blob: ebc59064b4752a6fd12f511cece004c8e8dae889 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/drivers/ide/ide-tape.c Version 1.19 Nov, 2003
3 *
4 * Copyright (C) 1995 - 1999 Gadi Oxman <gadio@netvision.net.il>
5 *
6 * $Header$
7 *
8 * This driver was constructed as a student project in the software laboratory
9 * of the faculty of electrical engineering in the Technion - Israel's
10 * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
11 *
12 * It is hereby placed under the terms of the GNU general public license.
13 * (See linux/COPYING).
14 */
15
16/*
17 * IDE ATAPI streaming tape driver.
18 *
19 * This driver is a part of the Linux ide driver and works in co-operation
20 * with linux/drivers/block/ide.c.
21 *
22 * The driver, in co-operation with ide.c, basically traverses the
23 * request-list for the block device interface. The character device
24 * interface, on the other hand, creates new requests, adds them
25 * to the request-list of the block device, and waits for their completion.
26 *
27 * Pipelined operation mode is now supported on both reads and writes.
28 *
29 * The block device major and minor numbers are determined from the
30 * tape's relative position in the ide interfaces, as explained in ide.c.
31 *
32 * The character device interface consists of the following devices:
33 *
34 * ht0 major 37, minor 0 first IDE tape, rewind on close.
35 * ht1 major 37, minor 1 second IDE tape, rewind on close.
36 * ...
37 * nht0 major 37, minor 128 first IDE tape, no rewind on close.
38 * nht1 major 37, minor 129 second IDE tape, no rewind on close.
39 * ...
40 *
41 * Run linux/scripts/MAKEDEV.ide to create the above entries.
42 *
43 * The general magnetic tape commands compatible interface, as defined by
44 * include/linux/mtio.h, is accessible through the character device.
45 *
46 * General ide driver configuration options, such as the interrupt-unmask
47 * flag, can be configured by issuing an ioctl to the block device interface,
48 * as any other ide device.
49 *
50 * Our own ide-tape ioctl's can be issued to either the block device or
51 * the character device interface.
52 *
53 * Maximal throughput with minimal bus load will usually be achieved in the
54 * following scenario:
55 *
56 * 1. ide-tape is operating in the pipelined operation mode.
57 * 2. No buffering is performed by the user backup program.
58 *
59 * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
60 *
61 * Ver 0.1 Nov 1 95 Pre-working code :-)
62 * Ver 0.2 Nov 23 95 A short backup (few megabytes) and restore procedure
63 * was successful ! (Using tar cvf ... on the block
64 * device interface).
65 * A longer backup resulted in major swapping, bad
66 * overall Linux performance and eventually failed as
67 * we received non serial read-ahead requests from the
68 * buffer cache.
69 * Ver 0.3 Nov 28 95 Long backups are now possible, thanks to the
70 * character device interface. Linux's responsiveness
71 * and performance doesn't seem to be much affected
72 * from the background backup procedure.
73 * Some general mtio.h magnetic tape operations are
74 * now supported by our character device. As a result,
75 * popular tape utilities are starting to work with
76 * ide tapes :-)
77 * The following configurations were tested:
78 * 1. An IDE ATAPI TAPE shares the same interface
79 * and irq with an IDE ATAPI CDROM.
80 * 2. An IDE ATAPI TAPE shares the same interface
81 * and irq with a normal IDE disk.
82 * Both configurations seemed to work just fine !
83 * However, to be on the safe side, it is meanwhile
84 * recommended to give the IDE TAPE its own interface
85 * and irq.
86 * The one thing which needs to be done here is to
87 * add a "request postpone" feature to ide.c,
88 * so that we won't have to wait for the tape to finish
89 * performing a long media access (DSC) request (such
90 * as a rewind) before we can access the other device
91 * on the same interface. This effect doesn't disturb
92 * normal operation most of the time because read/write
93 * requests are relatively fast, and once we are
94 * performing one tape r/w request, a lot of requests
95 * from the other device can be queued and ide.c will
96 * service all of them after this single tape request.
97 * Ver 1.0 Dec 11 95 Integrated into Linux 1.3.46 development tree.
98 * On each read / write request, we now ask the drive
99 * if we can transfer a constant number of bytes
100 * (a parameter of the drive) only to its buffers,
101 * without causing actual media access. If we can't,
102 * we just wait until we can by polling the DSC bit.
103 * This ensures that while we are not transferring
104 * more bytes than the constant referred to above, the
105 * interrupt latency will not become too high and
106 * we won't cause an interrupt timeout, as happened
107 * occasionally in the previous version.
108 * While polling for DSC, the current request is
109 * postponed and ide.c is free to handle requests from
110 * the other device. This is handled transparently to
111 * ide.c. The hwgroup locking method which was used
112 * in the previous version was removed.
113 * Use of new general features which are provided by
114 * ide.c for use with atapi devices.
115 * (Programming done by Mark Lord)
116 * Few potential bug fixes (Again, suggested by Mark)
117 * Single character device data transfers are now
118 * not limited in size, as they were before.
119 * We are asking the tape about its recommended
120 * transfer unit and send a larger data transfer
121 * as several transfers of the above size.
122 * For best results, use an integral number of this
123 * basic unit (which is shown during driver
124 * initialization). I will soon add an ioctl to get
125 * this important parameter.
126 * Our data transfer buffer is allocated on startup,
127 * rather than before each data transfer. This should
128 * ensure that we will indeed have a data buffer.
129 * Ver 1.1 Dec 14 95 Fixed random problems which occurred when the tape
130 * shared an interface with another device.
131 * (poll_for_dsc was a complete mess).
132 * Removed some old (non-active) code which had
133 * to do with supporting buffer cache originated
134 * requests.
135 * The block device interface can now be opened, so
136 * that general ide driver features like the unmask
137 * interrupts flag can be selected with an ioctl.
138 * This is the only use of the block device interface.
139 * New fast pipelined operation mode (currently only on
140 * writes). When using the pipelined mode, the
141 * throughput can potentially reach the maximum
142 * tape supported throughput, regardless of the
143 * user backup program. On my tape drive, it sometimes
144 * boosted performance by a factor of 2. Pipelined
145 * mode is enabled by default, but since it has a few
146 * downfalls as well, you may want to disable it.
147 * A short explanation of the pipelined operation mode
148 * is available below.
149 * Ver 1.2 Jan 1 96 Eliminated pipelined mode race condition.
150 * Added pipeline read mode. As a result, restores
151 * are now as fast as backups.
152 * Optimized shared interface behavior. The new behavior
153 * typically results in better IDE bus efficiency and
154 * higher tape throughput.
155 * Pre-calculation of the expected read/write request
156 * service time, based on the tape's parameters. In
157 * the pipelined operation mode, this allows us to
158 * adjust our polling frequency to a much lower value,
159 * and thus to dramatically reduce our load on Linux,
160 * without any decrease in performance.
161 * Implemented additional mtio.h operations.
162 * The recommended user block size is returned by
163 * the MTIOCGET ioctl.
164 * Additional minor changes.
165 * Ver 1.3 Feb 9 96 Fixed pipelined read mode bug which prevented the
166 * use of some block sizes during a restore procedure.
167 * The character device interface will now present a
168 * continuous view of the media - any mix of block sizes
169 * during a backup/restore procedure is supported. The
170 * driver will buffer the requests internally and
171 * convert them to the tape's recommended transfer
172 * unit, making performance almost independent of the
173 * chosen user block size.
174 * Some improvements in error recovery.
175 * By cooperating with ide-dma.c, bus mastering DMA can
176 * now sometimes be used with IDE tape drives as well.
177 * Bus mastering DMA has the potential to dramatically
178 * reduce the CPU's overhead when accessing the device,
179 * and can be enabled by using hdparm -d1 on the tape's
180 * block device interface. For more info, read the
181 * comments in ide-dma.c.
182 * Ver 1.4 Mar 13 96 Fixed serialize support.
183 * Ver 1.5 Apr 12 96 Fixed shared interface operation, broken in 1.3.85.
184 * Fixed pipelined read mode inefficiency.
185 * Fixed nasty null dereferencing bug.
186 * Ver 1.6 Aug 16 96 Fixed FPU usage in the driver.
187 * Fixed end of media bug.
188 * Ver 1.7 Sep 10 96 Minor changes for the CONNER CTT8000-A model.
189 * Ver 1.8 Sep 26 96 Attempt to find a better balance between good
190 * interactive response and high system throughput.
191 * Ver 1.9 Nov 5 96 Automatically cross encountered filemarks rather
192 * than requiring an explicit FSF command.
193 * Abort pending requests at end of media.
194 * MTTELL was sometimes returning incorrect results.
195 * Return the real block size in the MTIOCGET ioctl.
196 * Some error recovery bug fixes.
197 * Ver 1.10 Nov 5 96 Major reorganization.
198 * Reduced CPU overhead a bit by eliminating internal
199 * bounce buffers.
200 * Added module support.
201 * Added multiple tape drives support.
202 * Added partition support.
203 * Rewrote DSC handling.
204 * Some portability fixes.
205 * Removed ide-tape.h.
206 * Additional minor changes.
207 * Ver 1.11 Dec 2 96 Bug fix in previous DSC timeout handling.
208 * Use ide_stall_queue() for DSC overlap.
209 * Use the maximum speed rather than the current speed
210 * to compute the request service time.
211 * Ver 1.12 Dec 7 97 Fix random memory overwriting and/or last block data
212 * corruption, which could occur if the total number
213 * of bytes written to the tape was not an integral
214 * number of tape blocks.
215 * Add support for INTERRUPT DRQ devices.
216 * Ver 1.13 Jan 2 98 Add "speed == 0" work-around for HP COLORADO 5GB
217 * Ver 1.14 Dec 30 98 Partial fixes for the Sony/AIWA tape drives.
218 * Replace cli()/sti() with hwgroup spinlocks.
219 * Ver 1.15 Mar 25 99 Fix SMP race condition by replacing hwgroup
220 * spinlock with private per-tape spinlock.
221 * Ver 1.16 Sep 1 99 Add OnStream tape support.
222 * Abort read pipeline on EOD.
223 * Wait for the tape to become ready in case it returns
224 * "in the process of becoming ready" on open().
225 * Fix zero padding of the last written block in
226 * case the tape block size is larger than PAGE_SIZE.
227 * Decrease the default disconnection time to tn.
228 * Ver 1.16e Oct 3 99 Minor fixes.
229 * Ver 1.16e1 Oct 13 99 Patches by Arnold Niessen,
230 * niessen@iae.nl / arnold.niessen@philips.com
231 * GO-1) Undefined code in idetape_read_position
232 * according to Gadi's email
233 * AJN-1) Minor fix asc == 11 should be asc == 0x11
234 * in idetape_issue_packet_command (did effect
235 * debugging output only)
236 * AJN-2) Added more debugging output, and
237 * added ide-tape: where missing. I would also
238 * like to add tape->name where possible
239 * AJN-3) Added different debug_level's
240 * via /proc/ide/hdc/settings
241 * "debug_level" determines amount of debugging output;
242 * can be changed using /proc/ide/hdx/settings
243 * 0 : almost no debugging output
244 * 1 : 0+output errors only
245 * 2 : 1+output all sensekey/asc
246 * 3 : 2+follow all chrdev related procedures
247 * 4 : 3+follow all procedures
248 * 5 : 4+include pc_stack rq_stack info
249 * 6 : 5+USE_COUNT updates
250 * AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
251 * from 5 to 10 minutes
252 * AJN-5) Changed maximum number of blocks to skip when
253 * reading tapes with multiple consecutive write
254 * errors from 100 to 1000 in idetape_get_logical_blk
255 * Proposed changes to code:
256 * 1) output "logical_blk_num" via /proc
257 * 2) output "current_operation" via /proc
258 * 3) Either solve or document the fact that `mt rewind' is
259 * required after reading from /dev/nhtx to be
260 * able to rmmod the idetape module;
261 * Also, sometimes an application finishes but the
262 * device remains `busy' for some time. Same cause ?
263 * Proposed changes to release-notes:
264 * 4) write a simple `quickstart' section in the
265 * release notes; I volunteer if you don't want to
266 * 5) include a pointer to video4linux in the doc
267 * to stimulate video applications
268 * 6) release notes lines 331 and 362: explain what happens
269 * if the application data rate is higher than 1100 KB/s;
270 * similar approach to lower-than-500 kB/s ?
271 * 7) 6.6 Comparison; wouldn't it be better to allow different
272 * strategies for read and write ?
273 * Wouldn't it be better to control the tape buffer
274 * contents instead of the bandwidth ?
275 * 8) line 536: replace will by would (if I understand
276 * this section correctly, a hypothetical and unwanted situation
277 * is being described)
278 * Ver 1.16f Dec 15 99 Change place of the secondary OnStream header frames.
279 * Ver 1.17 Nov 2000 / Jan 2001 Marcel Mol, marcel@mesa.nl
280 * - Add idetape_onstream_mode_sense_tape_parameter_page
281 * function to get tape capacity in frames: tape->capacity.
282 * - Add support for DI-50 drives( or any DI- drive).
283 * - 'workaround' for read error/blank block around block 3000.
284 * - Implement Early warning for end of media for Onstream.
285 * - Cosmetic code changes for readability.
286 * - Idetape_position_tape should not use SKIP bit during
287 * Onstream read recovery.
288 * - Add capacity, logical_blk_num and first/last_frame_position
289 * to /proc/ide/hd?/settings.
290 * - Module use count was gone in the Linux 2.4 driver.
291 * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
292 * - Get drive's actual block size from mode sense block descriptor
293 * - Limit size of pipeline
294 * Ver 1.17b Oct 2002 Alan Stern <stern@rowland.harvard.edu>
295 * Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
296 * it in the code!
297 * Actually removed aborted stages in idetape_abort_pipeline
298 * instead of just changing the command code.
299 * Made the transfer byte count for Request Sense equal to the
300 * actual length of the data transfer.
301 * Changed handling of partial data transfers: they do not
302 * cause DMA errors.
303 * Moved initiation of DMA transfers to the correct place.
304 * Removed reference to unallocated memory.
305 * Made __idetape_discard_read_pipeline return the number of
306 * sectors skipped, not the number of stages.
307 * Replaced errant kfree() calls with __idetape_kfree_stage().
308 * Fixed off-by-one error in testing the pipeline length.
309 * Fixed handling of filemarks in the read pipeline.
310 * Small code optimization for MTBSF and MTBSFM ioctls.
311 * Don't try to unlock the door during device close if is
312 * already unlocked!
313 * Cosmetic fixes to miscellaneous debugging output messages.
314 * Set the minimum /proc/ide/hd?/settings values for "pipeline",
315 * "pipeline_min", and "pipeline_max" to 1.
316 *
317 * Here are some words from the first releases of hd.c, which are quoted
318 * in ide.c and apply here as well:
319 *
320 * | Special care is recommended. Have Fun!
321 *
322 */
323
324/*
325 * An overview of the pipelined operation mode.
326 *
327 * In the pipelined write mode, we will usually just add requests to our
328 * pipeline and return immediately, before we even start to service them. The
329 * user program will then have enough time to prepare the next request while
330 * we are still busy servicing previous requests. In the pipelined read mode,
331 * the situation is similar - we add read-ahead requests into the pipeline,
332 * before the user even requested them.
333 *
334 * The pipeline can be viewed as a "safety net" which will be activated when
335 * the system load is high and prevents the user backup program from keeping up
336 * with the current tape speed. At this point, the pipeline will get
337 * shorter and shorter but the tape will still be streaming at the same speed.
338 * Assuming we have enough pipeline stages, the system load will hopefully
339 * decrease before the pipeline is completely empty, and the backup program
340 * will be able to "catch up" and refill the pipeline again.
341 *
342 * When using the pipelined mode, it would be best to disable any type of
343 * buffering done by the user program, as ide-tape already provides all the
344 * benefits in the kernel, where it can be done in a more efficient way.
345 * As we will usually not block the user program on a request, the most
346 * efficient user code will then be a simple read-write-read-... cycle.
347 * Any additional logic will usually just slow down the backup process.
348 *
349 * Using the pipelined mode, I get a constant over 400 KBps throughput,
350 * which seems to be the maximum throughput supported by my tape.
351 *
352 * However, there are some downfalls:
353 *
354 * 1. We use memory (for data buffers) in proportional to the number
355 * of pipeline stages (each stage is about 26 KB with my tape).
356 * 2. In the pipelined write mode, we cheat and postpone error codes
357 * to the user task. In read mode, the actual tape position
358 * will be a bit further than the last requested block.
359 *
360 * Concerning (1):
361 *
362 * 1. We allocate stages dynamically only when we need them. When
363 * we don't need them, we don't consume additional memory. In
364 * case we can't allocate stages, we just manage without them
365 * (at the expense of decreased throughput) so when Linux is
366 * tight in memory, we will not pose additional difficulties.
367 *
368 * 2. The maximum number of stages (which is, in fact, the maximum
369 * amount of memory) which we allocate is limited by the compile
370 * time parameter IDETAPE_MAX_PIPELINE_STAGES.
371 *
372 * 3. The maximum number of stages is a controlled parameter - We
373 * don't start from the user defined maximum number of stages
374 * but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
375 * will not even allocate this amount of stages if the user
376 * program can't handle the speed). We then implement a feedback
377 * loop which checks if the pipeline is empty, and if it is, we
378 * increase the maximum number of stages as necessary until we
379 * reach the optimum value which just manages to keep the tape
380 * busy with minimum allocated memory or until we reach
381 * IDETAPE_MAX_PIPELINE_STAGES.
382 *
383 * Concerning (2):
384 *
385 * In pipelined write mode, ide-tape can not return accurate error codes
386 * to the user program since we usually just add the request to the
387 * pipeline without waiting for it to be serviced. In case an error
388 * occurs, I will report it on the next user request.
389 *
390 * In the pipelined read mode, subsequent read requests or forward
391 * filemark spacing will perform correctly, as we preserve all blocks
392 * and filemarks which we encountered during our excess read-ahead.
393 *
394 * For accurate tape positioning and error reporting, disabling
395 * pipelined mode might be the best option.
396 *
397 * You can enable/disable/tune the pipelined operation mode by adjusting
398 * the compile time parameters below.
399 */
400
401/*
402 * Possible improvements.
403 *
404 * 1. Support for the ATAPI overlap protocol.
405 *
406 * In order to maximize bus throughput, we currently use the DSC
407 * overlap method which enables ide.c to service requests from the
408 * other device while the tape is busy executing a command. The
409 * DSC overlap method involves polling the tape's status register
410 * for the DSC bit, and servicing the other device while the tape
411 * isn't ready.
412 *
413 * In the current QIC development standard (December 1995),
414 * it is recommended that new tape drives will *in addition*
415 * implement the ATAPI overlap protocol, which is used for the
416 * same purpose - efficient use of the IDE bus, but is interrupt
417 * driven and thus has much less CPU overhead.
418 *
419 * ATAPI overlap is likely to be supported in most new ATAPI
420 * devices, including new ATAPI cdroms, and thus provides us
421 * a method by which we can achieve higher throughput when
422 * sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
423 */
424
425#define IDETAPE_VERSION "1.19"
426
427#include <linux/config.h>
428#include <linux/module.h>
429#include <linux/types.h>
430#include <linux/string.h>
431#include <linux/kernel.h>
432#include <linux/delay.h>
433#include <linux/timer.h>
434#include <linux/mm.h>
435#include <linux/interrupt.h>
436#include <linux/major.h>
437#include <linux/devfs_fs_kernel.h>
438#include <linux/errno.h>
439#include <linux/genhd.h>
440#include <linux/slab.h>
441#include <linux/pci.h>
442#include <linux/ide.h>
443#include <linux/smp_lock.h>
444#include <linux/completion.h>
445#include <linux/bitops.h>
Arjan van de Vencf8b8972006-03-23 03:00:45 -0800446#include <linux/mutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700447
448#include <asm/byteorder.h>
449#include <asm/irq.h>
450#include <asm/uaccess.h>
451#include <asm/io.h>
452#include <asm/unaligned.h>
453
454/*
455 * partition
456 */
457typedef struct os_partition_s {
458 __u8 partition_num;
459 __u8 par_desc_ver;
460 __u16 wrt_pass_cntr;
461 __u32 first_frame_addr;
462 __u32 last_frame_addr;
463 __u32 eod_frame_addr;
464} os_partition_t;
465
466/*
467 * DAT entry
468 */
469typedef struct os_dat_entry_s {
470 __u32 blk_sz;
471 __u16 blk_cnt;
472 __u8 flags;
473 __u8 reserved;
474} os_dat_entry_t;
475
476/*
477 * DAT
478 */
479#define OS_DAT_FLAGS_DATA (0xc)
480#define OS_DAT_FLAGS_MARK (0x1)
481
482typedef struct os_dat_s {
483 __u8 dat_sz;
484 __u8 reserved1;
485 __u8 entry_cnt;
486 __u8 reserved3;
487 os_dat_entry_t dat_list[16];
488} os_dat_t;
489
490#include <linux/mtio.h>
491
492/**************************** Tunable parameters *****************************/
493
494
495/*
496 * Pipelined mode parameters.
