blob: 46c9331e7ab5f81181b5e19745c154a80c4b852e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Itanium 2-optimized version of memcpy and copy_user function
3 *
4 * Inputs:
5 * in0: destination address
6 * in1: source address
7 * in2: number of bytes to copy
8 * Output:
9 * 0 if success, or number of byte NOT copied if error occurred.
10 *
11 * Copyright (C) 2002 Intel Corp.
12 * Copyright (C) 2002 Ken Chen <kenneth.w.chen@intel.com>
13 */
14#include <linux/config.h>
15#include <asm/asmmacro.h>
16#include <asm/page.h>
17
18#define EK(y...) EX(y)
19
20/* McKinley specific optimization */
21
22#define retval r8
23#define saved_pfs r31
24#define saved_lc r10
25#define saved_pr r11
26#define saved_in0 r14
27#define saved_in1 r15
28#define saved_in2 r16
29
30#define src0 r2
31#define src1 r3
32#define dst0 r17
33#define dst1 r18
34#define cnt r9
35
36/* r19-r30 are temp for each code section */
37#define PREFETCH_DIST 8
38#define src_pre_mem r19
39#define dst_pre_mem r20
40#define src_pre_l2 r21
41#define dst_pre_l2 r22
42#define t1 r23
43#define t2 r24
44#define t3 r25
45#define t4 r26
46#define t5 t1 // alias!
47#define t6 t2 // alias!
48#define t7 t3 // alias!
49#define n8 r27
50#define t9 t5 // alias!
51#define t10 t4 // alias!
52#define t11 t7 // alias!
53#define t12 t6 // alias!
54#define t14 t10 // alias!
55#define t13 r28
56#define t15 r29
57#define tmp r30
58
59/* defines for long_copy block */
60#define A 0
61#define B (PREFETCH_DIST)
62#define C (B + PREFETCH_DIST)
63#define D (C + 1)
64#define N (D + 1)
65#define Nrot ((N + 7) & ~7)
66
67/* alias */
68#define in0 r32
69#define in1 r33
70#define in2 r34
71
72GLOBAL_ENTRY(memcpy)
73 and r28=0x7,in0
74 and r29=0x7,in1
75 mov f6=f0
76 br.cond.sptk .common_code
77 ;;
Andreas Schwab512f6422005-04-26 23:00:00 -070078END(memcpy)
Linus Torvalds1da177e2005-04-16 15:20:36 -070079GLOBAL_ENTRY(__copy_user)
80 .prologue
81// check dest alignment
82 and r28=0x7,in0
83 and r29=0x7,in1
84 mov f6=f1
85 mov saved_in0=in0 // save dest pointer
86 mov saved_in1=in1 // save src pointer
87 mov saved_in2=in2 // save len
88 ;;
89.common_code:
90 cmp.gt p15,p0=8,in2 // check for small size
91 cmp.ne p13,p0=0,r28 // check dest alignment
92 cmp.ne p14,p0=0,r29 // check src alignment
93 add src0=0,in1
94 sub r30=8,r28 // for .align_dest
95 mov retval=r0 // initialize return value
96 ;;
97 add dst0=0,in0
98 add dst1=1,in0 // dest odd index
99 cmp.le p6,p0 = 1,r30 // for .align_dest
100(p15) br.cond.dpnt .memcpy_short
101(p13) br.cond.dpnt .align_dest
102(p14) br.cond.dpnt .unaligned_src
103 ;;
104
105// both dest and src are aligned on 8-byte boundary
106.aligned_src:
107 .save ar.pfs, saved_pfs
108 alloc saved_pfs=ar.pfs,3,Nrot-3,0,Nrot
109 .save pr, saved_pr
110 mov saved_pr=pr
111
112 shr.u cnt=in2,7 // this much cache line
113 ;;
114 cmp.lt p6,p0=2*PREFETCH_DIST,cnt
115 cmp.lt p7,p8=1,cnt
116 .save ar.lc, saved_lc
117 mov saved_lc=ar.lc
118 .body
119 add cnt=-1,cnt
120 add src_pre_mem=0,in1 // prefetch src pointer
121 add dst_pre_mem=0,in0 // prefetch dest pointer
122 ;;
123(p7) mov ar.lc=cnt // prefetch count
124(p8) mov ar.lc=r0
125(p6) br.cond.dpnt .long_copy
126 ;;
127
128.prefetch:
129 lfetch.fault [src_pre_mem], 128
130 lfetch.fault.excl [dst_pre_mem], 128
131 br.cloop.dptk.few .prefetch
132 ;;
133
134.medium_copy:
135 and tmp=31,in2 // copy length after iteration
136 shr.u r29=in2,5 // number of 32-byte iteration
137 add dst1=8,dst0 // 2nd dest pointer
138 ;;
139 add cnt=-1,r29 // ctop iteration adjustment
140 cmp.eq p10,p0=r29,r0 // do we really need to loop?
