Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* cyberstorm.c: Driver for CyberStorm SCSI Controller. |
| 2 | * |
| 3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) |
| 4 | * |
| 5 | * The CyberStorm SCSI driver is based on David S. Miller's ESP driver |
| 6 | * for the Sparc computers. |
| 7 | * |
| 8 | * This work was made possible by Phase5 who willingly (and most generously) |
| 9 | * supported me with hardware and all the information I needed. |
| 10 | */ |
| 11 | |
| 12 | /* TODO: |
| 13 | * |
| 14 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard |
| 15 | * to the caches and the Sparc MMU mapping. |
| 16 | * 2) Make as few routines required outside the generic driver. A lot of the |
| 17 | * routines in this file used to be inline! |
| 18 | */ |
| 19 | |
| 20 | #include <linux/module.h> |
| 21 | |
| 22 | #include <linux/init.h> |
| 23 | #include <linux/kernel.h> |
| 24 | #include <linux/delay.h> |
| 25 | #include <linux/types.h> |
| 26 | #include <linux/string.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/blkdev.h> |
| 29 | #include <linux/proc_fs.h> |
| 30 | #include <linux/stat.h> |
| 31 | #include <linux/interrupt.h> |
| 32 | |
| 33 | #include "scsi.h" |
| 34 | #include <scsi/scsi_host.h> |
| 35 | #include "NCR53C9x.h" |
| 36 | |
| 37 | #include <linux/zorro.h> |
| 38 | #include <asm/irq.h> |
| 39 | #include <asm/amigaints.h> |
| 40 | #include <asm/amigahw.h> |
| 41 | |
| 42 | #include <asm/pgtable.h> |
| 43 | |
| 44 | /* The controller registers can be found in the Z2 config area at these |
| 45 | * offsets: |
| 46 | */ |
| 47 | #define CYBER_ESP_ADDR 0xf400 |
| 48 | #define CYBER_DMA_ADDR 0xf800 |
| 49 | |
| 50 | |
| 51 | /* The CyberStorm DMA interface */ |
| 52 | struct cyber_dma_registers { |
| 53 | volatile unsigned char dma_addr0; /* DMA address (MSB) [0x000] */ |
| 54 | unsigned char dmapad1[1]; |
| 55 | volatile unsigned char dma_addr1; /* DMA address [0x002] */ |
| 56 | unsigned char dmapad2[1]; |
| 57 | volatile unsigned char dma_addr2; /* DMA address [0x004] */ |
| 58 | unsigned char dmapad3[1]; |
| 59 | volatile unsigned char dma_addr3; /* DMA address (LSB) [0x006] */ |
| 60 | unsigned char dmapad4[0x3fb]; |
| 61 | volatile unsigned char cond_reg; /* DMA cond (ro) [0x402] */ |
| 62 | #define ctrl_reg cond_reg /* DMA control (wo) [0x402] */ |
| 63 | }; |
| 64 | |
| 65 | /* DMA control bits */ |
| 66 | #define CYBER_DMA_LED 0x80 /* HD led control 1 = on */ |
| 67 | #define CYBER_DMA_WRITE 0x40 /* DMA direction. 1 = write */ |
| 68 | #define CYBER_DMA_Z3 0x20 /* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */ |
| 69 | |
| 70 | /* DMA status bits */ |
| 71 | #define CYBER_DMA_HNDL_INTR 0x80 /* DMA IRQ pending? */ |
| 72 | |
| 73 | /* The bits below appears to be Phase5 Debug bits only; they were not |
| 74 | * described by Phase5 so using them may seem a bit stupid... |
| 75 | */ |
| 76 | #define CYBER_HOST_ID 0x02 /* If set, host ID should be 7, otherwise |
| 77 | * it should be 6. |
| 78 | */ |
| 79 | #define CYBER_SLOW_CABLE 0x08 /* If *not* set, assume SLOW_CABLE */ |
| 80 | |
| 81 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); |
| 82 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); |
| 83 | static void dma_dump_state(struct NCR_ESP *esp); |
| 84 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); |
| 85 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); |
| 86 | static void dma_ints_off(struct NCR_ESP *esp); |
| 87 | static void dma_ints_on(struct NCR_ESP *esp); |
| 88 | static int dma_irq_p(struct NCR_ESP *esp); |
| 89 | static void dma_led_off(struct NCR_ESP *esp); |
