blob: 7332194d7afddfd816e27eaec2eebb17a4059a24 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/config.h>
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <linux/compiler.h>
16#include <linux/fs.h>
17#include <linux/aio.h>
18#include <linux/kernel_stat.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/file.h>
24#include <linux/uio.h>
25#include <linux/hash.h>
26#include <linux/writeback.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
Carsten Otteceffc072005-06-23 22:05:25 -070031#include "filemap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070032/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070033 * FIXME: remove all knowledge of the buffer layer from the core VM
34 */
35#include <linux/buffer_head.h> /* for generic_osync_inode */
36
37#include <asm/uaccess.h>
38#include <asm/mman.h>
39
40/*
41 * Shared mappings implemented 30.11.1994. It's not fully working yet,
42 * though.
43 *
44 * Shared mappings now work. 15.8.1995 Bruno.
45 *
46 * finished 'unifying' the page and buffer cache and SMP-threaded the
47 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
48 *
49 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
50 */
51
52/*
53 * Lock ordering:
54 *
55 * ->i_mmap_lock (vmtruncate)
56 * ->private_lock (__free_pte->__set_page_dirty_buffers)
57 * ->swap_list_lock
58 * ->swap_device_lock (exclusive_swap_page, others)
59 * ->mapping->tree_lock
60 *
61 * ->i_sem
62 * ->i_mmap_lock (truncate->unmap_mapping_range)
63 *
64 * ->mmap_sem
65 * ->i_mmap_lock
66 * ->page_table_lock (various places, mainly in mmap.c)
67 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
68 *
69 * ->mmap_sem
70 * ->lock_page (access_process_vm)
71 *
72 * ->mmap_sem
73 * ->i_sem (msync)
74 *
75 * ->i_sem
76 * ->i_alloc_sem (various)
77 *
78 * ->inode_lock
79 * ->sb_lock (fs/fs-writeback.c)
80 * ->mapping->tree_lock (__sync_single_inode)
81 *
82 * ->i_mmap_lock
83 * ->anon_vma.lock (vma_adjust)
84 *
85 * ->anon_vma.lock
86 * ->page_table_lock (anon_vma_prepare and various)
87 *
88 * ->page_table_lock
89 * ->swap_device_lock (try_to_unmap_one)
90 * ->private_lock (try_to_unmap_one)
91 * ->tree_lock (try_to_unmap_one)
92 * ->zone.lru_lock (follow_page->mark_page_accessed)
93 * ->private_lock (page_remove_rmap->set_page_dirty)
94 * ->tree_lock (page_remove_rmap->set_page_dirty)
95 * ->inode_lock (page_remove_rmap->set_page_dirty)
96 * ->inode_lock (zap_pte_range->set_page_dirty)
97 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
98 *
99 * ->task->proc_lock
100 * ->dcache_lock (proc_pid_lookup)
101 */
102
103/*
104 * Remove a page from the page cache and free it. Caller has to make
105 * sure the page is locked and that nobody else uses it - or that usage
106 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
107 */
108void __remove_from_page_cache(struct page *page)
109{
110 struct address_space *mapping = page->mapping;
111
112 radix_tree_delete(&mapping->page_tree, page->index);
113 page->mapping = NULL;
114 mapping->nrpages--;
115 pagecache_acct(-1);
116}
117
118void remove_from_page_cache(struct page *page)
119{
120 struct address_space *mapping = page->mapping;
121
Matt Mackallcd7619d2005-05-01 08:59:01 -0700122 BUG_ON(!PageLocked(page));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700123
124 write_lock_irq(&mapping->tree_lock);
125 __remove_from_page_cache(page);
126 write_unlock_irq(&mapping->tree_lock);
127}
128
129static int sync_page(void *word)
130{
131 struct address_space *mapping;
132 struct page *page;
133
134 page = container_of((page_flags_t *)word, struct page, flags);
135
136 /*
William Lee Irwin IIIdd1d5af2005-05-01 08:58:38 -0700137 * page_mapping() is being called without PG_locked held.
138 * Some knowledge of the state and use of the page is used to
139 * reduce the requirements down to a memory barrier.
140 * The danger here is of a stale page_mapping() return value
141 * indicating a struct address_space different from the one it's
142 * associated with when it is associated with one.
143 * After smp_mb(), it's either the correct page_mapping() for
144 * the page, or an old page_mapping() and the page's own
145 * page_mapping() has gone NULL.
146 * The ->sync_page() address_space operation must tolerate
147 * page_mapping() going NULL. By an amazing coincidence,
148 * this comes about because none of the users of the page
149 * in the ->sync_page() methods make essential use of the
150 * page_mapping(), merely passing the page down to the backing
151 * device's unplug functions when it's non-NULL, which in turn
152 * ignore it for all cases but swap, where only page->private is
153 * of interest. When page_mapping() does go NULL, the entire
154 * call stack gracefully ignores the page and returns.
155 * -- wli
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156 */
157 smp_mb();
158 mapping = page_mapping(page);
159 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
160 mapping->a_ops->sync_page(page);
161 io_schedule();
162 return 0;
163}
164
165/**
166 * filemap_fdatawrite_range - start writeback against all of a mapping's
167 * dirty pages that lie within the byte offsets <start, end>
Martin Waitz67be2dd2005-05-01 08:59:26 -0700168 * @mapping: address space structure to write
169 * @start: offset in bytes where the range starts
170 * @end: offset in bytes where the range ends
171 * @sync_mode: enable synchronous operation
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172 *
173 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
174 * opposed to a regular memory * cleansing writeback. The difference between
175 * these two operations is that if a dirty page/buffer is encountered, it must
176 * be waited upon, and not just skipped over.
177 */
178static int __filemap_fdatawrite_range(struct address_space *mapping,
179 loff_t start, loff_t end, int sync_mode)
180{
181 int ret;
182 struct writeback_control wbc = {
183 .sync_mode = sync_mode,
184 .nr_to_write = mapping->nrpages * 2,
185 .start = start,
186 .end = end,
187 };
188
189 if (!mapping_cap_writeback_dirty(mapping))
190 return 0;
191
192 ret = do_writepages(mapping, &wbc);
193 return ret;
194}
195
196static inline int __filemap_fdatawrite(struct address_space *mapping,
197 int sync_mode)
198{
199 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
200}
201
202int filemap_fdatawrite(struct address_space *mapping)
203{
204 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
205}
206EXPORT_SYMBOL(filemap_fdatawrite);
207
208static int filemap_fdatawrite_range(struct address_space *mapping,
209 loff_t start, loff_t end)
210{
211 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
212}
213
214/*
215 * This is a mostly non-blocking flush. Not suitable for data-integrity
216 * purposes - I/O may not be started against all dirty pages.
217 */
218int filemap_flush(struct address_space *mapping)
219{
220 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
221}
222EXPORT_SYMBOL(filemap_flush);
223
224/*
225 * Wait for writeback to complete against pages indexed by start->end
226 * inclusive
227 */
228static int wait_on_page_writeback_range(struct address_space *mapping,
229 pgoff_t start, pgoff_t end)
230{
231 struct pagevec pvec;
232 int nr_pages;
233 int ret = 0;
234 pgoff_t index;
235
236 if (end < start)
237 return 0;
238
239 pagevec_init(&pvec, 0);
240 index = start;
241 while ((index <= end) &&
242 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
243 PAGECACHE_TAG_WRITEBACK,
244 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
245 unsigned i;
246
247 for (i = 0; i < nr_pages; i++) {
248 struct page *page = pvec.pages[i];
249
250 /* until radix tree lookup accepts end_index */
251 if (page->index > end)
252 continue;
253
254 wait_on_page_writeback(page);
255 if (PageError(page))
256 ret = -EIO;
257 }
258 pagevec_release(&pvec);
259 cond_resched();
260 }
261
262 /* Check for outstanding write errors */
263 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
264 ret = -ENOSPC;
265 if (test_and_clear_bit(AS_EIO, &mapping->flags))
266 ret = -EIO;
267
268 return ret;
269}
270
271/*
272 * Write and wait upon all the pages in the passed range. This is a "data
273 * integrity" operation. It waits upon in-flight writeout before starting and
274 * waiting upon new writeout. If there was an IO error, return it.
275 *
276 * We need to re-take i_sem during the generic_osync_inode list walk because
277 * it is otherwise livelockable.
