blob: 38ec33eb6f121516f168b6f0288a86cfd37c6779 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _I386_PGTABLE_H
2#define _I386_PGTABLE_H
3
4#include <linux/config.h>
5
6/*
7 * The Linux memory management assumes a three-level page table setup. On
8 * the i386, we use that, but "fold" the mid level into the top-level page
9 * table, so that we physically have the same two-level page table as the
10 * i386 mmu expects.
11 *
12 * This file contains the functions and defines necessary to modify and use
13 * the i386 page table tree.
14 */
15#ifndef __ASSEMBLY__
16#include <asm/processor.h>
17#include <asm/fixmap.h>
18#include <linux/threads.h>
19
20#ifndef _I386_BITOPS_H
21#include <asm/bitops.h>
22#endif
23
24#include <linux/slab.h>
25#include <linux/list.h>
26#include <linux/spinlock.h>
27
28/*
29 * ZERO_PAGE is a global shared page that is always zero: used
30 * for zero-mapped memory areas etc..
31 */
32#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
33extern unsigned long empty_zero_page[1024];
34extern pgd_t swapper_pg_dir[1024];
35extern kmem_cache_t *pgd_cache;
36extern kmem_cache_t *pmd_cache;
37extern spinlock_t pgd_lock;
38extern struct page *pgd_list;
39
40void pmd_ctor(void *, kmem_cache_t *, unsigned long);
41void pgd_ctor(void *, kmem_cache_t *, unsigned long);
42void pgd_dtor(void *, kmem_cache_t *, unsigned long);
43void pgtable_cache_init(void);
44void paging_init(void);
45
46/*
47 * The Linux x86 paging architecture is 'compile-time dual-mode', it
48 * implements both the traditional 2-level x86 page tables and the
49 * newer 3-level PAE-mode page tables.
50 */
51#ifdef CONFIG_X86_PAE
52# include <asm/pgtable-3level-defs.h>
53# define PMD_SIZE (1UL << PMD_SHIFT)
54# define PMD_MASK (~(PMD_SIZE-1))
55#else
56# include <asm/pgtable-2level-defs.h>
57#endif
58
59#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
60#define PGDIR_MASK (~(PGDIR_SIZE-1))
61
62#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
Hugh Dickinsd455a362005-04-19 13:29:23 -070063#define FIRST_USER_ADDRESS 0
Linus Torvalds1da177e2005-04-16 15:20:36 -070064
65#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
66#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
67
68#define TWOLEVEL_PGDIR_SHIFT 22
69#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
70#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
71
72/* Just any arbitrary offset to the start of the vmalloc VM area: the
73 * current 8MB value just means that there will be a 8MB "hole" after the
74 * physical memory until the kernel virtual memory starts. That means that
75 * any out-of-bounds memory accesses will hopefully be caught.
76 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
77 * area for the same reason. ;)
78 */
79#define VMALLOC_OFFSET (8*1024*1024)
80#define VMALLOC_START (((unsigned long) high_memory + vmalloc_earlyreserve + \
81 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
82#ifdef CONFIG_HIGHMEM
83# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
84#else
85# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
86#endif
87
88/*
Paolo 'Blaisorblade' Giarrusso9b4ee402005-09-03 15:54:57 -070089 * _PAGE_PSE set in the page directory entry just means that
Linus Torvalds1da177e2005-04-16 15:20:36 -070090 * the page directory entry points directly to a 4MB-aligned block of
91 * memory.
92 */
93#define _PAGE_BIT_PRESENT 0
94#define _PAGE_BIT_RW 1
95#define _PAGE_BIT_USER 2
96#define _PAGE_BIT_PWT 3
97#define _PAGE_BIT_PCD 4
98#define _PAGE_BIT_ACCESSED 5
99#define _PAGE_BIT_DIRTY 6
100#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */
101#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
102#define _PAGE_BIT_UNUSED1 9 /* available for programmer */
103#define _PAGE_BIT_UNUSED2 10
104#define _PAGE_BIT_UNUSED3 11
105#define _PAGE_BIT_NX 63
106
107#define _PAGE_PRESENT 0x001
108#define _PAGE_RW 0x002
109#define _PAGE_USER 0x004
110#define _PAGE_PWT 0x008
111#define _PAGE_PCD 0x010
112#define _PAGE_ACCESSED 0x020
113#define _PAGE_DIRTY 0x040
114#define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
115#define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
116#define _PAGE_UNUSED1 0x200 /* available for programmer */
117#define _PAGE_UNUSED2 0x400
118#define _PAGE_UNUSED3 0x800
119
Paolo 'Blaisorblade' Giarrusso9b4ee402005-09-03 15:54:57 -0700120/* If _PAGE_PRESENT is clear, we use these: */
121#define _PAGE_FILE 0x040 /* nonlinear file mapping, saved PTE; unset:swap */
122#define _PAGE_PROTNONE 0x080 /* if the user mapped it with PROT_NONE;
123 pte_present gives true */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700124#ifdef CONFIG_X86_PAE
125#define _PAGE_NX (1ULL<<_PAGE_BIT_NX)
126#else
127#define _PAGE_NX 0
128#endif
129
130#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
131#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
132#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
133
134#define PAGE_NONE \
135 __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
136#define PAGE_SHARED \
137 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
138
139#define PAGE_SHARED_EXEC \
140 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
141#define PAGE_COPY_NOEXEC \
142 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
143#define PAGE_COPY_EXEC \
144 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
145#define PAGE_COPY \
146 PAGE_COPY_NOEXEC
147#define PAGE_READONLY \
148 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
149#define PAGE_READONLY_EXEC \
150 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
151
152#define _PAGE_KERNEL \
153 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
154#define _PAGE_KERNEL_EXEC \
155 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
156
157extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
158#define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
159#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD)
160#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
161#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
162
163#define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
164#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
165#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
166#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
167#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
168#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
169
170/*
171 * The i386 can't do page protection for execute, and considers that
172 * the same are read. Also, write permissions imply read permissions.
