Sam Ravnborg | a439fe5 | 2008-07-27 23:00:59 +0200 | [diff] [blame] | 1 | /* include/asm/dma.h |
| 2 | * |
| 3 | * Copyright 1995 (C) David S. Miller (davem@davemloft.net) |
| 4 | */ |
| 5 | |
| 6 | #ifndef _ASM_SPARC_DMA_H |
| 7 | #define _ASM_SPARC_DMA_H |
| 8 | |
| 9 | #include <linux/kernel.h> |
| 10 | #include <linux/types.h> |
| 11 | |
| 12 | #include <asm/vac-ops.h> /* for invalidate's, etc. */ |
| 13 | #include <asm/sbus.h> |
| 14 | #include <asm/delay.h> |
| 15 | #include <asm/oplib.h> |
| 16 | #include <asm/system.h> |
| 17 | #include <asm/io.h> |
| 18 | #include <linux/spinlock.h> |
| 19 | |
| 20 | struct page; |
| 21 | extern spinlock_t dma_spin_lock; |
| 22 | |
| 23 | static inline unsigned long claim_dma_lock(void) |
| 24 | { |
| 25 | unsigned long flags; |
| 26 | spin_lock_irqsave(&dma_spin_lock, flags); |
| 27 | return flags; |
| 28 | } |
| 29 | |
| 30 | static inline void release_dma_lock(unsigned long flags) |
| 31 | { |
| 32 | spin_unlock_irqrestore(&dma_spin_lock, flags); |
| 33 | } |
| 34 | |
| 35 | /* These are irrelevant for Sparc DMA, but we leave it in so that |
| 36 | * things can compile. |
| 37 | */ |
| 38 | #define MAX_DMA_CHANNELS 8 |
| 39 | #define MAX_DMA_ADDRESS (~0UL) |
| 40 | #define DMA_MODE_READ 1 |
| 41 | #define DMA_MODE_WRITE 2 |
| 42 | |
| 43 | /* Useful constants */ |
| 44 | #define SIZE_16MB (16*1024*1024) |
| 45 | #define SIZE_64K (64*1024) |
| 46 | |
| 47 | /* SBUS DMA controller reg offsets */ |
| 48 | #define DMA_CSR 0x00UL /* rw DMA control/status register 0x00 */ |
| 49 | #define DMA_ADDR 0x04UL /* rw DMA transfer address register 0x04 */ |
| 50 | #define DMA_COUNT 0x08UL /* rw DMA transfer count register 0x08 */ |
| 51 | #define DMA_TEST 0x0cUL /* rw DMA test/debug register 0x0c */ |
| 52 | |
| 53 | /* DVMA chip revisions */ |
| 54 | enum dvma_rev { |
| 55 | dvmarev0, |
| 56 | dvmaesc1, |
| 57 | dvmarev1, |
| 58 | dvmarev2, |
| 59 | dvmarev3, |
| 60 | dvmarevplus, |
| 61 | dvmahme |
| 62 | }; |
| 63 | |
| 64 | #define DMA_HASCOUNT(rev) ((rev)==dvmaesc1) |
| 65 | |
| 66 | /* Linux DMA information structure, filled during probe. */ |
| 67 | struct sbus_dma { |
| 68 | struct sbus_dma *next; |
| 69 | struct sbus_dev *sdev; |
| 70 | void __iomem *regs; |
| 71 | |
| 72 | /* Status, misc info */ |
| 73 | int node; /* Prom node for this DMA device */ |
| 74 | int running; /* Are we doing DMA now? */ |
| 75 | int allocated; /* Are we "owned" by anyone yet? */ |
| 76 | |
| 77 | /* Transfer information. */ |
| 78 | unsigned long addr; /* Start address of current transfer */ |
| 79 | int nbytes; /* Size of current transfer */ |
| 80 | int realbytes; /* For splitting up large transfers, etc. */ |
| 81 | |
| 82 | /* DMA revision */ |
| 83 | enum dvma_rev revision; |
| 84 | }; |
| 85 | |
