, unsigned int src,
241 u32 imm, struct jit_ctx *ctx)
242{
243 if (is_range16(imm)) {
244 emit_load_imm(r_tmp, imm, ctx);
245 emit_addu(dst, r_tmp, src, ctx);
246 } else {
247 emit_instr(ctx, addiu, dst, src, imm);
248 }
249}
250
251static inline void emit_and(unsigned int dst, unsigned int src1,
252 unsigned int src2, struct jit_ctx *ctx)
253{
254 emit_instr(ctx, and, dst, src1, src2);
255}
256
257static inline void emit_andi(unsigned int dst, unsigned int src,
258 u32 imm, struct jit_ctx *ctx)
259{
260 /* If imm does not fit in u16 then load it to register */
261 if (imm >= BIT(16)) {
262 emit_load_imm(r_tmp, imm, ctx);
263 emit_and(dst, src, r_tmp, ctx);
264 } else {
265 emit_instr(ctx, andi, dst, src, imm);
266 }
267}
268
269static inline void emit_xor(unsigned int dst, unsigned int src1,
270 unsigned int src2, struct jit_ctx *ctx)
271{
272 emit_instr(ctx, xor, dst, src1, src2);
273}
274
275static inline void emit_xori(ptr dst, ptr src, u32 imm, struct jit_ctx *ctx)
276{
277 /* If imm does not fit in u16 then load it to register */
278 if (imm >= BIT(16)) {
279 emit_load_imm(r_tmp, imm, ctx);
280 emit_xor(dst, src, r_tmp, ctx);
281 } else {
282 emit_instr(ctx, xori, dst, src, imm);
283 }
284}
285
286static inline void emit_stack_offset(int offset, struct jit_ctx *ctx)
287{
288 if (config_enabled(CONFIG_64BIT))
289 emit_instr(ctx, daddiu, r_sp, r_sp, offset);
290 else
291 emit_instr(ctx, addiu, r_sp, r_sp, offset);
292
293}
294
295static inline void emit_subu(unsigned int dst, unsigned int src1,
296 unsigned int src2, struct jit_ctx *ctx)
297{
298 emit_instr(ctx, subu, dst, src1, src2);
299}
300
301static inline void emit_neg(unsigned int reg, struct jit_ctx *ctx)
302{
303 emit_subu(reg, r_zero, reg, ctx);
304}
305
306static inline void emit_sllv(unsigned int dst, unsigned int src,
307 unsigned int sa, struct jit_ctx *ctx)
308{
309 emit_instr(ctx, sllv, dst, src, sa);
310}
311
312static inline void emit_sll(unsigned int dst, unsigned int src,
313 unsigned int sa, struct jit_ctx *ctx)
314{
315 /* sa is 5-bits long */
316 BUG_ON(sa >= BIT(5));
317 emit_instr(ctx, sll, dst, src, sa);
318}
319
320static inline void emit_srlv(unsigned int dst, unsigned int src,
321 unsigned int sa, struct jit_ctx *ctx)
322{
323 emit_instr(ctx, srlv, dst, src, sa);
324}
325
326static inline void emit_srl(unsigned int dst, unsigned int src,
327 unsigned int sa, struct jit_ctx *ctx)
328{
329 /* sa is 5-bits long */
330 BUG_ON(sa >= BIT(5));
331 emit_instr(ctx, srl, dst, src, sa);
332}
333
334static inline void emit_sltu(unsigned int dst, unsigned int src1,
335 unsigned int src2, struct jit_ctx *ctx)
336{
337 emit_instr(ctx, sltu, dst, src1, src2);
338}
339
340static inline void emit_sltiu(unsigned dst, unsigned int src,
341 unsigned int imm, struct jit_ctx *ctx)
342{
343 /* 16 bit immediate */
344 if (is_range16((s32)imm)) {
345 emit_load_imm(r_tmp, imm, ctx);
346 emit_sltu(dst, src, r_tmp, ctx);
347 } else {
348 emit_instr(ctx, sltiu, dst, src, imm);
349 }
350
351}
352
353/* Store register on the stack */
354static inline void emit_store_stack_reg(ptr reg, ptr base,
355 unsigned int offset,
356 struct jit_ctx *ctx)
357{
358 if (config_enabled(CONFIG_64BIT))
359 emit_instr(ctx, sd, reg, offset, base);
360 else
361 emit_instr(ctx, sw, reg, offset, base);
362}
363
364static inline void emit_store(ptr reg, ptr base, unsigned int offset,
365 struct jit_ctx *ctx)
366{
367 emit_instr(ctx, sw, reg, offset, base);
368}
369
370static inline void emit_load_stack_reg(ptr reg, ptr base,
371 unsigned int offset,
372 struct jit_ctx *ctx)
373{
374 if (config_enabled(CONFIG_64BIT))
375 emit_instr(ctx, ld, reg, offset, base);
376 else
377 emit_instr(ctx, lw, reg, offset, base);
378}
379
380static inline void emit_load(unsigned int reg, unsigned int base,
381 unsigned int offset, struct jit_ctx *ctx)
382{
383 emit_instr(ctx, lw, reg, offset, base);
384}
385
386static inline void emit_load_byte(unsigned int reg, unsigned int base,
387 unsigned int offset, struct jit_ctx *ctx)
388{
389 emit_instr(ctx, lb, reg, offset, base);
390}
391
392static inline void emit_half_load(unsigned int reg, unsigned int base,