278 */
279int sync_page_range(struct inode *inode, struct address_space *mapping,
280 loff_t pos, size_t count)
281{
282 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
283 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
284 int ret;
285
286 if (!mapping_cap_writeback_dirty(mapping) || !count)
287 return 0;
288 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
289 if (ret == 0) {
290 down(&inode->i_sem);
291 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
292 up(&inode->i_sem);
293 }
294 if (ret == 0)
295 ret = wait_on_page_writeback_range(mapping, start, end);
296 return ret;
297}
298EXPORT_SYMBOL(sync_page_range);
299
300/*
301 * Note: Holding i_sem across sync_page_range_nolock is not a good idea
302 * as it forces O_SYNC writers to different parts of the same file
303 * to be serialised right until io completion.
304 */
305int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
306 loff_t pos, size_t count)
307{
308 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
309 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
310 int ret;
311
312 if (!mapping_cap_writeback_dirty(mapping) || !count)
313 return 0;
314 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
315 if (ret == 0)
316 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
317 if (ret == 0)
318 ret = wait_on_page_writeback_range(mapping, start, end);
319 return ret;
320}
321EXPORT_SYMBOL(sync_page_range_nolock);
322
323/**
324 * filemap_fdatawait - walk the list of under-writeback pages of the given
325 * address space and wait for all of them.
326 *
327 * @mapping: address space structure to wait for
328 */
329int filemap_fdatawait(struct address_space *mapping)
330{
331 loff_t i_size = i_size_read(mapping->host);
332
333 if (i_size == 0)
334 return 0;
335
336 return wait_on_page_writeback_range(mapping, 0,
337 (i_size - 1) >> PAGE_CACHE_SHIFT);
338}
339EXPORT_SYMBOL(filemap_fdatawait);
340
341int filemap_write_and_wait(struct address_space *mapping)
342{
343 int retval = 0;
344
345 if (mapping->nrpages) {
346 retval = filemap_fdatawrite(mapping);
347 if (retval == 0)
348 retval = filemap_fdatawait(mapping);
349 }
350 return retval;
351}
352
353int filemap_write_and_wait_range(struct address_space *mapping,
354 loff_t lstart, loff_t lend)
355{
356 int retval = 0;
357
358 if (mapping->nrpages) {
359 retval = __filemap_fdatawrite_range(mapping, lstart, lend,
360 WB_SYNC_ALL);
361 if (retval == 0)
362 retval = wait_on_page_writeback_range(mapping,
363 lstart >> PAGE_CACHE_SHIFT,
364 lend >> PAGE_CACHE_SHIFT);
365 }
366 return retval;
367}
368
369/*
370 * This function is used to add newly allocated pagecache pages:
371 * the page is new, so we can just run SetPageLocked() against it.
372 * The other page state flags were set by rmqueue().
373 *
374 * This function does not add the page to the LRU. The caller must do that.
375 */
376int add_to_page_cache(struct page *page, struct address_space *mapping,
377 pgoff_t offset, int gfp_mask)
378{
379 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
380
381 if (error == 0) {
382 write_lock_irq(&mapping->tree_lock);
383 error = radix_tree_insert(&mapping->page_tree, offset, page);
384 if (!error) {
385 page_cache_get(page);
386 SetPageLocked(page);
387 page->mapping = mapping;
388 page->index = offset;
389 mapping->nrpages++;
390 pagecache_acct(1);
391 }
392 write_unlock_irq(&mapping->tree_lock);
393 radix_tree_preload_end();
394 }
395 return error;
396}
397
398EXPORT_SYMBOL(add_to_page_cache);
399
400int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
401 pgoff_t offset, int gfp_mask)
402{
403 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
404 if (ret == 0)
405 lru_cache_add(page);
406 return ret;
407}
408
409/*
410 * In order to wait for pages to become available there must be
411 * waitqueues associated with pages. By using a hash table of
412 * waitqueues where the bucket discipline is to maintain all
413 * waiters on the same queue and wake all when any of the pages
414 * become available, and for the woken contexts to check to be
415 * sure the appropriate page became available, this saves space
416 * at a cost of "thundering herd" phenomena during rare hash
417 * collisions.
418 */
419static wait_queue_head_t *page_waitqueue(struct page *page)
420{
421 const struct zone *zone = page_zone(page);
422
423 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
424}
425
426static inline void wake_up_page(struct page *page, int bit)
427{
428 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
429}
430
431void fastcall wait_on_page_bit(struct page *page, int bit_nr)
432{
433 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
434
435 if (test_bit(bit_nr, &page->flags))
436 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
437 TASK_UNINTERRUPTIBLE);
438}
439EXPORT_SYMBOL(wait_on_page_bit);
440
441/**
442 * unlock_page() - unlock a locked page
443 *
444 * @page: the page
445 *
446 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
447 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
448 * mechananism between PageLocked pages and PageWriteback pages is shared.
449 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
450 *
451 * The first mb is necessary to safely close the critical section opened by the
452 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
453 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
454 * parallel wait_on_page_locked()).
455 */
456void fastcall unlock_page(struct page *page)
457{
458 smp_mb__before_clear_bit();
459 if (!TestClearPageLocked(page))
460 BUG();
461 smp_mb__after_clear_bit();
462 wake_up_page(page, PG_locked);
463}
464EXPORT_SYMBOL(unlock_page);
465
466/*
467 * End writeback against a page.
468 */
469void end_page_writeback(struct page *page)
470{
471 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
472 if (!test_clear_page_writeback(page))
473 BUG();
474 }
475 smp_mb__after_clear_bit();
476 wake_up_page(page, PG_writeback);
477}
478EXPORT_SYMBOL(end_page_writeback);
479
480/*
481 * Get a lock on the page, assuming we need to sleep to get it.
482 *
483 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
484 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
485 * chances are that on the second loop, the block layer's plug list is empty,
486 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
487 */
488void fastcall __lock_page(struct page *page)
489{
490 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
491
492 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
493 TASK_UNINTERRUPTIBLE);
494}
495EXPORT_SYMBOL(__lock_page);
496
497/*
498 * a rather lightweight function, finding and getting a reference to a
499 * hashed page atomically.
500 */
501struct page * find_get_page(struct address_space *mapping, unsigned long offset)
502{
503 struct page *page;
504
505 read_lock_irq(&mapping->tree_lock);
506 page = radix_tree_lookup(&mapping->page_tree, offset);
507 if (page)
508 page_cache_get(page);
509 read_unlock_irq(&mapping->tree_lock);
510 return page;
511}
512
513EXPORT_SYMBOL(find_get_page);
514
515/*
516 * Same as above, but trylock it instead of incrementing the count.
517 */
518struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
519{
520 struct page *page;
521
522 read_lock_irq(&mapping->tree_lock);
523 page = radix_tree_lookup(&mapping->page_tree, offset);
524 if (page && TestSetPageLocked(page))
525 page = NULL;
526 read_unlock_irq(&mapping->tree_lock);
527 return page;
528}
529
530EXPORT_SYMBOL(find_trylock_page);
531
532/**
533 * find_lock_page - locate, pin and lock a pagecache page
534 *
Martin Waitz67be2dd2005-05-01 08:59:26 -0700535 * @mapping: the address_space to search
536 * @offset: the page index
Linus Torvalds1da177e2005-04-16 15:20:36 -0700537 *
538 * Locates the desired pagecache page, locks it, increments its reference
539 * count and returns its address.
540 *
541 * Returns zero if the page was not present. find_lock_page() may sleep.
542 */
543struct page *find_lock_page(struct address_space *mapping,
544 unsigned long offset)
545{
546 struct page *page;
547
548 read_lock_irq(&mapping->tree_lock);
549repeat:
550 page = radix_tree_lookup(&mapping->page_tree, offset);
551 if (page) {
552 page_cache_get(page);
553 if (TestSetPageLocked(page)) {
554 read_unlock_irq(&mapping->tree_lock);
555 lock_page(page);
556 read_lock_irq(&mapping->tree_lock);
557
558 /* Has the page been truncated while we slept? */
559 if (page->mapping != mapping || page->index != offset) {
560 unlock_page(page);
561 page_cache_release(page);
562 goto repeat;
563 }
564 }
565 }
566 read_unlock_irq(&mapping->tree_lock);
567 return page;
568}
569
570EXPORT_SYMBOL(find_lock_page);
571
572/**
573 * find_or_create_page - locate or add a pagecache page
574 *
Martin Waitz67be2dd2005-05-01 08:59:26 -0700575 * @mapping: the page's address_space
576 * @index: the page's index into the mapping
577 * @gfp_mask: page allocation mode
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578 *
579 * Locates a page in the pagecache. If the page is not present, a new page
580 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
581 * LRU list. The returned page is locked and has its reference count
582 * incremented.