| 86 | extern struct sbus_dma *dma_chain; |
| 87 | |
| 88 | /* Broken hardware... */ |
| 89 | #ifdef CONFIG_SUN4 |
| 90 | /* Have to sort this out. Does rev0 work fine on sun4[cmd] without isbroken? |
| 91 | * Or is rev0 present only on sun4 boxes? -jj */ |
| 92 | #define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev0 || (dma)->revision == dvmarev1) |
| 93 | #else |
| 94 | #define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev1) |
| 95 | #endif |
| 96 | #define DMA_ISESC1(dma) ((dma)->revision == dvmaesc1) |
| 97 | |
| 98 | /* Main routines in dma.c */ |
| 99 | extern void dvma_init(struct sbus_bus *); |
| 100 | |
| 101 | /* Fields in the cond_reg register */ |
| 102 | /* First, the version identification bits */ |
| 103 | #define DMA_DEVICE_ID 0xf0000000 /* Device identification bits */ |
| 104 | #define DMA_VERS0 0x00000000 /* Sunray DMA version */ |
| 105 | #define DMA_ESCV1 0x40000000 /* DMA ESC Version 1 */ |
| 106 | #define DMA_VERS1 0x80000000 /* DMA rev 1 */ |
| 107 | #define DMA_VERS2 0xa0000000 /* DMA rev 2 */ |
| 108 | #define DMA_VERHME 0xb0000000 /* DMA hme gate array */ |
| 109 | #define DMA_VERSPLUS 0x90000000 /* DMA rev 1 PLUS */ |
| 110 | |
| 111 | #define DMA_HNDL_INTR 0x00000001 /* An IRQ needs to be handled */ |
| 112 | #define DMA_HNDL_ERROR 0x00000002 /* We need to take an error */ |
| 113 | #define DMA_FIFO_ISDRAIN 0x0000000c /* The DMA FIFO is draining */ |
| 114 | #define DMA_INT_ENAB 0x00000010 /* Turn on interrupts */ |
| 115 | #define DMA_FIFO_INV 0x00000020 /* Invalidate the FIFO */ |
| 116 | #define DMA_ACC_SZ_ERR 0x00000040 /* The access size was bad */ |
| 117 | #define DMA_FIFO_STDRAIN 0x00000040 /* DMA_VERS1 Drain the FIFO */ |
| 118 | #define DMA_RST_SCSI 0x00000080 /* Reset the SCSI controller */ |
| 119 | #define DMA_RST_ENET DMA_RST_SCSI /* Reset the ENET controller */ |
| 120 | #define DMA_RST_BPP DMA_RST_SCSI /* Reset the BPP controller */ |
| 121 | #define DMA_ST_WRITE 0x00000100 /* write from device to memory */ |
| 122 | #define DMA_ENABLE 0x00000200 /* Fire up DMA, handle requests */ |
| 123 | #define DMA_PEND_READ 0x00000400 /* DMA_VERS1/0/PLUS Pending Read */ |
| 124 | #define DMA_ESC_BURST 0x00000800 /* 1=16byte 0=32byte */ |
| 125 | #define DMA_READ_AHEAD 0x00001800 /* DMA read ahead partial longword */ |
| 126 | #define DMA_DSBL_RD_DRN 0x00001000 /* No EC drain on slave reads */ |
| 127 | #define DMA_BCNT_ENAB 0x00002000 /* If on, use the byte counter */ |
| 128 | #define DMA_TERM_CNTR 0x00004000 /* Terminal counter */ |
| 129 | #define DMA_SCSI_SBUS64 0x00008000 /* HME: Enable 64-bit SBUS mode. */ |
| 130 | #define DMA_CSR_DISAB 0x00010000 /* No FIFO drains during csr */ |
| 131 | #define DMA_SCSI_DISAB 0x00020000 /* No FIFO drains during reg */ |
| 132 | #define DMA_DSBL_WR_INV 0x00020000 /* No EC inval. on slave writes */ |