| 90 | static void dma_led_on(struct NCR_ESP *esp); |
| 91 | static int dma_ports_p(struct NCR_ESP *esp); |
| 92 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); |
| 93 | |
| 94 | static unsigned char ctrl_data = 0; /* Keep backup of the stuff written |
| 95 | * to ctrl_reg. Always write a copy |
| 96 | * to this register when writing to |
| 97 | * the hardware register! |
| 98 | */ |
| 99 | |
| 100 | static volatile unsigned char cmd_buffer[16]; |
| 101 | /* This is where all commands are put |
| 102 | * before they are transferred to the ESP chip |
| 103 | * via PIO. |
| 104 | */ |
| 105 | |
| 106 | /***************************************************************** Detection */ |
Christoph Hellwig | d0be4a7d | 2005-10-31 18:31:40 +0100 | [diff] [blame] | 107 | int __init cyber_esp_detect(struct scsi_host_template *tpnt) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 108 | { |
| 109 | struct NCR_ESP *esp; |
| 110 | struct zorro_dev *z = NULL; |
| 111 | unsigned long address; |
| 112 | |
| 113 | while ((z = zorro_find_device(ZORRO_WILDCARD, z))) { |
| 114 | unsigned long board = z->resource.start; |
| 115 | if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM || |
| 116 | z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) && |
| 117 | request_mem_region(board+CYBER_ESP_ADDR, |
| 118 | sizeof(struct ESP_regs), "NCR53C9x")) { |
| 119 | /* Figure out if this is a CyberStorm or really a |
| 120 | * Fastlane/Blizzard Mk II by looking at the board size. |
| 121 | * CyberStorm maps 64kB |
| 122 | * (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway) |
| 123 | */ |
| 124 | if(z->resource.end-board != 0xffff) { |
| 125 | release_mem_region(board+CYBER_ESP_ADDR, |
| 126 | sizeof(struct ESP_regs)); |
| 127 | return 0; |
| 128 | } |
| 129 | esp = esp_allocate(tpnt, (void *)board+CYBER_ESP_ADDR); |
| 130 | |
| 131 | /* Do command transfer with programmed I/O */ |
| 132 | esp->do_pio_cmds = 1; |
| 133 | |
| 134 | /* Required functions */ |
| 135 | esp->dma_bytes_sent = &dma_bytes_sent; |
| 136 | esp->dma_can_transfer = &dma_can_transfer; |
| 137 | esp->dma_dump_state = &dma_dump_state; |
| 138 | esp->dma_init_read = &dma_init_read; |
| 139 | esp->dma_init_write = &dma_init_write; |
| 140 | esp->dma_ints_off = &dma_ints_off; |
| 141 | esp->dma_ints_on = &dma_ints_on; |
| 142 | esp->dma_irq_p = &dma_irq_p; |
| 143 | esp->dma_ports_p = &dma_ports_p; |
| 144 | esp->dma_setup = &dma_setup; |
| 145 | |
| 146 | /* Optional functions */ |
| 147 | esp->dma_barrier = 0; |
| 148 | esp->dma_drain = 0; |
| 149 | esp->dma_invalidate = 0; |
| 150 | esp->dma_irq_entry = 0; |
| 151 | esp->dma_irq_exit = 0; |
| 152 | esp->dma_led_on = &dma_led_on; |
| 153 | esp->dma_led_off = &dma_led_off; |
| 154 | esp->dma_poll = 0; |
| 155 | esp->dma_reset = 0; |
| 156 | |
| 157 | /* SCSI chip speed */ |
| 158 | esp->cfreq = 40000000; |
| 159 | |
| 160 | /* The DMA registers on the CyberStorm are mapped |
| 161 | * relative to the device (i.e. in the same Zorro |
| 162 | * I/O block). |
| 163 | */ |
| 164 | address = (unsigned long)ZTWO_VADDR(board); |
| 165 | esp->dregs = (void *)(address + CYBER_DMA_ADDR); |
| 166 | |
| 167 | /* ESP register base */ |
| 168 | esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR); |
| 169 | |
| 170 | /* Set the command buffer */ |
| 171 | esp->esp_command = cmd_buffer; |
| 172 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); |
| 173 | |
| 174 | esp->irq = IRQ_AMIGA_PORTS; |
| 175 | request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ, |
| 176 | "CyberStorm SCSI", esp->ehost); |
