blob: be1e8acd105d1f50b1d0a553d05994345d52ad9f [file] [log] [blame]
Chris Metcalf867e3592010-05-28 23:09:12 -04001/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/cache.h>
16#include <linux/delay.h>
17#include <linux/uaccess.h>
18#include <linux/module.h>
19#include <linux/mm.h>
20#include <asm/atomic.h>
21#include <arch/chip.h>
22
23/* The routines in atomic_asm.S are private, so we only declare them here. */
24extern struct __get_user __atomic_cmpxchg(volatile int *p,
25 int *lock, int o, int n);
26extern struct __get_user __atomic_xchg(volatile int *p, int *lock, int n);
27extern struct __get_user __atomic_xchg_add(volatile int *p, int *lock, int n);
28extern struct __get_user __atomic_xchg_add_unless(volatile int *p,
29 int *lock, int o, int n);
30extern struct __get_user __atomic_or(volatile int *p, int *lock, int n);
31extern struct __get_user __atomic_andn(volatile int *p, int *lock, int n);
32extern struct __get_user __atomic_xor(volatile int *p, int *lock, int n);
33
34extern u64 __atomic64_cmpxchg(volatile u64 *p, int *lock, u64 o, u64 n);
35extern u64 __atomic64_xchg(volatile u64 *p, int *lock, u64 n);
36extern u64 __atomic64_xchg_add(volatile u64 *p, int *lock, u64 n);
37extern u64 __atomic64_xchg_add_unless(volatile u64 *p,
38 int *lock, u64 o, u64 n);
39
40
41/* See <asm/atomic.h> */
42#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
43
44/*
45 * A block of memory containing locks for atomic ops. Each instance of this
46 * struct will be homed on a different CPU.
47 */
48struct atomic_locks_on_cpu {
49 int lock[ATOMIC_HASH_L2_SIZE];
50} __attribute__((aligned(ATOMIC_HASH_L2_SIZE * 4)));
51
52static DEFINE_PER_CPU(struct atomic_locks_on_cpu, atomic_lock_pool);
53
54/* The locks we'll use until __init_atomic_per_cpu is called. */
55static struct atomic_locks_on_cpu __initdata initial_atomic_locks;
56
57/* Hash into this vector to get a pointer to lock for the given atomic. */
58struct atomic_locks_on_cpu *atomic_lock_ptr[ATOMIC_HASH_L1_SIZE]
59 __write_once = {
60 [0 ... ATOMIC_HASH_L1_SIZE-1] (&initial_atomic_locks)
61};
62
63#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
64
65/* This page is remapped on startup to be hash-for-home. */
66int atomic_locks[PAGE_SIZE / sizeof(int) /* Only ATOMIC_HASH_SIZE is used */]
67 __attribute__((aligned(PAGE_SIZE), section(".bss.page_aligned")));
68
69#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
70
71static inline int *__atomic_hashed_lock(volatile void *v)
72{
73 /* NOTE: this code must match "sys_cmpxchg" in kernel/intvec.S */
74#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
75 unsigned long i =
76 (unsigned long) v & ((PAGE_SIZE-1) & -sizeof(long long));
77 unsigned long n = __insn_crc32_32(0, i);
78
79 /* Grab high bits for L1 index. */
80 unsigned long l1_index = n >> ((sizeof(n) * 8) - ATOMIC_HASH_L1_SHIFT);
81 /* Grab low bits for L2 index. */
82 unsigned long l2_index = n & (ATOMIC_HASH_L2_SIZE - 1);
83
84 return &atomic_lock_ptr[l1_index]->lock[l2_index];
85#else
86 /*
87 * Use bits [3, 3 + ATOMIC_HASH_SHIFT) as the lock index.
88 * Using mm works here because atomic_locks is page aligned.