| 133 | #define DMA_ADD_ENABLE 0x00040000 /* Special ESC DVMA optimization */ |
| 134 | #define DMA_E_BURSTS 0x000c0000 /* ENET: SBUS r/w burst mask */ |
| 135 | #define DMA_E_BURST32 0x00040000 /* ENET: SBUS 32 byte r/w burst */ |
| 136 | #define DMA_E_BURST16 0x00000000 /* ENET: SBUS 16 byte r/w burst */ |
| 137 | #define DMA_BRST_SZ 0x000c0000 /* SCSI: SBUS r/w burst size */ |
| 138 | #define DMA_BRST64 0x00080000 /* SCSI: 64byte bursts (HME on UltraSparc only) */ |
| 139 | #define DMA_BRST32 0x00040000 /* SCSI/BPP: 32byte bursts */ |
| 140 | #define DMA_BRST16 0x00000000 /* SCSI/BPP: 16byte bursts */ |
| 141 | #define DMA_BRST0 0x00080000 /* SCSI: no bursts (non-HME gate arrays) */ |
| 142 | #define DMA_ADDR_DISAB 0x00100000 /* No FIFO drains during addr */ |
| 143 | #define DMA_2CLKS 0x00200000 /* Each transfer = 2 clock ticks */ |
| 144 | #define DMA_3CLKS 0x00400000 /* Each transfer = 3 clock ticks */ |
| 145 | #define DMA_EN_ENETAUI DMA_3CLKS /* Put lance into AUI-cable mode */ |
| 146 | #define DMA_CNTR_DISAB 0x00800000 /* No IRQ when DMA_TERM_CNTR set */ |
| 147 | #define DMA_AUTO_NADDR 0x01000000 /* Use "auto nxt addr" feature */ |
| 148 | #define DMA_SCSI_ON 0x02000000 /* Enable SCSI dma */ |
| 149 | #define DMA_BPP_ON DMA_SCSI_ON /* Enable BPP dma */ |
| 150 | #define DMA_PARITY_OFF 0x02000000 /* HME: disable parity checking */ |
| 151 | #define DMA_LOADED_ADDR 0x04000000 /* Address has been loaded */ |
| 152 | #define DMA_LOADED_NADDR 0x08000000 /* Next address has been loaded */ |
| 153 | #define DMA_RESET_FAS366 0x08000000 /* HME: Assert RESET to FAS366 */ |
| 154 | |
| 155 | /* Values describing the burst-size property from the PROM */ |
| 156 | #define DMA_BURST1 0x01 |
| 157 | #define DMA_BURST2 0x02 |
| 158 | #define DMA_BURST4 0x04 |
| 159 | #define DMA_BURST8 0x08 |
| 160 | #define DMA_BURST16 0x10 |
| 161 | #define DMA_BURST32 0x20 |
| 162 | #define DMA_BURST64 0x40 |
| 163 | #define DMA_BURSTBITS 0x7f |
| 164 | |
| 165 | /* Determine highest possible final transfer address given a base */ |
| 166 | #define DMA_MAXEND(addr) (0x01000000UL-(((unsigned long)(addr))&0x00ffffffUL)) |
| 167 | |
| 168 | /* Yes, I hack a lot of elisp in my spare time... */ |
| 169 | #define DMA_ERROR_P(regs) ((((regs)->cond_reg) & DMA_HNDL_ERROR)) |
| 170 | #define DMA_IRQ_P(regs) ((((regs)->cond_reg) & (DMA_HNDL_INTR | DMA_HNDL_ERROR))) |
| 171 | #define DMA_WRITE_P(regs) ((((regs)->cond_reg) & DMA_ST_WRITE)) |
| 172 | #define DMA_OFF(regs) ((((regs)->cond_reg) &= (~DMA_ENABLE))) |
| 173 | #define DMA_INTSOFF(regs) ((((regs)->cond_reg) &= (~DMA_INT_ENAB))) |
| 174 | #define DMA_INTSON(regs) ((((regs)->cond_reg) |= (DMA_INT_ENAB))) |
| 175 | #define DMA_PUNTFIFO(regs) ((((regs)->cond_reg) |= DMA_FIFO_INV)) |