393 unsigned int offset, struct jit_ctx *ctx)
394{
395 emit_instr(ctx, lh, reg, offset, base);
396}
397
398static inline void emit_mul(unsigned int dst, unsigned int src1,
399 unsigned int src2, struct jit_ctx *ctx)
400{
401 emit_instr(ctx, mul, dst, src1, src2);
402}
403
404static inline void emit_div(unsigned int dst, unsigned int src,
405 struct jit_ctx *ctx)
406{
407 if (ctx->target != NULL) {
408 u32 *p = &ctx->target[ctx->idx];
409 uasm_i_divu(&p, dst, src);
410 p = &ctx->target[ctx->idx + 1];
411 uasm_i_mfhi(&p, dst);
412 }
413 ctx->idx += 2; /* 2 insts */
414}
415
416static inline void emit_mod(unsigned int dst, unsigned int src,
417 struct jit_ctx *ctx)
418{
419 if (ctx->target != NULL) {
420 u32 *p = &ctx->target[ctx->idx];
421 uasm_i_divu(&p, dst, src);
422 p = &ctx->target[ctx->idx + 1];
423 uasm_i_mflo(&p, dst);
424 }
425 ctx->idx += 2; /* 2 insts */
426}
427
428static inline void emit_dsll(unsigned int dst, unsigned int src,
429 unsigned int sa, struct jit_ctx *ctx)
430{
431 emit_instr(ctx, dsll, dst, src, sa);
432}
433
434static inline void emit_dsrl32(unsigned int dst, unsigned int src,
435 unsigned int sa, struct jit_ctx *ctx)
436{
437 emit_instr(ctx, dsrl32, dst, src, sa);
438}
439
440static inline void emit_wsbh(unsigned int dst, unsigned int src,
441 struct jit_ctx *ctx)
442{
443 emit_instr(ctx, wsbh, dst, src);
444}
445
446/* load a function pointer to register */
447static inline void emit_load_func(unsigned int reg, ptr imm,
448 struct jit_ctx *ctx)
449{
450 if (config_enabled(CONFIG_64BIT)) {
451 /* At this point imm is always 64-bit */
452 emit_load_imm(r_tmp, (u64)imm >> 32, ctx);
453 emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
454 emit_ori(r_tmp, r_tmp_imm, (imm >> 16) & 0xffff, ctx);
455 emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
456 emit_ori(reg, r_tmp_imm, imm & 0xffff, ctx);
457 } else {
458 emit_load_imm(reg, imm, ctx);
459 }
460}
461
462/* Move to real MIPS register */
463static inline void emit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
464{
465 if (config_enabled(CONFIG_64BIT))
466 emit_daddu(dst, src, r_zero, ctx);
467 else
468 emit_addu(dst, src, r_zero, ctx);
469}
470
471/* Move to JIT (32-bit) register */
472static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
473{
474 emit_addu(dst, src, r_zero, ctx);
475}
476
477/* Compute the immediate value for PC-relative branches. */
478static inline u32 b_imm(unsigned int tgt, struct jit_ctx *ctx)
479{
480 if (ctx->target == NULL)
481 return 0;
482
483 /*
484 * We want a pc-relative branch. We only do forward branches
485 * so tgt is always after pc. tgt is the instruction offset
486 * we want to jump to.
487
488 * Branch on MIPS:
489 * I: target_offset <- sign_extend(offset)
490 * I+1: PC += target_offset (delay slot)
491 *
492 * ctx->idx currently points to the branch instruction
493 * but the offset is added to the delay slot so we need
494 * to subtract 4.
495 */
496 return ctx->offsets[tgt] -
497 (ctx->idx * 4 - ctx->prologue_bytes) - 4;
498}
499
500static inline void emit_bcond(int cond, unsigned int reg1, unsigned int reg2,
501 unsigned int imm, struct jit_ctx *ctx)
502{
503 if (ctx->target != NULL) {
504 u32 *p = &ctx->target[ctx->idx];
505
506 switch (cond) {
507 case MIPS_COND_EQ:
508 uasm_i_beq(&p, reg1, reg2, imm);
509 break;
510 case MIPS_COND_NE:
511 uasm_i_bne(&p, reg1, reg2, imm);
512 break;
513 case MIPS_COND_ALL:
514 uasm_i_b(&p, imm);
515 break;
516 default:
517 pr_warn("%s: Unhandled branch conditional: %d\n",
518 __func__, cond);
519 }
520 }
521 ctx->idx++;
522}
523
524static inline void emit_b(unsigned int imm, struct jit_ctx *ctx)
525{
526 emit_bcond(MIPS_COND_ALL, r_zero, r_zero, imm, ctx);
527}
528
529static inline void emit_jalr(unsigned int link, unsigned int reg,
530 struct jit_ctx *ctx)
531{
532 emit_instr(ctx, jalr, link, reg);
533}
534
535static inline void emit_jr(unsigned int reg, struct jit_ctx *ctx)
536{
537 emit_instr(ctx, jr, reg);
538}
539
540static inline u16 align_sp(unsigned int num)
541{
542 /* Double word alignment for 32-bit, quadword for 64-bit */