497 *
498 * We try to use the minimum number of stages which is enough to
499 * keep the tape constantly streaming. To accomplish that, we implement
500 * a feedback loop around the maximum number of stages:
501 *
502 * We start from MIN maximum stages (we will not even use MIN stages
503 * if we don't need them), increment it by RATE*(MAX-MIN)
504 * whenever we sense that the pipeline is empty, until we reach
505 * the optimum value or until we reach MAX.
506 *
507 * Setting the following parameter to 0 is illegal: the pipelined mode
508 * cannot be disabled (calculate_speeds() divides by tape->max_stages.)
509 */
510#define IDETAPE_MIN_PIPELINE_STAGES 1
511#define IDETAPE_MAX_PIPELINE_STAGES 400
512#define IDETAPE_INCREASE_STAGES_RATE 20
513
514/*
515 * The following are used to debug the driver:
516 *
517 * Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
518 * Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
519 * Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
520 * some places.
521 *
522 * Setting them to 0 will restore normal operation mode:
523 *
524 * 1. Disable logging normal successful operations.
525 * 2. Disable self-sanity checks.
526 * 3. Errors will still be logged, of course.
527 *
528 * All the #if DEBUG code will be removed some day, when the driver
529 * is verified to be stable enough. This will make it much more
530 * esthetic.
531 */
532#define IDETAPE_DEBUG_INFO 0
533#define IDETAPE_DEBUG_LOG 0
534#define IDETAPE_DEBUG_BUGS 1
535
536/*
537 * After each failed packet command we issue a request sense command
538 * and retry the packet command IDETAPE_MAX_PC_RETRIES times.
539 *
540 * Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
541 */
542#define IDETAPE_MAX_PC_RETRIES 3
543
544/*
545 * With each packet command, we allocate a buffer of
546 * IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
547 * commands (Not for READ/WRITE commands).
548 */
549#define IDETAPE_PC_BUFFER_SIZE 256
550
551/*
552 * In various places in the driver, we need to allocate storage
553 * for packet commands and requests, which will remain valid while
554 * we leave the driver to wait for an interrupt or a timeout event.
555 */
556#define IDETAPE_PC_STACK (10 + IDETAPE_MAX_PC_RETRIES)
557
558/*
559 * Some drives (for example, Seagate STT3401A Travan) require a very long
560 * timeout, because they don't return an interrupt or clear their busy bit
561 * until after the command completes (even retension commands).
562 */
563#define IDETAPE_WAIT_CMD (900*HZ)
564
565/*
566 * The following parameter is used to select the point in the internal
567 * tape fifo in which we will start to refill the buffer. Decreasing
568 * the following parameter will improve the system's latency and
569 * interactive response, while using a high value might improve sytem
570 * throughput.
571 */
572#define IDETAPE_FIFO_THRESHOLD 2
573
574/*
575 * DSC polling parameters.
576 *
577 * Polling for DSC (a single bit in the status register) is a very
578 * important function in ide-tape. There are two cases in which we
579 * poll for DSC:
580 *
581 * 1. Before a read/write packet command, to ensure that we
582 * can transfer data from/to the tape's data buffers, without
583 * causing an actual media access. In case the tape is not
584 * ready yet, we take out our request from the device
585 * request queue, so that ide.c will service requests from
586 * the other device on the same interface meanwhile.
587 *
588 * 2. After the successful initialization of a "media access
589 * packet command", which is a command which can take a long
590 * time to complete (it can be several seconds or even an hour).
591 *
592 * Again, we postpone our request in the middle to free the bus
593 * for the other device. The polling frequency here should be
594 * lower than the read/write frequency since those media access
595 * commands are slow. We start from a "fast" frequency -
596 * IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
597 * after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
598 * lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
599 *
600 * We also set a timeout for the timer, in case something goes wrong.
601 * The timeout should be longer then the maximum execution time of a
602 * tape operation.
603 */
604
605/*
606 * DSC timings.
607 */
608#define IDETAPE_DSC_RW_MIN 5*HZ/100 /* 50 msec */
609#define IDETAPE_DSC_RW_MAX 40*HZ/100 /* 400 msec */
610#define IDETAPE_DSC_RW_TIMEOUT 2*60*HZ /* 2 minutes */
611#define IDETAPE_DSC_MA_FAST 2*HZ /* 2 seconds */
612#define IDETAPE_DSC_MA_THRESHOLD 5*60*HZ /* 5 minutes */
613#define IDETAPE_DSC_MA_SLOW 30*HZ /* 30 seconds */
614#define IDETAPE_DSC_MA_TIMEOUT 2*60*60*HZ /* 2 hours */
615
616/*************************** End of tunable parameters ***********************/
617
618/*
619 * Debugging/Performance analysis
620 *
621 * I/O trace support
622 */
623#define USE_IOTRACE 0
624#if USE_IOTRACE
625#include <linux/io_trace.h>
626#define IO_IDETAPE_FIFO 500
627#endif
628
629/*
630 * Read/Write error simulation
631 */
632#define SIMULATE_ERRORS 0
633
634/*
635 * For general magnetic tape device compatibility.
636 */
637typedef enum {
638 idetape_direction_none,
639 idetape_direction_read,
640 idetape_direction_write
641} idetape_chrdev_direction_t;
642
643struct idetape_bh {
644 unsigned short b_size;
645 atomic_t b_count;
646 struct idetape_bh *b_reqnext;
647 char *b_data;
648};
649
650/*
651 * Our view of a packet command.
652 */
653typedef struct idetape_packet_command_s {
654 u8 c[12]; /* Actual packet bytes */
655 int retries; /* On each retry, we increment retries */
656 int error; /* Error code */
657 int request_transfer; /* Bytes to transfer */
658 int actually_transferred; /* Bytes actually transferred */
659 int buffer_size; /* Size of our data buffer */
660 struct idetape_bh *bh;
661 char *b_data;
662 int b_count;
663 u8 *buffer; /* Data buffer */
664 u8 *current_position; /* Pointer into the above buffer */
665 ide_startstop_t (*callback) (ide_drive_t *); /* Called when this packet command is completed */
666 u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE]; /* Temporary buffer */
667 unsigned long flags; /* Status/Action bit flags: long for set_bit */
668} idetape_pc_t;
669
670/*
671 * Packet command flag bits.
672 */
673/* Set when an error is considered normal - We won't retry */
674#define PC_ABORT 0
675/* 1 When polling for DSC on a media access command */
676#define PC_WAIT_FOR_DSC 1
677/* 1 when we prefer to use DMA if possible */
678#define PC_DMA_RECOMMENDED 2
679/* 1 while DMA in progress */
680#define PC_DMA_IN_PROGRESS 3
681/* 1 when encountered problem during DMA */
682#define PC_DMA_ERROR 4
683/* Data direction */
684#define PC_WRITING 5
685
686/*
687 * Capabilities and Mechanical Status Page
688 */
689typedef struct {
690 unsigned page_code :6; /* Page code - Should be 0x2a */
691 __u8 reserved0_6 :1;
692 __u8 ps :1; /* parameters saveable */
693 __u8 page_length; /* Page Length - Should be 0x12 */
694 __u8 reserved2, reserved3;
695 unsigned ro :1; /* Read Only Mode */
696 unsigned reserved4_1234 :4;
697 unsigned sprev :1; /* Supports SPACE in the reverse direction */
698 unsigned reserved4_67 :2;
699 unsigned reserved5_012 :3;
700 unsigned efmt :1; /* Supports ERASE command initiated formatting */
701 unsigned reserved5_4 :1;
702 unsigned qfa :1; /* Supports the QFA two partition formats */
703 unsigned reserved5_67 :2;
704 unsigned lock :1; /* Supports locking the volume */
705 unsigned locked :1; /* The volume is locked */
706 unsigned prevent :1; /* The device defaults in the prevent state after power up */
707 unsigned eject :1; /* The device can eject the volume */
708 __u8 disconnect :1; /* The device can break request > ctl */
709 __u8 reserved6_5 :1;
710 unsigned ecc :1; /* Supports error correction */
711 unsigned cmprs :1; /* Supports data compression */
712 unsigned reserved7_0 :1;
713 unsigned blk512 :1; /* Supports 512 bytes block size */
714 unsigned blk1024 :1; /* Supports 1024 bytes block size */
715 unsigned reserved7_3_6 :4;
716 unsigned blk32768 :1; /* slowb - the device restricts the byte count for PIO */
717 /* transfers for slow buffer memory ??? */
718 /* Also 32768 block size in some cases */
719 __u16 max_speed; /* Maximum speed supported in KBps */
720 __u8 reserved10, reserved11;
721 __u16 ctl; /* Continuous Transfer Limit in blocks */
722 __u16 speed; /* Current Speed, in KBps */
723 __u16 buffer_size; /* Buffer Size, in 512 bytes */
724 __u8 reserved18, reserved19;
725} idetape_capabilities_page_t;
726
727/*
728 * Block Size Page
729 */
730typedef struct {
731 unsigned page_code :6; /* Page code - Should be 0x30 */
732 unsigned reserved1_6 :1;
733 unsigned ps :1;
734 __u8 page_length; /* Page Length - Should be 2 */
735 __u8 reserved2;
736 unsigned play32 :1;
737 unsigned play32_5 :1;
738 unsigned reserved2_23 :2;
739 unsigned record32 :1;
740 unsigned record32_5 :1;
741 unsigned reserved2_6 :1;
742 unsigned one :1;
743} idetape_block_size_page_t;
744
745/*
746 * A pipeline stage.
747 */
748typedef struct idetape_stage_s {
749 struct request rq; /* The corresponding request */
750 struct idetape_bh *bh; /* The data buffers */
751 struct idetape_stage_s *next; /* Pointer to the next stage */
752} idetape_stage_t;
753
754/*
755 * REQUEST SENSE packet command result - Data Format.
756 */
757typedef struct {
758 unsigned error_code :7; /* Current of deferred errors */
759 unsigned valid :1; /* The information field conforms to QIC-157C */
760 __u8 reserved1 :8; /* Segment Number - Reserved */
761 unsigned sense_key :4; /* Sense Key */
762 unsigned reserved2_4 :1; /* Reserved */
763 unsigned ili :1; /* Incorrect Length Indicator */
764 unsigned eom :1; /* End Of Medium */
765 unsigned filemark :1; /* Filemark */
766 __u32 information __attribute__ ((packed));
767 __u8 asl; /* Additional sense length (n-7) */
768 __u32 command_specific; /* Additional command specific information */
769 __u8 asc; /* Additional Sense Code */
770 __u8 ascq; /* Additional Sense Code Qualifier */
771 __u8 replaceable_unit_code; /* Field Replaceable Unit Code */
772 unsigned sk_specific1 :7; /* Sense Key Specific */
773 unsigned sksv :1; /* Sense Key Specific information is valid */
774 __u8 sk_specific2; /* Sense Key Specific */
775 __u8 sk_specific3; /* Sense Key Specific */
776 __u8 pad[2]; /* Padding to 20 bytes */
777} idetape_request_sense_result_t;
778
779
780/*
781 * Most of our global data which we need to save even as we leave the
782 * driver due to an interrupt or a timer event is stored in a variable
783 * of type idetape_tape_t, defined below.
784 */
785typedef struct ide_tape_obj {
786 ide_drive_t *drive;
787 ide_driver_t *driver;
788 struct gendisk *disk;
789 struct kref kref;
790
791 /*
792 * Since a typical character device operation requires more
793 * than one packet command, we provide here enough memory
794 * for the maximum of interconnected packet commands.
795 * The packet commands are stored in the circular array pc_stack.
796 * pc_stack_index points to the last used entry, and warps around
797 * to the start when we get to the last array entry.
798 *
799 * pc points to the current processed packet command.
800 *
801 * failed_pc points to the last failed packet command, or contains
802 * NULL if we do not need to retry any packet command. This is
803 * required since an additional packet command is needed before the
804 * retry, to get detailed information on what went wrong.
805 */
806 /* Current packet command */
807 idetape_pc_t *pc;
808 /* Last failed packet command */
809 idetape_pc_t *failed_pc;
810 /* Packet command stack */
811 idetape_pc_t pc_stack[IDETAPE_PC_STACK];
812 /* Next free packet command storage space */
813 int pc_stack_index;
814 struct request rq_stack[IDETAPE_PC_STACK];
815 /* We implement a circular array */
816 int rq_stack_index;
817
818 /*
819 * DSC polling variables.
820 *
821 * While polling for DSC we use postponed_rq to postpone the
822 * current request so that ide.c will be able to service
823 * pending requests on the other device. Note that at most
824 * we will have only one DSC (usually data transfer) request
825 * in the device request queue. Additional requests can be
826 * queued in our internal pipeline, but they will be visible
827 * to ide.c only one at a time.
828 */
829 struct request *postponed_rq;
830 /* The time in which we started polling for DSC */
831 unsigned long dsc_polling_start;
832 /* Timer used to poll for dsc */
833 struct timer_list dsc_timer;
834 /* Read/Write dsc polling frequency */
835 unsigned long best_dsc_rw_frequency;
836 /* The current polling frequency */
837 unsigned long dsc_polling_frequency;
838 /* Maximum waiting time */
839 unsigned long dsc_timeout;
840
841 /*
842 * Read position information
843 */
844 u8 partition;
845 /* Current block */
846 unsigned int first_frame_position;
847 unsigned int last_frame_position;
848 unsigned int blocks_in_buffer;
849
850 /*
851 * Last error information
852 */
853 u8 sense_key, asc, ascq;
854
855 /*
856 * Character device operation
857 */
858 unsigned int minor;
859 /* device name */
860 char name[4];
861 /* Current character device data transfer direction */
862 idetape_chrdev_direction_t chrdev_direction;
863
864 /*
865 * Device information
866 */
867 /* Usually 512 or 1024 bytes */
868 unsigned short tape_block_size;
869 int user_bs_factor;
870 /* Copy of the tape's Capabilities and Mechanical Page */
871 idetape_capabilities_page_t capabilities;
872
873 /*
874 * Active data transfer request parameters.
875 *
876 * At most, there is only one ide-tape originated data transfer
877 * request in the device request queue. This allows ide.c to
878 * easily service requests from the other device when we
879 * postpone our active request. In the pipelined operation
880 * mode, we use our internal pipeline structure to hold
881 * more data requests.
882 *
883 * The data buffer size is chosen based on the tape's
884 * recommendation.
885 */
886 /* Pointer to the request which is waiting in the device request queue */
887 struct request *active_data_request;
888 /* Data buffer size (chosen based on the tape's recommendation */
889 int stage_size;
890 idetape_stage_t *merge_stage;
891 int merge_stage_size;
892 struct idetape_bh *bh;
893 char *b_data;
894 int b_count;
895
896 /*
897 * Pipeline parameters.
898 *
899 * To accomplish non-pipelined mode, we simply set the following
900 * variables to zero (or NULL, where appropriate).
901 */
902 /* Number of currently used stages */
903 int nr_stages;
904 /* Number of pending stages */
905 int nr_pending_stages;
906 /* We will not allocate more than this number of stages */
907 int max_stages, min_pipeline, max_pipeline;
908 /* The first stage which will be removed from the pipeline */
909 idetape_stage_t *first_stage;
910 /* The currently active stage */
911 idetape_stage_t *active_stage;
912 /* Will be serviced after the currently active request */
913 idetape_stage_t *next_stage;
914 /* New requests will be added to the pipeline here */
915 idetape_stage_t *last_stage;
916 /* Optional free stage which we can use */
917 idetape_stage_t *cache_stage;
918 int pages_per_stage;
919 /* Wasted space in each stage */
920 int excess_bh_size;
921
922 /* Status/Action flags: long for set_bit */
923 unsigned long flags;
924 /* protects the ide-tape queue */
925 spinlock_t spinlock;
926
927 /*
928 * Measures average tape speed
929 */
930 unsigned long avg_time;
931 int avg_size;
932 int avg_speed;
933
934 /* last sense information */
935 idetape_request_sense_result_t sense;
936
937 char vendor_id[10];
938 char product_id[18];
939 char firmware_revision[6];
940 int firmware_revision_num;
941
942 /* the door is currently locked */
943 int door_locked;
944 /* the tape hardware is write protected */
945 char drv_write_prot;
946 /* the tape is write protected (hardware or opened as read-only) */
947 char write_prot;
948
949 /*
950 * Limit the number of times a request can
951 * be postponed, to avoid an infinite postpone
952 * deadlock.
953 */
954 /* request postpone count limit */
955 int postpone_cnt;
956
957 /*
958 * Measures number of frames:
959 *
960 * 1. written/read to/from the driver pipeline (pipeline_head).
961 * 2. written/read to/from the tape buffers (idetape_bh).
962 * 3. written/read by the tape to/from the media (tape_head).
963 */
964 int pipeline_head;
965 int buffer_head;
966 int tape_head;
967 int last_tape_head;
968
969 /*
970 * Speed control at the tape buffers input/output
971 */
972 unsigned long insert_time;
973 int insert_size;
974 int insert_speed;
975 int max_insert_speed;
976 int measure_insert_time;
977
978 /*
979 * Measure tape still time, in milliseconds
980 */
981 unsigned long tape_still_time_begin;
982 int tape_still_time;
983
984 /*
985 * Speed regulation negative feedback loop
986 */
987 int speed_control;
988 int pipeline_head_speed;
989 int controlled_pipeline_head_speed;
990 int uncontrolled_pipeline_head_speed;
991 int controlled_last_pipeline_head;
992 int uncontrolled_last_pipeline_head;
993 unsigned long uncontrolled_pipeline_head_time;
994 unsigned long controlled_pipeline_head_time;
995 int controlled_previous_pipeline_head;
996 int uncontrolled_previous_pipeline_head;
997 unsigned long controlled_previous_head_time;
998 unsigned long uncontrolled_previous_head_time;
999 int restart_speed_control_req;
1000
1001 /*
1002 * Debug_level determines amount of debugging output;
1003 * can be changed using /proc/ide/hdx/settings
1004 * 0 : almost no debugging output
1005 * 1 : 0+output errors only
1006 * 2 : 1+output all sensekey/asc
1007 * 3 : 2+follow all chrdev related procedures
1008 * 4 : 3+follow all procedures
1009 * 5 : 4+include pc_stack rq_stack info
1010 * 6 : 5+USE_COUNT updates
1011 */
1012 int debug_level;
1013} idetape_tape_t;
1014
Arjan van de Vencf8b8972006-03-23 03:00:45 -08001015static DEFINE_MUTEX(idetape_ref_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016
Will Dysond5dee802005-09-16 02:55:07 -07001017static struct class *idetape_sysfs_class;
1018
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019#define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
1020
1021#define ide_tape_g(disk) \
1022 container_of((disk)->private_data, struct ide_tape_obj, driver)
1023
1024static struct ide_tape_obj *ide_tape_get(struct gendisk *disk)
1025{
1026 struct ide_tape_obj *tape = NULL;
1027
Arjan van de Vencf8b8972006-03-23 03:00:45 -08001028 mutex_lock(&idetape_ref_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029 tape = ide_tape_g(disk);
1030 if (tape)
1031 kref_get(&tape->kref);
Arjan van de Vencf8b8972006-03-23 03:00:45 -08001032 mutex_unlock(&idetape_ref_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001033 return tape;
1034}
1035
1036static void ide_tape_release(struct kref *);
1037
1038static void ide_tape_put(struct ide_tape_obj *tape)
1039{
Arjan van de Vencf8b8972006-03-23 03:00:45 -08001040 mutex_lock(&idetape_ref_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001041 kref_put(&tape->kref, ide_tape_release);
Arjan van de Vencf8b8972006-03-23 03:00:45 -08001042 mutex_unlock(&idetape_ref_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001043}
1044
1045/*
1046 * Tape door status
1047 */
1048#define DOOR_UNLOCKED 0
1049#define DOOR_LOCKED 1
1050#define DOOR_EXPLICITLY_LOCKED 2
1051
1052/*
1053 * Tape flag bits values.