141 add src1=8,src0 // 2nd src pointer
142 cmp.le p6,p0=8,tmp
143 ;;
144 cmp.le p7,p0=16,tmp
145 mov ar.lc=cnt // loop setup
146 cmp.eq p16,p17 = r0,r0
147 mov ar.ec=2
148(p10) br.dpnt.few .aligned_src_tail
149 ;;
150 TEXT_ALIGN(32)
1511:
152EX(.ex_handler, (p16) ld8 r34=[src0],16)
153EK(.ex_handler, (p16) ld8 r38=[src1],16)
154EX(.ex_handler, (p17) st8 [dst0]=r33,16)
155EK(.ex_handler, (p17) st8 [dst1]=r37,16)
156 ;;
157EX(.ex_handler, (p16) ld8 r32=[src0],16)
158EK(.ex_handler, (p16) ld8 r36=[src1],16)
159EX(.ex_handler, (p16) st8 [dst0]=r34,16)
160EK(.ex_handler, (p16) st8 [dst1]=r38,16)
161 br.ctop.dptk.few 1b
162 ;;
163
164.aligned_src_tail:
165EX(.ex_handler, (p6) ld8 t1=[src0])
166 mov ar.lc=saved_lc
167 mov ar.pfs=saved_pfs
168EX(.ex_hndlr_s, (p7) ld8 t2=[src1],8)
169 cmp.le p8,p0=24,tmp
170 and r21=-8,tmp
171 ;;
172EX(.ex_hndlr_s, (p8) ld8 t3=[src1])
173EX(.ex_handler, (p6) st8 [dst0]=t1) // store byte 1
174 and in2=7,tmp // remaining length
175EX(.ex_hndlr_d, (p7) st8 [dst1]=t2,8) // store byte 2
176 add src0=src0,r21 // setting up src pointer
177 add dst0=dst0,r21 // setting up dest pointer
178 ;;
179EX(.ex_handler, (p8) st8 [dst1]=t3) // store byte 3
180 mov pr=saved_pr,-1
181 br.dptk.many .memcpy_short
182 ;;
183
184/* code taken from copy_page_mck */
185.long_copy:
186 .rotr v[2*PREFETCH_DIST]
187 .rotp p[N]
188
189 mov src_pre_mem = src0
190 mov pr.rot = 0x10000
191 mov ar.ec = 1 // special unrolled loop
192
193 mov dst_pre_mem = dst0
194
195 add src_pre_l2 = 8*8, src0
196 add dst_pre_l2 = 8*8, dst0
197 ;;
198 add src0 = 8, src_pre_mem // first t1 src
199 mov ar.lc = 2*PREFETCH_DIST - 1
200 shr.u cnt=in2,7 // number of lines
201 add src1 = 3*8, src_pre_mem // first t3 src
202 add dst0 = 8, dst_pre_mem // first t1 dst
203 add dst1 = 3*8, dst_pre_mem // first t3 dst
204 ;;
205 and tmp=127,in2 // remaining bytes after this block
206 add cnt = -(2*PREFETCH_DIST) - 1, cnt
207 // same as .line_copy loop, but with all predicated-off instructions removed:
208.prefetch_loop:
209EX(.ex_hndlr_lcpy_1, (p[A]) ld8 v[A] = [src_pre_mem], 128) // M0
210EK(.ex_hndlr_lcpy_1, (p[B]) st8 [dst_pre_mem] = v[B], 128) // M2
211 br.ctop.sptk .prefetch_loop
212 ;;
213 cmp.eq p16, p0 = r0, r0 // reset p16 to 1