543 unsigned int align = config_enabled(CONFIG_64BIT) ? 16 : 8;
544 num = (num + (align - 1)) & -align;
545 return num;
546}
547
548static inline void update_on_xread(struct jit_ctx *ctx)
549{
550 if (!(ctx->flags & SEEN_X))
551 ctx->flags |= FLAG_NEED_X_RESET;
552
553 ctx->flags |= SEEN_X;
554}
555
556static bool is_load_to_a(u16 inst)
557{
558 switch (inst) {
559 case BPF_S_LD_W_LEN:
560 case BPF_S_LD_W_ABS:
561 case BPF_S_LD_H_ABS:
562 case BPF_S_LD_B_ABS:
563 case BPF_S_ANC_CPU:
564 case BPF_S_ANC_IFINDEX:
565 case BPF_S_ANC_MARK:
566 case BPF_S_ANC_PROTOCOL:
567 case BPF_S_ANC_RXHASH:
568 case BPF_S_ANC_VLAN_TAG:
569 case BPF_S_ANC_VLAN_TAG_PRESENT:
570 case BPF_S_ANC_QUEUE:
571 return true;
572 default:
573 return false;
574 }
575}
576
577static void save_bpf_jit_regs(struct jit_ctx *ctx, unsigned offset)
578{
579 int i = 0, real_off = 0;
580 u32 sflags, tmp_flags;
581
582 /* Adjust the stack pointer */
583 emit_stack_offset(-align_sp(offset), ctx);
584
585 if (ctx->flags & SEEN_CALL) {
586 /* Argument save area */
587 if (config_enabled(CONFIG_64BIT))
588 /* Bottom of current frame */
589 real_off = align_sp(offset) - RSIZE;
590 else
591 /* Top of previous frame */
592 real_off = align_sp(offset) + RSIZE;
593 emit_store_stack_reg(MIPS_R_A0, r_sp, real_off, ctx);
594 emit_store_stack_reg(MIPS_R_A1, r_sp, real_off + RSIZE, ctx);
595
596 real_off = 0;
597 }
598
599 tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
600 /* sflags is essentially a bitmap */
601 while (tmp_flags) {
602 if ((sflags >> i) & 0x1) {
603 emit_store_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
604 ctx);
605 real_off += RSIZE;
606 }
607 i++;
608 tmp_flags >>= 1;
609 }
610
611 /* save return address */
612 if (ctx->flags & SEEN_CALL) {
613 emit_store_stack_reg(r_ra, r_sp, real_off, ctx);
614 real_off += RSIZE;
615 }
616
617 /* Setup r_M leaving the alignment gap if necessary */
618 if (ctx->flags & SEEN_MEM) {
619 if (real_off % (RSIZE * 2))
620 real_off += RSIZE;
621 emit_addiu(r_M, r_sp, real_off, ctx);
622 }
623}
624
625static void restore_bpf_jit_regs(struct jit_ctx *ctx,
626 unsigned int offset)
627{
628 int i, real_off = 0;
629 u32 sflags, tmp_flags;
630
631 if (ctx->flags & SEEN_CALL) {
632 if (config_enabled(CONFIG_64BIT))
633 /* Bottom of current frame */
634 real_off = align_sp(offset) - RSIZE;
635 else
636 /* Top of previous frame */
637 real_off = align_sp(offset) + RSIZE;
638 emit_load_stack_reg(MIPS_R_A0, r_sp, real_off, ctx);
639 emit_load_stack_reg(MIPS_R_A1, r_sp, real_off + RSIZE, ctx);
640
641 real_off = 0;
642 }
643
644 tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
645 /* sflags is a bitmap */
646 i = 0;
647 while (tmp_flags) {
648 if ((sflags >> i) & 0x1) {
649 emit_load_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
650 ctx);
651 real_off += RSIZE;
652 }
653 i++;
654 tmp_flags >>= 1;
655 }
656
657 /* restore return address */
658 if (ctx->flags & SEEN_CALL)
659 emit_load_stack_reg(r_ra, r_sp, real_off, ctx);
660
661 /* Restore the sp and discard the scrach memory */
662 emit_stack_offset(align_sp(offset), ctx);
663}
664
665static unsigned int get_stack_depth(struct jit_ctx *ctx)
666{
667 int sp_off = 0;
668
669
670 /* How may s* regs do we need to preserved? */
671 sp_off += hweight32(ctx->flags >> SEEN_SREG_SFT) * RSIZE;
672
673 if (ctx->flags & SEEN_MEM)
674 sp_off += 4 * BPF_MEMWORDS; /* BPF_MEMWORDS are 32-bit */
675
676 if (ctx->flags & SEEN_CALL)
677 /*
678 * The JIT code make calls to external functions using 2
679 * arguments. Therefore, for o32 we don't need to allocate
680 * space because we don't care if the argumetns are lost
681 * across calls. We do need however to preserve incoming
682 * arguments but the space is already allocated for us by
683 * the caller. On the other hand, for n64, we need to allocate
684 * this space ourselves. We need to preserve $ra as well.
685 */
686 sp_off += config_enabled(CONFIG_64BIT) ?
687 (ARGS_USED_BY_JIT + 1) * RSIZE : RSIZE;
688
689 /*
690 * Subtract the bytes for the last registers since we only care about
691 * the location on the stack pointer.