| 177 | /* Figure out our scsi ID on the bus */ |
| 178 | /* The DMA cond flag contains a hardcoded jumper bit |
| 179 | * which can be used to select host number 6 or 7. |
| 180 | * However, even though it may change, we use a hardcoded |
| 181 | * value of 7. |
| 182 | */ |
| 183 | esp->scsi_id = 7; |
| 184 | |
| 185 | /* We don't have a differential SCSI-bus. */ |
| 186 | esp->diff = 0; |
| 187 | |
| 188 | esp_initialize(esp); |
| 189 | |
| 190 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); |
| 191 | esps_running = esps_in_use; |
| 192 | return esps_in_use; |
| 193 | } |
| 194 | } |
| 195 | return 0; |
| 196 | } |
| 197 | |
| 198 | /************************************************************* DMA Functions */ |
| 199 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) |
| 200 | { |
| 201 | /* Since the CyberStorm DMA is fully dedicated to the ESP chip, |
| 202 | * the number of bytes sent (to the ESP chip) equals the number |
| 203 | * of bytes in the FIFO - there is no buffering in the DMA controller. |
| 204 | * XXXX Do I read this right? It is from host to ESP, right? |
| 205 | */ |
| 206 | return fifo_count; |
| 207 | } |
| 208 | |
| 209 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) |
| 210 | { |
| 211 | /* I don't think there's any limit on the CyberDMA. So we use what |
| 212 | * the ESP chip can handle (24 bit). |
| 213 | */ |
| 214 | unsigned long sz = sp->SCp.this_residual; |
| 215 | if(sz > 0x1000000) |
| 216 | sz = 0x1000000; |
| 217 | return sz; |
| 218 | } |
| 219 | |
| 220 | static void dma_dump_state(struct NCR_ESP *esp) |
| 221 | { |
| 222 | ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", |
| 223 | esp->esp_id, ((struct cyber_dma_registers *) |
| 224 | (esp->dregs))->cond_reg)); |
| 225 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", |
| 226 | custom.intreqr, custom.intenar)); |
| 227 | } |
| 228 | |
| 229 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) |
| 230 | { |
| 231 | struct cyber_dma_registers *dregs = |
| 232 | (struct cyber_dma_registers *) esp->dregs; |
| 233 | |
| 234 | cache_clear(addr, length); |
| 235 | |
| 236 | addr &= ~(1); |
| 237 | dregs->dma_addr0 = (addr >> 24) & 0xff; |
| 238 | dregs->dma_addr1 = (addr >> 16) & 0xff; |
| 239 | dregs->dma_addr2 = (addr >> 8) & 0xff; |
| 240 | dregs->dma_addr3 = (addr ) & 0xff; |
| 241 | ctrl_data &= ~(CYBER_DMA_WRITE); |
| 242 | |
| 243 | /* Check if physical address is outside Z2 space and of |
| 244 | * block length/block aligned in memory. If this is the |
| 245 | * case, enable 32 bit transfer. In all other cases, fall back |
| 246 | * to 16 bit transfer. |
| 247 | * Obviously 32 bit transfer should be enabled if the DMA address |
| 248 | * and length are 32 bit aligned. However, this leads to some |
| 249 | * strange behavior. Even 64 bit aligned addr/length fails. |
| 250 | * Until I've found a reason for this, 32 bit transfer is only |
| 251 | * used for full-block transfers (1kB). |
| 252 | * -jskov |
| 253 | */ |
| 254 | #if 0 |
| 255 | if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && |
| 256 | (addr < 0xff0000))) |
| 257 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ |
| 258 | else |
| 259 | ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ |
| 260 | #else |
| 261 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ |
| 262 | #endif |
| 263 | dregs->ctrl_reg = ctrl_data; |
| 264 | } |
| 265 | |
| 266 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) |
| 267 | { |
| 268 | struct cyber_dma_registers *dregs = |
| 269 | (struct cyber_dma_registers *) esp->dregs; |