| 176 | #define DMA_SETSTART(regs, addr) ((((regs)->st_addr) = (char *) addr)) |
| 177 | #define DMA_BEGINDMA_W(regs) \ |
| 178 | ((((regs)->cond_reg |= (DMA_ST_WRITE|DMA_ENABLE|DMA_INT_ENAB)))) |
| 179 | #define DMA_BEGINDMA_R(regs) \ |
| 180 | ((((regs)->cond_reg |= ((DMA_ENABLE|DMA_INT_ENAB)&(~DMA_ST_WRITE))))) |
| 181 | |
| 182 | /* For certain DMA chips, we need to disable ints upon irq entry |
| 183 | * and turn them back on when we are done. So in any ESP interrupt |
| 184 | * handler you *must* call DMA_IRQ_ENTRY upon entry and DMA_IRQ_EXIT |
| 185 | * when leaving the handler. You have been warned... |
| 186 | */ |
| 187 | #define DMA_IRQ_ENTRY(dma, dregs) do { \ |
| 188 | if(DMA_ISBROKEN(dma)) DMA_INTSOFF(dregs); \ |
| 189 | } while (0) |
| 190 | |
| 191 | #define DMA_IRQ_EXIT(dma, dregs) do { \ |
| 192 | if(DMA_ISBROKEN(dma)) DMA_INTSON(dregs); \ |
| 193 | } while(0) |
| 194 | |
| 195 | #if 0 /* P3 this stuff is inline in ledma.c:init_restart_ledma() */ |
| 196 | /* Pause until counter runs out or BIT isn't set in the DMA condition |
| 197 | * register. |
| 198 | */ |
| 199 | static inline void sparc_dma_pause(struct sparc_dma_registers *regs, |
| 200 | unsigned long bit) |
| 201 | { |
| 202 | int ctr = 50000; /* Let's find some bugs ;) */ |
| 203 | |
| 204 | /* Busy wait until the bit is not set any more */ |
| 205 | while((regs->cond_reg&bit) && (ctr>0)) { |
| 206 | ctr--; |
| 207 | __delay(5); |
| 208 | } |
| 209 | |
| 210 | /* Check for bogus outcome. */ |
| 211 | if(!ctr) |
| 212 | panic("DMA timeout"); |
| 213 | } |
| 214 | |
| 215 | /* Reset the friggin' thing... */ |
| 216 | #define DMA_RESET(dma) do { \ |
| 217 | struct sparc_dma_registers *regs = dma->regs; \ |
| 218 | /* Let the current FIFO drain itself */ \ |
| 219 | sparc_dma_pause(regs, (DMA_FIFO_ISDRAIN)); \ |
| 220 | /* Reset the logic */ \ |
| 221 | regs->cond_reg |= (DMA_RST_SCSI); /* assert */ \ |
| 222 | __delay(400); /* let the bits set ;) */ \ |
| 223 | regs->cond_reg &= ~(DMA_RST_SCSI); /* de-assert */ \ |
| 224 | sparc_dma_enable_interrupts(regs); /* Re-enable interrupts */ \ |
| 225 | /* Enable FAST transfers if available */ \ |
| 226 | if(dma->revision>dvmarev1) regs->cond_reg |= DMA_3CLKS; \ |
| 227 | dma->running = 0; \ |
| 228 | } while(0) |
| 229 | #endif |
| 230 | |
| 231 | #define for_each_dvma(dma) \ |
| 232 | for((dma) = dma_chain; (dma); (dma) = (dma)->next) |
| 233 | |
| 234 | extern int get_dma_list(char *); |
| 235 | extern int request_dma(unsigned int, __const__ char *); |
| 236 | extern void free_dma(unsigned int); |
| 237 | |
| 238 | /* From PCI */ |
| 239 | |
| 240 | #ifdef CONFIG_PCI |
| 241 | extern int isa_dma_bridge_buggy; |
| 242 | #else |
| 243 | #define isa_dma_bridge_buggy (0) |
| 244 | #endif |
| 245 | |