214 mov ar.lc = cnt
215 mov ar.ec = N // # of stages in pipeline
216 ;;
217.line_copy:
218EX(.ex_handler, (p[D]) ld8 t2 = [src0], 3*8) // M0
219EK(.ex_handler, (p[D]) ld8 t4 = [src1], 3*8) // M1
220EX(.ex_handler_lcpy, (p[B]) st8 [dst_pre_mem] = v[B], 128) // M2 prefetch dst from memory
221EK(.ex_handler_lcpy, (p[D]) st8 [dst_pre_l2] = n8, 128) // M3 prefetch dst from L2
222 ;;
223EX(.ex_handler_lcpy, (p[A]) ld8 v[A] = [src_pre_mem], 128) // M0 prefetch src from memory
224EK(.ex_handler_lcpy, (p[C]) ld8 n8 = [src_pre_l2], 128) // M1 prefetch src from L2
225EX(.ex_handler, (p[D]) st8 [dst0] = t1, 8) // M2
226EK(.ex_handler, (p[D]) st8 [dst1] = t3, 8) // M3
227 ;;
228EX(.ex_handler, (p[D]) ld8 t5 = [src0], 8)
229EK(.ex_handler, (p[D]) ld8 t7 = [src1], 3*8)
230EX(.ex_handler, (p[D]) st8 [dst0] = t2, 3*8)
231EK(.ex_handler, (p[D]) st8 [dst1] = t4, 3*8)
232 ;;
233EX(.ex_handler, (p[D]) ld8 t6 = [src0], 3*8)
234EK(.ex_handler, (p[D]) ld8 t10 = [src1], 8)
235EX(.ex_handler, (p[D]) st8 [dst0] = t5, 8)
236EK(.ex_handler, (p[D]) st8 [dst1] = t7, 3*8)
237 ;;
238EX(.ex_handler, (p[D]) ld8 t9 = [src0], 3*8)
239EK(.ex_handler, (p[D]) ld8 t11 = [src1], 3*8)
240EX(.ex_handler, (p[D]) st8 [dst0] = t6, 3*8)
241EK(.ex_handler, (p[D]) st8 [dst1] = t10, 8)
242 ;;
243EX(.ex_handler, (p[D]) ld8 t12 = [src0], 8)
244EK(.ex_handler, (p[D]) ld8 t14 = [src1], 8)
245EX(.ex_handler, (p[D]) st8 [dst0] = t9, 3*8)
246EK(.ex_handler, (p[D]) st8 [dst1] = t11, 3*8)
247 ;;
248EX(.ex_handler, (p[D]) ld8 t13 = [src0], 4*8)
249EK(.ex_handler, (p[D]) ld8 t15 = [src1], 4*8)
250EX(.ex_handler, (p[D]) st8 [dst0] = t12, 8)
251EK(.ex_handler, (p[D]) st8 [dst1] = t14, 8)
252 ;;
253EX(.ex_handler, (p[C]) ld8 t1 = [src0], 8)
254EK(.ex_handler, (p[C]) ld8 t3 = [src1], 8)
255EX(.ex_handler, (p[D]) st8 [dst0] = t13, 4*8)
256EK(.ex_handler, (p[D]) st8 [dst1] = t15, 4*8)
257 br.ctop.sptk .line_copy
258 ;;
259
260 add dst0=-8,dst0
261 add src0=-8,src0
262 mov in2=tmp
263 .restore sp
264 br.sptk.many .medium_copy
265 ;;
266
267#define BLOCK_SIZE 128*32
268#define blocksize r23
269#define curlen r24
270
271// dest is on 8-byte boundary, src is not. We need to do
272// ld8-ld8, shrp, then st8. Max 8 byte copy per cycle.