| 270 | |
| 271 | cache_push(addr, length); |
| 272 | |
| 273 | addr |= 1; |
| 274 | dregs->dma_addr0 = (addr >> 24) & 0xff; |
| 275 | dregs->dma_addr1 = (addr >> 16) & 0xff; |
| 276 | dregs->dma_addr2 = (addr >> 8) & 0xff; |
| 277 | dregs->dma_addr3 = (addr ) & 0xff; |
| 278 | ctrl_data |= CYBER_DMA_WRITE; |
| 279 | |
| 280 | /* See comment above */ |
| 281 | #if 0 |
| 282 | if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && |
| 283 | (addr < 0xff0000))) |
| 284 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ |
| 285 | else |
| 286 | ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ |
| 287 | #else |
| 288 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ |
| 289 | #endif |
| 290 | dregs->ctrl_reg = ctrl_data; |
| 291 | } |
| 292 | |
| 293 | static void dma_ints_off(struct NCR_ESP *esp) |
| 294 | { |
| 295 | disable_irq(esp->irq); |
| 296 | } |
| 297 | |
| 298 | static void dma_ints_on(struct NCR_ESP *esp) |
| 299 | { |
| 300 | enable_irq(esp->irq); |
| 301 | } |
| 302 | |
| 303 | static int dma_irq_p(struct NCR_ESP *esp) |
| 304 | { |
| 305 | /* It's important to check the DMA IRQ bit in the correct way! */ |
| 306 | return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) && |
| 307 | ((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) & |
| 308 | CYBER_DMA_HNDL_INTR)); |
| 309 | } |
| 310 | |
| 311 | static void dma_led_off(struct NCR_ESP *esp) |
| 312 | { |
| 313 | ctrl_data &= ~CYBER_DMA_LED; |
| 314 | ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; |
| 315 | } |
| 316 | |
| 317 | static void dma_led_on(struct NCR_ESP *esp) |
| 318 | { |
| 319 | ctrl_data |= CYBER_DMA_LED; |
| 320 | ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; |
| 321 | } |
| 322 | |
| 323 | static int dma_ports_p(struct NCR_ESP *esp) |
| 324 | { |
| 325 | return ((custom.intenar) & IF_PORTS); |
| 326 | } |
| 327 | |
| 328 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) |
| 329 | { |
| 330 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" |
| 331 | * so when (write) is true, it actually means READ! |
| 332 | */ |
| 333 | if(write){ |
| 334 | dma_init_read(esp, addr, count); |
| 335 | } else { |
| 336 | dma_init_write(esp, addr, count); |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | #define HOSTS_C |
| 341 | |
| 342 | int cyber_esp_release(struct Scsi_Host *instance) |
| 343 | { |
| 344 | #ifdef MODULE |
| 345 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; |
| 346 | |
| 347 | esp_deallocate((struct NCR_ESP *)instance->hostdata); |
| 348 | esp_release(); |
| 349 | release_mem_region(address, sizeof(struct ESP_regs)); |
| 350 | free_irq(IRQ_AMIGA_PORTS, esp_intr); |
| 351 | #endif |
| 352 | return 1; |
| 353 | } |
| 354 | |
| 355 | |
Christoph Hellwig | d0be4a7d | 2005-10-31 18:31:40 +0100 | [diff] [blame] | 356 | static struct scsi_host_template driver_template = { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 357 | .proc_name = "esp-cyberstorm", |
| 358 | .proc_info = esp_proc_info, |
| 359 | .name = "CyberStorm SCSI", |
| 360 | .detect = cyber_esp_detect, |
| 361 | .slave_alloc = esp_slave_alloc, |
| 362 | .slave_destroy = esp_slave_destroy, |
| 363 | .release = cyber_esp_release, |
| 364 | .queuecommand = esp_queue, |
| 365 | .eh_abort_handler = esp_abort, |
| 366 | .eh_bus_reset_handler = esp_reset, |
| 367 | .can_queue = 7, |
| 368 | .this_id = 7, |
| 369 | .sg_tablesize = SG_ALL, |
| 370 | .cmd_per_lun = 1, |
| 371 | .use_clustering = ENABLE_CLUSTERING |
| 372 | }; |
| 373 | |
| 374 | |
| 375 | #include "scsi_module.c" |
| 376 | |
| 377 | MODULE_LICENSE("GPL"); |