583 *
584 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
585 * allocation!
586 *
587 * find_or_create_page() returns the desired page's address, or zero on
588 * memory exhaustion.
589 */
590struct page *find_or_create_page(struct address_space *mapping,
591 unsigned long index, unsigned int gfp_mask)
592{
593 struct page *page, *cached_page = NULL;
594 int err;
595repeat:
596 page = find_lock_page(mapping, index);
597 if (!page) {
598 if (!cached_page) {
599 cached_page = alloc_page(gfp_mask);
600 if (!cached_page)
601 return NULL;
602 }
603 err = add_to_page_cache_lru(cached_page, mapping,
604 index, gfp_mask);
605 if (!err) {
606 page = cached_page;
607 cached_page = NULL;
608 } else if (err == -EEXIST)
609 goto repeat;
610 }
611 if (cached_page)
612 page_cache_release(cached_page);
613 return page;
614}
615
616EXPORT_SYMBOL(find_or_create_page);
617
618/**
619 * find_get_pages - gang pagecache lookup
620 * @mapping: The address_space to search
621 * @start: The starting page index
622 * @nr_pages: The maximum number of pages
623 * @pages: Where the resulting pages are placed
624 *
625 * find_get_pages() will search for and return a group of up to
626 * @nr_pages pages in the mapping. The pages are placed at @pages.
627 * find_get_pages() takes a reference against the returned pages.
628 *
629 * The search returns a group of mapping-contiguous pages with ascending
630 * indexes. There may be holes in the indices due to not-present pages.
631 *
632 * find_get_pages() returns the number of pages which were found.
633 */
634unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
635 unsigned int nr_pages, struct page **pages)
636{
637 unsigned int i;
638 unsigned int ret;
639
640 read_lock_irq(&mapping->tree_lock);
641 ret = radix_tree_gang_lookup(&mapping->page_tree,
642 (void **)pages, start, nr_pages);
643 for (i = 0; i < ret; i++)
644 page_cache_get(pages[i]);
645 read_unlock_irq(&mapping->tree_lock);
646 return ret;
647}
648
649/*
650 * Like find_get_pages, except we only return pages which are tagged with
651 * `tag'. We update *index to index the next page for the traversal.
652 */
653unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
654 int tag, unsigned int nr_pages, struct page **pages)
655{
656 unsigned int i;
657 unsigned int ret;
658
659 read_lock_irq(&mapping->tree_lock);
660 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
661 (void **)pages, *index, nr_pages, tag);
662 for (i = 0; i < ret; i++)
663 page_cache_get(pages[i]);
664 if (ret)
665 *index = pages[ret - 1]->index + 1;
666 read_unlock_irq(&mapping->tree_lock);
667 return ret;
668}
669
670/*
671 * Same as grab_cache_page, but do not wait if the page is unavailable.
672 * This is intended for speculative data generators, where the data can
673 * be regenerated if the page couldn't be grabbed. This routine should
674 * be safe to call while holding the lock for another page.
675 *
676 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
677 * and deadlock against the caller's locked page.
678 */
679struct page *
680grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
681{
682 struct page *page = find_get_page(mapping, index);
683 unsigned int gfp_mask;
684
685 if (page) {
686 if (!TestSetPageLocked(page))
687 return page;
688 page_cache_release(page);
689 return NULL;
690 }
691 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
692 page = alloc_pages(gfp_mask, 0);
693 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
694 page_cache_release(page);
695 page = NULL;
696 }
697 return page;
698}
699
700EXPORT_SYMBOL(grab_cache_page_nowait);
701
702/*
703 * This is a generic file read routine, and uses the
704 * mapping->a_ops->readpage() function for the actual low-level
705 * stuff.
706 *
707 * This is really ugly. But the goto's actually try to clarify some
708 * of the logic when it comes to error handling etc.
709 *
710 * Note the struct file* is only passed for the use of readpage. It may be
711 * NULL.
712 */
713void do_generic_mapping_read(struct address_space *mapping,
714 struct file_ra_state *_ra,
715 struct file *filp,
716 loff_t *ppos,
717 read_descriptor_t *desc,
718 read_actor_t actor)
719{
720 struct inode *inode = mapping->host;
721 unsigned long index;
722 unsigned long end_index;
723 unsigned long offset;
724 unsigned long last_index;
725 unsigned long next_index;
726 unsigned long prev_index;
727 loff_t isize;
728 struct page *cached_page;
729 int error;
730 struct file_ra_state ra = *_ra;
731
732 cached_page = NULL;
733 index = *ppos >> PAGE_CACHE_SHIFT;
734 next_index = index;
735 prev_index = ra.prev_page;
736 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
737 offset = *ppos & ~PAGE_CACHE_MASK;
738
739 isize = i_size_read(inode);
740 if (!isize)
741 goto out;
742
743 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
744 for (;;) {
745 struct page *page;
746 unsigned long nr, ret;
747
748 /* nr is the maximum number of bytes to copy from this page */
749 nr = PAGE_CACHE_SIZE;
750 if (index >= end_index) {
751 if (index > end_index)
752 goto out;
753 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
754 if (nr <= offset) {
755 goto out;
756 }
757 }
758 nr = nr - offset;
759
760 cond_resched();
761 if (index == next_index)
762 next_index = page_cache_readahead(mapping, &ra, filp,
763 index, last_index - index);
764
765find_page:
766 page = find_get_page(mapping, index);
767 if (unlikely(page == NULL)) {
768 handle_ra_miss(mapping, &ra, index);
769 goto no_cached_page;
770 }
771 if (!PageUptodate(page))
772 goto page_not_up_to_date;
773page_ok:
774
775 /* If users can be writing to this page using arbitrary
776 * virtual addresses, take care about potential aliasing
777 * before reading the page on the kernel side.
778 */
779 if (mapping_writably_mapped(mapping))
780 flush_dcache_page(page);
781
782 /*
783 * When (part of) the same page is read multiple times
784 * in succession, only mark it as accessed the first time.
785 */
786 if (prev_index != index)
787 mark_page_accessed(page);
788 prev_index = index;
789
790 /*
791 * Ok, we have the page, and it's up-to-date, so
792 * now we can copy it to user space...
793 *
794 * The actor routine returns how many bytes were actually used..
795 * NOTE! This may not be the same as how much of a user buffer
796 * we filled up (we may be padding etc), so we can only update
797 * "pos" here (the actor routine has to update the user buffer
798 * pointers and the remaining count).
799 */
800 ret = actor(desc, page, offset, nr);
801 offset += ret;
802 index += offset >> PAGE_CACHE_SHIFT;
803 offset &= ~PAGE_CACHE_MASK;
804
805 page_cache_release(page);
806 if (ret == nr && desc->count)
807 continue;
808 goto out;
809
810page_not_up_to_date:
811 /* Get exclusive access to the page ... */
812 lock_page(page);
813
814 /* Did it get unhashed before we got the lock? */
815 if (!page->mapping) {
816 unlock_page(page);
817 page_cache_release(page);
818 continue;
819 }
820
821 /* Did somebody else fill it already? */
822 if (PageUptodate(page)) {
823 unlock_page(page);
824 goto page_ok;
825 }
826
827readpage:
828 /* Start the actual read. The read will unlock the page. */
829 error = mapping->a_ops->readpage(filp, page);
830
831 if (unlikely(error))
832 goto readpage_error;
833
834 if (!PageUptodate(page)) {
835 lock_page(page);
836 if (!PageUptodate(page)) {
837 if (page->mapping == NULL) {
838 /*
839 * invalidate_inode_pages got it
840 */
841 unlock_page(page);
842 page_cache_release(page);
843 goto find_page;
844 }
845 unlock_page(page);
846 error = -EIO;
847 goto readpage_error;
848 }
849 unlock_page(page);
850 }
851
852 /*
853 * i_size must be checked after we have done ->readpage.