273.unaligned_src:
274 .prologue
275 .save ar.pfs, saved_pfs
276 alloc saved_pfs=ar.pfs,3,5,0,8
277 .save ar.lc, saved_lc
278 mov saved_lc=ar.lc
279 .save pr, saved_pr
280 mov saved_pr=pr
281 .body
282.4k_block:
283 mov saved_in0=dst0 // need to save all input arguments
284 mov saved_in2=in2
285 mov blocksize=BLOCK_SIZE
286 ;;
287 cmp.lt p6,p7=blocksize,in2
288 mov saved_in1=src0
289 ;;
290(p6) mov in2=blocksize
291 ;;
292 shr.u r21=in2,7 // this much cache line
293 shr.u r22=in2,4 // number of 16-byte iteration
294 and curlen=15,in2 // copy length after iteration
295 and r30=7,src0 // source alignment
296 ;;
297 cmp.lt p7,p8=1,r21
298 add cnt=-1,r21
299 ;;
300
301 add src_pre_mem=0,src0 // prefetch src pointer
302 add dst_pre_mem=0,dst0 // prefetch dest pointer
303 and src0=-8,src0 // 1st src pointer
Keith Owens6118ec82005-04-25 13:23:47 -0700304(p7) mov ar.lc = cnt
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305(p8) mov ar.lc = r0
306 ;;
307 TEXT_ALIGN(32)
3081: lfetch.fault [src_pre_mem], 128
309 lfetch.fault.excl [dst_pre_mem], 128
310 br.cloop.dptk.few 1b
311 ;;
312
313 shladd dst1=r22,3,dst0 // 2nd dest pointer
314 shladd src1=r22,3,src0 // 2nd src pointer
315 cmp.eq p8,p9=r22,r0 // do we really need to loop?
316 cmp.le p6,p7=8,curlen; // have at least 8 byte remaining?
317 add cnt=-1,r22 // ctop iteration adjustment
318 ;;
319EX(.ex_handler, (p9) ld8 r33=[src0],8) // loop primer
320EK(.ex_handler, (p9) ld8 r37=[src1],8)
321(p8) br.dpnt.few .noloop
322 ;;
323
324// The jump address is calculated based on src alignment. The COPYU
325// macro below need to confine its size to power of two, so an entry
326// can be caulated using shl instead of an expensive multiply. The
327// size is then hard coded by the following #define to match the
328// actual size. This make it somewhat tedious when COPYU macro gets
329// changed and this need to be adjusted to match.
330#define LOOP_SIZE 6
3311:
332 mov r29=ip // jmp_table thread
333 mov ar.lc=cnt
334 ;;
335 add r29=.jump_table - 1b - (.jmp1-.jump_table), r29
336 shl r28=r30, LOOP_SIZE // jmp_table thread
337 mov ar.ec=2 // loop setup
338 ;;
339 add r29=r29,r28 // jmp_table thread
340 cmp.eq p16,p17=r0,r0
341 ;;
342 mov b6=r29 // jmp_table thread
343 ;;
344 br.cond.sptk.few b6
345
346// for 8-15 byte case
347// We will skip the loop, but need to replicate the side effect
348// that the loop produces.
349.noloop:
350EX(.ex_handler, (p6) ld8 r37=[src1],8)
351 add src0=8,src0
352(p6) shl r25=r30,3
353 ;;
354EX(.ex_handler, (p6) ld8 r27=[src1])
355(p6) shr.u r28=r37,r25
356(p6) sub r26=64,r25
357 ;;
358(p6) shl r27=r27,r26
359 ;;
360(p6) or r21=r28,r27
361
362.unaligned_src_tail:
363/* check if we have more than blocksize to copy, if so go back */
364 cmp.gt p8,p0=saved_in2,blocksize
365 ;;
366(p8) add dst0=saved_in0,blocksize
367(p8) add src0=saved_in1,blocksize
368(p8) sub in2=saved_in2,blocksize
369(p8) br.dpnt .4k_block
370 ;;
371
372/* we have up to 15 byte to copy in the tail.
373 * part of work is already done in the jump table code
374 * we are at the following state.