1054 */
1055#define IDETAPE_IGNORE_DSC 0
1056#define IDETAPE_ADDRESS_VALID 1 /* 0 When the tape position is unknown */
1057#define IDETAPE_BUSY 2 /* Device already opened */
1058#define IDETAPE_PIPELINE_ERROR 3 /* Error detected in a pipeline stage */
1059#define IDETAPE_DETECT_BS 4 /* Attempt to auto-detect the current user block size */
1060#define IDETAPE_FILEMARK 5 /* Currently on a filemark */
1061#define IDETAPE_DRQ_INTERRUPT 6 /* DRQ interrupt device */
1062#define IDETAPE_READ_ERROR 7
1063#define IDETAPE_PIPELINE_ACTIVE 8 /* pipeline active */
1064/* 0 = no tape is loaded, so we don't rewind after ejecting */
1065#define IDETAPE_MEDIUM_PRESENT 9
1066
1067/*
1068 * Supported ATAPI tape drives packet commands
1069 */
1070#define IDETAPE_TEST_UNIT_READY_CMD 0x00
1071#define IDETAPE_REWIND_CMD 0x01
1072#define IDETAPE_REQUEST_SENSE_CMD 0x03
1073#define IDETAPE_READ_CMD 0x08
1074#define IDETAPE_WRITE_CMD 0x0a
1075#define IDETAPE_WRITE_FILEMARK_CMD 0x10
1076#define IDETAPE_SPACE_CMD 0x11
1077#define IDETAPE_INQUIRY_CMD 0x12
1078#define IDETAPE_ERASE_CMD 0x19
1079#define IDETAPE_MODE_SENSE_CMD 0x1a
1080#define IDETAPE_MODE_SELECT_CMD 0x15
1081#define IDETAPE_LOAD_UNLOAD_CMD 0x1b
1082#define IDETAPE_PREVENT_CMD 0x1e
1083#define IDETAPE_LOCATE_CMD 0x2b
1084#define IDETAPE_READ_POSITION_CMD 0x34
1085#define IDETAPE_READ_BUFFER_CMD 0x3c
1086#define IDETAPE_SET_SPEED_CMD 0xbb
1087
1088/*
1089 * Some defines for the READ BUFFER command
1090 */
1091#define IDETAPE_RETRIEVE_FAULTY_BLOCK 6
1092
1093/*
1094 * Some defines for the SPACE command
1095 */
1096#define IDETAPE_SPACE_OVER_FILEMARK 1
1097#define IDETAPE_SPACE_TO_EOD 3
1098
1099/*
1100 * Some defines for the LOAD UNLOAD command
1101 */
1102#define IDETAPE_LU_LOAD_MASK 1
1103#define IDETAPE_LU_RETENSION_MASK 2
1104#define IDETAPE_LU_EOT_MASK 4
1105
1106/*
1107 * Special requests for our block device strategy routine.
1108 *
1109 * In order to service a character device command, we add special
1110 * requests to the tail of our block device request queue and wait
1111 * for their completion.
1112 */
1113
1114enum {
1115 REQ_IDETAPE_PC1 = (1 << 0), /* packet command (first stage) */
1116 REQ_IDETAPE_PC2 = (1 << 1), /* packet command (second stage) */
1117 REQ_IDETAPE_READ = (1 << 2),
1118 REQ_IDETAPE_WRITE = (1 << 3),
1119 REQ_IDETAPE_READ_BUFFER = (1 << 4),
1120};
1121
1122/*
1123 * Error codes which are returned in rq->errors to the higher part
1124 * of the driver.
1125 */
1126#define IDETAPE_ERROR_GENERAL 101
1127#define IDETAPE_ERROR_FILEMARK 102
1128#define IDETAPE_ERROR_EOD 103
1129
1130/*
1131 * The following is used to format the general configuration word of
1132 * the ATAPI IDENTIFY DEVICE command.
1133 */
1134struct idetape_id_gcw {
1135 unsigned packet_size :2; /* Packet Size */
1136 unsigned reserved234 :3; /* Reserved */
1137 unsigned drq_type :2; /* Command packet DRQ type */
1138 unsigned removable :1; /* Removable media */
1139 unsigned device_type :5; /* Device type */
1140 unsigned reserved13 :1; /* Reserved */
1141 unsigned protocol :2; /* Protocol type */
1142};
1143
1144/*
1145 * INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1146 */
1147typedef struct {
1148 unsigned device_type :5; /* Peripheral Device Type */
1149 unsigned reserved0_765 :3; /* Peripheral Qualifier - Reserved */
1150 unsigned reserved1_6t0 :7; /* Reserved */
1151 unsigned rmb :1; /* Removable Medium Bit */
1152 unsigned ansi_version :3; /* ANSI Version */
1153 unsigned ecma_version :3; /* ECMA Version */
1154 unsigned iso_version :2; /* ISO Version */
1155 unsigned response_format :4; /* Response Data Format */
1156 unsigned reserved3_45 :2; /* Reserved */
1157 unsigned reserved3_6 :1; /* TrmIOP - Reserved */
1158 unsigned reserved3_7 :1; /* AENC - Reserved */
1159 __u8 additional_length; /* Additional Length (total_length-4) */
1160 __u8 rsv5, rsv6, rsv7; /* Reserved */
1161 __u8 vendor_id[8]; /* Vendor Identification */
1162 __u8 product_id[16]; /* Product Identification */
1163 __u8 revision_level[4]; /* Revision Level */
1164 __u8 vendor_specific[20]; /* Vendor Specific - Optional */
1165 __u8 reserved56t95[40]; /* Reserved - Optional */
1166 /* Additional information may be returned */
1167} idetape_inquiry_result_t;
1168
1169/*
1170 * READ POSITION packet command - Data Format (From Table 6-57)
1171 */
1172typedef struct {
1173 unsigned reserved0_10 :2; /* Reserved */
1174 unsigned bpu :1; /* Block Position Unknown */
1175 unsigned reserved0_543 :3; /* Reserved */
1176 unsigned eop :1; /* End Of Partition */
1177 unsigned bop :1; /* Beginning Of Partition */
1178 u8 partition; /* Partition Number */
1179 u8 reserved2, reserved3; /* Reserved */
1180 u32 first_block; /* First Block Location */
1181 u32 last_block; /* Last Block Location (Optional) */
1182 u8 reserved12; /* Reserved */
1183 u8 blocks_in_buffer[3]; /* Blocks In Buffer - (Optional) */
1184 u32 bytes_in_buffer; /* Bytes In Buffer (Optional) */
1185} idetape_read_position_result_t;
1186
1187/*
1188 * Follows structures which are related to the SELECT SENSE / MODE SENSE
1189 * packet commands. Those packet commands are still not supported
1190 * by ide-tape.
1191 */
1192#define IDETAPE_BLOCK_DESCRIPTOR 0
1193#define IDETAPE_CAPABILITIES_PAGE 0x2a
1194#define IDETAPE_PARAMTR_PAGE 0x2b /* Onstream DI-x0 only */
1195#define IDETAPE_BLOCK_SIZE_PAGE 0x30
1196#define IDETAPE_BUFFER_FILLING_PAGE 0x33
1197
1198/*
1199 * Mode Parameter Header for the MODE SENSE packet command
1200 */
1201typedef struct {
1202 __u8 mode_data_length; /* Length of the following data transfer */
1203 __u8 medium_type; /* Medium Type */
1204 __u8 dsp; /* Device Specific Parameter */
1205 __u8 bdl; /* Block Descriptor Length */
1206#if 0
1207 /* data transfer page */
1208 __u8 page_code :6;
1209 __u8 reserved0_6 :1;
1210 __u8 ps :1; /* parameters saveable */
1211 __u8 page_length; /* page Length == 0x02 */
1212 __u8 reserved2;
1213 __u8 read32k :1; /* 32k blk size (data only) */
1214 __u8 read32k5 :1; /* 32.5k blk size (data&AUX) */
1215 __u8 reserved3_23 :2;
1216 __u8 write32k :1; /* 32k blk size (data only) */
1217 __u8 write32k5 :1; /* 32.5k blk size (data&AUX) */
1218 __u8 reserved3_6 :1;
1219 __u8 streaming :1; /* streaming mode enable */
1220#endif
1221} idetape_mode_parameter_header_t;
1222
1223/*
1224 * Mode Parameter Block Descriptor the MODE SENSE packet command
1225 *
1226 * Support for block descriptors is optional.
1227 */
1228typedef struct {
1229 __u8 density_code; /* Medium density code */
1230 __u8 blocks[3]; /* Number of blocks */
1231 __u8 reserved4; /* Reserved */
1232 __u8 length[3]; /* Block Length */
1233} idetape_parameter_block_descriptor_t;
1234
1235/*
1236 * The Data Compression Page, as returned by the MODE SENSE packet command.
1237 */
1238typedef struct {
1239 unsigned page_code :6; /* Page Code - Should be 0xf */
1240 unsigned reserved0 :1; /* Reserved */
1241 unsigned ps :1;
1242 __u8 page_length; /* Page Length - Should be 14 */
1243 unsigned reserved2 :6; /* Reserved */
1244 unsigned dcc :1; /* Data Compression Capable */
1245 unsigned dce :1; /* Data Compression Enable */
1246 unsigned reserved3 :5; /* Reserved */
1247 unsigned red :2; /* Report Exception on Decompression */
1248 unsigned dde :1; /* Data Decompression Enable */
1249 __u32 ca; /* Compression Algorithm */
1250 __u32 da; /* Decompression Algorithm */
1251 __u8 reserved[4]; /* Reserved */
1252} idetape_data_compression_page_t;
1253
1254/*
1255 * The Medium Partition Page, as returned by the MODE SENSE packet command.
1256 */
1257typedef struct {
1258 unsigned page_code :6; /* Page Code - Should be 0x11 */
1259 unsigned reserved1_6 :1; /* Reserved */
1260 unsigned ps :1;
1261 __u8 page_length; /* Page Length - Should be 6 */
1262 __u8 map; /* Maximum Additional Partitions - Should be 0 */
1263 __u8 apd; /* Additional Partitions Defined - Should be 0 */
1264 unsigned reserved4_012 :3; /* Reserved */
1265 unsigned psum :2; /* Should be 0 */
1266 unsigned idp :1; /* Should be 0 */
1267 unsigned sdp :1; /* Should be 0 */
1268 unsigned fdp :1; /* Fixed Data Partitions */
1269 __u8 mfr; /* Medium Format Recognition */
1270 __u8 reserved[2]; /* Reserved */
1271} idetape_medium_partition_page_t;
1272
1273/*
1274 * Run time configurable parameters.
1275 */
1276typedef struct {
1277 int dsc_rw_frequency;
1278 int dsc_media_access_frequency;
1279 int nr_stages;
1280} idetape_config_t;
1281
1282/*
1283 * The variables below are used for the character device interface.
1284 * Additional state variables are defined in our ide_drive_t structure.
1285 */
1286static struct ide_tape_obj * idetape_devs[MAX_HWIFS * MAX_DRIVES];
1287
1288#define ide_tape_f(file) ((file)->private_data)
1289
1290static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i)
1291{
1292 struct ide_tape_obj *tape = NULL;
1293
Arjan van de Vencf8b8972006-03-23 03:00:45 -08001294 mutex_lock(&idetape_ref_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295 tape = idetape_devs[i];
1296 if (tape)
1297 kref_get(&tape->kref);
Arjan van de Vencf8b8972006-03-23 03:00:45 -08001298 mutex_unlock(&idetape_ref_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001299 return tape;
1300}
1301
1302/*
1303 * Function declarations
1304 *
1305 */
1306static int idetape_chrdev_release (struct inode *inode, struct file *filp);
1307static void idetape_write_release (ide_drive_t *drive, unsigned int minor);
1308
1309/*
1310 * Too bad. The drive wants to send us data which we are not ready to accept.
1311 * Just throw it away.
1312 */
1313static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount)
1314{
1315 while (bcount--)
1316 (void) HWIF(drive)->INB(IDE_DATA_REG);
1317}
1318
1319static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1320{
1321 struct idetape_bh *bh = pc->bh;
1322 int count;
1323
1324 while (bcount) {
1325#if IDETAPE_DEBUG_BUGS
1326 if (bh == NULL) {
1327 printk(KERN_ERR "ide-tape: bh == NULL in "
1328 "idetape_input_buffers\n");
1329 idetape_discard_data(drive, bcount);
1330 return;
1331 }
1332#endif /* IDETAPE_DEBUG_BUGS */
1333 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount);
1334 HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count);
1335 bcount -= count;
1336 atomic_add(count, &bh->b_count);
1337 if (atomic_read(&bh->b_count) == bh->b_size) {
1338 bh = bh->b_reqnext;
1339 if (bh)
1340 atomic_set(&bh->b_count, 0);
1341 }
1342 }
1343 pc->bh = bh;
1344}
1345
1346static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1347{
1348 struct idetape_bh *bh = pc->bh;
1349 int count;
1350
1351 while (bcount) {
1352#if IDETAPE_DEBUG_BUGS
1353 if (bh == NULL) {
1354 printk(KERN_ERR "ide-tape: bh == NULL in "
1355 "idetape_output_buffers\n");
1356 return;
1357 }
1358#endif /* IDETAPE_DEBUG_BUGS */
1359 count = min((unsigned int)pc->b_count, (unsigned int)bcount);
1360 HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
1361 bcount -= count;
1362 pc->b_data += count;
1363 pc->b_count -= count;
1364 if (!pc->b_count) {
1365 pc->bh = bh = bh->b_reqnext;
1366 if (bh) {
1367 pc->b_data = bh->b_data;
1368 pc->b_count = atomic_read(&bh->b_count);
1369 }
1370 }
1371 }
1372}
1373
1374static void idetape_update_buffers (idetape_pc_t *pc)
1375{
1376 struct idetape_bh *bh = pc->bh;
1377 int count;
1378 unsigned int bcount = pc->actually_transferred;
1379
1380 if (test_bit(PC_WRITING, &pc->flags))
1381 return;
1382 while (bcount) {
1383#if IDETAPE_DEBUG_BUGS
1384 if (bh == NULL) {
1385 printk(KERN_ERR "ide-tape: bh == NULL in "
1386 "idetape_update_buffers\n");
1387 return;
1388 }
1389#endif /* IDETAPE_DEBUG_BUGS */
1390 count = min((unsigned int)bh->b_size, (unsigned int)bcount);
1391 atomic_set(&bh->b_count, count);
1392 if (atomic_read(&bh->b_count) == bh->b_size)
1393 bh = bh->b_reqnext;
1394 bcount -= count;
1395 }
1396 pc->bh = bh;
1397}
1398
1399/*
1400 * idetape_next_pc_storage returns a pointer to a place in which we can
1401 * safely store a packet command, even though we intend to leave the
1402 * driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1403 * commands is allocated at initialization time.
1404 */
1405static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive)
1406{
1407 idetape_tape_t *tape = drive->driver_data;
1408
1409#if IDETAPE_DEBUG_LOG
1410 if (tape->debug_level >= 5)
1411 printk(KERN_INFO "ide-tape: pc_stack_index=%d\n",
1412 tape->pc_stack_index);
1413#endif /* IDETAPE_DEBUG_LOG */
1414 if (tape->pc_stack_index == IDETAPE_PC_STACK)
1415 tape->pc_stack_index=0;
1416 return (&tape->pc_stack[tape->pc_stack_index++]);
1417}
1418
1419/*
1420 * idetape_next_rq_storage is used along with idetape_next_pc_storage.
1421 * Since we queue packet commands in the request queue, we need to
1422 * allocate a request, along with the allocation of a packet command.
1423 */
1424
1425/**************************************************************
1426 * *
1427 * This should get fixed to use kmalloc(.., GFP_ATOMIC) *
1428 * followed later on by kfree(). -ml *
1429 * *
1430 **************************************************************/
1431
1432static struct request *idetape_next_rq_storage (ide_drive_t *drive)
1433{
1434 idetape_tape_t *tape = drive->driver_data;
1435
1436#if IDETAPE_DEBUG_LOG
1437 if (tape->debug_level >= 5)
1438 printk(KERN_INFO "ide-tape: rq_stack_index=%d\n",
1439 tape->rq_stack_index);
1440#endif /* IDETAPE_DEBUG_LOG */
1441 if (tape->rq_stack_index == IDETAPE_PC_STACK)
1442 tape->rq_stack_index=0;
1443 return (&tape->rq_stack[tape->rq_stack_index++]);
1444}
1445
1446/*
1447 * idetape_init_pc initializes a packet command.
1448 */
1449static void idetape_init_pc (idetape_pc_t *pc)
1450{
1451 memset(pc->c, 0, 12);
1452 pc->retries = 0;
1453 pc->flags = 0;
1454 pc->request_transfer = 0;
1455 pc->buffer = pc->pc_buffer;
1456 pc->buffer_size = IDETAPE_PC_BUFFER_SIZE;
1457 pc->bh = NULL;
1458 pc->b_data = NULL;
1459}
1460
1461/*
1462 * idetape_analyze_error is called on each failed packet command retry
1463 * to analyze the request sense. We currently do not utilize this
1464 * information.
1465 */
1466static void idetape_analyze_error (ide_drive_t *drive, idetape_request_sense_result_t *result)
1467{
1468 idetape_tape_t *tape = drive->driver_data;
1469 idetape_pc_t *pc = tape->failed_pc;
1470
1471 tape->sense = *result;
1472 tape->sense_key = result->sense_key;
1473 tape->asc = result->asc;
1474 tape->ascq = result->ascq;
1475#if IDETAPE_DEBUG_LOG
1476 /*
1477 * Without debugging, we only log an error if we decided to
1478 * give up retrying.
1479 */
1480 if (tape->debug_level >= 1)
1481 printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, "
1482 "asc = %x, ascq = %x\n",
1483 pc->c[0], result->sense_key,
1484 result->asc, result->ascq);
1485#endif /* IDETAPE_DEBUG_LOG */
1486
1487 /*
1488 * Correct pc->actually_transferred by asking the tape.
1489 */
1490 if (test_bit(PC_DMA_ERROR, &pc->flags)) {
1491 pc->actually_transferred = pc->request_transfer - tape->tape_block_size * ntohl(get_unaligned(&result->information));
1492 idetape_update_buffers(pc);
1493 }
1494
1495 /*
1496 * If error was the result of a zero-length read or write command,
1497 * with sense key=5, asc=0x22, ascq=0, let it slide. Some drives
1498 * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1499 */
1500 if ((pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD)
1501 && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) { /* length==0 */
1502 if (result->sense_key == 5) {
1503 /* don't report an error, everything's ok */
1504 pc->error = 0;
1505 /* don't retry read/write */
1506 set_bit(PC_ABORT, &pc->flags);
1507 }
1508 }
1509 if (pc->c[0] == IDETAPE_READ_CMD && result->filemark) {
1510 pc->error = IDETAPE_ERROR_FILEMARK;
1511 set_bit(PC_ABORT, &pc->flags);
1512 }
1513 if (pc->c[0] == IDETAPE_WRITE_CMD) {
1514 if (result->eom ||
1515 (result->sense_key == 0xd && result->asc == 0x0 &&
1516 result->ascq == 0x2)) {
1517 pc->error = IDETAPE_ERROR_EOD;
1518 set_bit(PC_ABORT, &pc->flags);
1519 }
1520 }
1521 if (pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) {
1522 if (result->sense_key == 8) {
1523 pc->error = IDETAPE_ERROR_EOD;
1524 set_bit(PC_ABORT, &pc->flags);
1525 }
1526 if (!test_bit(PC_ABORT, &pc->flags) &&
1527 pc->actually_transferred)
1528 pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
1529 }
1530}
1531
1532/*
1533 * idetape_active_next_stage will declare the next stage as "active".
1534 */
1535static void idetape_active_next_stage (ide_drive_t *drive)
1536{
1537 idetape_tape_t *tape = drive->driver_data;
1538 idetape_stage_t *stage = tape->next_stage;
1539 struct request *rq = &stage->rq;
1540
1541#if IDETAPE_DEBUG_LOG
1542 if (tape->debug_level >= 4)
1543 printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n");
1544#endif /* IDETAPE_DEBUG_LOG */
1545#if IDETAPE_DEBUG_BUGS
1546 if (stage == NULL) {
1547 printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n");
1548 return;
1549 }
1550#endif /* IDETAPE_DEBUG_BUGS */
1551
1552 rq->rq_disk = tape->disk;
1553 rq->buffer = NULL;
1554 rq->special = (void *)stage->bh;
1555 tape->active_data_request = rq;
1556 tape->active_stage = stage;
1557 tape->next_stage = stage->next;
1558}
1559
1560/*
1561 * idetape_increase_max_pipeline_stages is a part of the feedback
1562 * loop which tries to find the optimum number of stages. In the
1563 * feedback loop, we are starting from a minimum maximum number of
1564 * stages, and if we sense that the pipeline is empty, we try to
1565 * increase it, until we reach the user compile time memory limit.
1566 */
1567static void idetape_increase_max_pipeline_stages (ide_drive_t *drive)
1568{
1569 idetape_tape_t *tape = drive->driver_data;
1570 int increase = (tape->max_pipeline - tape->min_pipeline) / 10;
1571
1572#if IDETAPE_DEBUG_LOG
1573 if (tape->debug_level >= 4)
1574 printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1575#endif /* IDETAPE_DEBUG_LOG */
1576
1577 tape->max_stages += max(increase, 1);
1578 tape->max_stages = max(tape->max_stages, tape->min_pipeline);
1579 tape->max_stages = min(tape->max_stages, tape->max_pipeline);
1580}
1581
1582/*
1583 * idetape_kfree_stage calls kfree to completely free a stage, along with
1584 * its related buffers.
1585 */
1586static void __idetape_kfree_stage (idetape_stage_t *stage)
1587{
1588 struct idetape_bh *prev_bh, *bh = stage->bh;
1589 int size;
1590
1591 while (bh != NULL) {
1592 if (bh->b_data != NULL) {
1593 size = (int) bh->b_size;
1594 while (size > 0) {
1595 free_page((unsigned long) bh->b_data);
1596 size -= PAGE_SIZE;
1597 bh->b_data += PAGE_SIZE;
1598 }
1599 }
1600 prev_bh = bh;
1601 bh = bh->b_reqnext;
1602 kfree(prev_bh);
1603 }
1604 kfree(stage);
1605}
1606
1607static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage)
1608{
1609 __idetape_kfree_stage(stage);
1610}
1611
1612/*
1613 * idetape_remove_stage_head removes tape->first_stage from the pipeline.