692 */
693 return sp_off - RSIZE;
694}
695
696static void build_prologue(struct jit_ctx *ctx)
697{
698 u16 first_inst = ctx->skf->insns[0].code;
699 int sp_off;
700
701 /* Calculate the total offset for the stack pointer */
702 sp_off = get_stack_depth(ctx);
703 save_bpf_jit_regs(ctx, sp_off);
704
705 if (ctx->flags & SEEN_SKB)
706 emit_reg_move(r_skb, MIPS_R_A0, ctx);
707
708 if (ctx->flags & FLAG_NEED_X_RESET)
709 emit_jit_reg_move(r_X, r_zero, ctx);
710
711 /* Do not leak kernel data to userspace */
712 if ((first_inst != BPF_S_RET_K) && !(is_load_to_a(first_inst)))
713 emit_jit_reg_move(r_A, r_zero, ctx);
714}
715
716static void build_epilogue(struct jit_ctx *ctx)
717{
718 unsigned int sp_off;
719
720 /* Calculate the total offset for the stack pointer */
721
722 sp_off = get_stack_depth(ctx);
723 restore_bpf_jit_regs(ctx, sp_off);
724
725 /* Return */
726 emit_jr(r_ra, ctx);
727 emit_nop(ctx);
728}
729
730static u64 jit_get_skb_b(struct sk_buff *skb, unsigned offset)
731{
732 u8 ret;
733 int err;
734
735 err = skb_copy_bits(skb, offset, &ret, 1);
736
737 return (u64)err << 32 | ret;
738}
739
740static u64 jit_get_skb_h(struct sk_buff *skb, unsigned offset)
741{
742 u16 ret;
743 int err;
744
745 err = skb_copy_bits(skb, offset, &ret, 2);
746
747 return (u64)err << 32 | ntohs(ret);
748}
749
750static u64 jit_get_skb_w(struct sk_buff *skb, unsigned offset)
751{
752 u32 ret;
753 int err;
754
755 err = skb_copy_bits(skb, offset, &ret, 4);
756
757 return (u64)err << 32 | ntohl(ret);
758}
759
760#define PKT_TYPE_MAX 7
761static int pkt_type_offset(void)
762{
763 struct sk_buff skb_probe = {
764 .pkt_type = ~0,
765 };
766 char *ct = (char *)&skb_probe;
767 unsigned int off;
768
769 for (off = 0; off < sizeof(struct sk_buff); off++) {
770 if (ct[off] == PKT_TYPE_MAX)
771 return off;
772 }
773 pr_err_once("Please fix pkt_type_offset(), as pkt_type couldn't be found\n");
774 return -1;
775}
776
777static int build_body(struct jit_ctx *ctx)
778{
779 void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
780 const struct sk_filter *prog = ctx->skf;
781 const struct sock_filter *inst;
782 unsigned int i, off, load_order, condt;
783 u32 k, b_off __maybe_unused;
784
785 for (i = 0; i < prog->len; i++) {
786 inst = &(prog->insns[i]);
787 pr_debug("%s: code->0x%02x, jt->0x%x, jf->0x%x, k->0x%x\n",
788 __func__, inst->code, inst->jt, inst->jf, inst->k);
789 k = inst->k;
790
791 if (ctx->target == NULL)
792 ctx->offsets[i] = ctx->idx * 4;
793
794 switch (inst->code) {
795 case BPF_S_LD_IMM:
796 /* A <- k ==> li r_A, k */
797 ctx->flags |= SEEN_A;
798 emit_load_imm(r_A, k, ctx);
799 break;
800 case BPF_S_LD_W_LEN:
801 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
802 /* A <- len ==> lw r_A, offset(skb) */
803 ctx->flags |= SEEN_SKB | SEEN_A;
804 off = offsetof(struct sk_buff, len);
805 emit_load(r_A, r_skb, off, ctx);
806 break;
807 case BPF_S_LD_MEM:
808 /* A <- M[k] ==> lw r_A, offset(M) */
809 ctx->flags |= SEEN_MEM | SEEN_A;
810 emit_load(r_A, r_M, SCRATCH_OFF(k), ctx);
811 break;
812 case BPF_S_LD_W_ABS:
813 /* A <- P[k:4] */
814 load_order = 2;
815 goto load;
816 case BPF_S_LD_H_ABS:
817 /* A <- P[k:2] */
818 load_order = 1;
819 goto load;
820 case BPF_S_LD_B_ABS:
821 /* A <- P[k:1] */
822 load_order = 0;
823load:
824 emit_load_imm(r_off, k, ctx);
825load_common:
826 ctx->flags |= SEEN_CALL | SEEN_OFF | SEEN_S0 |
827 SEEN_SKB | SEEN_A;
828
829 emit_load_func(r_s0, (ptr)load_func[load_order],
830 ctx);
831 emit_reg_move(MIPS_R_A0, r_skb, ctx);
832 emit_jalr(MIPS_R_RA, r_s0, ctx);
833 /* Load second argument to delay slot */
834 emit_reg_move(MIPS_R_A1, r_off, ctx);
835 /* Check the error value */
836 if (config_enabled(CONFIG_64BIT)) {
837 /* Get error code from the top 32-bits */
838 emit_dsrl32(r_s0, r_val, 0, ctx);
839 /* Branch to 3 instructions ahead */
840 emit_bcond(MIPS_COND_NE, r_s0, r_zero, 3 << 2,
841 ctx);
842 } else {
843 /* Branch to 3 instructions ahead */
844 emit_bcond(MIPS_COND_NE, r_err, r_zero, 3 << 2,
845 ctx);
846 }
847 emit_nop(ctx);
848 /* We are good */
849 emit_b(b_imm(i + 1, ctx), ctx);
850 emit_jit_reg_move(r_A, r_val, ctx);
851 /* Return with error */
852 emit_b(b_imm(prog->len, ctx), ctx);
853 emit_reg_move(r_ret, r_zero, ctx);
854 break;
855 case BPF_S_LD_W_IND:
856 /* A <- P[X + k:4] */
857 load_order = 2;
858 goto load_ind;
859 case BPF_S_LD_H_IND:
860 /* A <- P[X + k:2] */
861 load_order = 1;
862 goto load_ind;
863 case BPF_S_LD_B_IND:
864 /* A <- P[X + k:1] */
865 load_order = 0;
866load_ind:
867 update_on_xread(ctx);
868 ctx->flags |= SEEN_OFF | SEEN_X;
869 emit_addiu(r_off, r_X, k, ctx);
870 goto load_common;
871 case BPF_S_LDX_IMM:
872 /* X <- k */
873 ctx->flags |= SEEN_X;
874 emit_load_imm(r_X, k, ctx);
875 break;
876 case BPF_S_LDX_MEM:
877 /* X <- M[k] */
878 ctx->flags |= SEEN_X | SEEN_MEM;
879 emit_load(r_X, r_M, SCRATCH_OFF(k), ctx);
880 break;
881 case BPF_S_LDX_W_LEN:
882 /* X <- len */
883 ctx->flags |= SEEN_X | SEEN_SKB;
884 off = offsetof(struct sk_buff, len);
885 emit_load(r_X, r_skb, off, ctx);
886 break;
887 case BPF_S_LDX_B_MSH:
888 /* X <- 4 * (P[k:1] & 0xf) */
889 ctx->flags |= SEEN_X | SEEN_CALL | SEEN_S0 | SEEN_SKB;
890 /* Load offset to a1 */
891 emit_load_func(r_s0, (ptr)jit_get_skb_b, ctx);
892 /*
893 * This may emit two instructions so it may not fit
894 * in the delay slot. So use a0 in the delay slot.