375 * src side:
376 *
377 * xxxxxx xx <----- r21 has xxxxxxxx already
378 * -------- -------- --------
379 * 0 8 16
380 * ^
381 * |
382 * src1
383 *
384 * dst
385 * -------- -------- --------
386 * ^
387 * |
388 * dst1
389 */
390EX(.ex_handler, (p6) st8 [dst1]=r21,8) // more than 8 byte to copy
391(p6) add curlen=-8,curlen // update length
392 mov ar.pfs=saved_pfs
393 ;;
394 mov ar.lc=saved_lc
395 mov pr=saved_pr,-1
396 mov in2=curlen // remaining length
397 mov dst0=dst1 // dest pointer
398 add src0=src1,r30 // forward by src alignment
399 ;;
400
401// 7 byte or smaller.
402.memcpy_short:
403 cmp.le p8,p9 = 1,in2
404 cmp.le p10,p11 = 2,in2
405 cmp.le p12,p13 = 3,in2
406 cmp.le p14,p15 = 4,in2
407 add src1=1,src0 // second src pointer
408 add dst1=1,dst0 // second dest pointer
409 ;;
410
411EX(.ex_handler_short, (p8) ld1 t1=[src0],2)
412EK(.ex_handler_short, (p10) ld1 t2=[src1],2)
413(p9) br.ret.dpnt rp // 0 byte copy
414 ;;
415
416EX(.ex_handler_short, (p8) st1 [dst0]=t1,2)
417EK(.ex_handler_short, (p10) st1 [dst1]=t2,2)
418(p11) br.ret.dpnt rp // 1 byte copy
419
420EX(.ex_handler_short, (p12) ld1 t3=[src0],2)
421EK(.ex_handler_short, (p14) ld1 t4=[src1],2)
422(p13) br.ret.dpnt rp // 2 byte copy
423 ;;
424
425 cmp.le p6,p7 = 5,in2
426 cmp.le p8,p9 = 6,in2
427 cmp.le p10,p11 = 7,in2
428
429EX(.ex_handler_short, (p12) st1 [dst0]=t3,2)
430EK(.ex_handler_short, (p14) st1 [dst1]=t4,2)
431(p15) br.ret.dpnt rp // 3 byte copy
432 ;;
433
434EX(.ex_handler_short, (p6) ld1 t5=[src0],2)
435EK(.ex_handler_short, (p8) ld1 t6=[src1],2)
436(p7) br.ret.dpnt rp // 4 byte copy
437 ;;
438
439EX(.ex_handler_short, (p6) st1 [dst0]=t5,2)
440EK(.ex_handler_short, (p8) st1 [dst1]=t6,2)
441(p9) br.ret.dptk rp // 5 byte copy
442
443EX(.ex_handler_short, (p10) ld1 t7=[src0],2)
444(p11) br.ret.dptk rp // 6 byte copy
445 ;;
446
447EX(.ex_handler_short, (p10) st1 [dst0]=t7,2)
448 br.ret.dptk rp // done all cases
449
450
451/* Align dest to nearest 8-byte boundary. We know we have at
452 * least 7 bytes to copy, enough to crawl to 8-byte boundary.
453 * Actual number of byte to crawl depend on the dest alignment.