1614 * The caller should avoid race conditions.
1615 */
1616static void idetape_remove_stage_head (ide_drive_t *drive)
1617{
1618 idetape_tape_t *tape = drive->driver_data;
1619 idetape_stage_t *stage;
1620
1621#if IDETAPE_DEBUG_LOG
1622 if (tape->debug_level >= 4)
1623 printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n");
1624#endif /* IDETAPE_DEBUG_LOG */
1625#if IDETAPE_DEBUG_BUGS
1626 if (tape->first_stage == NULL) {
1627 printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
1628 return;
1629 }
1630 if (tape->active_stage == tape->first_stage) {
1631 printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n");
1632 return;
1633 }
1634#endif /* IDETAPE_DEBUG_BUGS */
1635 stage = tape->first_stage;
1636 tape->first_stage = stage->next;
1637 idetape_kfree_stage(tape, stage);
1638 tape->nr_stages--;
1639 if (tape->first_stage == NULL) {
1640 tape->last_stage = NULL;
1641#if IDETAPE_DEBUG_BUGS
1642 if (tape->next_stage != NULL)
1643 printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n");
1644 if (tape->nr_stages)
1645 printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n");
1646#endif /* IDETAPE_DEBUG_BUGS */
1647 }
1648}
1649
1650/*
1651 * This will free all the pipeline stages starting from new_last_stage->next
1652 * to the end of the list, and point tape->last_stage to new_last_stage.
1653 */
1654static void idetape_abort_pipeline(ide_drive_t *drive,
1655 idetape_stage_t *new_last_stage)
1656{
1657 idetape_tape_t *tape = drive->driver_data;
1658 idetape_stage_t *stage = new_last_stage->next;
1659 idetape_stage_t *nstage;
1660
1661#if IDETAPE_DEBUG_LOG
1662 if (tape->debug_level >= 4)
1663 printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name);
1664#endif
1665 while (stage) {
1666 nstage = stage->next;
1667 idetape_kfree_stage(tape, stage);
1668 --tape->nr_stages;
1669 --tape->nr_pending_stages;
1670 stage = nstage;
1671 }
1672 if (new_last_stage)
1673 new_last_stage->next = NULL;
1674 tape->last_stage = new_last_stage;
1675 tape->next_stage = NULL;
1676}
1677
1678/*
1679 * idetape_end_request is used to finish servicing a request, and to
1680 * insert a pending pipeline request into the main device queue.
1681 */
1682static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
1683{
1684 struct request *rq = HWGROUP(drive)->rq;
1685 idetape_tape_t *tape = drive->driver_data;
1686 unsigned long flags;
1687 int error;
1688 int remove_stage = 0;
1689 idetape_stage_t *active_stage;
1690
1691#if IDETAPE_DEBUG_LOG
1692 if (tape->debug_level >= 4)
1693 printk(KERN_INFO "ide-tape: Reached idetape_end_request\n");
1694#endif /* IDETAPE_DEBUG_LOG */
1695
1696 switch (uptodate) {
1697 case 0: error = IDETAPE_ERROR_GENERAL; break;
1698 case 1: error = 0; break;
1699 default: error = uptodate;
1700 }
1701 rq->errors = error;
1702 if (error)
1703 tape->failed_pc = NULL;
1704
1705 spin_lock_irqsave(&tape->spinlock, flags);
1706
1707 /* The request was a pipelined data transfer request */
1708 if (tape->active_data_request == rq) {
1709 active_stage = tape->active_stage;
1710 tape->active_stage = NULL;
1711 tape->active_data_request = NULL;
1712 tape->nr_pending_stages--;
1713 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1714 remove_stage = 1;
1715 if (error) {
1716 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1717 if (error == IDETAPE_ERROR_EOD)
1718 idetape_abort_pipeline(drive, active_stage);
1719 }
1720 } else if (rq->cmd[0] & REQ_IDETAPE_READ) {
1721 if (error == IDETAPE_ERROR_EOD) {
1722 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1723 idetape_abort_pipeline(drive, active_stage);
1724 }
1725 }
1726 if (tape->next_stage != NULL) {
1727 idetape_active_next_stage(drive);
1728
1729 /*
1730 * Insert the next request into the request queue.
1731 */
1732 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
1733 } else if (!error) {
1734 idetape_increase_max_pipeline_stages(drive);
1735 }
1736 }
1737 ide_end_drive_cmd(drive, 0, 0);
1738// blkdev_dequeue_request(rq);
1739// drive->rq = NULL;
1740// end_that_request_last(rq);
1741
1742 if (remove_stage)
1743 idetape_remove_stage_head(drive);
1744 if (tape->active_data_request == NULL)
1745 clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1746 spin_unlock_irqrestore(&tape->spinlock, flags);
1747 return 0;
1748}
1749
1750static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive)
1751{
1752 idetape_tape_t *tape = drive->driver_data;
1753
1754#if IDETAPE_DEBUG_LOG
1755 if (tape->debug_level >= 4)
1756 printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n");
1757#endif /* IDETAPE_DEBUG_LOG */
1758 if (!tape->pc->error) {
1759 idetape_analyze_error(drive, (idetape_request_sense_result_t *) tape->pc->buffer);
1760 idetape_end_request(drive, 1, 0);
1761 } else {
1762 printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1763 idetape_end_request(drive, 0, 0);
1764 }
1765 return ide_stopped;
1766}
1767
1768static void idetape_create_request_sense_cmd (idetape_pc_t *pc)
1769{
1770 idetape_init_pc(pc);
1771 pc->c[0] = IDETAPE_REQUEST_SENSE_CMD;
1772 pc->c[4] = 20;
1773 pc->request_transfer = 20;
1774 pc->callback = &idetape_request_sense_callback;
1775}
1776
1777static void idetape_init_rq(struct request *rq, u8 cmd)
1778{
1779 memset(rq, 0, sizeof(*rq));
1780 rq->flags = REQ_SPECIAL;
1781 rq->cmd[0] = cmd;
1782}
1783
1784/*
1785 * idetape_queue_pc_head generates a new packet command request in front
1786 * of the request queue, before the current request, so that it will be
1787 * processed immediately, on the next pass through the driver.
1788 *
1789 * idetape_queue_pc_head is called from the request handling part of
1790 * the driver (the "bottom" part). Safe storage for the request should
1791 * be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1792 * before calling idetape_queue_pc_head.
1793 *
1794 * Memory for those requests is pre-allocated at initialization time, and
1795 * is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1796 * space for the maximum possible number of inter-dependent packet commands.
1797 *
1798 * The higher level of the driver - The ioctl handler and the character
1799 * device handling functions should queue request to the lower level part
1800 * and wait for their completion using idetape_queue_pc_tail or
1801 * idetape_queue_rw_tail.
1802 */
1803static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq)
1804{
1805 struct ide_tape_obj *tape = drive->driver_data;
1806
1807 idetape_init_rq(rq, REQ_IDETAPE_PC1);
1808 rq->buffer = (char *) pc;
1809 rq->rq_disk = tape->disk;
1810 (void) ide_do_drive_cmd(drive, rq, ide_preempt);
1811}
1812
1813/*
1814 * idetape_retry_pc is called when an error was detected during the
1815 * last packet command. We queue a request sense packet command in
1816 * the head of the request list.
1817 */
1818static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
1819{
1820 idetape_tape_t *tape = drive->driver_data;
1821 idetape_pc_t *pc;
1822 struct request *rq;
1823 atapi_error_t error;
1824
1825 error.all = HWIF(drive)->INB(IDE_ERROR_REG);
1826 pc = idetape_next_pc_storage(drive);
1827 rq = idetape_next_rq_storage(drive);
1828 idetape_create_request_sense_cmd(pc);
1829 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1830 idetape_queue_pc_head(drive, pc, rq);
1831 return ide_stopped;
1832}
1833
1834/*
1835 * idetape_postpone_request postpones the current request so that
1836 * ide.c will be able to service requests from another device on
1837 * the same hwgroup while we are polling for DSC.
1838 */
1839static void idetape_postpone_request (ide_drive_t *drive)
1840{
1841 idetape_tape_t *tape = drive->driver_data;
1842
1843#if IDETAPE_DEBUG_LOG
1844 if (tape->debug_level >= 4)
1845 printk(KERN_INFO "ide-tape: idetape_postpone_request\n");
1846#endif
1847 tape->postponed_rq = HWGROUP(drive)->rq;
1848 ide_stall_queue(drive, tape->dsc_polling_frequency);
1849}
1850
1851/*
1852 * idetape_pc_intr is the usual interrupt handler which will be called
1853 * during a packet command. We will transfer some of the data (as
1854 * requested by the drive) and will re-point interrupt handler to us.
1855 * When data transfer is finished, we will act according to the
1856 * algorithm described before idetape_issue_packet_command.
1857 *
1858 */
1859static ide_startstop_t idetape_pc_intr (ide_drive_t *drive)
1860{
1861 ide_hwif_t *hwif = drive->hwif;
1862 idetape_tape_t *tape = drive->driver_data;
1863 atapi_status_t status;
1864 atapi_bcount_t bcount;
1865 atapi_ireason_t ireason;
1866 idetape_pc_t *pc = tape->pc;
1867
1868 unsigned int temp;
1869#if SIMULATE_ERRORS
1870 static int error_sim_count = 0;
1871#endif
1872
1873#if IDETAPE_DEBUG_LOG
1874 if (tape->debug_level >= 4)
1875 printk(KERN_INFO "ide-tape: Reached idetape_pc_intr "
1876 "interrupt handler\n");
1877#endif /* IDETAPE_DEBUG_LOG */
1878
1879 /* Clear the interrupt */
1880 status.all = HWIF(drive)->INB(IDE_STATUS_REG);
1881
1882 if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1883 if (HWIF(drive)->ide_dma_end(drive) || status.b.check) {
1884 /*
1885 * A DMA error is sometimes expected. For example,
1886 * if the tape is crossing a filemark during a
1887 * READ command, it will issue an irq and position
1888 * itself before the filemark, so that only a partial
1889 * data transfer will occur (which causes the DMA
1890 * error). In that case, we will later ask the tape
1891 * how much bytes of the original request were
1892 * actually transferred (we can't receive that
1893 * information from the DMA engine on most chipsets).
1894 */
1895
1896 /*
1897 * On the contrary, a DMA error is never expected;
1898 * it usually indicates a hardware error or abort.
1899 * If the tape crosses a filemark during a READ
1900 * command, it will issue an irq and position itself
1901 * after the filemark (not before). Only a partial
1902 * data transfer will occur, but no DMA error.
1903 * (AS, 19 Apr 2001)
1904 */
1905 set_bit(PC_DMA_ERROR, &pc->flags);
1906 } else {
1907 pc->actually_transferred = pc->request_transfer;
1908 idetape_update_buffers(pc);
1909 }
1910#if IDETAPE_DEBUG_LOG
1911 if (tape->debug_level >= 4)
1912 printk(KERN_INFO "ide-tape: DMA finished\n");
1913#endif /* IDETAPE_DEBUG_LOG */
1914 }
1915
1916 /* No more interrupts */
1917 if (!status.b.drq) {
1918#if IDETAPE_DEBUG_LOG
1919 if (tape->debug_level >= 2)
1920 printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred);
1921#endif /* IDETAPE_DEBUG_LOG */
1922 clear_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1923
1924 local_irq_enable();
1925
1926#if SIMULATE_ERRORS
1927 if ((pc->c[0] == IDETAPE_WRITE_CMD ||
1928 pc->c[0] == IDETAPE_READ_CMD) &&
1929 (++error_sim_count % 100) == 0) {
1930 printk(KERN_INFO "ide-tape: %s: simulating error\n",
1931 tape->name);
1932 status.b.check = 1;
1933 }
1934#endif
1935 if (status.b.check && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD)
1936 status.b.check = 0;
1937 if (status.b.check || test_bit(PC_DMA_ERROR, &pc->flags)) { /* Error detected */
1938#if IDETAPE_DEBUG_LOG
1939 if (tape->debug_level >= 1)
1940 printk(KERN_INFO "ide-tape: %s: I/O error\n",
1941 tape->name);
1942#endif /* IDETAPE_DEBUG_LOG */
1943 if (pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
1944 printk(KERN_ERR "ide-tape: I/O error in request sense command\n");
1945 return ide_do_reset(drive);
1946 }
1947#if IDETAPE_DEBUG_LOG
1948 if (tape->debug_level >= 1)
1949 printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]);
1950#endif
1951 /* Retry operation */
1952 return idetape_retry_pc(drive);
1953 }
1954 pc->error = 0;
1955 if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) &&
1956 !status.b.dsc) {
1957 /* Media access command */
1958 tape->dsc_polling_start = jiffies;
1959 tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST;
1960 tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1961 /* Allow ide.c to handle other requests */
1962 idetape_postpone_request(drive);
1963 return ide_stopped;
1964 }
1965 if (tape->failed_pc == pc)
1966 tape->failed_pc = NULL;
1967 /* Command finished - Call the callback function */
1968 return pc->callback(drive);
1969 }
1970 if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1971 printk(KERN_ERR "ide-tape: The tape wants to issue more "
1972 "interrupts in DMA mode\n");
1973 printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
1974 (void)__ide_dma_off(drive);
1975 return ide_do_reset(drive);
1976 }
1977 /* Get the number of bytes to transfer on this interrupt. */
1978 bcount.b.high = hwif->INB(IDE_BCOUNTH_REG);
1979 bcount.b.low = hwif->INB(IDE_BCOUNTL_REG);
1980
1981 ireason.all = hwif->INB(IDE_IREASON_REG);
1982
1983 if (ireason.b.cod) {
1984 printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n");
1985 return ide_do_reset(drive);
1986 }
1987 if (ireason.b.io == test_bit(PC_WRITING, &pc->flags)) {
1988 /* Hopefully, we will never get here */
1989 printk(KERN_ERR "ide-tape: We wanted to %s, ",
1990 ireason.b.io ? "Write":"Read");
1991 printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1992 ireason.b.io ? "Read":"Write");
1993 return ide_do_reset(drive);
1994 }
1995 if (!test_bit(PC_WRITING, &pc->flags)) {
1996 /* Reading - Check that we have enough space */
1997 temp = pc->actually_transferred + bcount.all;
1998 if (temp > pc->request_transfer) {
1999 if (temp > pc->buffer_size) {
2000 printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n");
2001 idetape_discard_data(drive, bcount.all);
2002 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2003 return ide_started;
2004 }
2005#if IDETAPE_DEBUG_LOG
2006 if (tape->debug_level >= 2)
2007 printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
2008#endif /* IDETAPE_DEBUG_LOG */
2009 }
2010 }
2011 if (test_bit(PC_WRITING, &pc->flags)) {
2012 if (pc->bh != NULL)
2013 idetape_output_buffers(drive, pc, bcount.all);
2014 else
2015 /* Write the current buffer */
2016 HWIF(drive)->atapi_output_bytes(drive, pc->current_position, bcount.all);
2017 } else {
2018 if (pc->bh != NULL)
2019 idetape_input_buffers(drive, pc, bcount.all);
2020 else
2021 /* Read the current buffer */
2022 HWIF(drive)->atapi_input_bytes(drive, pc->current_position, bcount.all);
2023 }
2024 /* Update the current position */
2025 pc->actually_transferred += bcount.all;
2026 pc->current_position += bcount.all;
2027#if IDETAPE_DEBUG_LOG
2028 if (tape->debug_level >= 2)
2029 printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes on that interrupt\n", pc->c[0], bcount.all);
2030#endif
2031 /* And set the interrupt handler again */
2032 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2033 return ide_started;
2034}
2035
2036/*
2037 * Packet Command Interface
2038 *
2039 * The current Packet Command is available in tape->pc, and will not
2040 * change until we finish handling it. Each packet command is associated
2041 * with a callback function that will be called when the command is
2042 * finished.
2043 *
2044 * The handling will be done in three stages:
2045 *
2046 * 1. idetape_issue_packet_command will send the packet command to the
2047 * drive, and will set the interrupt handler to idetape_pc_intr.
2048 *
2049 * 2. On each interrupt, idetape_pc_intr will be called. This step
2050 * will be repeated until the device signals us that no more
2051 * interrupts will be issued.
2052 *
2053 * 3. ATAPI Tape media access commands have immediate status with a
2054 * delayed process. In case of a successful initiation of a
2055 * media access packet command, the DSC bit will be set when the
2056 * actual execution of the command is finished.
2057 * Since the tape drive will not issue an interrupt, we have to
2058 * poll for this event. In this case, we define the request as
2059 * "low priority request" by setting rq_status to
2060 * IDETAPE_RQ_POSTPONED, set a timer to poll for DSC and exit
2061 * the driver.
2062 *
2063 * ide.c will then give higher priority to requests which
2064 * originate from the other device, until will change rq_status
2065 * to RQ_ACTIVE.
2066 *
2067 * 4. When the packet command is finished, it will be checked for errors.
2068 *
2069 * 5. In case an error was found, we queue a request sense packet
2070 * command in front of the request queue and retry the operation
2071 * up to IDETAPE_MAX_PC_RETRIES times.
2072 *
2073 * 6. In case no error was found, or we decided to give up and not
2074 * to retry again, the callback function will be called and then
2075 * we will handle the next request.
2076 *
2077 */
2078static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
2079{
2080 ide_hwif_t *hwif = drive->hwif;
2081 idetape_tape_t *tape = drive->driver_data;
2082 idetape_pc_t *pc = tape->pc;
2083 atapi_ireason_t ireason;
2084 int retries = 100;
2085 ide_startstop_t startstop;
2086
2087 if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) {
2088 printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2089 return startstop;
2090 }
2091 ireason.all = hwif->INB(IDE_IREASON_REG);
2092 while (retries-- && (!ireason.b.cod || ireason.b.io)) {
2093 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
2094 "a packet command, retrying\n");
2095 udelay(100);
2096 ireason.all = hwif->INB(IDE_IREASON_REG);
2097 if (retries == 0) {
2098 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
2099 "issuing a packet command, ignoring\n");
2100 ireason.b.cod = 1;
2101 ireason.b.io = 0;
2102 }
2103 }
2104 if (!ireason.b.cod || ireason.b.io) {
2105 printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
2106 "a packet command\n");
2107 return ide_do_reset(drive);
2108 }
2109 /* Set the interrupt routine */
2110 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2111#ifdef CONFIG_BLK_DEV_IDEDMA
2112 /* Begin DMA, if necessary */
2113 if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags))
2114 hwif->dma_start(drive);
2115#endif
2116 /* Send the actual packet */
2117 HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
2118 return ide_started;
2119}
2120
2121static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
2122{
2123 ide_hwif_t *hwif = drive->hwif;
2124 idetape_tape_t *tape = drive->driver_data;
2125 atapi_bcount_t bcount;
2126 int dma_ok = 0;
2127
2128#if IDETAPE_DEBUG_BUGS
2129 if (tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD &&
2130 pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2131 printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
2132 "Two request sense in serial were issued\n");
2133 }
2134#endif /* IDETAPE_DEBUG_BUGS */
2135
2136 if (tape->failed_pc == NULL && pc->c[0] != IDETAPE_REQUEST_SENSE_CMD)
2137 tape->failed_pc = pc;
2138 /* Set the current packet command */
2139 tape->pc = pc;
2140
2141 if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
2142 test_bit(PC_ABORT, &pc->flags)) {
2143 /*
2144 * We will "abort" retrying a packet command in case
2145 * a legitimate error code was received (crossing a
2146 * filemark, or end of the media, for example).
2147 */
2148 if (!test_bit(PC_ABORT, &pc->flags)) {
2149 if (!(pc->c[0] == IDETAPE_TEST_UNIT_READY_CMD &&
2150 tape->sense_key == 2 && tape->asc == 4 &&
2151 (tape->ascq == 1 || tape->ascq == 8))) {
2152 printk(KERN_ERR "ide-tape: %s: I/O error, "
2153 "pc = %2x, key = %2x, "
2154 "asc = %2x, ascq = %2x\n",
2155 tape->name, pc->c[0],
2156 tape->sense_key, tape->asc,
2157 tape->ascq);
2158 }
2159 /* Giving up */
2160 pc->error = IDETAPE_ERROR_GENERAL;
2161 }
2162 tape->failed_pc = NULL;
2163 return pc->callback(drive);
2164 }
2165#if IDETAPE_DEBUG_LOG
2166 if (tape->debug_level >= 2)
2167 printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]);
2168#endif /* IDETAPE_DEBUG_LOG */
2169
2170 pc->retries++;
2171 /* We haven't transferred any data yet */
2172 pc->actually_transferred = 0;
2173 pc->current_position = pc->buffer;
2174 /* Request to transfer the entire buffer at once */
2175 bcount.all = pc->request_transfer;
2176
2177 if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) {
2178 printk(KERN_WARNING "ide-tape: DMA disabled, "
2179 "reverting to PIO\n");
2180 (void)__ide_dma_off(drive);
2181 }
2182 if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma)
2183 dma_ok = !hwif->dma_setup(drive);
2184
2185 if (IDE_CONTROL_REG)
2186 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
2187 hwif->OUTB(dma_ok ? 1 : 0, IDE_FEATURE_REG); /* Use PIO/DMA */
2188 hwif->OUTB(bcount.b.high, IDE_BCOUNTH_REG);
2189 hwif->OUTB(bcount.b.low, IDE_BCOUNTL_REG);
2190 hwif->OUTB(drive->select.all, IDE_SELECT_REG);
2191 if (dma_ok) /* Will begin DMA later */
2192 set_bit(PC_DMA_IN_PROGRESS, &pc->flags);
2193 if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) {
2194 ide_set_handler(drive, &idetape_transfer_pc, IDETAPE_WAIT_CMD, NULL);
2195 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2196 return ide_started;
2197 } else {
2198 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2199 return idetape_transfer_pc(drive);
2200 }
2201}
2202
2203/*
2204 * General packet command callback function.