| 246 | /* Routines for data transfer buffers. */ |
| 247 | BTFIXUPDEF_CALL(char *, mmu_lockarea, char *, unsigned long) |
| 248 | BTFIXUPDEF_CALL(void, mmu_unlockarea, char *, unsigned long) |
| 249 | |
| 250 | #define mmu_lockarea(vaddr,len) BTFIXUP_CALL(mmu_lockarea)(vaddr,len) |
| 251 | #define mmu_unlockarea(vaddr,len) BTFIXUP_CALL(mmu_unlockarea)(vaddr,len) |
| 252 | |
| 253 | /* These are implementations for sbus_map_sg/sbus_unmap_sg... collapse later */ |
| 254 | BTFIXUPDEF_CALL(__u32, mmu_get_scsi_one, char *, unsigned long, struct sbus_bus *sbus) |
| 255 | BTFIXUPDEF_CALL(void, mmu_get_scsi_sgl, struct scatterlist *, int, struct sbus_bus *sbus) |
| 256 | BTFIXUPDEF_CALL(void, mmu_release_scsi_one, __u32, unsigned long, struct sbus_bus *sbus) |
| 257 | BTFIXUPDEF_CALL(void, mmu_release_scsi_sgl, struct scatterlist *, int, struct sbus_bus *sbus) |
| 258 | |
| 259 | #define mmu_get_scsi_one(vaddr,len,sbus) BTFIXUP_CALL(mmu_get_scsi_one)(vaddr,len,sbus) |
| 260 | #define mmu_get_scsi_sgl(sg,sz,sbus) BTFIXUP_CALL(mmu_get_scsi_sgl)(sg,sz,sbus) |
| 261 | #define mmu_release_scsi_one(vaddr,len,sbus) BTFIXUP_CALL(mmu_release_scsi_one)(vaddr,len,sbus) |
| 262 | #define mmu_release_scsi_sgl(sg,sz,sbus) BTFIXUP_CALL(mmu_release_scsi_sgl)(sg,sz,sbus) |
| 263 | |
| 264 | /* |
| 265 | * mmu_map/unmap are provided by iommu/iounit; Invalid to call on IIep. |
| 266 | * |
| 267 | * The mmu_map_dma_area establishes two mappings in one go. |
| 268 | * These mappings point to pages normally mapped at 'va' (linear address). |
| 269 | * First mapping is for CPU visible address at 'a', uncached. |
| 270 | * This is an alias, but it works because it is an uncached mapping. |
| 271 | * Second mapping is for device visible address, or "bus" address. |
| 272 | * The bus address is returned at '*pba'. |
| 273 | * |
| 274 | * These functions seem distinct, but are hard to split. On sun4c, |
| 275 | * at least for now, 'a' is equal to bus address, and retured in *pba. |
| 276 | * On sun4m, page attributes depend on the CPU type, so we have to |
| 277 | * know if we are mapping RAM or I/O, so it has to be an additional argument |
| 278 | * to a separate mapping function for CPU visible mappings. |
| 279 | */ |
| 280 | BTFIXUPDEF_CALL(int, mmu_map_dma_area, dma_addr_t *, unsigned long, unsigned long, int len) |
| 281 | BTFIXUPDEF_CALL(struct page *, mmu_translate_dvma, unsigned long busa) |
| 282 | BTFIXUPDEF_CALL(void, mmu_unmap_dma_area, unsigned long busa, int len) |
| 283 | |
| 284 | #define mmu_map_dma_area(pba,va,a,len) BTFIXUP_CALL(mmu_map_dma_area)(pba,va,a,len) |
| 285 | #define mmu_unmap_dma_area(ba,len) BTFIXUP_CALL(mmu_unmap_dma_area)(ba,len) |
| 286 | #define mmu_translate_dvma(ba) BTFIXUP_CALL(mmu_translate_dvma)(ba) |
| 287 | |
| 288 | #endif /* !(_ASM_SPARC_DMA_H) */ |