895 */
896 emit_load_imm(MIPS_R_A1, k, ctx);
897 emit_jalr(MIPS_R_RA, r_s0, ctx);
898 emit_reg_move(MIPS_R_A0, r_skb, ctx); /* delay slot */
899 /* Check the error value */
900 if (config_enabled(CONFIG_64BIT)) {
901 /* Top 32-bits of $v0 on 64-bit */
902 emit_dsrl32(r_s0, r_val, 0, ctx);
903 emit_bcond(MIPS_COND_NE, r_s0, r_zero,
904 3 << 2, ctx);
905 } else {
906 emit_bcond(MIPS_COND_NE, r_err, r_zero,
907 3 << 2, ctx);
908 }
909 /* No need for delay slot */
910 /* We are good */
911 /* X <- P[1:K] & 0xf */
912 emit_andi(r_X, r_val, 0xf, ctx);
913 /* X << 2 */
914 emit_b(b_imm(i + 1, ctx), ctx);
915 emit_sll(r_X, r_X, 2, ctx); /* delay slot */
916 /* Return with error */
917 emit_b(b_imm(prog->len, ctx), ctx);
918 emit_load_imm(r_ret, 0, ctx); /* delay slot */
919 break;
920 case BPF_S_ST:
921 /* M[k] <- A */
922 ctx->flags |= SEEN_MEM | SEEN_A;
923 emit_store(r_A, r_M, SCRATCH_OFF(k), ctx);
924 break;
925 case BPF_S_STX:
926 /* M[k] <- X */
927 ctx->flags |= SEEN_MEM | SEEN_X;
928 emit_store(r_X, r_M, SCRATCH_OFF(k), ctx);
929 break;
930 case BPF_S_ALU_ADD_K:
931 /* A += K */
932 ctx->flags |= SEEN_A;
933 emit_addiu(r_A, r_A, k, ctx);
934 break;
935 case BPF_S_ALU_ADD_X:
936 /* A += X */
937 ctx->flags |= SEEN_A | SEEN_X;
938 emit_addu(r_A, r_A, r_X, ctx);
939 break;
940 case BPF_S_ALU_SUB_K:
941 /* A -= K */
942 ctx->flags |= SEEN_A;
943 emit_addiu(r_A, r_A, -k, ctx);
944 break;
945 case BPF_S_ALU_SUB_X:
946 /* A -= X */
947 ctx->flags |= SEEN_A | SEEN_X;
948 emit_subu(r_A, r_A, r_X, ctx);
949 break;
950 case BPF_S_ALU_MUL_K:
951 /* A *= K */
952 /* Load K to scratch register before MUL */
953 ctx->flags |= SEEN_A | SEEN_S0;
954 emit_load_imm(r_s0, k, ctx);
955 emit_mul(r_A, r_A, r_s0, ctx);
956 break;
957 case BPF_S_ALU_MUL_X:
958 /* A *= X */
959 update_on_xread(ctx);
960 ctx->flags |= SEEN_A | SEEN_X;
961 emit_mul(r_A, r_A, r_X, ctx);
962 break;
963 case BPF_S_ALU_DIV_K:
964 /* A /= k */
965 if (k == 1)
966 break;
967 if (optimize_div(&k)) {
968 ctx->flags |= SEEN_A;
969 emit_srl(r_A, r_A, k, ctx);
970 break;
971 }
972 ctx->flags |= SEEN_A | SEEN_S0;
973 emit_load_imm(r_s0, k, ctx);
974 emit_div(r_A, r_s0, ctx);
975 break;
976 case BPF_S_ALU_MOD_K:
977 /* A %= k */
978 if (k == 1 || optimize_div(&k)) {
979 ctx->flags |= SEEN_A;
980 emit_jit_reg_move(r_A, r_zero, ctx);
981 } else {
982 ctx->flags |= SEEN_A | SEEN_S0;
983 emit_load_imm(r_s0, k, ctx);
984 emit_mod(r_A, r_s0, ctx);
985 }
986 break;
987 case BPF_S_ALU_DIV_X:
988 /* A /= X */
989 update_on_xread(ctx);
990 ctx->flags |= SEEN_X | SEEN_A;
991 /* Check if r_X is zero */
992 emit_bcond(MIPS_COND_EQ, r_X, r_zero,
993 b_imm(prog->len, ctx), ctx);
994 emit_load_imm(r_val, 0, ctx); /* delay slot */
995 emit_div(r_A, r_X, ctx);
996 break;
997 case BPF_S_ALU_MOD_X:
998 /* A %= X */
999 update_on_xread(ctx);
1000 ctx->flags |= SEEN_X | SEEN_A;
1001 /* Check if r_X is zero */
1002 emit_bcond(MIPS_COND_EQ, r_X, r_zero,
1003 b_imm(prog->len, ctx), ctx);
1004 emit_load_imm(r_val, 0, ctx); /* delay slot */
1005 emit_mod(r_A, r_X, ctx);
1006 break;
1007 case BPF_S_ALU_OR_K:
1008 /* A |= K */
1009 ctx->flags |= SEEN_A;
1010 emit_ori(r_A, r_A, k, ctx);
1011 break;
1012 case BPF_S_ALU_OR_X:
1013 /* A |= X */
1014 update_on_xread(ctx);
1015 ctx->flags |= SEEN_A;
1016 emit_ori(r_A, r_A, r_X, ctx);
1017 break;
1018 case BPF_S_ALU_XOR_K:
1019 /* A ^= k */
1020 ctx->flags |= SEEN_A;
1021 emit_xori(r_A, r_A, k, ctx);
1022 break;
1023 case BPF_S_ANC_ALU_XOR_X:
1024 case BPF_S_ALU_XOR_X:
1025 /* A ^= X */
1026 update_on_xread(ctx);