2205 */
2206static ide_startstop_t idetape_pc_callback (ide_drive_t *drive)
2207{
2208 idetape_tape_t *tape = drive->driver_data;
2209
2210#if IDETAPE_DEBUG_LOG
2211 if (tape->debug_level >= 4)
2212 printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n");
2213#endif /* IDETAPE_DEBUG_LOG */
2214
2215 idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
2216 return ide_stopped;
2217}
2218
2219/*
2220 * A mode sense command is used to "sense" tape parameters.
2221 */
2222static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code)
2223{
2224 idetape_init_pc(pc);
2225 pc->c[0] = IDETAPE_MODE_SENSE_CMD;
2226 if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
2227 pc->c[1] = 8; /* DBD = 1 - Don't return block descriptors */
2228 pc->c[2] = page_code;
2229 /*
2230 * Changed pc->c[3] to 0 (255 will at best return unused info).
2231 *
2232 * For SCSI this byte is defined as subpage instead of high byte
2233 * of length and some IDE drives seem to interpret it this way
2234 * and return an error when 255 is used.
2235 */
2236 pc->c[3] = 0;
2237 pc->c[4] = 255; /* (We will just discard data in that case) */
2238 if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
2239 pc->request_transfer = 12;
2240 else if (page_code == IDETAPE_CAPABILITIES_PAGE)
2241 pc->request_transfer = 24;
2242 else
2243 pc->request_transfer = 50;
2244 pc->callback = &idetape_pc_callback;
2245}
2246
2247static void calculate_speeds(ide_drive_t *drive)
2248{
2249 idetape_tape_t *tape = drive->driver_data;
2250 int full = 125, empty = 75;
2251
2252 if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) {
2253 tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head;
2254 tape->controlled_previous_head_time = tape->controlled_pipeline_head_time;
2255 tape->controlled_last_pipeline_head = tape->pipeline_head;
2256 tape->controlled_pipeline_head_time = jiffies;
2257 }
2258 if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
2259 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time);
2260 else if (time_after(jiffies, tape->controlled_previous_head_time))
2261 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time);
2262
2263 if (tape->nr_pending_stages < tape->max_stages /*- 1 */) {
2264 /* -1 for read mode error recovery */
2265 if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) {
2266 tape->uncontrolled_pipeline_head_time = jiffies;
2267 tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time);
2268 }
2269 } else {
2270 tape->uncontrolled_previous_head_time = jiffies;
2271 tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
2272 if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) {
2273 tape->uncontrolled_pipeline_head_time = jiffies;
2274 }
2275 }
2276 tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed);
2277 if (tape->speed_control == 0) {
2278 tape->max_insert_speed = 5000;
2279 } else if (tape->speed_control == 1) {
2280 if (tape->nr_pending_stages >= tape->max_stages / 2)
2281 tape->max_insert_speed = tape->pipeline_head_speed +
2282 (1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages;
2283 else
2284 tape->max_insert_speed = 500 +
2285 (tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages;
2286 if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
2287 tape->max_insert_speed = 5000;
2288 } else if (tape->speed_control == 2) {
2289 tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 +
2290 (tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages;
2291 } else
2292 tape->max_insert_speed = tape->speed_control;
2293 tape->max_insert_speed = max(tape->max_insert_speed, 500);
2294}
2295
2296static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive)
2297{
2298 idetape_tape_t *tape = drive->driver_data;
2299 idetape_pc_t *pc = tape->pc;
2300 atapi_status_t status;
2301
2302 status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2303 if (status.b.dsc) {
2304 if (status.b.check) {
2305 /* Error detected */
2306 if (pc->c[0] != IDETAPE_TEST_UNIT_READY_CMD)
2307 printk(KERN_ERR "ide-tape: %s: I/O error, ",
2308 tape->name);
2309 /* Retry operation */
2310 return idetape_retry_pc(drive);
2311 }
2312 pc->error = 0;
2313 if (tape->failed_pc == pc)
2314 tape->failed_pc = NULL;
2315 } else {
2316 pc->error = IDETAPE_ERROR_GENERAL;
2317 tape->failed_pc = NULL;
2318 }
2319 return pc->callback(drive);
2320}
2321
2322static ide_startstop_t idetape_rw_callback (ide_drive_t *drive)
2323{
2324 idetape_tape_t *tape = drive->driver_data;
2325 struct request *rq = HWGROUP(drive)->rq;
2326 int blocks = tape->pc->actually_transferred / tape->tape_block_size;
2327
2328 tape->avg_size += blocks * tape->tape_block_size;
2329 tape->insert_size += blocks * tape->tape_block_size;
2330 if (tape->insert_size > 1024 * 1024)
2331 tape->measure_insert_time = 1;
2332 if (tape->measure_insert_time) {
2333 tape->measure_insert_time = 0;
2334 tape->insert_time = jiffies;
2335 tape->insert_size = 0;
2336 }
2337 if (time_after(jiffies, tape->insert_time))
2338 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2339 if (jiffies - tape->avg_time >= HZ) {
2340 tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024;
2341 tape->avg_size = 0;
2342 tape->avg_time = jiffies;
2343 }
2344
2345#if IDETAPE_DEBUG_LOG
2346 if (tape->debug_level >= 4)
2347 printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n");
2348#endif /* IDETAPE_DEBUG_LOG */
2349
2350 tape->first_frame_position += blocks;
2351 rq->current_nr_sectors -= blocks;
2352
2353 if (!tape->pc->error)
2354 idetape_end_request(drive, 1, 0);
2355 else
2356 idetape_end_request(drive, tape->pc->error, 0);
2357 return ide_stopped;
2358}
2359
2360static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2361{
2362 idetape_init_pc(pc);
2363 pc->c[0] = IDETAPE_READ_CMD;
2364 put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2365 pc->c[1] = 1;
2366 pc->callback = &idetape_rw_callback;
2367 pc->bh = bh;
2368 atomic_set(&bh->b_count, 0);
2369 pc->buffer = NULL;
2370 pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2371 if (pc->request_transfer == tape->stage_size)
2372 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2373}
2374
2375static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2376{
2377 int size = 32768;
2378 struct idetape_bh *p = bh;
2379
2380 idetape_init_pc(pc);
2381 pc->c[0] = IDETAPE_READ_BUFFER_CMD;
2382 pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK;
2383 pc->c[7] = size >> 8;
2384 pc->c[8] = size & 0xff;
2385 pc->callback = &idetape_pc_callback;
2386 pc->bh = bh;
2387 atomic_set(&bh->b_count, 0);
2388 pc->buffer = NULL;
2389 while (p) {
2390 atomic_set(&p->b_count, 0);
2391 p = p->b_reqnext;
2392 }
2393 pc->request_transfer = pc->buffer_size = size;
2394}
2395
2396static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2397{
2398 idetape_init_pc(pc);
2399 pc->c[0] = IDETAPE_WRITE_CMD;
2400 put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2401 pc->c[1] = 1;
2402 pc->callback = &idetape_rw_callback;
2403 set_bit(PC_WRITING, &pc->flags);
2404 pc->bh = bh;
2405 pc->b_data = bh->b_data;
2406 pc->b_count = atomic_read(&bh->b_count);
2407 pc->buffer = NULL;
2408 pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2409 if (pc->request_transfer == tape->stage_size)
2410 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2411}
2412
2413/*
2414 * idetape_do_request is our request handling function.
2415 */
2416static ide_startstop_t idetape_do_request(ide_drive_t *drive,
2417 struct request *rq, sector_t block)
2418{
2419 idetape_tape_t *tape = drive->driver_data;
2420 idetape_pc_t *pc = NULL;
2421 struct request *postponed_rq = tape->postponed_rq;
2422 atapi_status_t status;
2423
2424#if IDETAPE_DEBUG_LOG
2425#if 0
2426 if (tape->debug_level >= 5)
2427 printk(KERN_INFO "ide-tape: rq_status: %d, "
2428 "dev: %s, cmd: %ld, errors: %d\n", rq->rq_status,
2429 rq->rq_disk->disk_name, rq->cmd[0], rq->errors);
2430#endif
2431 if (tape->debug_level >= 2)
2432 printk(KERN_INFO "ide-tape: sector: %ld, "
2433 "nr_sectors: %ld, current_nr_sectors: %d\n",
2434 rq->sector, rq->nr_sectors, rq->current_nr_sectors);
2435#endif /* IDETAPE_DEBUG_LOG */
2436
2437 if ((rq->flags & REQ_SPECIAL) == 0) {
2438 /*
2439 * We do not support buffer cache originated requests.
2440 */
2441 printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
2442 "request queue (%ld)\n", drive->name, rq->flags);
2443 ide_end_request(drive, 0, 0);
2444 return ide_stopped;
2445 }
2446
2447 /*
2448 * Retry a failed packet command
2449 */
2450 if (tape->failed_pc != NULL &&
2451 tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2452 return idetape_issue_packet_command(drive, tape->failed_pc);
2453 }
2454#if IDETAPE_DEBUG_BUGS
2455 if (postponed_rq != NULL)
2456 if (rq != postponed_rq) {
2457 printk(KERN_ERR "ide-tape: ide-tape.c bug - "
2458 "Two DSC requests were queued\n");
2459 idetape_end_request(drive, 0, 0);
2460 return ide_stopped;
2461 }
2462#endif /* IDETAPE_DEBUG_BUGS */
2463
2464 tape->postponed_rq = NULL;
2465
2466 /*
2467 * If the tape is still busy, postpone our request and service
2468 * the other device meanwhile.
2469 */
2470 status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2471
2472 if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
2473 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2474
2475 if (drive->post_reset == 1) {
2476 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2477 drive->post_reset = 0;
2478 }
2479
2480 if (tape->tape_still_time > 100 && tape->tape_still_time < 200)
2481 tape->measure_insert_time = 1;
2482 if (time_after(jiffies, tape->insert_time))
2483 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2484 calculate_speeds(drive);
2485 if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) &&
2486 !status.b.dsc) {
2487 if (postponed_rq == NULL) {
2488 tape->dsc_polling_start = jiffies;
2489 tape->dsc_polling_frequency = tape->best_dsc_rw_frequency;
2490 tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
2491 } else if (time_after(jiffies, tape->dsc_timeout)) {
2492 printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
2493 tape->name);
2494 if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2495 idetape_media_access_finished(drive);
2496 return ide_stopped;
2497 } else {
2498 return ide_do_reset(drive);
2499 }
2500 } else if (jiffies - tape->dsc_polling_start > IDETAPE_DSC_MA_THRESHOLD)
2501 tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW;
2502 idetape_postpone_request(drive);
2503 return ide_stopped;
2504 }
2505 if (rq->cmd[0] & REQ_IDETAPE_READ) {
2506 tape->buffer_head++;
2507#if USE_IOTRACE
2508 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
2509#endif
2510 tape->postpone_cnt = 0;
2511 pc = idetape_next_pc_storage(drive);
2512 idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2513 goto out;
2514 }
2515 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
2516 tape->buffer_head++;
2517#if USE_IOTRACE
2518 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
2519#endif
2520 tape->postpone_cnt = 0;
2521 pc = idetape_next_pc_storage(drive);
2522 idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2523 goto out;
2524 }
2525 if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) {
2526 tape->postpone_cnt = 0;
2527 pc = idetape_next_pc_storage(drive);
2528 idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2529 goto out;
2530 }
2531 if (rq->cmd[0] & REQ_IDETAPE_PC1) {
2532 pc = (idetape_pc_t *) rq->buffer;
2533 rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
2534 rq->cmd[0] |= REQ_IDETAPE_PC2;
2535 goto out;
2536 }
2537 if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2538 idetape_media_access_finished(drive);
2539 return ide_stopped;
2540 }
2541 BUG();
2542out:
2543 return idetape_issue_packet_command(drive, pc);
2544}
2545
2546/*
2547 * Pipeline related functions
2548 */
2549static inline int idetape_pipeline_active (idetape_tape_t *tape)
2550{
2551 int rc1, rc2;
2552
2553 rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
2554 rc2 = (tape->active_data_request != NULL);
2555 return rc1;
2556}
2557
2558/*
2559 * idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2560 * stage, along with all the necessary small buffers which together make
2561 * a buffer of size tape->stage_size (or a bit more). We attempt to
2562 * combine sequential pages as much as possible.
2563 *
2564 * Returns a pointer to the new allocated stage, or NULL if we
2565 * can't (or don't want to) allocate a stage.
2566 *
2567 * Pipeline stages are optional and are used to increase performance.
2568 * If we can't allocate them, we'll manage without them.
2569 */
2570static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear)
2571{
2572 idetape_stage_t *stage;
2573 struct idetape_bh *prev_bh, *bh;
2574 int pages = tape->pages_per_stage;
2575 char *b_data = NULL;
2576
2577 if ((stage = (idetape_stage_t *) kmalloc (sizeof (idetape_stage_t),GFP_KERNEL)) == NULL)
2578 return NULL;
2579 stage->next = NULL;
2580
2581 bh = stage->bh = (struct idetape_bh *)kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
2582 if (bh == NULL)
2583 goto abort;
2584 bh->b_reqnext = NULL;
2585 if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2586 goto abort;
2587 if (clear)
2588 memset(bh->b_data, 0, PAGE_SIZE);
2589 bh->b_size = PAGE_SIZE;
2590 atomic_set(&bh->b_count, full ? bh->b_size : 0);
2591
2592 while (--pages) {
2593 if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2594 goto abort;
2595 if (clear)
2596 memset(b_data, 0, PAGE_SIZE);
2597 if (bh->b_data == b_data + PAGE_SIZE) {
2598 bh->b_size += PAGE_SIZE;
2599 bh->b_data -= PAGE_SIZE;
2600 if (full)
2601 atomic_add(PAGE_SIZE, &bh->b_count);
2602 continue;
2603 }
2604 if (b_data == bh->b_data + bh->b_size) {
2605 bh->b_size += PAGE_SIZE;
2606 if (full)
2607 atomic_add(PAGE_SIZE, &bh->b_count);
2608 continue;
2609 }
2610 prev_bh = bh;
2611 if ((bh = (struct idetape_bh *)kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) {
2612 free_page((unsigned long) b_data);
2613 goto abort;
2614 }
2615 bh->b_reqnext = NULL;
2616 bh->b_data = b_data;
2617 bh->b_size = PAGE_SIZE;
2618 atomic_set(&bh->b_count, full ? bh->b_size : 0);
2619 prev_bh->b_reqnext = bh;
2620 }
2621 bh->b_size -= tape->excess_bh_size;
2622 if (full)
2623 atomic_sub(tape->excess_bh_size, &bh->b_count);
2624 return stage;
2625abort:
2626 __idetape_kfree_stage(stage);
2627 return NULL;
2628}
2629
2630static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape)
2631{
2632 idetape_stage_t *cache_stage = tape->cache_stage;
2633
2634#if IDETAPE_DEBUG_LOG
2635 if (tape->debug_level >= 4)
2636 printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n");
2637#endif /* IDETAPE_DEBUG_LOG */
2638
2639 if (tape->nr_stages >= tape->max_stages)
2640 return NULL;
2641 if (cache_stage != NULL) {
2642 tape->cache_stage = NULL;
2643 return cache_stage;
2644 }
2645 return __idetape_kmalloc_stage(tape, 0, 0);
2646}
2647
2648static void idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n)
2649{
2650 struct idetape_bh *bh = tape->bh;
2651 int count;
2652
2653 while (n) {
2654#if IDETAPE_DEBUG_BUGS
2655 if (bh == NULL) {
2656 printk(KERN_ERR "ide-tape: bh == NULL in "
2657 "idetape_copy_stage_from_user\n");
2658 return;
2659 }
2660#endif /* IDETAPE_DEBUG_BUGS */
2661 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n);
2662 copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count);
2663 n -= count;
2664 atomic_add(count, &bh->b_count);
2665 buf += count;
2666 if (atomic_read(&bh->b_count) == bh->b_size) {
2667 bh = bh->b_reqnext;
2668 if (bh)
2669 atomic_set(&bh->b_count, 0);
2670 }
2671 }
2672 tape->bh = bh;
2673}
2674
2675static void idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n)
2676{
2677 struct idetape_bh *bh = tape->bh;
2678 int count;
2679
2680 while (n) {
2681#if IDETAPE_DEBUG_BUGS
2682 if (bh == NULL) {
2683 printk(KERN_ERR "ide-tape: bh == NULL in "
2684 "idetape_copy_stage_to_user\n");
2685 return;
2686 }
2687#endif /* IDETAPE_DEBUG_BUGS */
2688 count = min(tape->b_count, n);
2689 copy_to_user(buf, tape->b_data, count);
2690 n -= count;
2691 tape->b_data += count;
2692 tape->b_count -= count;
2693 buf += count;
2694 if (!tape->b_count) {
2695 tape->bh = bh = bh->b_reqnext;
2696 if (bh) {
2697 tape->b_data = bh->b_data;
2698 tape->b_count = atomic_read(&bh->b_count);
2699 }
2700 }
2701 }
2702}
2703
2704static void idetape_init_merge_stage (idetape_tape_t *tape)
2705{
2706 struct idetape_bh *bh = tape->merge_stage->bh;
2707
2708 tape->bh = bh;
2709 if (tape->chrdev_direction == idetape_direction_write)
2710 atomic_set(&bh->b_count, 0);
2711 else {
2712 tape->b_data = bh->b_data;
2713 tape->b_count = atomic_read(&bh->b_count);
2714 }
2715}
2716
2717static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage)
2718{
2719 struct idetape_bh *tmp;
2720
2721 tmp = stage->bh;
2722 stage->bh = tape->merge_stage->bh;
2723 tape->merge_stage->bh = tmp;
2724 idetape_init_merge_stage(tape);
2725}
2726
2727/*
2728 * idetape_add_stage_tail adds a new stage at the end of the pipeline.
2729 */
2730static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage)
2731{
2732 idetape_tape_t *tape = drive->driver_data;
2733 unsigned long flags;
2734
2735#if IDETAPE_DEBUG_LOG
2736 if (tape->debug_level >= 4)
2737 printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n");
2738#endif /* IDETAPE_DEBUG_LOG */
2739 spin_lock_irqsave(&tape->spinlock, flags);
2740 stage->next = NULL;
2741 if (tape->last_stage != NULL)
2742 tape->last_stage->next=stage;
2743 else
2744 tape->first_stage = tape->next_stage=stage;
2745 tape->last_stage = stage;
2746 if (tape->next_stage == NULL)
2747 tape->next_stage = tape->last_stage;
2748 tape->nr_stages++;
2749 tape->nr_pending_stages++;
2750 spin_unlock_irqrestore(&tape->spinlock, flags);
2751}
2752
2753/*
2754 * idetape_wait_for_request installs a completion in a pending request
2755 * and sleeps until it is serviced.
2756 *
2757 * The caller should ensure that the request will not be serviced
2758 * before we install the completion (usually by disabling interrupts).
2759 */
2760static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq)
2761{
2762 DECLARE_COMPLETION(wait);
2763 idetape_tape_t *tape = drive->driver_data;
2764
2765#if IDETAPE_DEBUG_BUGS
2766 if (rq == NULL || (rq->flags & REQ_SPECIAL) == 0) {
2767 printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n");
2768 return;
2769 }
2770#endif /* IDETAPE_DEBUG_BUGS */
2771 rq->waiting = &wait;
2772 rq->end_io = blk_end_sync_rq;
2773 spin_unlock_irq(&tape->spinlock);
2774 wait_for_completion(&wait);
2775 /* The stage and its struct request have been deallocated */
2776 spin_lock_irq(&tape->spinlock);
2777}
2778
2779static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive)
2780{
2781 idetape_tape_t *tape = drive->driver_data;
2782 idetape_read_position_result_t *result;
2783
2784#if IDETAPE_DEBUG_LOG
2785 if (tape->debug_level >= 4)
2786 printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n");
2787#endif /* IDETAPE_DEBUG_LOG */
2788
2789 if (!tape->pc->error) {
2790 result = (idetape_read_position_result_t *) tape->pc->buffer;
2791#if IDETAPE_DEBUG_LOG
2792 if (tape->debug_level >= 2)
2793 printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No");
2794 if (tape->debug_level >= 2)
2795 printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No");
2796#endif /* IDETAPE_DEBUG_LOG */
2797 if (result->bpu) {
2798 printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n");
2799 clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2800 idetape_end_request(drive, 0, 0);
2801 } else {
2802#if IDETAPE_DEBUG_LOG
2803 if (tape->debug_level >= 2)
2804 printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block));
2805#endif /* IDETAPE_DEBUG_LOG */
2806 tape->partition = result->partition;
2807 tape->first_frame_position = ntohl(result->first_block);
2808 tape->last_frame_position = ntohl(result->last_block);
2809 tape->blocks_in_buffer = result->blocks_in_buffer[2];
2810 set_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2811 idetape_end_request(drive, 1, 0);
2812 }
2813 } else {
2814 idetape_end_request(drive, 0, 0);
2815 }
2816 return ide_stopped;
2817}
2818
2819/*
2820 * idetape_create_write_filemark_cmd will:
2821 *
2822 * 1. Write a filemark if write_filemark=1.