89 */
90 unsigned long ptr = __insn_mm((unsigned long)v >> 1,
91 (unsigned long)atomic_locks,
92 2, (ATOMIC_HASH_SHIFT + 2) - 1);
93 return (int *)ptr;
94#endif
95}
96
97#ifdef CONFIG_SMP
98/* Return whether the passed pointer is a valid atomic lock pointer. */
99static int is_atomic_lock(int *p)
100{
101#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
102 int i;
103 for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) {
104
105 if (p >= &atomic_lock_ptr[i]->lock[0] &&
106 p < &atomic_lock_ptr[i]->lock[ATOMIC_HASH_L2_SIZE]) {
107 return 1;
108 }
109 }
110 return 0;
111#else
112 return p >= &atomic_locks[0] && p < &atomic_locks[ATOMIC_HASH_SIZE];
113#endif
114}
115
116void __atomic_fault_unlock(int *irqlock_word)
117{
118 BUG_ON(!is_atomic_lock(irqlock_word));
119 BUG_ON(*irqlock_word != 1);
120 *irqlock_word = 0;
121}
122
123#endif /* CONFIG_SMP */
124
125static inline int *__atomic_setup(volatile void *v)
126{
127 /* Issue a load to the target to bring it into cache. */
128 *(volatile int *)v;
129 return __atomic_hashed_lock(v);
130}
131
132int _atomic_xchg(atomic_t *v, int n)
133{
134 return __atomic_xchg(&v->counter, __atomic_setup(v), n).val;
135}
136EXPORT_SYMBOL(_atomic_xchg);
137
138int _atomic_xchg_add(atomic_t *v, int i)
139{
140 return __atomic_xchg_add(&v->counter, __atomic_setup(v), i).val;
141}
142EXPORT_SYMBOL(_atomic_xchg_add);
143
144int _atomic_xchg_add_unless(atomic_t *v, int a, int u)
145{
146 /*
147 * Note: argument order is switched here since it is easier
148 * to use the first argument consistently as the "old value"
149 * in the assembly, as is done for _atomic_cmpxchg().
150 */
151 return __atomic_xchg_add_unless(&v->counter, __atomic_setup(v), u, a)
152 .val;
153}
154EXPORT_SYMBOL(_atomic_xchg_add_unless);
155
156int _atomic_cmpxchg(atomic_t *v, int o, int n)
157{
158 return __atomic_cmpxchg(&v->counter, __atomic_setup(v), o, n).val;
159}
160EXPORT_SYMBOL(_atomic_cmpxchg);
161
162unsigned long _atomic_or(volatile unsigned long *p, unsigned long mask)
163{
164 return __atomic_or((int *)p, __atomic_setup(p), mask).val;
165}
166EXPORT_SYMBOL(_atomic_or);
167
168unsigned long _atomic_andn(volatile unsigned long *p, unsigned long mask)
169{
170 return __atomic_andn((int *)p, __atomic_setup(p), mask).val;
171}
172EXPORT_SYMBOL(_atomic_andn);
173
174unsigned long _atomic_xor(volatile unsigned long *p, unsigned long mask)
175{
176 return __atomic_xor((int *)p, __atomic_setup(p), mask).val;
177}
178EXPORT_SYMBOL(_atomic_xor);
179
180
181u64 _atomic64_xchg(atomic64_t *v, u64 n)
182{
183 return __atomic64_xchg(&v->counter, __atomic_setup(v), n);
184}
185EXPORT_SYMBOL(_atomic64_xchg);
186
187u64 _atomic64_xchg_add(atomic64_t *v, u64 i)
188{
189 return __atomic64_xchg_add(&v->counter, __atomic_setup(v), i);
190}
191EXPORT_SYMBOL(_atomic64_xchg_add);
192
193u64 _atomic64_xchg_add_unless(atomic64_t *v, u64 a, u64 u)
194{
195 /*
196 * Note: argument order is switched here since it is easier
197 * to use the first argument consistently as the "old value"
198 * in the assembly, as is done for _atomic_cmpxchg().
199 */
200 return __atomic64_xchg_add_unless(&v->counter, __atomic_setup(v),
201 u, a);
202}
203EXPORT_SYMBOL(_atomic64_xchg_add_unless);
204
205u64 _atomic64_cmpxchg(atomic64_t *v, u64 o, u64 n)
206{
207 return __atomic64_cmpxchg(&v->counter, __atomic_setup(v), o, n);
208}
209EXPORT_SYMBOL(_atomic64_cmpxchg);
210
211
212static inline int *__futex_setup(__user int *v)
213{
214 /*
215 * Issue a prefetch to the counter to bring it into cache.
216 * As for __atomic_setup, but we can't do a read into the L1
217 * since it might fault; instead we do a prefetch into the L2.