854 *
855 * Checking i_size after the readpage allows us to calculate
856 * the correct value for "nr", which means the zero-filled
857 * part of the page is not copied back to userspace (unless
858 * another truncate extends the file - this is desired though).
859 */
860 isize = i_size_read(inode);
861 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
862 if (unlikely(!isize || index > end_index)) {
863 page_cache_release(page);
864 goto out;
865 }
866
867 /* nr is the maximum number of bytes to copy from this page */
868 nr = PAGE_CACHE_SIZE;
869 if (index == end_index) {
870 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
871 if (nr <= offset) {
872 page_cache_release(page);
873 goto out;
874 }
875 }
876 nr = nr - offset;
877 goto page_ok;
878
879readpage_error:
880 /* UHHUH! A synchronous read error occurred. Report it */
881 desc->error = error;
882 page_cache_release(page);
883 goto out;
884
885no_cached_page:
886 /*
887 * Ok, it wasn't cached, so we need to create a new
888 * page..
889 */
890 if (!cached_page) {
891 cached_page = page_cache_alloc_cold(mapping);
892 if (!cached_page) {
893 desc->error = -ENOMEM;
894 goto out;
895 }
896 }
897 error = add_to_page_cache_lru(cached_page, mapping,
898 index, GFP_KERNEL);
899 if (error) {
900 if (error == -EEXIST)
901 goto find_page;
902 desc->error = error;
903 goto out;
904 }
905 page = cached_page;
906 cached_page = NULL;
907 goto readpage;
908 }
909
910out:
911 *_ra = ra;
912
913 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
914 if (cached_page)
915 page_cache_release(cached_page);
916 if (filp)
917 file_accessed(filp);
918}
919
920EXPORT_SYMBOL(do_generic_mapping_read);
921
922int file_read_actor(read_descriptor_t *desc, struct page *page,
923 unsigned long offset, unsigned long size)
924{
925 char *kaddr;
926 unsigned long left, count = desc->count;
927
928 if (size > count)
929 size = count;
930
931 /*
932 * Faults on the destination of a read are common, so do it before
933 * taking the kmap.
934 */
935 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
936 kaddr = kmap_atomic(page, KM_USER0);
937 left = __copy_to_user_inatomic(desc->arg.buf,
938 kaddr + offset, size);
939 kunmap_atomic(kaddr, KM_USER0);
940 if (left == 0)
941 goto success;
942 }
943
944 /* Do it the slow way */
945 kaddr = kmap(page);
946 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
947 kunmap(page);
948
949 if (left) {
950 size -= left;
951 desc->error = -EFAULT;
952 }
953success:
954 desc->count = count - size;
955 desc->written += size;
956 desc->arg.buf += size;
957 return size;
958}
959
960/*
961 * This is the "read()" routine for all filesystems
962 * that can use the page cache directly.
963 */
964ssize_t
965__generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
966 unsigned long nr_segs, loff_t *ppos)
967{
968 struct file *filp = iocb->ki_filp;
969 ssize_t retval;
970 unsigned long seg;
971 size_t count;
972
973 count = 0;
974 for (seg = 0; seg < nr_segs; seg++) {
975 const struct iovec *iv = &iov[seg];
976
977 /*
978 * If any segment has a negative length, or the cumulative
979 * length ever wraps negative then return -EINVAL.
980 */
981 count += iv->iov_len;
982 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
983 return -EINVAL;
984 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
985 continue;
986 if (seg == 0)
987 return -EFAULT;
988 nr_segs = seg;
989 count -= iv->iov_len; /* This segment is no good */
990 break;
991 }
992
993 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
994 if (filp->f_flags & O_DIRECT) {
995 loff_t pos = *ppos, size;
996 struct address_space *mapping;
997 struct inode *inode;
998
999 mapping = filp->f_mapping;
1000 inode = mapping->host;
1001 retval = 0;
1002 if (!count)
1003 goto out; /* skip atime */
1004 size = i_size_read(inode);
1005 if (pos < size) {
1006 retval = generic_file_direct_IO(READ, iocb,
1007 iov, pos, nr_segs);
Suparna Bhattacharyab5c44c22005-05-21 16:33:36 -07001008 if (retval > 0 && !is_sync_kiocb(iocb))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001009 retval = -EIOCBQUEUED;
1010 if (retval > 0)
1011 *ppos = pos + retval;
1012 }
1013 file_accessed(filp);
1014 goto out;
1015 }
1016
1017 retval = 0;
1018 if (count) {
1019 for (seg = 0; seg < nr_segs; seg++) {
1020 read_descriptor_t desc;
1021
1022 desc.written = 0;
1023 desc.arg.buf = iov[seg].iov_base;
1024 desc.count = iov[seg].iov_len;
1025 if (desc.count == 0)
1026 continue;
1027 desc.error = 0;
1028 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1029 retval += desc.written;
1030 if (!retval) {
1031 retval = desc.error;
1032 break;
1033 }
1034 }
1035 }
1036out:
1037 return retval;
1038}
1039
1040EXPORT_SYMBOL(__generic_file_aio_read);
1041
1042ssize_t
1043generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1044{
1045 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1046
1047 BUG_ON(iocb->ki_pos != pos);
1048 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1049}
1050
1051EXPORT_SYMBOL(generic_file_aio_read);
1052
1053ssize_t
1054generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1055{
1056 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1057 struct kiocb kiocb;
1058 ssize_t ret;
1059
1060 init_sync_kiocb(&kiocb, filp);
1061 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1062 if (-EIOCBQUEUED == ret)
1063 ret = wait_on_sync_kiocb(&kiocb);
1064 return ret;
1065}
1066
1067EXPORT_SYMBOL(generic_file_read);
1068
1069int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1070{
1071 ssize_t written;
1072 unsigned long count = desc->count;
1073 struct file *file = desc->arg.data;
1074
1075 if (size > count)
1076 size = count;
1077
1078 written = file->f_op->sendpage(file, page, offset,
1079 size, &file->f_pos, size<count);
1080 if (written < 0) {
1081 desc->error = written;
1082 written = 0;
1083 }
1084 desc->count = count - written;
1085 desc->written += written;
1086 return written;
1087}
1088
1089ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1090 size_t count, read_actor_t actor, void *target)
1091{
1092 read_descriptor_t desc;
1093
1094 if (!count)
1095 return 0;
1096
1097 desc.written = 0;
1098 desc.count = count;
1099 desc.arg.data = target;
1100 desc.error = 0;
1101
1102 do_generic_file_read(in_file, ppos, &desc, actor);
1103 if (desc.written)
1104 return desc.written;
1105 return desc.error;
1106}
1107
1108EXPORT_SYMBOL(generic_file_sendfile);
1109
1110static ssize_t
1111do_readahead(struct address_space *mapping, struct file *filp,
1112 unsigned long index, unsigned long nr)
1113{
1114 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1115 return -EINVAL;
1116
1117 force_page_cache_readahead(mapping, filp, index,
1118 max_sane_readahead(nr));
1119 return 0;
1120}
1121
1122asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1123{
1124 ssize_t ret;
1125 struct file *file;
1126
1127 ret = -EBADF;
1128 file = fget(fd);
1129 if (file) {
1130 if (file->f_mode & FMODE_READ) {
1131 struct address_space *mapping = file->f_mapping;
1132 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1133 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1134 unsigned long len = end - start + 1;
1135 ret = do_readahead(mapping, file, start, len);
1136 }
1137 fput(file);
1138 }
1139 return ret;
1140}
1141
1142#ifdef CONFIG_MMU
1143/*
1144 * This adds the requested page to the page cache if it isn't already there,
1145 * and schedules an I/O to read in its contents from disk.
1146 */
1147static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1148static int fastcall page_cache_read(struct file * file, unsigned long offset)
1149{
1150 struct address_space *mapping = file->f_mapping;
1151 struct page *page;
1152 int error;
1153
1154 page = page_cache_alloc_cold(mapping);
1155 if (!page)
1156 return -ENOMEM;
1157
1158 error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1159 if (!error) {
1160 error = mapping->a_ops->readpage(file, page);
1161 page_cache_release(page);
1162 return error;
1163 }
1164
1165 /*
1166 * We arrive here in the unlikely event that someone
1167 * raced with us and added our page to the cache first
1168 * or we are out of memory for radix-tree nodes.