1027 ctx->flags |= SEEN_A;
1028 emit_xor(r_A, r_A, r_X, ctx);
1029 break;
1030 case BPF_S_ALU_AND_K:
1031 /* A &= K */
1032 ctx->flags |= SEEN_A;
1033 emit_andi(r_A, r_A, k, ctx);
1034 break;
1035 case BPF_S_ALU_AND_X:
1036 /* A &= X */
1037 update_on_xread(ctx);
1038 ctx->flags |= SEEN_A | SEEN_X;
1039 emit_and(r_A, r_A, r_X, ctx);
1040 break;
1041 case BPF_S_ALU_LSH_K:
1042 /* A <<= K */
1043 ctx->flags |= SEEN_A;
1044 emit_sll(r_A, r_A, k, ctx);
1045 break;
1046 case BPF_S_ALU_LSH_X:
1047 /* A <<= X */
1048 ctx->flags |= SEEN_A | SEEN_X;
1049 update_on_xread(ctx);
1050 emit_sllv(r_A, r_A, r_X, ctx);
1051 break;
1052 case BPF_S_ALU_RSH_K:
1053 /* A >>= K */
1054 ctx->flags |= SEEN_A;
1055 emit_srl(r_A, r_A, k, ctx);
1056 break;
1057 case BPF_S_ALU_RSH_X:
1058 ctx->flags |= SEEN_A | SEEN_X;
1059 update_on_xread(ctx);
1060 emit_srlv(r_A, r_A, r_X, ctx);
1061 break;
1062 case BPF_S_ALU_NEG:
1063 /* A = -A */
1064 ctx->flags |= SEEN_A;
1065 emit_neg(r_A, ctx);
1066 break;
1067 case BPF_S_JMP_JA:
1068 /* pc += K */
1069 emit_b(b_imm(i + k + 1, ctx), ctx);
1070 emit_nop(ctx);
1071 break;
1072 case BPF_S_JMP_JEQ_K:
1073 /* pc += ( A == K ) ? pc->jt : pc->jf */
1074 condt = MIPS_COND_EQ | MIPS_COND_K;
1075 goto jmp_cmp;
1076 case BPF_S_JMP_JEQ_X:
1077 ctx->flags |= SEEN_X;
1078 /* pc += ( A == X ) ? pc->jt : pc->jf */
1079 condt = MIPS_COND_EQ | MIPS_COND_X;
1080 goto jmp_cmp;
1081 case BPF_S_JMP_JGE_K:
1082 /* pc += ( A >= K ) ? pc->jt : pc->jf */
1083 condt = MIPS_COND_GE | MIPS_COND_K;
1084 goto jmp_cmp;
1085 case BPF_S_JMP_JGE_X:
1086 ctx->flags |= SEEN_X;
1087 /* pc += ( A >= X ) ? pc->jt : pc->jf */
1088 condt = MIPS_COND_GE | MIPS_COND_X;
1089 goto jmp_cmp;
1090 case BPF_S_JMP_JGT_K:
1091 /* pc += ( A > K ) ? pc->jt : pc->jf */
1092 condt = MIPS_COND_GT | MIPS_COND_K;
1093 goto jmp_cmp;
1094 case BPF_S_JMP_JGT_X:
1095 ctx->flags |= SEEN_X;
1096 /* pc += ( A > X ) ? pc->jt : pc->jf */
1097 condt = MIPS_COND_GT | MIPS_COND_X;
1098jmp_cmp:
1099 /* Greater or Equal */
1100 if ((condt & MIPS_COND_GE) ||
1101 (condt & MIPS_COND_GT)) {
1102 if (condt & MIPS_COND_K) { /* K */
1103 ctx->flags |= SEEN_S0 | SEEN_A;
1104 emit_sltiu(r_s0, r_A, k, ctx);
1105 } else { /* X */
1106 ctx->flags |= SEEN_S0 | SEEN_A |
1107 SEEN_X;
1108 emit_sltu(r_s0, r_A, r_X, ctx);
1109 }
1110 /* A < (K|X) ? r_scrach = 1 */
1111 b_off = b_imm(i + inst->jf + 1, ctx);
1112 emit_bcond(MIPS_COND_GT, r_s0, r_zero, b_off,
1113 ctx);
1114 emit_nop(ctx);
1115 /* A > (K|X) ? scratch = 0 */
1116 if (condt & MIPS_COND_GT) {
1117 /* Checking for equality */
1118 ctx->flags |= SEEN_S0 | SEEN_A | SEEN_X;
1119 if (condt & MIPS_COND_K)
1120 emit_load_imm(r_s0, k, ctx);
1121 else
1122 emit_jit_reg_move(r_s0, r_X,
1123 ctx);
1124 b_off = b_imm(i + inst->jf + 1, ctx);
1125 emit_bcond(MIPS_COND_EQ, r_A, r_s0,
1126 b_off, ctx);
1127 emit_nop(ctx);
1128 /* Finally, A > K|X */
1129 b_off = b_imm(i + inst->jt + 1, ctx);
1130 emit_b(b_off, ctx);
1131 emit_nop(ctx);
1132 } else {
1133 /* A >= (K|X) so jump */
1134 b_off = b_imm(i + inst->jt + 1, ctx);
1135 emit_b(b_off, ctx);
1136 emit_nop(ctx);
1137 }
1138 } else {
1139 /* A == K|X */
1140 if (condt & MIPS_COND_K) { /* K */
1141 ctx->flags |= SEEN_S0 | SEEN_A;
1142 emit_load_imm(r_s0, k, ctx);
1143 /* jump true */
1144 b_off = b_imm(i + inst->jt + 1, ctx);
1145 emit_bcond(MIPS_COND_EQ, r_A, r_s0,
1146 b_off, ctx);
1147 emit_nop(ctx);
1148 /* jump false */
1149 b_off = b_imm(i + inst->jf + 1,
1150 ctx);
1151 emit_bcond(MIPS_COND_NE, r_A, r_s0,
1152 b_off, ctx);