454 * 7 byte or less is taken care at .memcpy_short
455
456 * src0 - source even index
457 * src1 - source odd index
458 * dst0 - dest even index
459 * dst1 - dest odd index
460 * r30 - distance to 8-byte boundary
461 */
462
463.align_dest:
464 add src1=1,in1 // source odd index
465 cmp.le p7,p0 = 2,r30 // for .align_dest
466 cmp.le p8,p0 = 3,r30 // for .align_dest
467EX(.ex_handler_short, (p6) ld1 t1=[src0],2)
468 cmp.le p9,p0 = 4,r30 // for .align_dest
469 cmp.le p10,p0 = 5,r30
470 ;;
471EX(.ex_handler_short, (p7) ld1 t2=[src1],2)
472EK(.ex_handler_short, (p8) ld1 t3=[src0],2)
473 cmp.le p11,p0 = 6,r30
474EX(.ex_handler_short, (p6) st1 [dst0] = t1,2)
475 cmp.le p12,p0 = 7,r30
476 ;;
477EX(.ex_handler_short, (p9) ld1 t4=[src1],2)
478EK(.ex_handler_short, (p10) ld1 t5=[src0],2)
479EX(.ex_handler_short, (p7) st1 [dst1] = t2,2)
480EK(.ex_handler_short, (p8) st1 [dst0] = t3,2)
481 ;;
482EX(.ex_handler_short, (p11) ld1 t6=[src1],2)
483EK(.ex_handler_short, (p12) ld1 t7=[src0],2)
484 cmp.eq p6,p7=r28,r29
485EX(.ex_handler_short, (p9) st1 [dst1] = t4,2)
486EK(.ex_handler_short, (p10) st1 [dst0] = t5,2)
487 sub in2=in2,r30
488 ;;
489EX(.ex_handler_short, (p11) st1 [dst1] = t6,2)
490EK(.ex_handler_short, (p12) st1 [dst0] = t7)
491 add dst0=in0,r30 // setup arguments
492 add src0=in1,r30
493(p6) br.cond.dptk .aligned_src
494(p7) br.cond.dpnt .unaligned_src
495 ;;
496
497/* main loop body in jump table format */
498#define COPYU(shift) \
4991: \
500EX(.ex_handler, (p16) ld8 r32=[src0],8); /* 1 */ \
501EK(.ex_handler, (p16) ld8 r36=[src1],8); \
502 (p17) shrp r35=r33,r34,shift;; /* 1 */ \
503EX(.ex_handler, (p6) ld8 r22=[src1]); /* common, prime for tail section */ \
504 nop.m 0; \
505 (p16) shrp r38=r36,r37,shift; \
506EX(.ex_handler, (p17) st8 [dst0]=r35,8); /* 1 */ \
507EK(.ex_handler, (p17) st8 [dst1]=r39,8); \
508 br.ctop.dptk.few 1b;; \
509 (p7) add src1=-8,src1; /* back out for <8 byte case */ \
510 shrp r21=r22,r38,shift; /* speculative work */ \
511 br.sptk.few .unaligned_src_tail /* branch out of jump table */ \
512 ;;
513 TEXT_ALIGN(32)
514.jump_table:
515 COPYU(8) // unaligned cases
516.jmp1:
517 COPYU(16)
518 COPYU(24)
519 COPYU(32)
520 COPYU(40)
521 COPYU(48)
522 COPYU(56)
523
524#undef A
525#undef B
526#undef C
527#undef D
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528
529/*
530 * Due to lack of local tag support in gcc 2.x assembler, it is not clear which
531 * instruction failed in the bundle. The exception algorithm is that we
532 * first figure out the faulting address, then detect if there is any
533 * progress made on the copy, if so, redo the copy from last known copied
534 * location up to the faulting address (exclusive). In the copy_from_user
535 * case, remaining byte in kernel buffer will be zeroed.
536 *
537 * Take copy_from_user as an example, in the code there are multiple loads
538 * in a bundle and those multiple loads could span over two pages, the
539 * faulting address is calculated as page_round_down(max(src0, src1)).
540 * This is based on knowledge that if we can access one byte in a page, we
541 * can access any byte in that page.
542 *
543 * predicate used in the exception handler:
544 * p6-p7: direction
545 * p10-p11: src faulting addr calculation
546 * p12-p13: dst faulting addr calculation
547 */
548
549#define A r19
550#define B r20
551#define C r21
552#define D r22
553#define F r28
554
555#define memset_arg0 r32
556#define memset_arg2 r33
557
558#define saved_retval loc0
559#define saved_rtlink loc1
560#define saved_pfs_stack loc2
561
562.ex_hndlr_s:
563 add src0=8,src0
564 br.sptk .ex_handler
565 ;;
566.ex_hndlr_d:
567 add dst0=8,dst0
568 br.sptk .ex_handler
569 ;;
570.ex_hndlr_lcpy_1:
571 mov src1=src_pre_mem
572 mov dst1=dst_pre_mem
573 cmp.gtu p10,p11=src_pre_mem,saved_in1
574 cmp.gtu p12,p13=dst_pre_mem,saved_in0
575 ;;
576(p10) add src0=8,saved_in1
577(p11) mov src0=saved_in1
578(p12) add dst0=8,saved_in0
579(p13) mov dst0=saved_in0
580 br.sptk .ex_handler
581.ex_handler_lcpy:
582 // in line_copy block, the preload addresses should always ahead
583 // of the other two src/dst pointers. Furthermore, src1/dst1 should
584 // always ahead of src0/dst0.