1169 */
1170 page_cache_release(page);
1171 return error == -EEXIST ? 0 : error;
1172}
1173
1174#define MMAP_LOTSAMISS (100)
1175
1176/*
1177 * filemap_nopage() is invoked via the vma operations vector for a
1178 * mapped memory region to read in file data during a page fault.
1179 *
1180 * The goto's are kind of ugly, but this streamlines the normal case of having
1181 * it in the page cache, and handles the special cases reasonably without
1182 * having a lot of duplicated code.
1183 */
1184struct page *filemap_nopage(struct vm_area_struct *area,
1185 unsigned long address, int *type)
1186{
1187 int error;
1188 struct file *file = area->vm_file;
1189 struct address_space *mapping = file->f_mapping;
1190 struct file_ra_state *ra = &file->f_ra;
1191 struct inode *inode = mapping->host;
1192 struct page *page;
1193 unsigned long size, pgoff;
1194 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1195
1196 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1197
1198retry_all:
1199 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1200 if (pgoff >= size)
1201 goto outside_data_content;
1202
1203 /* If we don't want any read-ahead, don't bother */
1204 if (VM_RandomReadHint(area))
1205 goto no_cached_page;
1206
1207 /*
1208 * The readahead code wants to be told about each and every page
1209 * so it can build and shrink its windows appropriately
1210 *
1211 * For sequential accesses, we use the generic readahead logic.
1212 */
1213 if (VM_SequentialReadHint(area))
1214 page_cache_readahead(mapping, ra, file, pgoff, 1);
1215
1216 /*
1217 * Do we have something in the page cache already?
1218 */
1219retry_find:
1220 page = find_get_page(mapping, pgoff);
1221 if (!page) {
1222 unsigned long ra_pages;
1223
1224 if (VM_SequentialReadHint(area)) {
1225 handle_ra_miss(mapping, ra, pgoff);
1226 goto no_cached_page;
1227 }
1228 ra->mmap_miss++;
1229
1230 /*
1231 * Do we miss much more than hit in this file? If so,
1232 * stop bothering with read-ahead. It will only hurt.
1233 */
1234 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1235 goto no_cached_page;
1236
1237 /*
1238 * To keep the pgmajfault counter straight, we need to
1239 * check did_readaround, as this is an inner loop.
1240 */
1241 if (!did_readaround) {
1242 majmin = VM_FAULT_MAJOR;
1243 inc_page_state(pgmajfault);
1244 }
1245 did_readaround = 1;
1246 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1247 if (ra_pages) {
1248 pgoff_t start = 0;
1249
1250 if (pgoff > ra_pages / 2)
1251 start = pgoff - ra_pages / 2;
1252 do_page_cache_readahead(mapping, file, start, ra_pages);
1253 }
1254 page = find_get_page(mapping, pgoff);
1255 if (!page)
1256 goto no_cached_page;
1257 }
1258
1259 if (!did_readaround)
1260 ra->mmap_hit++;
1261
1262 /*
1263 * Ok, found a page in the page cache, now we need to check
1264 * that it's up-to-date.
1265 */
1266 if (!PageUptodate(page))
1267 goto page_not_uptodate;
1268
1269success:
1270 /*
1271 * Found the page and have a reference on it.
1272 */
1273 mark_page_accessed(page);
1274 if (type)
1275 *type = majmin;
1276 return page;
1277
1278outside_data_content:
1279 /*
1280 * An external ptracer can access pages that normally aren't
1281 * accessible..
1282 */
1283 if (area->vm_mm == current->mm)
1284 return NULL;
1285 /* Fall through to the non-read-ahead case */
1286no_cached_page:
1287 /*
1288 * We're only likely to ever get here if MADV_RANDOM is in
1289 * effect.
1290 */
1291 error = page_cache_read(file, pgoff);
1292 grab_swap_token();
1293
1294 /*
1295 * The page we want has now been added to the page cache.
1296 * In the unlikely event that someone removed it in the
1297 * meantime, we'll just come back here and read it again.
1298 */
1299 if (error >= 0)
1300 goto retry_find;
1301
1302 /*
1303 * An error return from page_cache_read can result if the
1304 * system is low on memory, or a problem occurs while trying
1305 * to schedule I/O.
1306 */
1307 if (error == -ENOMEM)
1308 return NOPAGE_OOM;
1309 return NULL;
1310
1311page_not_uptodate:
1312 if (!did_readaround) {
1313 majmin = VM_FAULT_MAJOR;
1314 inc_page_state(pgmajfault);
1315 }
1316 lock_page(page);
1317
1318 /* Did it get unhashed while we waited for it? */
1319 if (!page->mapping) {
1320 unlock_page(page);
1321 page_cache_release(page);
1322 goto retry_all;
1323 }
1324
1325 /* Did somebody else get it up-to-date? */
1326 if (PageUptodate(page)) {
1327 unlock_page(page);
1328 goto success;
1329 }
1330
1331 if (!mapping->a_ops->readpage(file, page)) {
1332 wait_on_page_locked(page);
1333 if (PageUptodate(page))
1334 goto success;
1335 }
1336
1337 /*
1338 * Umm, take care of errors if the page isn't up-to-date.
1339 * Try to re-read it _once_. We do this synchronously,
1340 * because there really aren't any performance issues here
1341 * and we need to check for errors.
1342 */
1343 lock_page(page);
1344
1345 /* Somebody truncated the page on us? */
1346 if (!page->mapping) {
1347 unlock_page(page);
1348 page_cache_release(page);
1349 goto retry_all;
1350 }
1351
1352 /* Somebody else successfully read it in? */
1353 if (PageUptodate(page)) {
1354 unlock_page(page);
1355 goto success;
1356 }
1357 ClearPageError(page);
1358 if (!mapping->a_ops->readpage(file, page)) {
1359 wait_on_page_locked(page);
1360 if (PageUptodate(page))
1361 goto success;
1362 }
1363
1364 /*
1365 * Things didn't work out. Return zero to tell the
1366 * mm layer so, possibly freeing the page cache page first.
1367 */
1368 page_cache_release(page);
1369 return NULL;
1370}
1371
1372EXPORT_SYMBOL(filemap_nopage);
1373
1374static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1375 int nonblock)
1376{
1377 struct address_space *mapping = file->f_mapping;
1378 struct page *page;
1379 int error;
1380
1381 /*
1382 * Do we have something in the page cache already?
1383 */
1384retry_find:
1385 page = find_get_page(mapping, pgoff);
1386 if (!page) {
1387 if (nonblock)
1388 return NULL;
1389 goto no_cached_page;
1390 }
1391
1392 /*
1393 * Ok, found a page in the page cache, now we need to check
1394 * that it's up-to-date.
1395 */
Jeff Moyerd3457342005-04-16 15:24:05 -07001396 if (!PageUptodate(page)) {
1397 if (nonblock) {
1398 page_cache_release(page);
1399 return NULL;
1400 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001401 goto page_not_uptodate;
Jeff Moyerd3457342005-04-16 15:24:05 -07001402 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001403
1404success:
1405 /*
1406 * Found the page and have a reference on it.
1407 */
1408 mark_page_accessed(page);
1409 return page;
1410
1411no_cached_page:
1412 error = page_cache_read(file, pgoff);
1413
1414 /*
1415 * The page we want has now been added to the page cache.
1416 * In the unlikely event that someone removed it in the
1417 * meantime, we'll just come back here and read it again.
1418 */
1419 if (error >= 0)
1420 goto retry_find;
1421
1422 /*
1423 * An error return from page_cache_read can result if the
1424 * system is low on memory, or a problem occurs while trying
1425 * to schedule I/O.
1426 */
1427 return NULL;
1428
1429page_not_uptodate:
1430 lock_page(page);
1431
1432 /* Did it get unhashed while we waited for it? */
1433 if (!page->mapping) {
1434 unlock_page(page);
1435 goto err;
1436 }
1437
1438 /* Did somebody else get it up-to-date? */
1439 if (PageUptodate(page)) {
1440 unlock_page(page);
1441 goto success;
1442 }
1443
1444 if (!mapping->a_ops->readpage(file, page)) {
1445 wait_on_page_locked(page);
1446 if (PageUptodate(page))
1447 goto success;
1448 }
1449
1450 /*
1451 * Umm, take care of errors if the page isn't up-to-date.