1153 emit_nop(ctx);
1154 } else { /* X */
1155 /* jump true */
1156 ctx->flags |= SEEN_A | SEEN_X;
1157 b_off = b_imm(i + inst->jt + 1,
1158 ctx);
1159 emit_bcond(MIPS_COND_EQ, r_A, r_X,
1160 b_off, ctx);
1161 emit_nop(ctx);
1162 /* jump false */
1163 b_off = b_imm(i + inst->jf + 1, ctx);
1164 emit_bcond(MIPS_COND_NE, r_A, r_X,
1165 b_off, ctx);
1166 emit_nop(ctx);
1167 }
1168 }
1169 break;
1170 case BPF_S_JMP_JSET_K:
1171 ctx->flags |= SEEN_S0 | SEEN_S1 | SEEN_A;
1172 /* pc += (A & K) ? pc -> jt : pc -> jf */
1173 emit_load_imm(r_s1, k, ctx);
1174 emit_and(r_s0, r_A, r_s1, ctx);
1175 /* jump true */
1176 b_off = b_imm(i + inst->jt + 1, ctx);
1177 emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1178 emit_nop(ctx);
1179 /* jump false */
1180 b_off = b_imm(i + inst->jf + 1, ctx);
1181 emit_b(b_off, ctx);
1182 emit_nop(ctx);
1183 break;
1184 case BPF_S_JMP_JSET_X:
1185 ctx->flags |= SEEN_S0 | SEEN_X | SEEN_A;
1186 /* pc += (A & X) ? pc -> jt : pc -> jf */
1187 emit_and(r_s0, r_A, r_X, ctx);
1188 /* jump true */
1189 b_off = b_imm(i + inst->jt + 1, ctx);
1190 emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1191 emit_nop(ctx);
1192 /* jump false */
1193 b_off = b_imm(i + inst->jf + 1, ctx);
1194 emit_b(b_off, ctx);
1195 emit_nop(ctx);
1196 break;
1197 case BPF_S_RET_A:
1198 ctx->flags |= SEEN_A;
1199 if (i != prog->len - 1)
1200 /*
1201 * If this is not the last instruction
1202 * then jump to the epilogue
1203 */
1204 emit_b(b_imm(prog->len, ctx), ctx);
1205 emit_reg_move(r_ret, r_A, ctx); /* delay slot */
1206 break;
1207 case BPF_S_RET_K:
1208 /*
1209 * It can emit two instructions so it does not fit on
1210 * the delay slot.
1211 */
1212 emit_load_imm(r_ret, k, ctx);
1213 if (i != prog->len - 1) {
1214 /*
1215 * If this is not the last instruction
1216 * then jump to the epilogue
1217 */
1218 emit_b(b_imm(prog->len, ctx), ctx);
1219 emit_nop(ctx);
1220 }
1221 break;
1222 case BPF_S_MISC_TAX:
1223 /* X = A */
1224 ctx->flags |= SEEN_X | SEEN_A;
1225 emit_jit_reg_move(r_X, r_A, ctx);
1226 break;
1227 case BPF_S_MISC_TXA:
1228 /* A = X */
1229 ctx->flags |= SEEN_A | SEEN_X;
1230 update_on_xread(ctx);
1231 emit_jit_reg_move(r_A, r_X, ctx);
1232 break;
1233 /* AUX */
1234 case BPF_S_ANC_PROTOCOL:
1235 /* A = ntohs(skb->protocol */
1236 ctx->flags |= SEEN_SKB | SEEN_OFF | SEEN_A;
1237 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
1238 protocol) != 2);
1239 off = offsetof(struct sk_buff, protocol);
1240 emit_half_load(r_A, r_skb, off, ctx);
1241#ifdef CONFIG_CPU_LITTLE_ENDIAN
1242 /* This needs little endian fixup */
1243 if (!cpu_has_mips_r2) {
1244 /* Get first byte */
1245 emit_andi(r_tmp_imm, r_A, 0xff, ctx);
1246 /* Shift it */
1247 emit_sll(r_tmp, r_tmp_imm, 8, ctx);
1248 /* Get second byte */
1249 emit_srl(r_tmp_imm, r_A, 8, ctx);
1250 emit_andi(r_tmp_imm, r_tmp_imm, 0xff, ctx);
1251 /* Put everyting together in r_A */
1252 emit_or(r_A, r_tmp, r_tmp_imm, ctx);
1253 } else {
1254 /* R2 and later have the wsbh instruction */
1255 emit_wsbh(r_A, r_A, ctx);
1256 }
1257#endif
1258 break;
1259 case BPF_S_ANC_CPU:
1260 ctx->flags |= SEEN_A | SEEN_OFF;
1261 /* A = current_thread_info()->cpu */
1262 BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info,
1263 cpu) != 4);
1264 off = offsetof(struct thread_info, cpu);
1265 /* $28/gp points to the thread_info struct */
1266 emit_load(r_A, 28, off, ctx);
1267 break;
1268 case BPF_S_ANC_IFINDEX:
1269 /* A = skb->dev->ifindex */
1270 ctx->flags |= SEEN_SKB | SEEN_A | SEEN_S0;
1271 off = offsetof(struct sk_buff, dev);