585 mov src1=src_pre_mem
586 mov dst1=dst_pre_mem
587.ex_handler:
588 mov pr=saved_pr,-1 // first restore pr, lc, and pfs
589 mov ar.lc=saved_lc
590 mov ar.pfs=saved_pfs
591 ;;
592.ex_handler_short: // fault occurred in these sections didn't change pr, lc, pfs
593 cmp.ltu p6,p7=saved_in0, saved_in1 // get the copy direction
594 cmp.ltu p10,p11=src0,src1
595 cmp.ltu p12,p13=dst0,dst1
596 fcmp.eq p8,p0=f6,f0 // is it memcpy?
597 mov tmp = dst0
598 ;;
599(p11) mov src1 = src0 // pick the larger of the two
600(p13) mov dst0 = dst1 // make dst0 the smaller one
601(p13) mov dst1 = tmp // and dst1 the larger one
602 ;;
603(p6) dep F = r0,dst1,0,PAGE_SHIFT // usr dst round down to page boundary
604(p7) dep F = r0,src1,0,PAGE_SHIFT // usr src round down to page boundary
605 ;;
606(p6) cmp.le p14,p0=dst0,saved_in0 // no progress has been made on store
607(p7) cmp.le p14,p0=src0,saved_in1 // no progress has been made on load
608 mov retval=saved_in2
609(p8) ld1 tmp=[src1] // force an oops for memcpy call
610(p8) st1 [dst1]=r0 // force an oops for memcpy call
611(p14) br.ret.sptk.many rp
612
613/*
614 * The remaining byte to copy is calculated as:
615 *
616 * A = (faulting_addr - orig_src) -> len to faulting ld address
617 * or
618 * (faulting_addr - orig_dst) -> len to faulting st address
619 * B = (cur_dst - orig_dst) -> len copied so far
620 * C = A - B -> len need to be copied
621 * D = orig_len - A -> len need to be zeroed
622 */
623(p6) sub A = F, saved_in0
624(p7) sub A = F, saved_in1
625 clrrrb
626 ;;
627 alloc saved_pfs_stack=ar.pfs,3,3,3,0
Chen, Kenneth W295bd892005-09-06 16:05:23 -0700628 cmp.lt p8,p0=A,r0
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629 sub B = dst0, saved_in0 // how many byte copied so far
630 ;;
Chen, Kenneth W295bd892005-09-06 16:05:23 -0700631(p8) mov A = 0; // A shouldn't be negative, cap it
632 ;;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700633 sub C = A, B
634 sub D = saved_in2, A
635 ;;
636 cmp.gt p8,p0=C,r0 // more than 1 byte?
637 add memset_arg0=saved_in0, A
638(p6) mov memset_arg2=0 // copy_to_user should not call memset
639(p7) mov memset_arg2=D // copy_from_user need to have kbuf zeroed
640 mov r8=0
641 mov saved_retval = D
642 mov saved_rtlink = b0
643
644 add out0=saved_in0, B
645 add out1=saved_in1, B
646 mov out2=C
647(p8) br.call.sptk.few b0=__copy_user // recursive call
648 ;;
649
650 add saved_retval=saved_retval,r8 // above might return non-zero value
651 cmp.gt p8,p0=memset_arg2,r0 // more than 1 byte?
652 mov out0=memset_arg0 // *s
653 mov out1=r0 // c
654 mov out2=memset_arg2 // n
655(p8) br.call.sptk.few b0=memset
656 ;;
657
658 mov retval=saved_retval
659 mov ar.pfs=saved_pfs_stack
660 mov b0=saved_rtlink
661 br.ret.sptk.many rp
662
663/* end of McKinley specific optimization */
664END(__copy_user)