1452 * Try to re-read it _once_. We do this synchronously,
1453 * because there really aren't any performance issues here
1454 * and we need to check for errors.
1455 */
1456 lock_page(page);
1457
1458 /* Somebody truncated the page on us? */
1459 if (!page->mapping) {
1460 unlock_page(page);
1461 goto err;
1462 }
1463 /* Somebody else successfully read it in? */
1464 if (PageUptodate(page)) {
1465 unlock_page(page);
1466 goto success;
1467 }
1468
1469 ClearPageError(page);
1470 if (!mapping->a_ops->readpage(file, page)) {
1471 wait_on_page_locked(page);
1472 if (PageUptodate(page))
1473 goto success;
1474 }
1475
1476 /*
1477 * Things didn't work out. Return zero to tell the
1478 * mm layer so, possibly freeing the page cache page first.
1479 */
1480err:
1481 page_cache_release(page);
1482
1483 return NULL;
1484}
1485
1486int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1487 unsigned long len, pgprot_t prot, unsigned long pgoff,
1488 int nonblock)
1489{
1490 struct file *file = vma->vm_file;
1491 struct address_space *mapping = file->f_mapping;
1492 struct inode *inode = mapping->host;
1493 unsigned long size;
1494 struct mm_struct *mm = vma->vm_mm;
1495 struct page *page;
1496 int err;
1497
1498 if (!nonblock)
1499 force_page_cache_readahead(mapping, vma->vm_file,
1500 pgoff, len >> PAGE_CACHE_SHIFT);
1501
1502repeat:
1503 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1504 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1505 return -EINVAL;
1506
1507 page = filemap_getpage(file, pgoff, nonblock);
1508 if (!page && !nonblock)
1509 return -ENOMEM;
1510 if (page) {
1511 err = install_page(mm, vma, addr, page, prot);
1512 if (err) {
1513 page_cache_release(page);
1514 return err;
1515 }
1516 } else {
1517 err = install_file_pte(mm, vma, addr, pgoff, prot);
1518 if (err)
1519 return err;
1520 }
1521
1522 len -= PAGE_SIZE;
1523 addr += PAGE_SIZE;
1524 pgoff++;
1525 if (len)
1526 goto repeat;
1527
1528 return 0;
1529}
1530
1531struct vm_operations_struct generic_file_vm_ops = {
1532 .nopage = filemap_nopage,
1533 .populate = filemap_populate,
1534};
1535
1536/* This is used for a general mmap of a disk file */
1537
1538int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1539{
1540 struct address_space *mapping = file->f_mapping;
1541
1542 if (!mapping->a_ops->readpage)
1543 return -ENOEXEC;
1544 file_accessed(file);
1545 vma->vm_ops = &generic_file_vm_ops;
1546 return 0;
1547}
1548EXPORT_SYMBOL(filemap_populate);
1549
1550/*
1551 * This is for filesystems which do not implement ->writepage.
1552 */
1553int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1554{
1555 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1556 return -EINVAL;
1557 return generic_file_mmap(file, vma);
1558}
1559#else
1560int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1561{
1562 return -ENOSYS;
1563}
1564int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1565{
1566 return -ENOSYS;
1567}
1568#endif /* CONFIG_MMU */
1569
1570EXPORT_SYMBOL(generic_file_mmap);
1571EXPORT_SYMBOL(generic_file_readonly_mmap);
1572
1573static inline struct page *__read_cache_page(struct address_space *mapping,
1574 unsigned long index,
1575 int (*filler)(void *,struct page*),
1576 void *data)
1577{
1578 struct page *page, *cached_page = NULL;
1579 int err;
1580repeat:
1581 page = find_get_page(mapping, index);
1582 if (!page) {
1583 if (!cached_page) {
1584 cached_page = page_cache_alloc_cold(mapping);
1585 if (!cached_page)
1586 return ERR_PTR(-ENOMEM);
1587 }
1588 err = add_to_page_cache_lru(cached_page, mapping,
1589 index, GFP_KERNEL);
1590 if (err == -EEXIST)
1591 goto repeat;
1592 if (err < 0) {
1593 /* Presumably ENOMEM for radix tree node */
1594 page_cache_release(cached_page);
1595 return ERR_PTR(err);
1596 }
1597 page = cached_page;
1598 cached_page = NULL;
1599 err = filler(data, page);
1600 if (err < 0) {
1601 page_cache_release(page);
1602 page = ERR_PTR(err);
1603 }
1604 }
1605 if (cached_page)
1606 page_cache_release(cached_page);
1607 return page;
1608}
1609
1610/*
1611 * Read into the page cache. If a page already exists,
1612 * and PageUptodate() is not set, try to fill the page.
1613 */
1614struct page *read_cache_page(struct address_space *mapping,
1615 unsigned long index,
1616 int (*filler)(void *,struct page*),
1617 void *data)
1618{
1619 struct page *page;
1620 int err;
1621
1622retry:
1623 page = __read_cache_page(mapping, index, filler, data);
1624 if (IS_ERR(page))
1625 goto out;
1626 mark_page_accessed(page);
1627 if (PageUptodate(page))
1628 goto out;
1629
1630 lock_page(page);
1631 if (!page->mapping) {
1632 unlock_page(page);
1633 page_cache_release(page);
1634 goto retry;
1635 }
1636 if (PageUptodate(page)) {
1637 unlock_page(page);
1638 goto out;
1639 }
1640 err = filler(data, page);
1641 if (err < 0) {
1642 page_cache_release(page);
1643 page = ERR_PTR(err);
1644 }
1645 out:
1646 return page;
1647}
1648
1649EXPORT_SYMBOL(read_cache_page);
1650
1651/*
1652 * If the page was newly created, increment its refcount and add it to the
1653 * caller's lru-buffering pagevec. This function is specifically for
1654 * generic_file_write().
1655 */
1656static inline struct page *
1657__grab_cache_page(struct address_space *mapping, unsigned long index,
1658 struct page **cached_page, struct pagevec *lru_pvec)
1659{
1660 int err;
1661 struct page *page;
1662repeat:
1663 page = find_lock_page(mapping, index);
1664 if (!page) {
1665 if (!*cached_page) {
1666 *cached_page = page_cache_alloc(mapping);
1667 if (!*cached_page)
1668 return NULL;
1669 }
1670 err = add_to_page_cache(*cached_page, mapping,
1671 index, GFP_KERNEL);
1672 if (err == -EEXIST)
1673 goto repeat;
1674 if (err == 0) {
1675 page = *cached_page;
1676 page_cache_get(page);
1677 if (!pagevec_add(lru_pvec, page))
1678 __pagevec_lru_add(lru_pvec);
1679 *cached_page = NULL;
1680 }
1681 }
1682 return page;
1683}
1684
1685/*
1686 * The logic we want is
1687 *
1688 * if suid or (sgid and xgrp)
1689 * remove privs
1690 */
1691int remove_suid(struct dentry *dentry)
1692{
1693 mode_t mode = dentry->d_inode->i_mode;
1694 int kill = 0;
1695 int result = 0;
1696
1697 /* suid always must be killed */
1698 if (unlikely(mode & S_ISUID))
1699 kill = ATTR_KILL_SUID;
1700
1701 /*
1702 * sgid without any exec bits is just a mandatory locking mark; leave
1703 * it alone. If some exec bits are set, it's a real sgid; kill it.
1704 */
1705 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1706 kill |= ATTR_KILL_SGID;
1707
1708 if (unlikely(kill && !capable(CAP_FSETID))) {
1709 struct iattr newattrs;
1710
1711 newattrs.ia_valid = ATTR_FORCE | kill;
1712 result = notify_change(dentry, &newattrs);
1713 }
1714 return result;
1715}
1716EXPORT_SYMBOL(remove_suid);
1717
Carsten Otteceffc072005-06-23 22:05:25 -07001718size_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07001719__filemap_copy_from_user_iovec(char *vaddr,
1720 const struct iovec *iov, size_t base, size_t bytes)
1721{
1722 size_t copied = 0, left = 0;
1723
1724 while (bytes) {
1725 char __user *buf = iov->iov_base + base;
1726 int copy = min(bytes, iov->iov_len - base);
1727
1728 base = 0;
1729 left = __copy_from_user_inatomic(vaddr, buf, copy);
1730 copied += copy;
1731 bytes -= copy;
1732 vaddr += copy;
1733 iov++;
1734
1735 if (unlikely(left)) {
1736 /* zero the rest of the target like __copy_from_user */
1737 if (bytes)
1738 memset(vaddr, 0, bytes);
1739 break;
1740 }
1741 }
1742 return copied - left;
1743}
1744
1745/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001746 * Performs necessary checks before doing a write
1747 *
1748 * Can adjust writing position aor amount of bytes to write.