1272 emit_load(r_s0, r_skb, off, ctx);
1273 /* error (0) in the delay slot */
1274 emit_bcond(MIPS_COND_EQ, r_s0, r_zero,
1275 b_imm(prog->len, ctx), ctx);
1276 emit_reg_move(r_ret, r_zero, ctx);
1277 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
1278 ifindex) != 4);
1279 off = offsetof(struct net_device, ifindex);
1280 emit_load(r_A, r_s0, off, ctx);
1281 break;
1282 case BPF_S_ANC_MARK:
1283 ctx->flags |= SEEN_SKB | SEEN_A;
1284 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
1285 off = offsetof(struct sk_buff, mark);
1286 emit_load(r_A, r_skb, off, ctx);
1287 break;
1288 case BPF_S_ANC_RXHASH:
1289 ctx->flags |= SEEN_SKB | SEEN_A;
1290 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
1291 off = offsetof(struct sk_buff, hash);
1292 emit_load(r_A, r_skb, off, ctx);
1293 break;
1294 case BPF_S_ANC_VLAN_TAG:
1295 case BPF_S_ANC_VLAN_TAG_PRESENT:
1296 ctx->flags |= SEEN_SKB | SEEN_S0 | SEEN_A;
1297 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
1298 vlan_tci) != 2);
1299 off = offsetof(struct sk_buff, vlan_tci);
1300 emit_half_load(r_s0, r_skb, off, ctx);
1301 if (inst->code == BPF_S_ANC_VLAN_TAG)
1302 emit_and(r_A, r_s0, VLAN_VID_MASK, ctx);
1303 else
1304 emit_and(r_A, r_s0, VLAN_TAG_PRESENT, ctx);
1305 break;
1306 case BPF_S_ANC_PKTTYPE:
1307 off = pkt_type_offset();
1308
1309 if (off < 0)
1310 return -1;
1311 emit_load_byte(r_tmp, r_skb, off, ctx);
1312 /* Keep only the last 3 bits */
1313 emit_andi(r_A, r_tmp, PKT_TYPE_MAX, ctx);
1314 break;
1315 case BPF_S_ANC_QUEUE:
1316 ctx->flags |= SEEN_SKB | SEEN_A;
1317 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
1318 queue_mapping) != 2);
1319 BUILD_BUG_ON(offsetof(struct sk_buff,
1320 queue_mapping) > 0xff);
1321 off = offsetof(struct sk_buff, queue_mapping);
1322 emit_half_load(r_A, r_skb, off, ctx);
1323 break;
1324 default:
1325 pr_warn("%s: Unhandled opcode: 0x%02x\n", __FILE__,
1326 inst->code);
1327 return -1;
1328 }
1329 }
1330
1331 /* compute offsets only during the first pass */
1332 if (ctx->target == NULL)
1333 ctx->offsets[i] = ctx->idx * 4;
1334
1335 return 0;
1336}
1337
1338int bpf_jit_enable __read_mostly;
1339
1340void bpf_jit_compile(struct sk_filter *fp)
1341{
1342 struct jit_ctx ctx;
1343 unsigned int alloc_size, tmp_idx;
1344
1345 if (!bpf_jit_enable)
1346 return;
1347
1348 memset(&ctx, 0, sizeof(ctx));
1349
1350 ctx.offsets = kcalloc(fp->len, sizeof(*ctx.offsets), GFP_KERNEL);
1351 if (ctx.offsets == NULL)
1352 return;
1353
1354 ctx.skf = fp;
1355
1356 if (build_body(&ctx))
1357 goto out;
1358
1359 tmp_idx = ctx.idx;
1360 build_prologue(&ctx);
1361 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1362 /* just to complete the ctx.idx count */
1363 build_epilogue(&ctx);
1364
1365 alloc_size = 4 * ctx.idx;
1366 ctx.target = module_alloc(alloc_size);
1367 if (ctx.target == NULL)
1368 goto out;
1369
1370 /* Clean it */
1371 memset(ctx.target, 0, alloc_size);
1372
1373 ctx.idx = 0;
1374
1375 /* Generate the actual JIT code */
1376 build_prologue(&ctx);
1377 build_body(&ctx);
1378 build_epilogue(&ctx);
1379
1380 /* Update the icache */
1381 flush_icache_range((ptr)ctx.target, (ptr)(ctx.target + ctx.idx));
1382
1383 if (bpf_jit_enable > 1)
1384 /* Dump JIT code */
1385 bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1386
1387 fp->bpf_func = (void *)ctx.target;
1388 fp->jited = 1;
1389
1390out:
1391 kfree(ctx.offsets);
1392}
1393
1394void bpf_jit_free(struct sk_filter *fp)
1395{
1396 if (fp->jited)
1397 module_free(NULL, fp->bpf_func);
1398 kfree(fp);
1399}