173 * This is the closest we can get..
174 */
175#define __P000 PAGE_NONE
176#define __P001 PAGE_READONLY
177#define __P010 PAGE_COPY
178#define __P011 PAGE_COPY
179#define __P100 PAGE_READONLY_EXEC
180#define __P101 PAGE_READONLY_EXEC
181#define __P110 PAGE_COPY_EXEC
182#define __P111 PAGE_COPY_EXEC
183
184#define __S000 PAGE_NONE
185#define __S001 PAGE_READONLY
186#define __S010 PAGE_SHARED
187#define __S011 PAGE_SHARED
188#define __S100 PAGE_READONLY_EXEC
189#define __S101 PAGE_READONLY_EXEC
190#define __S110 PAGE_SHARED_EXEC
191#define __S111 PAGE_SHARED_EXEC
192
193/*
194 * Define this if things work differently on an i386 and an i486:
195 * it will (on an i486) warn about kernel memory accesses that are
Jesper Juhle49332b2005-05-01 08:59:08 -0700196 * done without a 'access_ok(VERIFY_WRITE,..)'
Linus Torvalds1da177e2005-04-16 15:20:36 -0700197 */
Jesper Juhle49332b2005-05-01 08:59:08 -0700198#undef TEST_ACCESS_OK
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199
200/* The boot page tables (all created as a single array) */
201extern unsigned long pg0[];
202
203#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
204#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
205
Hugh Dickins705e87c2005-10-29 18:16:27 -0700206/* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
207#define pmd_none(x) (!(unsigned long)pmd_val(x))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700208#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
209#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
210#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
211
212
213#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
214
215/*
216 * The following only work if pte_present() is true.
217 * Undefined behaviour if not..
218 */
Adam Litke32e51a82005-09-03 15:54:59 -0700219#define __LARGE_PTE (_PAGE_PSE | _PAGE_PRESENT)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700220static inline int pte_user(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
221static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
222static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }
223static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }
224static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }
Adam Litke32e51a82005-09-03 15:54:59 -0700225static inline int pte_huge(pte_t pte) { return ((pte).pte_low & __LARGE_PTE) == __LARGE_PTE; }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226
227/*
228 * The following only works if pte_present() is not true.
229 */
230static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; }
231
232static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
233static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
234static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
235static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
236static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }
237static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
238static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
239static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }
240static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }
241static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }
Adam Litke32e51a82005-09-03 15:54:59 -0700242static inline pte_t pte_mkhuge(pte_t pte) { (pte).pte_low |= __LARGE_PTE; return pte; }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700243
244#ifdef CONFIG_X86_PAE
245# include <asm/pgtable-3level.h>
246#else
247# include <asm/pgtable-2level.h>
248#endif
249
250static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
251{
252 if (!pte_dirty(*ptep))
253 return 0;
254 return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte_low);
255}
256
257static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
258{
259 if (!pte_young(*ptep))
260 return 0;
261 return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte_low);
262}
263
Zachary Amsdena6003882005-09-03 15:55:04 -0700264static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
265{
266 pte_t pte;
267 if (full) {
268 pte = *ptep;
269 *ptep = __pte(0);
270 } else {
271 pte = ptep_get_and_clear(mm, addr, ptep);
272 }
273 return pte;
274}
275
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
277{
278 clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
279}
280
281/*
Zachary Amsdend7271b12005-09-03 15:56:50 -0700282 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
283 *
284 * dst - pointer to pgd range anwhere on a pgd page
285 * src - ""
286 * count - the number of pgds to copy.
287 *
288 * dst and src can be on the same page, but the range must not overlap,
289 * and must not cross a page boundary.