1749 * Returns appropriate error code that caller should return or
1750 * zero in case that write should be allowed.
1751 */
1752inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1753{
1754 struct inode *inode = file->f_mapping->host;
1755 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1756
1757 if (unlikely(*pos < 0))
1758 return -EINVAL;
1759
Linus Torvalds1da177e2005-04-16 15:20:36 -07001760 if (!isblk) {
1761 /* FIXME: this is for backwards compatibility with 2.4 */
1762 if (file->f_flags & O_APPEND)
1763 *pos = i_size_read(inode);
1764
1765 if (limit != RLIM_INFINITY) {
1766 if (*pos >= limit) {
1767 send_sig(SIGXFSZ, current, 0);
1768 return -EFBIG;
1769 }
1770 if (*count > limit - (typeof(limit))*pos) {
1771 *count = limit - (typeof(limit))*pos;
1772 }
1773 }
1774 }
1775
1776 /*
1777 * LFS rule
1778 */
1779 if (unlikely(*pos + *count > MAX_NON_LFS &&
1780 !(file->f_flags & O_LARGEFILE))) {
1781 if (*pos >= MAX_NON_LFS) {
1782 send_sig(SIGXFSZ, current, 0);
1783 return -EFBIG;
1784 }
1785 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1786 *count = MAX_NON_LFS - (unsigned long)*pos;
1787 }
1788 }
1789
1790 /*
1791 * Are we about to exceed the fs block limit ?
1792 *
1793 * If we have written data it becomes a short write. If we have
1794 * exceeded without writing data we send a signal and return EFBIG.
1795 * Linus frestrict idea will clean these up nicely..
1796 */
1797 if (likely(!isblk)) {
1798 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1799 if (*count || *pos > inode->i_sb->s_maxbytes) {
1800 send_sig(SIGXFSZ, current, 0);
1801 return -EFBIG;
1802 }
1803 /* zero-length writes at ->s_maxbytes are OK */
1804 }
1805
1806 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1807 *count = inode->i_sb->s_maxbytes - *pos;
1808 } else {
1809 loff_t isize;
1810 if (bdev_read_only(I_BDEV(inode)))
1811 return -EPERM;
1812 isize = i_size_read(inode);
1813 if (*pos >= isize) {
1814 if (*count || *pos > isize)
1815 return -ENOSPC;
1816 }
1817
1818 if (*pos + *count > isize)
1819 *count = isize - *pos;
1820 }
1821 return 0;
1822}
1823EXPORT_SYMBOL(generic_write_checks);
1824
1825ssize_t
1826generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1827 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1828 size_t count, size_t ocount)
1829{
1830 struct file *file = iocb->ki_filp;
1831 struct address_space *mapping = file->f_mapping;
1832 struct inode *inode = mapping->host;
1833 ssize_t written;
1834
1835 if (count != ocount)
1836 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1837
1838 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1839 if (written > 0) {
1840 loff_t end = pos + written;
1841 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1842 i_size_write(inode, end);
1843 mark_inode_dirty(inode);
1844 }
1845 *ppos = end;
1846 }
1847
1848 /*
1849 * Sync the fs metadata but not the minor inode changes and
1850 * of course not the data as we did direct DMA for the IO.
1851 * i_sem is held, which protects generic_osync_inode() from
1852 * livelocking.
1853 */
1854 if (written >= 0 && file->f_flags & O_SYNC)
1855 generic_osync_inode(inode, mapping, OSYNC_METADATA);
1856 if (written == count && !is_sync_kiocb(iocb))
1857 written = -EIOCBQUEUED;
1858 return written;
1859}
1860EXPORT_SYMBOL(generic_file_direct_write);
1861
1862ssize_t
1863generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1864 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1865 size_t count, ssize_t written)
1866{
1867 struct file *file = iocb->ki_filp;
1868 struct address_space * mapping = file->f_mapping;
1869 struct address_space_operations *a_ops = mapping->a_ops;
1870 struct inode *inode = mapping->host;
1871 long status = 0;
1872 struct page *page;
1873 struct page *cached_page = NULL;
1874 size_t bytes;
1875 struct pagevec lru_pvec;
1876 const struct iovec *cur_iov = iov; /* current iovec */
1877 size_t iov_base = 0; /* offset in the current iovec */
1878 char __user *buf;
1879
1880 pagevec_init(&lru_pvec, 0);
1881
1882 /*
1883 * handle partial DIO write. Adjust cur_iov if needed.
1884 */
1885 if (likely(nr_segs == 1))
1886 buf = iov->iov_base + written;
1887 else {
1888 filemap_set_next_iovec(&cur_iov, &iov_base, written);
akpm@osdl.orgf021e922005-05-01 08:58:35 -07001889 buf = cur_iov->iov_base + iov_base;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001890 }
1891
1892 do {
1893 unsigned long index;
1894 unsigned long offset;
Martin Schwidefskya5117182005-06-06 13:35:54 -07001895 unsigned long maxlen;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001896 size_t copied;
1897
1898 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1899 index = pos >> PAGE_CACHE_SHIFT;
1900 bytes = PAGE_CACHE_SIZE - offset;
1901 if (bytes > count)
1902 bytes = count;
1903
1904 /*
1905 * Bring in the user page that we will copy from _first_.
1906 * Otherwise there's a nasty deadlock on copying from the
1907 * same page as we're writing to, without it being marked
1908 * up-to-date.
1909 */
Martin Schwidefskya5117182005-06-06 13:35:54 -07001910 maxlen = cur_iov->iov_len - iov_base;
1911 if (maxlen > bytes)
1912 maxlen = bytes;
1913 fault_in_pages_readable(buf, maxlen);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001914
1915 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1916 if (!page) {
1917 status = -ENOMEM;
1918 break;
1919 }
1920
1921 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1922 if (unlikely(status)) {
1923 loff_t isize = i_size_read(inode);
1924 /*
1925 * prepare_write() may have instantiated a few blocks
1926 * outside i_size. Trim these off again.
1927 */
1928 unlock_page(page);
1929 page_cache_release(page);
1930 if (pos + bytes > isize)
1931 vmtruncate(inode, isize);
1932 break;
1933 }
1934 if (likely(nr_segs == 1))
1935 copied = filemap_copy_from_user(page, offset,
1936 buf, bytes);
1937 else
1938 copied = filemap_copy_from_user_iovec(page, offset,
1939 cur_iov, iov_base, bytes);
1940 flush_dcache_page(page);
1941 status = a_ops->commit_write(file, page, offset, offset+bytes);
1942 if (likely(copied > 0)) {
1943 if (!status)
1944 status = copied;
1945
1946 if (status >= 0) {
1947 written += status;
1948 count -= status;
1949 pos += status;
1950 buf += status;
akpm@osdl.orgf021e922005-05-01 08:58:35 -07001951 if (unlikely(nr_segs > 1)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001952 filemap_set_next_iovec(&cur_iov,
1953 &iov_base, status);
akpm@osdl.orgf021e922005-05-01 08:58:35 -07001954 buf = cur_iov->iov_base + iov_base;
Martin Schwidefskya5117182005-06-06 13:35:54 -07001955 } else {
1956 iov_base += status;
akpm@osdl.orgf021e922005-05-01 08:58:35 -07001957 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001958 }
1959 }
1960 if (unlikely(copied != bytes))
1961 if (status >= 0)
1962 status = -EFAULT;
1963 unlock_page(page);
1964 mark_page_accessed(page);
1965 page_cache_release(page);
1966 if (status < 0)
1967 break;
1968 balance_dirty_pages_ratelimited(mapping);
1969 cond_resched();
1970 } while (count);
1971 *ppos = pos;
1972
1973 if (cached_page)
1974 page_cache_release(cached_page);
1975
1976 /*
1977 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1978 */
1979 if (likely(status >= 0)) {
1980 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1981 if (!a_ops->writepage || !is_sync_kiocb(iocb))
1982 status = generic_osync_inode(inode, mapping,
1983 OSYNC_METADATA|OSYNC_DATA);
1984 }
1985 }
1986
1987 /*
1988 * If we get here for O_DIRECT writes then we must have fallen through
1989 * to buffered writes (block instantiation inside i_size). So we sync
1990 * the file data here, to try to honour O_DIRECT expectations.