2823 * 2. Flush the device buffers without writing a filemark
2824 * if write_filemark=0.
2825 *
2826 */
2827static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark)
2828{
2829 idetape_init_pc(pc);
2830 pc->c[0] = IDETAPE_WRITE_FILEMARK_CMD;
2831 pc->c[4] = write_filemark;
2832 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2833 pc->callback = &idetape_pc_callback;
2834}
2835
2836static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc)
2837{
2838 idetape_init_pc(pc);
2839 pc->c[0] = IDETAPE_TEST_UNIT_READY_CMD;
2840 pc->callback = &idetape_pc_callback;
2841}
2842
2843/*
2844 * idetape_queue_pc_tail is based on the following functions:
2845 *
2846 * ide_do_drive_cmd from ide.c
2847 * cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2848 *
2849 * We add a special packet command request to the tail of the request
2850 * queue, and wait for it to be serviced.
2851 *
2852 * This is not to be called from within the request handling part
2853 * of the driver ! We allocate here data in the stack, and it is valid
2854 * until the request is finished. This is not the case for the bottom
2855 * part of the driver, where we are always leaving the functions to wait
2856 * for an interrupt or a timer event.
2857 *
2858 * From the bottom part of the driver, we should allocate safe memory
2859 * using idetape_next_pc_storage and idetape_next_rq_storage, and add
2860 * the request to the request list without waiting for it to be serviced !
2861 * In that case, we usually use idetape_queue_pc_head.
2862 */
2863static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc)
2864{
2865 struct ide_tape_obj *tape = drive->driver_data;
2866 struct request rq;
2867
2868 idetape_init_rq(&rq, REQ_IDETAPE_PC1);
2869 rq.buffer = (char *) pc;
2870 rq.rq_disk = tape->disk;
2871 return ide_do_drive_cmd(drive, &rq, ide_wait);
2872}
2873
2874static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd)
2875{
2876 idetape_init_pc(pc);
2877 pc->c[0] = IDETAPE_LOAD_UNLOAD_CMD;
2878 pc->c[4] = cmd;
2879 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2880 pc->callback = &idetape_pc_callback;
2881}
2882
2883static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
2884{
2885 idetape_tape_t *tape = drive->driver_data;
2886 idetape_pc_t pc;
2887 int load_attempted = 0;
2888
2889 /*
2890 * Wait for the tape to become ready
2891 */
2892 set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
2893 timeout += jiffies;
2894 while (time_before(jiffies, timeout)) {
2895 idetape_create_test_unit_ready_cmd(&pc);
2896 if (!__idetape_queue_pc_tail(drive, &pc))
2897 return 0;
2898 if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
2899 || (tape->asc == 0x3A)) { /* no media */
2900 if (load_attempted)
2901 return -ENOMEDIUM;
2902 idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
2903 __idetape_queue_pc_tail(drive, &pc);
2904 load_attempted = 1;
2905 /* not about to be ready */
2906 } else if (!(tape->sense_key == 2 && tape->asc == 4 &&
2907 (tape->ascq == 1 || tape->ascq == 8)))
2908 return -EIO;
Nishanth Aravamudan80ce45f2005-09-10 00:27:08 -07002909 msleep(100);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002910 }
2911 return -EIO;
2912}
2913
2914static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc)
2915{
2916 return __idetape_queue_pc_tail(drive, pc);
2917}
2918
2919static int idetape_flush_tape_buffers (ide_drive_t *drive)
2920{
2921 idetape_pc_t pc;
2922 int rc;
2923
2924 idetape_create_write_filemark_cmd(drive, &pc, 0);
2925 if ((rc = idetape_queue_pc_tail(drive, &pc)))
2926 return rc;
2927 idetape_wait_ready(drive, 60 * 5 * HZ);
2928 return 0;
2929}
2930
2931static void idetape_create_read_position_cmd (idetape_pc_t *pc)
2932{
2933 idetape_init_pc(pc);
2934 pc->c[0] = IDETAPE_READ_POSITION_CMD;
2935 pc->request_transfer = 20;
2936 pc->callback = &idetape_read_position_callback;
2937}
2938
2939static int idetape_read_position (ide_drive_t *drive)
2940{
2941 idetape_tape_t *tape = drive->driver_data;
2942 idetape_pc_t pc;
2943 int position;
2944
2945#if IDETAPE_DEBUG_LOG
2946 if (tape->debug_level >= 4)
2947 printk(KERN_INFO "ide-tape: Reached idetape_read_position\n");
2948#endif /* IDETAPE_DEBUG_LOG */
2949
2950 idetape_create_read_position_cmd(&pc);
2951 if (idetape_queue_pc_tail(drive, &pc))
2952 return -1;
2953 position = tape->first_frame_position;
2954 return position;
2955}
2956
2957static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip)
2958{
2959 idetape_init_pc(pc);
2960 pc->c[0] = IDETAPE_LOCATE_CMD;
2961 pc->c[1] = 2;
2962 put_unaligned(htonl(block), (unsigned int *) &pc->c[3]);
2963 pc->c[8] = partition;
2964 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2965 pc->callback = &idetape_pc_callback;
2966}
2967
2968static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent)
2969{
2970 idetape_tape_t *tape = drive->driver_data;
2971
2972 if (!tape->capabilities.lock)
2973 return 0;
2974
2975 idetape_init_pc(pc);
2976 pc->c[0] = IDETAPE_PREVENT_CMD;
2977 pc->c[4] = prevent;
2978 pc->callback = &idetape_pc_callback;
2979 return 1;
2980}
2981
2982static int __idetape_discard_read_pipeline (ide_drive_t *drive)
2983{
2984 idetape_tape_t *tape = drive->driver_data;
2985 unsigned long flags;
2986 int cnt;
2987
2988 if (tape->chrdev_direction != idetape_direction_read)
2989 return 0;
2990
2991 /* Remove merge stage. */
2992 cnt = tape->merge_stage_size / tape->tape_block_size;
2993 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2994 ++cnt; /* Filemarks count as 1 sector */
2995 tape->merge_stage_size = 0;
2996 if (tape->merge_stage != NULL) {
2997 __idetape_kfree_stage(tape->merge_stage);
2998 tape->merge_stage = NULL;
2999 }
3000
3001 /* Clear pipeline flags. */
3002 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3003 tape->chrdev_direction = idetape_direction_none;
3004
3005 /* Remove pipeline stages. */
3006 if (tape->first_stage == NULL)
3007 return 0;
3008
3009 spin_lock_irqsave(&tape->spinlock, flags);
3010 tape->next_stage = NULL;
3011 if (idetape_pipeline_active(tape))
3012 idetape_wait_for_request(drive, tape->active_data_request);
3013 spin_unlock_irqrestore(&tape->spinlock, flags);
3014
3015 while (tape->first_stage != NULL) {
3016 struct request *rq_ptr = &tape->first_stage->rq;
3017
3018 cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors;
3019 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3020 ++cnt;
3021 idetape_remove_stage_head(drive);
3022 }
3023 tape->nr_pending_stages = 0;
3024 tape->max_stages = tape->min_pipeline;
3025 return cnt;
3026}
3027
3028/*
3029 * idetape_position_tape positions the tape to the requested block
3030 * using the LOCATE packet command. A READ POSITION command is then
3031 * issued to check where we are positioned.
3032 *
3033 * Like all higher level operations, we queue the commands at the tail
3034 * of the request queue and wait for their completion.
3035 *
3036 */
3037static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip)
3038{
3039 idetape_tape_t *tape = drive->driver_data;
3040 int retval;
3041 idetape_pc_t pc;
3042
3043 if (tape->chrdev_direction == idetape_direction_read)
3044 __idetape_discard_read_pipeline(drive);
3045 idetape_wait_ready(drive, 60 * 5 * HZ);
3046 idetape_create_locate_cmd(drive, &pc, block, partition, skip);
3047 retval = idetape_queue_pc_tail(drive, &pc);
3048 if (retval)
3049 return (retval);
3050
3051 idetape_create_read_position_cmd(&pc);
3052 return (idetape_queue_pc_tail(drive, &pc));
3053}
3054
3055static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position)
3056{
3057 idetape_tape_t *tape = drive->driver_data;
3058 int cnt;
3059 int seek, position;
3060
3061 cnt = __idetape_discard_read_pipeline(drive);
3062 if (restore_position) {
3063 position = idetape_read_position(drive);
3064 seek = position > cnt ? position - cnt : 0;
3065 if (idetape_position_tape(drive, seek, 0, 0)) {
3066 printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name);
3067 return;
3068 }
3069 }
3070}
3071
3072/*
3073 * idetape_queue_rw_tail generates a read/write request for the block
3074 * device interface and wait for it to be serviced.
3075 */
3076static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh)
3077{
3078 idetape_tape_t *tape = drive->driver_data;
3079 struct request rq;
3080
3081#if IDETAPE_DEBUG_LOG
3082 if (tape->debug_level >= 2)
3083 printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd);
3084#endif /* IDETAPE_DEBUG_LOG */
3085#if IDETAPE_DEBUG_BUGS
3086 if (idetape_pipeline_active(tape)) {
3087 printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3088 return (0);
3089 }
3090#endif /* IDETAPE_DEBUG_BUGS */
3091
3092 idetape_init_rq(&rq, cmd);
3093 rq.rq_disk = tape->disk;
3094 rq.special = (void *)bh;
3095 rq.sector = tape->first_frame_position;
3096 rq.nr_sectors = rq.current_nr_sectors = blocks;
3097 (void) ide_do_drive_cmd(drive, &rq, ide_wait);
3098
3099 if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
3100 return 0;
3101
3102 if (tape->merge_stage)
3103 idetape_init_merge_stage(tape);
3104 if (rq.errors == IDETAPE_ERROR_GENERAL)
3105 return -EIO;
3106 return (tape->tape_block_size * (blocks-rq.current_nr_sectors));
3107}
3108
3109/*
3110 * idetape_insert_pipeline_into_queue is used to start servicing the
3111 * pipeline stages, starting from tape->next_stage.
3112 */
3113static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
3114{
3115 idetape_tape_t *tape = drive->driver_data;
3116
3117 if (tape->next_stage == NULL)
3118 return;
3119 if (!idetape_pipeline_active(tape)) {
3120 set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
3121 idetape_active_next_stage(drive);
3122 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
3123 }
3124}
3125
3126static void idetape_create_inquiry_cmd (idetape_pc_t *pc)
3127{
3128 idetape_init_pc(pc);
3129 pc->c[0] = IDETAPE_INQUIRY_CMD;
3130 pc->c[4] = pc->request_transfer = 254;
3131 pc->callback = &idetape_pc_callback;
3132}
3133
3134static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc)
3135{
3136 idetape_init_pc(pc);
3137 pc->c[0] = IDETAPE_REWIND_CMD;
3138 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3139 pc->callback = &idetape_pc_callback;
3140}
3141
3142#if 0
3143static void idetape_create_mode_select_cmd (idetape_pc_t *pc, int length)
3144{
3145 idetape_init_pc(pc);
3146 set_bit(PC_WRITING, &pc->flags);
3147 pc->c[0] = IDETAPE_MODE_SELECT_CMD;
3148 pc->c[1] = 0x10;
3149 put_unaligned(htons(length), (unsigned short *) &pc->c[3]);
3150 pc->request_transfer = 255;
3151 pc->callback = &idetape_pc_callback;
3152}
3153#endif
3154
3155static void idetape_create_erase_cmd (idetape_pc_t *pc)
3156{
3157 idetape_init_pc(pc);
3158 pc->c[0] = IDETAPE_ERASE_CMD;
3159 pc->c[1] = 1;
3160 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3161 pc->callback = &idetape_pc_callback;
3162}
3163
3164static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd)
3165{
3166 idetape_init_pc(pc);
3167 pc->c[0] = IDETAPE_SPACE_CMD;
3168 put_unaligned(htonl(count), (unsigned int *) &pc->c[1]);
3169 pc->c[1] = cmd;
3170 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3171 pc->callback = &idetape_pc_callback;
3172}
3173
3174static void idetape_wait_first_stage (ide_drive_t *drive)
3175{
3176 idetape_tape_t *tape = drive->driver_data;
3177 unsigned long flags;
3178
3179 if (tape->first_stage == NULL)
3180 return;
3181 spin_lock_irqsave(&tape->spinlock, flags);
3182 if (tape->active_stage == tape->first_stage)
3183 idetape_wait_for_request(drive, tape->active_data_request);
3184 spin_unlock_irqrestore(&tape->spinlock, flags);
3185}
3186
3187/*
3188 * idetape_add_chrdev_write_request tries to add a character device
3189 * originated write request to our pipeline. In case we don't succeed,
3190 * we revert to non-pipelined operation mode for this request.
3191 *
3192 * 1. Try to allocate a new pipeline stage.
3193 * 2. If we can't, wait for more and more requests to be serviced
3194 * and try again each time.
3195 * 3. If we still can't allocate a stage, fallback to
3196 * non-pipelined operation mode for this request.
3197 */
3198static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks)
3199{
3200 idetape_tape_t *tape = drive->driver_data;
3201 idetape_stage_t *new_stage;
3202 unsigned long flags;
3203 struct request *rq;
3204
3205#if IDETAPE_DEBUG_LOG
3206 if (tape->debug_level >= 3)
3207 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n");
3208#endif /* IDETAPE_DEBUG_LOG */
3209
3210 /*
3211 * Attempt to allocate a new stage.
3212 * Pay special attention to possible race conditions.
3213 */
3214 while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
3215 spin_lock_irqsave(&tape->spinlock, flags);
3216 if (idetape_pipeline_active(tape)) {
3217 idetape_wait_for_request(drive, tape->active_data_request);
3218 spin_unlock_irqrestore(&tape->spinlock, flags);
3219 } else {
3220 spin_unlock_irqrestore(&tape->spinlock, flags);
3221 idetape_insert_pipeline_into_queue(drive);
3222 if (idetape_pipeline_active(tape))
3223 continue;
3224 /*
3225 * Linux is short on memory. Fallback to
3226 * non-pipelined operation mode for this request.
3227 */
3228 return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3229 }
3230 }
3231 rq = &new_stage->rq;
3232 idetape_init_rq(rq, REQ_IDETAPE_WRITE);
3233 /* Doesn't actually matter - We always assume sequential access */
3234 rq->sector = tape->first_frame_position;
3235 rq->nr_sectors = rq->current_nr_sectors = blocks;
3236
3237 idetape_switch_buffers(tape, new_stage);
3238 idetape_add_stage_tail(drive, new_stage);
3239 tape->pipeline_head++;
3240#if USE_IOTRACE
3241 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
3242#endif
3243 calculate_speeds(drive);
3244
3245 /*
3246 * Estimate whether the tape has stopped writing by checking
3247 * if our write pipeline is currently empty. If we are not
3248 * writing anymore, wait for the pipeline to be full enough
3249 * (90%) before starting to service requests, so that we will
3250 * be able to keep up with the higher speeds of the tape.
3251 */
3252 if (!idetape_pipeline_active(tape)) {
3253 if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
3254 tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) {
3255 tape->measure_insert_time = 1;
3256 tape->insert_time = jiffies;
3257 tape->insert_size = 0;
3258 tape->insert_speed = 0;
3259 idetape_insert_pipeline_into_queue(drive);
3260 }
3261 }
3262 if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3263 /* Return a deferred error */
3264 return -EIO;
3265 return blocks;
3266}
3267
3268/*
3269 * idetape_wait_for_pipeline will wait until all pending pipeline
3270 * requests are serviced. Typically called on device close.
3271 */
3272static void idetape_wait_for_pipeline (ide_drive_t *drive)
3273{
3274 idetape_tape_t *tape = drive->driver_data;
3275 unsigned long flags;
3276
3277 while (tape->next_stage || idetape_pipeline_active(tape)) {
3278 idetape_insert_pipeline_into_queue(drive);
3279 spin_lock_irqsave(&tape->spinlock, flags);
3280 if (idetape_pipeline_active(tape))
3281 idetape_wait_for_request(drive, tape->active_data_request);
3282 spin_unlock_irqrestore(&tape->spinlock, flags);
3283 }
3284}
3285
3286static void idetape_empty_write_pipeline (ide_drive_t *drive)
3287{
3288 idetape_tape_t *tape = drive->driver_data;
3289 int blocks, min;
3290 struct idetape_bh *bh;
3291
3292#if IDETAPE_DEBUG_BUGS
3293 if (tape->chrdev_direction != idetape_direction_write) {
3294 printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3295 return;
3296 }
3297 if (tape->merge_stage_size > tape->stage_size) {
3298 printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
3299 tape->merge_stage_size = tape->stage_size;
3300 }
3301#endif /* IDETAPE_DEBUG_BUGS */
3302 if (tape->merge_stage_size) {
3303 blocks = tape->merge_stage_size / tape->tape_block_size;
3304 if (tape->merge_stage_size % tape->tape_block_size) {
3305 unsigned int i;
3306
3307 blocks++;
3308 i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size;
3309 bh = tape->bh->b_reqnext;
3310 while (bh) {
3311 atomic_set(&bh->b_count, 0);
3312 bh = bh->b_reqnext;
3313 }
3314 bh = tape->bh;
3315 while (i) {
3316 if (bh == NULL) {
3317
3318 printk(KERN_INFO "ide-tape: bug, bh NULL\n");
3319 break;
3320 }
3321 min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count)));
3322 memset(bh->b_data + atomic_read(&bh->b_count), 0, min);
3323 atomic_add(min, &bh->b_count);
3324 i -= min;
3325 bh = bh->b_reqnext;
3326 }
3327 }
3328 (void) idetape_add_chrdev_write_request(drive, blocks);
3329 tape->merge_stage_size = 0;
3330 }
3331 idetape_wait_for_pipeline(drive);
3332 if (tape->merge_stage != NULL) {
3333 __idetape_kfree_stage(tape->merge_stage);
3334 tape->merge_stage = NULL;
3335 }
3336 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3337 tape->chrdev_direction = idetape_direction_none;
3338
3339 /*
3340 * On the next backup, perform the feedback loop again.
3341 * (I don't want to keep sense information between backups,
3342 * as some systems are constantly on, and the system load
3343 * can be totally different on the next backup).
3344 */
3345 tape->max_stages = tape->min_pipeline;
3346#if IDETAPE_DEBUG_BUGS
3347 if (tape->first_stage != NULL ||
3348 tape->next_stage != NULL ||
3349 tape->last_stage != NULL ||
3350 tape->nr_stages != 0) {
3351 printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
3352 "first_stage %p, next_stage %p, "
3353 "last_stage %p, nr_stages %d\n",
3354 tape->first_stage, tape->next_stage,
3355 tape->last_stage, tape->nr_stages);
3356 }
3357#endif /* IDETAPE_DEBUG_BUGS */
3358}
3359
3360static void idetape_restart_speed_control (ide_drive_t *drive)
3361{
3362 idetape_tape_t *tape = drive->driver_data;
3363
3364 tape->restart_speed_control_req = 0;
3365 tape->pipeline_head = 0;
3366 tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0;
3367 tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0;
3368 tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000;
3369 tape->uncontrolled_pipeline_head_speed = 0;
3370 tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies;
3371 tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
3372}
3373
3374static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
3375{
3376 idetape_tape_t *tape = drive->driver_data;
3377 idetape_stage_t *new_stage;
3378 struct request rq;
3379 int bytes_read;
3380 int blocks = tape->capabilities.ctl;
3381
3382 /* Initialize read operation */
3383 if (tape->chrdev_direction != idetape_direction_read) {
3384 if (tape->chrdev_direction == idetape_direction_write) {
3385 idetape_empty_write_pipeline(drive);
3386 idetape_flush_tape_buffers(drive);
3387 }
3388#if IDETAPE_DEBUG_BUGS
3389 if (tape->merge_stage || tape->merge_stage_size) {
3390 printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n");
3391 tape->merge_stage_size = 0;
3392 }
3393#endif /* IDETAPE_DEBUG_BUGS */
3394 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3395 return -ENOMEM;
3396 tape->chrdev_direction = idetape_direction_read;
3397
3398 /*
3399 * Issue a read 0 command to ensure that DSC handshake
3400 * is switched from completion mode to buffer available
3401 * mode.