290 */
291static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
292{
293 memcpy(dst, src, count * sizeof(pgd_t));
294}
295
296/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700297 * Macro to mark a page protection value as "uncacheable". On processors which do not support
298 * it, this is a no-op.
299 */
300#define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
301 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
302
303/*
304 * Conversion functions: convert a page and protection to a page entry,
305 * and a page entry and page directory to the page they refer to.
306 */
307
308#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700309
310static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
311{
312 pte.pte_low &= _PAGE_CHG_MASK;
313 pte.pte_low |= pgprot_val(newprot);
314#ifdef CONFIG_X86_PAE
315 /*
316 * Chop off the NX bit (if present), and add the NX portion of
317 * the newprot (if present):
318 */
319 pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
320 pte.pte_high |= (pgprot_val(newprot) >> 32) & \
321 (__supported_pte_mask >> 32);
322#endif
323 return pte;
324}
325
326#define page_pte(page) page_pte_prot(page, __pgprot(0))
327
328#define pmd_large(pmd) \
329((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
330
331/*
332 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
333 *
334 * this macro returns the index of the entry in the pgd page which would
335 * control the given virtual address
336 */
337#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
338#define pgd_index_k(addr) pgd_index(addr)
339
340/*
341 * pgd_offset() returns a (pgd_t *)
342 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
343 */
344#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
345
346/*
347 * a shortcut which implies the use of the kernel's pgd, instead
348 * of a process's
349 */
350#define pgd_offset_k(address) pgd_offset(&init_mm, address)
351
352/*
353 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
354 *
355 * this macro returns the index of the entry in the pmd page which would
356 * control the given virtual address
357 */
358#define pmd_index(address) \
359 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
360
361/*
362 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
363 *
364 * this macro returns the index of the entry in the pte page which would
365 * control the given virtual address
366 */
367#define pte_index(address) \
368 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
369#define pte_offset_kernel(dir, address) \
370 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
371
Paolo 'Blaisorblade' Giarrussoca140fd2005-10-30 14:59:31 -0800372#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
373
374#define pmd_page_kernel(pmd) \
375 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
376
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377/*
378 * Helper function that returns the kernel pagetable entry controlling
379 * the virtual address 'address'. NULL means no pagetable entry present.
380 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
381 * as a pte too.
382 */
383extern pte_t *lookup_address(unsigned long address);
384
385/*
386 * Make a given kernel text page executable/non-executable.
387 * Returns the previous executability setting of that page (which
388 * is used to restore the previous state). Used by the SMP bootup code.
389 * NOTE: this is an __init function for security reasons.
390 */
391#ifdef CONFIG_X86_PAE
392 extern int set_kernel_exec(unsigned long vaddr, int enable);
393#else
394 static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
395#endif
396
397extern void noexec_setup(const char *str);
398
399#if defined(CONFIG_HIGHPTE)
400#define pte_offset_map(dir, address) \
401 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
402#define pte_offset_map_nested(dir, address) \
403 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
404#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
405#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
406#else
407#define pte_offset_map(dir, address) \
408 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
409#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
410#define pte_unmap(pte) do { } while (0)
411#define pte_unmap_nested(pte) do { } while (0)
412#endif
413
414/*
415 * The i386 doesn't have any external MMU info: the kernel page
416 * tables contain all the necessary information.
417 *
418 * Also, we only update the dirty/accessed state if we set
419 * the dirty bit by hand in the kernel, since the hardware
420 * will do the accessed bit for us, and we don't want to
421 * race with other CPU's that might be updating the dirty
422 * bit at the same time.
423 */
424#define update_mmu_cache(vma,address,pte) do { } while (0)
425#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
426#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
427 do { \
428 if (__dirty) { \
429 (__ptep)->pte_low = (__entry).pte_low; \
430 flush_tlb_page(__vma, __address); \
431 } \
432 } while (0)
433
434#endif /* !__ASSEMBLY__ */
435
Andy Whitcroft05b79bd2005-06-23 00:07:57 -0700436#ifdef CONFIG_FLATMEM
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437#define kern_addr_valid(addr) (1)
Andy Whitcroft05b79bd2005-06-23 00:07:57 -0700438#endif /* CONFIG_FLATMEM */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700439
Linus Torvalds1da177e2005-04-16 15:20:36 -0700440#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
441 remap_pfn_range(vma, vaddr, pfn, size, prot)
442
443#define MK_IOSPACE_PFN(space, pfn) (pfn)
444#define GET_IOSPACE(pfn) 0
445#define GET_PFN(pfn) (pfn)
446
447#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
448#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
449#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
Zachary Amsdena6003882005-09-03 15:55:04 -0700450#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451#define __HAVE_ARCH_PTEP_SET_WRPROTECT
452#define __HAVE_ARCH_PTE_SAME
453#include <asm-generic/pgtable.h>
454
455#endif /* _I386_PGTABLE_H */