1991 */
1992 if (unlikely(file->f_flags & O_DIRECT) && written)
1993 status = filemap_write_and_wait(mapping);
1994
1995 pagevec_lru_add(&lru_pvec);
1996 return written ? written : status;
1997}
1998EXPORT_SYMBOL(generic_file_buffered_write);
1999
2000ssize_t
2001__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2002 unsigned long nr_segs, loff_t *ppos)
2003{
2004 struct file *file = iocb->ki_filp;
2005 struct address_space * mapping = file->f_mapping;
2006 size_t ocount; /* original count */
2007 size_t count; /* after file limit checks */
2008 struct inode *inode = mapping->host;
2009 unsigned long seg;
2010 loff_t pos;
2011 ssize_t written;
2012 ssize_t err;
2013
2014 ocount = 0;
2015 for (seg = 0; seg < nr_segs; seg++) {
2016 const struct iovec *iv = &iov[seg];
2017
2018 /*
2019 * If any segment has a negative length, or the cumulative
2020 * length ever wraps negative then return -EINVAL.
2021 */
2022 ocount += iv->iov_len;
2023 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2024 return -EINVAL;
2025 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2026 continue;
2027 if (seg == 0)
2028 return -EFAULT;
2029 nr_segs = seg;
2030 ocount -= iv->iov_len; /* This segment is no good */
2031 break;
2032 }
2033
2034 count = ocount;
2035 pos = *ppos;
2036
2037 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2038
2039 /* We can write back this queue in page reclaim */
2040 current->backing_dev_info = mapping->backing_dev_info;
2041 written = 0;
2042
2043 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2044 if (err)
2045 goto out;
2046
2047 if (count == 0)
2048 goto out;
2049
2050 err = remove_suid(file->f_dentry);
2051 if (err)
2052 goto out;
2053
2054 inode_update_time(inode, 1);
2055
2056 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2057 if (unlikely(file->f_flags & O_DIRECT)) {
2058 written = generic_file_direct_write(iocb, iov,
2059 &nr_segs, pos, ppos, count, ocount);
2060 if (written < 0 || written == count)
2061 goto out;
2062 /*
2063 * direct-io write to a hole: fall through to buffered I/O
2064 * for completing the rest of the request.
2065 */
2066 pos += written;
2067 count -= written;
2068 }
2069
2070 written = generic_file_buffered_write(iocb, iov, nr_segs,
2071 pos, ppos, count, written);
2072out:
2073 current->backing_dev_info = NULL;
2074 return written ? written : err;
2075}
2076EXPORT_SYMBOL(generic_file_aio_write_nolock);
2077
2078ssize_t
2079generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2080 unsigned long nr_segs, loff_t *ppos)
2081{
2082 struct file *file = iocb->ki_filp;
2083 struct address_space *mapping = file->f_mapping;
2084 struct inode *inode = mapping->host;
2085 ssize_t ret;
2086 loff_t pos = *ppos;
2087
2088 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2089
2090 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2091 int err;
2092
2093 err = sync_page_range_nolock(inode, mapping, pos, ret);
2094 if (err < 0)
2095 ret = err;
2096 }
2097 return ret;
2098}
2099
2100ssize_t
2101__generic_file_write_nolock(struct file *file, const struct iovec *iov,
2102 unsigned long nr_segs, loff_t *ppos)
2103{
2104 struct kiocb kiocb;
2105 ssize_t ret;
2106
2107 init_sync_kiocb(&kiocb, file);
2108 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2109 if (ret == -EIOCBQUEUED)
2110 ret = wait_on_sync_kiocb(&kiocb);
2111 return ret;
2112}
2113
2114ssize_t
2115generic_file_write_nolock(struct file *file, const struct iovec *iov,
2116 unsigned long nr_segs, loff_t *ppos)
2117{
2118 struct kiocb kiocb;
2119 ssize_t ret;
2120
2121 init_sync_kiocb(&kiocb, file);
2122 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2123 if (-EIOCBQUEUED == ret)
2124 ret = wait_on_sync_kiocb(&kiocb);
2125 return ret;
2126}
2127EXPORT_SYMBOL(generic_file_write_nolock);
2128
2129ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2130 size_t count, loff_t pos)
2131{
2132 struct file *file = iocb->ki_filp;
2133 struct address_space *mapping = file->f_mapping;
2134 struct inode *inode = mapping->host;
2135 ssize_t ret;
2136 struct iovec local_iov = { .iov_base = (void __user *)buf,
2137 .iov_len = count };
2138
2139 BUG_ON(iocb->ki_pos != pos);
2140
2141 down(&inode->i_sem);
2142 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2143 &iocb->ki_pos);
2144 up(&inode->i_sem);
2145
2146 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2147 ssize_t err;
2148
2149 err = sync_page_range(inode, mapping, pos, ret);
2150 if (err < 0)
2151 ret = err;
2152 }
2153 return ret;
2154}
2155EXPORT_SYMBOL(generic_file_aio_write);
2156
2157ssize_t generic_file_write(struct file *file, const char __user *buf,
2158 size_t count, loff_t *ppos)
2159{
2160 struct address_space *mapping = file->f_mapping;
2161 struct inode *inode = mapping->host;
2162 ssize_t ret;
2163 struct iovec local_iov = { .iov_base = (void __user *)buf,
2164 .iov_len = count };
2165
2166 down(&inode->i_sem);
2167 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2168 up(&inode->i_sem);
2169
2170 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2171 ssize_t err;
2172
2173 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2174 if (err < 0)
2175 ret = err;
2176 }
2177 return ret;
2178}
2179EXPORT_SYMBOL(generic_file_write);
2180
2181ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2182 unsigned long nr_segs, loff_t *ppos)
2183{
2184 struct kiocb kiocb;
2185 ssize_t ret;
2186
2187 init_sync_kiocb(&kiocb, filp);
2188 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2189 if (-EIOCBQUEUED == ret)
2190 ret = wait_on_sync_kiocb(&kiocb);
2191 return ret;
2192}
2193EXPORT_SYMBOL(generic_file_readv);
2194
2195ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2196 unsigned long nr_segs, loff_t *ppos)
2197{
2198 struct address_space *mapping = file->f_mapping;
2199 struct inode *inode = mapping->host;
2200 ssize_t ret;
2201
2202 down(&inode->i_sem);
2203 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2204 up(&inode->i_sem);
2205
2206 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2207 int err;
2208
2209 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2210 if (err < 0)
2211 ret = err;
2212 }
2213 return ret;
2214}
2215EXPORT_SYMBOL(generic_file_writev);
2216
2217/*
2218 * Called under i_sem for writes to S_ISREG files. Returns -EIO if something
2219 * went wrong during pagecache shootdown.
2220 */
2221ssize_t
2222generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2223 loff_t offset, unsigned long nr_segs)
2224{
2225 struct file *file = iocb->ki_filp;
2226 struct address_space *mapping = file->f_mapping;
2227 ssize_t retval;
2228 size_t write_len = 0;
2229
2230 /*
2231 * If it's a write, unmap all mmappings of the file up-front. This
2232 * will cause any pte dirty bits to be propagated into the pageframes
2233 * for the subsequent filemap_write_and_wait().
2234 */
2235 if (rw == WRITE) {
2236 write_len = iov_length(iov, nr_segs);
2237 if (mapping_mapped(mapping))
2238 unmap_mapping_range(mapping, offset, write_len, 0);
2239 }
2240
2241 retval = filemap_write_and_wait(mapping);
2242 if (retval == 0) {
2243 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2244 offset, nr_segs);
2245 if (rw == WRITE && mapping->nrpages) {
2246 pgoff_t end = (offset + write_len - 1)
2247 >> PAGE_CACHE_SHIFT;
2248 int err = invalidate_inode_pages2_range(mapping,
2249 offset >> PAGE_CACHE_SHIFT, end);
2250 if (err)
2251 retval = err;
2252 }
2253 }
2254 return retval;
2255}
2256EXPORT_SYMBOL_GPL(generic_file_direct_IO);