3402 * No point in issuing this if DSC overlap isn't supported,
3403 * some drives (Seagate STT3401A) will return an error.
3404 */
3405 if (drive->dsc_overlap) {
3406 bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh);
3407 if (bytes_read < 0) {
3408 __idetape_kfree_stage(tape->merge_stage);
3409 tape->merge_stage = NULL;
3410 tape->chrdev_direction = idetape_direction_none;
3411 return bytes_read;
3412 }
3413 }
3414 }
3415 if (tape->restart_speed_control_req)
3416 idetape_restart_speed_control(drive);
3417 idetape_init_rq(&rq, REQ_IDETAPE_READ);
3418 rq.sector = tape->first_frame_position;
3419 rq.nr_sectors = rq.current_nr_sectors = blocks;
3420 if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) &&
3421 tape->nr_stages < max_stages) {
3422 new_stage = idetape_kmalloc_stage(tape);
3423 while (new_stage != NULL) {
3424 new_stage->rq = rq;
3425 idetape_add_stage_tail(drive, new_stage);
3426 if (tape->nr_stages >= max_stages)
3427 break;
3428 new_stage = idetape_kmalloc_stage(tape);
3429 }
3430 }
3431 if (!idetape_pipeline_active(tape)) {
3432 if (tape->nr_pending_stages >= 3 * max_stages / 4) {
3433 tape->measure_insert_time = 1;
3434 tape->insert_time = jiffies;
3435 tape->insert_size = 0;
3436 tape->insert_speed = 0;
3437 idetape_insert_pipeline_into_queue(drive);
3438 }
3439 }
3440 return 0;
3441}
3442
3443/*
3444 * idetape_add_chrdev_read_request is called from idetape_chrdev_read
3445 * to service a character device read request and add read-ahead
3446 * requests to our pipeline.
3447 */
3448static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks)
3449{
3450 idetape_tape_t *tape = drive->driver_data;
3451 unsigned long flags;
3452 struct request *rq_ptr;
3453 int bytes_read;
3454
3455#if IDETAPE_DEBUG_LOG
3456 if (tape->debug_level >= 4)
3457 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks);
3458#endif /* IDETAPE_DEBUG_LOG */
3459
3460 /*
3461 * If we are at a filemark, return a read length of 0
3462 */
3463 if (test_bit(IDETAPE_FILEMARK, &tape->flags))
3464 return 0;
3465
3466 /*
3467 * Wait for the next block to be available at the head
3468 * of the pipeline
3469 */
3470 idetape_initiate_read(drive, tape->max_stages);
3471 if (tape->first_stage == NULL) {
3472 if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3473 return 0;
3474 return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh);
3475 }
3476 idetape_wait_first_stage(drive);
3477 rq_ptr = &tape->first_stage->rq;
3478 bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors);
3479 rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0;
3480
3481
3482 if (rq_ptr->errors == IDETAPE_ERROR_EOD)
3483 return 0;
3484 else {
3485 idetape_switch_buffers(tape, tape->first_stage);
3486 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3487 set_bit(IDETAPE_FILEMARK, &tape->flags);
3488 spin_lock_irqsave(&tape->spinlock, flags);
3489 idetape_remove_stage_head(drive);
3490 spin_unlock_irqrestore(&tape->spinlock, flags);
3491 tape->pipeline_head++;
3492#if USE_IOTRACE
3493 IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
3494#endif
3495 calculate_speeds(drive);
3496 }
3497#if IDETAPE_DEBUG_BUGS
3498 if (bytes_read > blocks * tape->tape_block_size) {
3499 printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n");
3500 bytes_read = blocks * tape->tape_block_size;
3501 }
3502#endif /* IDETAPE_DEBUG_BUGS */
3503 return (bytes_read);
3504}
3505
3506static void idetape_pad_zeros (ide_drive_t *drive, int bcount)
3507{
3508 idetape_tape_t *tape = drive->driver_data;
3509 struct idetape_bh *bh;
3510 int blocks;
3511
3512 while (bcount) {
3513 unsigned int count;
3514
3515 bh = tape->merge_stage->bh;
3516 count = min(tape->stage_size, bcount);
3517 bcount -= count;
3518 blocks = count / tape->tape_block_size;
3519 while (count) {
3520 atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size));
3521 memset(bh->b_data, 0, atomic_read(&bh->b_count));
3522 count -= atomic_read(&bh->b_count);
3523 bh = bh->b_reqnext;
3524 }
3525 idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3526 }
3527}
3528
3529static int idetape_pipeline_size (ide_drive_t *drive)
3530{
3531 idetape_tape_t *tape = drive->driver_data;
3532 idetape_stage_t *stage;
3533 struct request *rq;
3534 int size = 0;
3535
3536 idetape_wait_for_pipeline(drive);
3537 stage = tape->first_stage;
3538 while (stage != NULL) {
3539 rq = &stage->rq;
3540 size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors);
3541 if (rq->errors == IDETAPE_ERROR_FILEMARK)
3542 size += tape->tape_block_size;
3543 stage = stage->next;
3544 }
3545 size += tape->merge_stage_size;
3546 return size;
3547}
3548
3549/*
3550 * Rewinds the tape to the Beginning Of the current Partition (BOP).
3551 *
3552 * We currently support only one partition.
3553 */
3554static int idetape_rewind_tape (ide_drive_t *drive)
3555{
3556 int retval;
3557 idetape_pc_t pc;
3558#if IDETAPE_DEBUG_LOG
3559 idetape_tape_t *tape = drive->driver_data;
3560 if (tape->debug_level >= 2)
3561 printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n");
3562#endif /* IDETAPE_DEBUG_LOG */
3563
3564 idetape_create_rewind_cmd(drive, &pc);
3565 retval = idetape_queue_pc_tail(drive, &pc);
3566 if (retval)
3567 return retval;
3568
3569 idetape_create_read_position_cmd(&pc);
3570 retval = idetape_queue_pc_tail(drive, &pc);
3571 if (retval)
3572 return retval;
3573 return 0;
3574}
3575
3576/*
3577 * Our special ide-tape ioctl's.
3578 *
3579 * Currently there aren't any ioctl's.
3580 * mtio.h compatible commands should be issued to the character device
3581 * interface.
3582 */
3583static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg)
3584{
3585 idetape_tape_t *tape = drive->driver_data;
3586 idetape_config_t config;
3587 void __user *argp = (void __user *)arg;
3588
3589#if IDETAPE_DEBUG_LOG
3590 if (tape->debug_level >= 4)
3591 printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n");
3592#endif /* IDETAPE_DEBUG_LOG */
3593 switch (cmd) {
3594 case 0x0340:
3595 if (copy_from_user(&config, argp, sizeof (idetape_config_t)))
3596 return -EFAULT;
3597 tape->best_dsc_rw_frequency = config.dsc_rw_frequency;
3598 tape->max_stages = config.nr_stages;
3599 break;
3600 case 0x0350:
3601 config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency;
3602 config.nr_stages = tape->max_stages;
3603 if (copy_to_user(argp, &config, sizeof (idetape_config_t)))
3604 return -EFAULT;
3605 break;
3606 default:
3607 return -EIO;
3608 }
3609 return 0;
3610}
3611
3612/*
3613 * idetape_space_over_filemarks is now a bit more complicated than just
3614 * passing the command to the tape since we may have crossed some
3615 * filemarks during our pipelined read-ahead mode.
3616 *
3617 * As a minor side effect, the pipeline enables us to support MTFSFM when
3618 * the filemark is in our internal pipeline even if the tape doesn't
3619 * support spacing over filemarks in the reverse direction.
3620 */
3621static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count)
3622{
3623 idetape_tape_t *tape = drive->driver_data;
3624 idetape_pc_t pc;
3625 unsigned long flags;
3626 int retval,count=0;
3627
3628 if (mt_count == 0)
3629 return 0;
3630 if (MTBSF == mt_op || MTBSFM == mt_op) {
3631 if (!tape->capabilities.sprev)
3632 return -EIO;
3633 mt_count = - mt_count;
3634 }
3635
3636 if (tape->chrdev_direction == idetape_direction_read) {
3637 /*
3638 * We have a read-ahead buffer. Scan it for crossed
3639 * filemarks.
3640 */
3641 tape->merge_stage_size = 0;
3642 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
3643 ++count;
3644 while (tape->first_stage != NULL) {
3645 if (count == mt_count) {
3646 if (mt_op == MTFSFM)
3647 set_bit(IDETAPE_FILEMARK, &tape->flags);
3648 return 0;
3649 }
3650 spin_lock_irqsave(&tape->spinlock, flags);
3651 if (tape->first_stage == tape->active_stage) {
3652 /*
3653 * We have reached the active stage in the read pipeline.
3654 * There is no point in allowing the drive to continue
3655 * reading any farther, so we stop the pipeline.
3656 *
3657 * This section should be moved to a separate subroutine,
3658 * because a similar function is performed in
3659 * __idetape_discard_read_pipeline(), for example.
3660 */
3661 tape->next_stage = NULL;
3662 spin_unlock_irqrestore(&tape->spinlock, flags);
3663 idetape_wait_first_stage(drive);
3664 tape->next_stage = tape->first_stage->next;
3665 } else
3666 spin_unlock_irqrestore(&tape->spinlock, flags);
3667 if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK)
3668 ++count;
3669 idetape_remove_stage_head(drive);
3670 }
3671 idetape_discard_read_pipeline(drive, 0);
3672 }
3673
3674 /*
3675 * The filemark was not found in our internal pipeline.
3676 * Now we can issue the space command.
3677 */
3678 switch (mt_op) {
3679 case MTFSF:
3680 case MTBSF:
3681 idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK);
3682 return (idetape_queue_pc_tail(drive, &pc));
3683 case MTFSFM:
3684 case MTBSFM:
3685 if (!tape->capabilities.sprev)
3686 return (-EIO);
3687 retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count);
3688 if (retval) return (retval);
3689 count = (MTBSFM == mt_op ? 1 : -1);
3690 return (idetape_space_over_filemarks(drive, MTFSF, count));
3691 default:
3692 printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op);
3693 return (-EIO);
3694 }
3695}
3696
3697
3698/*
3699 * Our character device read / write functions.
3700 *
3701 * The tape is optimized to maximize throughput when it is transferring
3702 * an integral number of the "continuous transfer limit", which is
3703 * a parameter of the specific tape (26 KB on my particular tape).
3704 * (32 kB for Onstream)
3705 *
3706 * As of version 1.3 of the driver, the character device provides an
3707 * abstract continuous view of the media - any mix of block sizes (even 1
3708 * byte) on the same backup/restore procedure is supported. The driver
3709 * will internally convert the requests to the recommended transfer unit,
3710 * so that an unmatch between the user's block size to the recommended
3711 * size will only result in a (slightly) increased driver overhead, but
3712 * will no longer hit performance.
3713 * This is not applicable to Onstream.
3714 */
3715static ssize_t idetape_chrdev_read (struct file *file, char __user *buf,
3716 size_t count, loff_t *ppos)
3717{
3718 struct ide_tape_obj *tape = ide_tape_f(file);
3719 ide_drive_t *drive = tape->drive;
3720 ssize_t bytes_read,temp, actually_read = 0, rc;
3721
3722#if IDETAPE_DEBUG_LOG
3723 if (tape->debug_level >= 3)
3724 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count);
3725#endif /* IDETAPE_DEBUG_LOG */
3726
3727 if (tape->chrdev_direction != idetape_direction_read) {
3728 if (test_bit(IDETAPE_DETECT_BS, &tape->flags))
3729 if (count > tape->tape_block_size &&
3730 (count % tape->tape_block_size) == 0)
3731 tape->user_bs_factor = count / tape->tape_block_size;
3732 }
3733 if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
3734 return rc;
3735 if (count == 0)
3736 return (0);
3737 if (tape->merge_stage_size) {
3738 actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count);
3739 idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read);
3740 buf += actually_read;
3741 tape->merge_stage_size -= actually_read;
3742 count -= actually_read;
3743 }
3744 while (count >= tape->stage_size) {
3745 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3746 if (bytes_read <= 0)
3747 goto finish;
3748 idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read);
3749 buf += bytes_read;
3750 count -= bytes_read;
3751 actually_read += bytes_read;
3752 }
3753 if (count) {
3754 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3755 if (bytes_read <= 0)
3756 goto finish;
3757 temp = min((unsigned long)count, (unsigned long)bytes_read);
3758 idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp);
3759 actually_read += temp;
3760 tape->merge_stage_size = bytes_read-temp;
3761 }
3762finish:
3763 if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) {
3764#if IDETAPE_DEBUG_LOG
3765 if (tape->debug_level >= 2)
3766 printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name);
3767#endif
3768 idetape_space_over_filemarks(drive, MTFSF, 1);
3769 return 0;
3770 }
3771 return actually_read;
3772}
3773
3774static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf,
3775 size_t count, loff_t *ppos)
3776{
3777 struct ide_tape_obj *tape = ide_tape_f(file);
3778 ide_drive_t *drive = tape->drive;
3779 ssize_t retval, actually_written = 0;
3780
3781 /* The drive is write protected. */
3782 if (tape->write_prot)
3783 return -EACCES;
3784
3785#if IDETAPE_DEBUG_LOG
3786 if (tape->debug_level >= 3)
3787 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, "
3788 "count %Zd\n", count);
3789#endif /* IDETAPE_DEBUG_LOG */
3790
3791 /* Initialize write operation */
3792 if (tape->chrdev_direction != idetape_direction_write) {
3793 if (tape->chrdev_direction == idetape_direction_read)
3794 idetape_discard_read_pipeline(drive, 1);
3795#if IDETAPE_DEBUG_BUGS
3796 if (tape->merge_stage || tape->merge_stage_size) {
3797 printk(KERN_ERR "ide-tape: merge_stage_size "
3798 "should be 0 now\n");
3799 tape->merge_stage_size = 0;
3800 }
3801#endif /* IDETAPE_DEBUG_BUGS */
3802 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3803 return -ENOMEM;
3804 tape->chrdev_direction = idetape_direction_write;
3805 idetape_init_merge_stage(tape);
3806
3807 /*
3808 * Issue a write 0 command to ensure that DSC handshake
3809 * is switched from completion mode to buffer available
3810 * mode.
3811 * No point in issuing this if DSC overlap isn't supported,
3812 * some drives (Seagate STT3401A) will return an error.
3813 */
3814 if (drive->dsc_overlap) {
3815 retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh);
3816 if (retval < 0) {
3817 __idetape_kfree_stage(tape->merge_stage);
3818 tape->merge_stage = NULL;
3819 tape->chrdev_direction = idetape_direction_none;
3820 return retval;
3821 }
3822 }
3823 }
3824 if (count == 0)
3825 return (0);
3826 if (tape->restart_speed_control_req)
3827 idetape_restart_speed_control(drive);
3828 if (tape->merge_stage_size) {
3829#if IDETAPE_DEBUG_BUGS
3830 if (tape->merge_stage_size >= tape->stage_size) {
3831 printk(KERN_ERR "ide-tape: bug: merge buffer too big\n");
3832 tape->merge_stage_size = 0;
3833 }
3834#endif /* IDETAPE_DEBUG_BUGS */
3835 actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count);
3836 idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written);
3837 buf += actually_written;
3838 tape->merge_stage_size += actually_written;
3839 count -= actually_written;
3840
3841 if (tape->merge_stage_size == tape->stage_size) {
3842 tape->merge_stage_size = 0;
3843 retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3844 if (retval <= 0)
3845 return (retval);
3846 }
3847 }
3848 while (count >= tape->stage_size) {
3849 idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size);
3850 buf += tape->stage_size;
3851 count -= tape->stage_size;
3852 retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3853 actually_written += tape->stage_size;
3854 if (retval <= 0)
3855 return (retval);
3856 }
3857 if (count) {
3858 actually_written += count;
3859 idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count);
3860 tape->merge_stage_size += count;
3861 }
3862 return (actually_written);
3863}
3864
3865static int idetape_write_filemark (ide_drive_t *drive)
3866{
3867 idetape_pc_t pc;
3868
3869 /* Write a filemark */
3870 idetape_create_write_filemark_cmd(drive, &pc, 1);
3871 if (idetape_queue_pc_tail(drive, &pc)) {
3872 printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
3873 return -EIO;
3874 }
3875 return 0;
3876}
3877
3878/*
3879 * idetape_mtioctop is called from idetape_chrdev_ioctl when
3880 * the general mtio MTIOCTOP ioctl is requested.
3881 *
3882 * We currently support the following mtio.h operations:
3883 *
3884 * MTFSF - Space over mt_count filemarks in the positive direction.
3885 * The tape is positioned after the last spaced filemark.
3886 *
3887 * MTFSFM - Same as MTFSF, but the tape is positioned before the
3888 * last filemark.
3889 *
3890 * MTBSF - Steps background over mt_count filemarks, tape is
3891 * positioned before the last filemark.
3892 *
3893 * MTBSFM - Like MTBSF, only tape is positioned after the last filemark.
3894 *
3895 * Note:
3896 *
3897 * MTBSF and MTBSFM are not supported when the tape doesn't
3898 * support spacing over filemarks in the reverse direction.
3899 * In this case, MTFSFM is also usually not supported (it is
3900 * supported in the rare case in which we crossed the filemark
3901 * during our read-ahead pipelined operation mode).
3902 *
3903 * MTWEOF - Writes mt_count filemarks. Tape is positioned after
3904 * the last written filemark.
3905 *
3906 * MTREW - Rewinds tape.
3907 *
3908 * MTLOAD - Loads the tape.
3909 *
3910 * MTOFFL - Puts the tape drive "Offline": Rewinds the tape and
3911 * MTUNLOAD prevents further access until the media is replaced.
3912 *
3913 * MTNOP - Flushes tape buffers.
3914 *
3915 * MTRETEN - Retension media. This typically consists of one end
3916 * to end pass on the media.
3917 *
3918 * MTEOM - Moves to the end of recorded data.
3919 *
3920 * MTERASE - Erases tape.
3921 *
3922 * MTSETBLK - Sets the user block size to mt_count bytes. If
3923 * mt_count is 0, we will attempt to autodetect
3924 * the block size.
3925 *
3926 * MTSEEK - Positions the tape in a specific block number, where
3927 * each block is assumed to contain which user_block_size
3928 * bytes.
3929 *
3930 * MTSETPART - Switches to another tape partition.
3931 *
3932 * MTLOCK - Locks the tape door.
3933 *
3934 * MTUNLOCK - Unlocks the tape door.
3935 *
3936 * The following commands are currently not supported:
3937 *
3938 * MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3939 * MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3940 */
3941static int idetape_mtioctop (ide_drive_t *drive,short mt_op,int mt_count)
3942{
3943 idetape_tape_t *tape = drive->driver_data;
3944 idetape_pc_t pc;
3945 int i,retval;
3946
3947#if IDETAPE_DEBUG_LOG
3948 if (tape->debug_level >= 1)
3949 printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: "
3950 "mt_op=%d, mt_count=%d\n", mt_op, mt_count);
3951#endif /* IDETAPE_DEBUG_LOG */
3952 /*
3953 * Commands which need our pipelined read-ahead stages.
3954 */
3955 switch (mt_op) {
3956 case MTFSF:
3957 case MTFSFM:
3958 case MTBSF:
3959 case MTBSFM:
3960 if (!mt_count)
3961 return (0);
3962 return (idetape_space_over_filemarks(drive,mt_op,mt_count));
3963 default:
3964 break;
3965 }
3966 switch (mt_op) {
3967 case MTWEOF:
3968 if (tape->write_prot)
3969 return -EACCES;
3970 idetape_discard_read_pipeline(drive, 1);
3971 for (i = 0; i < mt_count; i++) {
3972 retval = idetape_write_filemark(drive);
3973 if (retval)
3974 return retval;
3975 }
3976 return (0);
3977 case MTREW:
3978 idetape_discard_read_pipeline(drive, 0);
3979 if (idetape_rewind_tape(drive))
3980 return -EIO;
3981 return 0;
3982 case MTLOAD:
3983 idetape_discard_read_pipeline(drive, 0);
3984 idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
3985 return (idetape_queue_pc_tail(drive, &pc));
3986 case MTUNLOAD:
3987 case MTOFFL:
3988 /*
3989 * If door is locked, attempt to unlock before
3990 * attempting to eject.