218 */
219 __insn_prefetch(v);
220 return __atomic_hashed_lock(v);
221}
222
223struct __get_user futex_set(int *v, int i)
224{
225 return __atomic_xchg(v, __futex_setup(v), i);
226}
227
228struct __get_user futex_add(int *v, int n)
229{
230 return __atomic_xchg_add(v, __futex_setup(v), n);
231}
232
233struct __get_user futex_or(int *v, int n)
234{
235 return __atomic_or(v, __futex_setup(v), n);
236}
237
238struct __get_user futex_andn(int *v, int n)
239{
240 return __atomic_andn(v, __futex_setup(v), n);
241}
242
243struct __get_user futex_xor(int *v, int n)
244{
245 return __atomic_xor(v, __futex_setup(v), n);
246}
247
248struct __get_user futex_cmpxchg(int *v, int o, int n)
249{
250 return __atomic_cmpxchg(v, __futex_setup(v), o, n);
251}
252
253/*
254 * If any of the atomic or futex routines hit a bad address (not in
255 * the page tables at kernel PL) this routine is called. The futex
256 * routines are never used on kernel space, and the normal atomics and
257 * bitops are never used on user space. So a fault on kernel space
258 * must be fatal, but a fault on userspace is a futex fault and we
259 * need to return -EFAULT. Note that the context this routine is
260 * invoked in is the context of the "_atomic_xxx()" routines called
261 * by the functions in this file.
262 */
263struct __get_user __atomic_bad_address(int *addr)
264{
265 if (unlikely(!access_ok(VERIFY_WRITE, addr, sizeof(int))))
266 panic("Bad address used for kernel atomic op: %p\n", addr);
267 return (struct __get_user) { .err = -EFAULT };
268}
269
270
271#if CHIP_HAS_CBOX_HOME_MAP()
272static int __init noatomichash(char *str)
273{
274 printk("noatomichash is deprecated.\n");
275 return 1;
276}
277__setup("noatomichash", noatomichash);
278#endif
279
280void __init __init_atomic_per_cpu(void)
281{
282#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
283
284 unsigned int i;
285 int actual_cpu;
286
287 /*
288 * Before this is called from setup, we just have one lock for
289 * all atomic objects/operations. Here we replace the
290 * elements of atomic_lock_ptr so that they point at per_cpu
291 * integers. This seemingly over-complex approach stems from
292 * the fact that DEFINE_PER_CPU defines an entry for each cpu
293 * in the grid, not each cpu from 0..ATOMIC_HASH_SIZE-1. But
294 * for efficient hashing of atomics to their locks we want a
295 * compile time constant power of 2 for the size of this
296 * table, so we use ATOMIC_HASH_SIZE.
297 *
298 * Here we populate atomic_lock_ptr from the per cpu
299 * atomic_lock_pool, interspersing by actual cpu so that
300 * subsequent elements are homed on consecutive cpus.
301 */
302
303 actual_cpu = cpumask_first(cpu_possible_mask);
304
305 for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) {
306 /*
307 * Preincrement to slightly bias against using cpu 0,
308 * which has plenty of stuff homed on it already.
309 */
310 actual_cpu = cpumask_next(actual_cpu, cpu_possible_mask);
311 if (actual_cpu >= nr_cpu_ids)
312 actual_cpu = cpumask_first(cpu_possible_mask);
313
314 atomic_lock_ptr[i] = &per_cpu(atomic_lock_pool, actual_cpu);
315 }
316
317#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
318
319 /* Validate power-of-two and "bigger than cpus" assumption */
320 BUG_ON(ATOMIC_HASH_SIZE & (ATOMIC_HASH_SIZE-1));
321 BUG_ON(ATOMIC_HASH_SIZE < nr_cpu_ids);
322
323 /*
324 * On TILEPro we prefer to use a single hash-for-home
325 * page, since this means atomic operations are less
326 * likely to encounter a TLB fault and thus should
327 * in general perform faster. You may wish to disable
328 * this in situations where few hash-for-home tiles
329 * are configured.
330 */
331 BUG_ON((unsigned long)atomic_locks % PAGE_SIZE != 0);
332
333 /* The locks must all fit on one page. */
334 BUG_ON(ATOMIC_HASH_SIZE * sizeof(int) > PAGE_SIZE);
335
336 /*
337 * We use the page offset of the atomic value's address as
338 * an index into atomic_locks, excluding the low 3 bits.
339 * That should not produce more indices than ATOMIC_HASH_SIZE.
340 */
341 BUG_ON((PAGE_SIZE >> 3) > ATOMIC_HASH_SIZE);
342
343#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
344
345 /* The futex code makes this assumption, so we validate it here. */
346 BUG_ON(sizeof(atomic_t) != sizeof(int));
347}