3991 */
3992 if (tape->door_locked) {
3993 if (idetape_create_prevent_cmd(drive, &pc, 0))
3994 if (!idetape_queue_pc_tail(drive, &pc))
3995 tape->door_locked = DOOR_UNLOCKED;
3996 }
3997 idetape_discard_read_pipeline(drive, 0);
3998 idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK);
3999 retval = idetape_queue_pc_tail(drive, &pc);
4000 if (!retval)
4001 clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
4002 return retval;
4003 case MTNOP:
4004 idetape_discard_read_pipeline(drive, 0);
4005 return (idetape_flush_tape_buffers(drive));
4006 case MTRETEN:
4007 idetape_discard_read_pipeline(drive, 0);
4008 idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
4009 return (idetape_queue_pc_tail(drive, &pc));
4010 case MTEOM:
4011 idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
4012 return (idetape_queue_pc_tail(drive, &pc));
4013 case MTERASE:
4014 (void) idetape_rewind_tape(drive);
4015 idetape_create_erase_cmd(&pc);
4016 return (idetape_queue_pc_tail(drive, &pc));
4017 case MTSETBLK:
4018 if (mt_count) {
4019 if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size)
4020 return -EIO;
4021 tape->user_bs_factor = mt_count / tape->tape_block_size;
4022 clear_bit(IDETAPE_DETECT_BS, &tape->flags);
4023 } else
4024 set_bit(IDETAPE_DETECT_BS, &tape->flags);
4025 return 0;
4026 case MTSEEK:
4027 idetape_discard_read_pipeline(drive, 0);
4028 return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0);
4029 case MTSETPART:
4030 idetape_discard_read_pipeline(drive, 0);
4031 return (idetape_position_tape(drive, 0, mt_count, 0));
4032 case MTFSR:
4033 case MTBSR:
4034 case MTLOCK:
4035 if (!idetape_create_prevent_cmd(drive, &pc, 1))
4036 return 0;
4037 retval = idetape_queue_pc_tail(drive, &pc);
4038 if (retval) return retval;
4039 tape->door_locked = DOOR_EXPLICITLY_LOCKED;
4040 return 0;
4041 case MTUNLOCK:
4042 if (!idetape_create_prevent_cmd(drive, &pc, 0))
4043 return 0;
4044 retval = idetape_queue_pc_tail(drive, &pc);
4045 if (retval) return retval;
4046 tape->door_locked = DOOR_UNLOCKED;
4047 return 0;
4048 default:
4049 printk(KERN_ERR "ide-tape: MTIO operation %d not "
4050 "supported\n", mt_op);
4051 return (-EIO);
4052 }
4053}
4054
4055/*
4056 * Our character device ioctls.
4057 *
4058 * General mtio.h magnetic io commands are supported here, and not in
4059 * the corresponding block interface.
4060 *
4061 * The following ioctls are supported:
4062 *
4063 * MTIOCTOP - Refer to idetape_mtioctop for detailed description.
4064 *
4065 * MTIOCGET - The mt_dsreg field in the returned mtget structure
4066 * will be set to (user block size in bytes <<
4067 * MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4068 *
4069 * The mt_blkno is set to the current user block number.
4070 * The other mtget fields are not supported.
4071 *
4072 * MTIOCPOS - The current tape "block position" is returned. We
4073 * assume that each block contains user_block_size
4074 * bytes.
4075 *
4076 * Our own ide-tape ioctls are supported on both interfaces.
4077 */
4078static int idetape_chrdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
4079{
4080 struct ide_tape_obj *tape = ide_tape_f(file);
4081 ide_drive_t *drive = tape->drive;
4082 struct mtop mtop;
4083 struct mtget mtget;
4084 struct mtpos mtpos;
4085 int block_offset = 0, position = tape->first_frame_position;
4086 void __user *argp = (void __user *)arg;
4087
4088#if IDETAPE_DEBUG_LOG
4089 if (tape->debug_level >= 3)
4090 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, "
4091 "cmd=%u\n", cmd);
4092#endif /* IDETAPE_DEBUG_LOG */
4093
4094 tape->restart_speed_control_req = 1;
4095 if (tape->chrdev_direction == idetape_direction_write) {
4096 idetape_empty_write_pipeline(drive);
4097 idetape_flush_tape_buffers(drive);
4098 }
4099 if (cmd == MTIOCGET || cmd == MTIOCPOS) {
4100 block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor);
4101 if ((position = idetape_read_position(drive)) < 0)
4102 return -EIO;
4103 }
4104 switch (cmd) {
4105 case MTIOCTOP:
4106 if (copy_from_user(&mtop, argp, sizeof (struct mtop)))
4107 return -EFAULT;
4108 return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count));
4109 case MTIOCGET:
4110 memset(&mtget, 0, sizeof (struct mtget));
4111 mtget.mt_type = MT_ISSCSI2;
4112 mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
4113 mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
4114 if (tape->drv_write_prot) {
4115 mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
4116 }
4117 if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
4118 return -EFAULT;
4119 return 0;
4120 case MTIOCPOS:
4121 mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
4122 if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
4123 return -EFAULT;
4124 return 0;
4125 default:
4126 if (tape->chrdev_direction == idetape_direction_read)
4127 idetape_discard_read_pipeline(drive, 1);
4128 return idetape_blkdev_ioctl(drive, cmd, arg);
4129 }
4130}
4131
4132static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive);
4133
4134/*
4135 * Our character device open function.
4136 */
4137static int idetape_chrdev_open (struct inode *inode, struct file *filp)
4138{
4139 unsigned int minor = iminor(inode), i = minor & ~0xc0;
4140 ide_drive_t *drive;
4141 idetape_tape_t *tape;
4142 idetape_pc_t pc;
4143 int retval;
4144
4145 /*
4146 * We really want to do nonseekable_open(inode, filp); here, but some
4147 * versions of tar incorrectly call lseek on tapes and bail out if that
4148 * fails. So we disallow pread() and pwrite(), but permit lseeks.
4149 */
4150 filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE);
4151
4152#if IDETAPE_DEBUG_LOG
4153 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n");
4154#endif /* IDETAPE_DEBUG_LOG */
4155
4156 if (i >= MAX_HWIFS * MAX_DRIVES)
4157 return -ENXIO;
4158
4159 if (!(tape = ide_tape_chrdev_get(i)))
4160 return -ENXIO;
4161
4162 drive = tape->drive;
4163
4164 filp->private_data = tape;
4165
4166 if (test_and_set_bit(IDETAPE_BUSY, &tape->flags)) {
4167 retval = -EBUSY;
4168 goto out_put_tape;
4169 }
4170
4171 retval = idetape_wait_ready(drive, 60 * HZ);
4172 if (retval) {
4173 clear_bit(IDETAPE_BUSY, &tape->flags);
4174 printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
4175 goto out_put_tape;
4176 }
4177
4178 idetape_read_position(drive);
4179 if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags))
4180 (void)idetape_rewind_tape(drive);
4181
4182 if (tape->chrdev_direction != idetape_direction_read)
4183 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
4184
4185 /* Read block size and write protect status from drive. */
4186 idetape_get_blocksize_from_block_descriptor(drive);
4187
4188 /* Set write protect flag if device is opened as read-only. */
4189 if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
4190 tape->write_prot = 1;
4191 else
4192 tape->write_prot = tape->drv_write_prot;
4193
4194 /* Make sure drive isn't write protected if user wants to write. */
4195 if (tape->write_prot) {
4196 if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
4197 (filp->f_flags & O_ACCMODE) == O_RDWR) {
4198 clear_bit(IDETAPE_BUSY, &tape->flags);
4199 retval = -EROFS;
4200 goto out_put_tape;
4201 }
4202 }
4203
4204 /*
4205 * Lock the tape drive door so user can't eject.
4206 */
4207 if (tape->chrdev_direction == idetape_direction_none) {
4208 if (idetape_create_prevent_cmd(drive, &pc, 1)) {
4209 if (!idetape_queue_pc_tail(drive, &pc)) {
4210 if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
4211 tape->door_locked = DOOR_LOCKED;
4212 }
4213 }
4214 }
4215 idetape_restart_speed_control(drive);
4216 tape->restart_speed_control_req = 0;
4217 return 0;
4218
4219out_put_tape:
4220 ide_tape_put(tape);
4221 return retval;
4222}
4223
4224static void idetape_write_release (ide_drive_t *drive, unsigned int minor)
4225{
4226 idetape_tape_t *tape = drive->driver_data;
4227
4228 idetape_empty_write_pipeline(drive);
4229 tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
4230 if (tape->merge_stage != NULL) {
4231 idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1));
4232 __idetape_kfree_stage(tape->merge_stage);
4233 tape->merge_stage = NULL;
4234 }
4235 idetape_write_filemark(drive);
4236 idetape_flush_tape_buffers(drive);
4237 idetape_flush_tape_buffers(drive);
4238}
4239
4240/*
4241 * Our character device release function.
4242 */
4243static int idetape_chrdev_release (struct inode *inode, struct file *filp)
4244{
4245 struct ide_tape_obj *tape = ide_tape_f(filp);
4246 ide_drive_t *drive = tape->drive;
4247 idetape_pc_t pc;
4248 unsigned int minor = iminor(inode);
4249
4250 lock_kernel();
4251 tape = drive->driver_data;
4252#if IDETAPE_DEBUG_LOG
4253 if (tape->debug_level >= 3)
4254 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n");
4255#endif /* IDETAPE_DEBUG_LOG */
4256
4257 if (tape->chrdev_direction == idetape_direction_write)
4258 idetape_write_release(drive, minor);
4259 if (tape->chrdev_direction == idetape_direction_read) {
4260 if (minor < 128)
4261 idetape_discard_read_pipeline(drive, 1);
4262 else
4263 idetape_wait_for_pipeline(drive);
4264 }
4265 if (tape->cache_stage != NULL) {
4266 __idetape_kfree_stage(tape->cache_stage);
4267 tape->cache_stage = NULL;
4268 }
4269 if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags))
4270 (void) idetape_rewind_tape(drive);
4271 if (tape->chrdev_direction == idetape_direction_none) {
4272 if (tape->door_locked == DOOR_LOCKED) {
4273 if (idetape_create_prevent_cmd(drive, &pc, 0)) {
4274 if (!idetape_queue_pc_tail(drive, &pc))
4275 tape->door_locked = DOOR_UNLOCKED;
4276 }
4277 }
4278 }
4279 clear_bit(IDETAPE_BUSY, &tape->flags);
4280 ide_tape_put(tape);
4281 unlock_kernel();
4282 return 0;
4283}
4284
4285/*
4286 * idetape_identify_device is called to check the contents of the
4287 * ATAPI IDENTIFY command results. We return:
4288 *
4289 * 1 If the tape can be supported by us, based on the information
4290 * we have so far.
4291 *
4292 * 0 If this tape driver is not currently supported by us.
4293 */
4294static int idetape_identify_device (ide_drive_t *drive)
4295{
4296 struct idetape_id_gcw gcw;
4297 struct hd_driveid *id = drive->id;
4298#if IDETAPE_DEBUG_INFO
4299 unsigned short mask,i;
4300#endif /* IDETAPE_DEBUG_INFO */
4301
4302 if (drive->id_read == 0)
4303 return 1;
4304
4305 *((unsigned short *) &gcw) = id->config;
4306
4307#if IDETAPE_DEBUG_INFO
4308 printk(KERN_INFO "ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4309 printk(KERN_INFO "ide-tape: Protocol Type: ");
4310 switch (gcw.protocol) {
4311 case 0: case 1: printk("ATA\n");break;
4312 case 2: printk("ATAPI\n");break;
4313 case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4314 }
4315 printk(KERN_INFO "ide-tape: Device Type: %x - ",gcw.device_type);
4316 switch (gcw.device_type) {
4317 case 0: printk("Direct-access Device\n");break;
4318 case 1: printk("Streaming Tape Device\n");break;
4319 case 2: case 3: case 4: printk("Reserved\n");break;
4320 case 5: printk("CD-ROM Device\n");break;
4321 case 6: printk("Reserved\n");
4322 case 7: printk("Optical memory Device\n");break;
4323 case 0x1f: printk("Unknown or no Device type\n");break;
4324 default: printk("Reserved\n");
4325 }
4326 printk(KERN_INFO "ide-tape: Removable: %s",gcw.removable ? "Yes\n":"No\n");
4327 printk(KERN_INFO "ide-tape: Command Packet DRQ Type: ");
4328 switch (gcw.drq_type) {
4329 case 0: printk("Microprocessor DRQ\n");break;
4330 case 1: printk("Interrupt DRQ\n");break;
4331 case 2: printk("Accelerated DRQ\n");break;
4332 case 3: printk("Reserved\n");break;
4333 }
4334 printk(KERN_INFO "ide-tape: Command Packet Size: ");
4335 switch (gcw.packet_size) {
4336 case 0: printk("12 bytes\n");break;
4337 case 1: printk("16 bytes\n");break;
4338 default: printk("Reserved\n");break;
4339 }
4340 printk(KERN_INFO "ide-tape: Model: %.40s\n",id->model);
4341 printk(KERN_INFO "ide-tape: Firmware Revision: %.8s\n",id->fw_rev);
4342 printk(KERN_INFO "ide-tape: Serial Number: %.20s\n",id->serial_no);
4343 printk(KERN_INFO "ide-tape: Write buffer size: %d bytes\n",id->buf_size*512);
4344 printk(KERN_INFO "ide-tape: DMA: %s",id->capability & 0x01 ? "Yes\n":"No\n");
4345 printk(KERN_INFO "ide-tape: LBA: %s",id->capability & 0x02 ? "Yes\n":"No\n");
4346 printk(KERN_INFO "ide-tape: IORDY can be disabled: %s",id->capability & 0x04 ? "Yes\n":"No\n");
4347 printk(KERN_INFO "ide-tape: IORDY supported: %s",id->capability & 0x08 ? "Yes\n":"Unknown\n");
4348 printk(KERN_INFO "ide-tape: ATAPI overlap supported: %s",id->capability & 0x20 ? "Yes\n":"No\n");
4349 printk(KERN_INFO "ide-tape: PIO Cycle Timing Category: %d\n",id->tPIO);
4350 printk(KERN_INFO "ide-tape: DMA Cycle Timing Category: %d\n",id->tDMA);
4351 printk(KERN_INFO "ide-tape: Single Word DMA supported modes: ");
4352 for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4353 if (id->dma_1word & mask)
4354 printk("%d ",i);
4355 if (id->dma_1word & (mask << 8))
4356 printk("(active) ");
4357 }
4358 printk("\n");
4359 printk(KERN_INFO "ide-tape: Multi Word DMA supported modes: ");
4360 for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4361 if (id->dma_mword & mask)
4362 printk("%d ",i);
4363 if (id->dma_mword & (mask << 8))
4364 printk("(active) ");
4365 }
4366 printk("\n");
4367 if (id->field_valid & 0x0002) {
4368 printk(KERN_INFO "ide-tape: Enhanced PIO Modes: %s\n",
4369 id->eide_pio_modes & 1 ? "Mode 3":"None");
4370 printk(KERN_INFO "ide-tape: Minimum Multi-word DMA cycle per word: ");
4371 if (id->eide_dma_min == 0)
4372 printk("Not supported\n");
4373 else
4374 printk("%d ns\n",id->eide_dma_min);
4375
4376 printk(KERN_INFO "ide-tape: Manufacturer\'s Recommended Multi-word cycle: ");
4377 if (id->eide_dma_time == 0)
4378 printk("Not supported\n");
4379 else
4380 printk("%d ns\n",id->eide_dma_time);
4381
4382 printk(KERN_INFO "ide-tape: Minimum PIO cycle without IORDY: ");
4383 if (id->eide_pio == 0)
4384 printk("Not supported\n");
4385 else
4386 printk("%d ns\n",id->eide_pio);
4387
4388 printk(KERN_INFO "ide-tape: Minimum PIO cycle with IORDY: ");
4389 if (id->eide_pio_iordy == 0)
4390 printk("Not supported\n");
4391 else
4392 printk("%d ns\n",id->eide_pio_iordy);
4393
4394 } else
4395 printk(KERN_INFO "ide-tape: According to the device, fields 64-70 are not valid.\n");
4396#endif /* IDETAPE_DEBUG_INFO */
4397
4398 /* Check that we can support this device */
4399
4400 if (gcw.protocol !=2 )
4401 printk(KERN_ERR "ide-tape: Protocol is not ATAPI\n");
4402 else if (gcw.device_type != 1)
4403 printk(KERN_ERR "ide-tape: Device type is not set to tape\n");
4404 else if (!gcw.removable)
4405 printk(KERN_ERR "ide-tape: The removable flag is not set\n");
4406 else if (gcw.packet_size != 0) {
4407 printk(KERN_ERR "ide-tape: Packet size is not 12 bytes long\n");
4408 if (gcw.packet_size == 1)
4409 printk(KERN_ERR "ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4410 } else
4411 return 1;
4412 return 0;
4413}
4414
4415/*
4416 * Use INQUIRY to get the firmware revision
4417 */
4418static void idetape_get_inquiry_results (ide_drive_t *drive)
4419{
4420 char *r;
4421 idetape_tape_t *tape = drive->driver_data;
4422 idetape_pc_t pc;
4423 idetape_inquiry_result_t *inquiry;
4424
4425 idetape_create_inquiry_cmd(&pc);
4426 if (idetape_queue_pc_tail(drive, &pc)) {
4427 printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n", tape->name);
4428 return;
4429 }
4430 inquiry = (idetape_inquiry_result_t *) pc.buffer;
4431 memcpy(tape->vendor_id, inquiry->vendor_id, 8);
4432 memcpy(tape->product_id, inquiry->product_id, 16);
4433 memcpy(tape->firmware_revision, inquiry->revision_level, 4);
4434 ide_fixstring(tape->vendor_id, 10, 0);
4435 ide_fixstring(tape->product_id, 18, 0);
4436 ide_fixstring(tape->firmware_revision, 6, 0);
4437 r = tape->firmware_revision;
4438 if (*(r + 1) == '.')
4439 tape->firmware_revision_num = (*r - '0') * 100 + (*(r + 2) - '0') * 10 + *(r + 3) - '0';
4440 printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n", drive->name, tape->name, tape->vendor_id, tape->product_id, tape->firmware_revision);
4441}
4442
4443/*
4444 * idetape_get_mode_sense_results asks the tape about its various
4445 * parameters. In particular, we will adjust our data transfer buffer
4446 * size to the recommended value as returned by the tape.
4447 */
4448static void idetape_get_mode_sense_results (ide_drive_t *drive)
4449{
4450 idetape_tape_t *tape = drive->driver_data;
4451 idetape_pc_t pc;
4452 idetape_mode_parameter_header_t *header;
4453 idetape_capabilities_page_t *capabilities;
4454
4455 idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
4456 if (idetape_queue_pc_tail(drive, &pc)) {
4457 printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming some default values\n");
4458 tape->tape_block_size = 512;
4459 tape->capabilities.ctl = 52;
4460 tape->capabilities.speed = 450;
4461 tape->capabilities.buffer_size = 6 * 52;
4462 return;
4463 }
4464 header = (idetape_mode_parameter_header_t *) pc.buffer;
4465 capabilities = (idetape_capabilities_page_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t) + header->bdl);
4466
4467 capabilities->max_speed = ntohs(capabilities->max_speed);
4468 capabilities->ctl = ntohs(capabilities->ctl);
4469 capabilities->speed = ntohs(capabilities->speed);
4470 capabilities->buffer_size = ntohs(capabilities->buffer_size);
4471
4472 if (!capabilities->speed) {
4473 printk(KERN_INFO "ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive->name);
4474 capabilities->speed = 650;
4475 }
4476 if (!capabilities->max_speed) {
4477 printk(KERN_INFO "ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive->name);
4478 capabilities->max_speed = 650;
4479 }
4480
4481 tape->capabilities = *capabilities; /* Save us a copy */
4482 if (capabilities->blk512)
4483 tape->tape_block_size = 512;
4484 else if (capabilities->blk1024)
4485 tape->tape_block_size = 1024;
4486
4487#if IDETAPE_DEBUG_INFO
4488 printk(KERN_INFO "ide-tape: Dumping the results of the MODE SENSE packet command\n");
4489 printk(KERN_INFO "ide-tape: Mode Parameter Header:\n");
4490 printk(KERN_INFO "ide-tape: Mode Data Length - %d\n",header->mode_data_length);
4491 printk(KERN_INFO "ide-tape: Medium Type - %d\n",header->medium_type);
4492 printk(KERN_INFO "ide-tape: Device Specific Parameter - %d\n",header->dsp);
4493 printk(KERN_INFO "ide-tape: Block Descriptor Length - %d\n",header->bdl);
4494
4495 printk(KERN_INFO "ide-tape: Capabilities and Mechanical Status Page:\n");
4496 printk(KERN_INFO "ide-tape: Page code - %d\n",capabilities->page_code);
4497 printk(KERN_INFO "ide-tape: Page length - %d\n",capabilities->page_length);
4498 printk(KERN_INFO "ide-tape: Read only - %s\n",capabilities->ro ? "Yes":"No");
4499 printk(KERN_INFO "ide-tape: Supports reverse space - %s\n",capabilities->sprev ? "Yes":"No");
4500 printk(KERN_INFO "ide-tape: Supports erase initiated formatting - %s\n",capabilities->efmt ? "Yes":"No");
4501 printk(KERN_INFO "ide-tape: Supports QFA two Partition format - %s\n",capabilities->qfa ? "Yes":"No");
4502 printk(KERN_INFO "ide-tape: Supports locking the medium - %s\n",capabilities->lock ? "Yes":"No");
4503 printk(KERN_INFO "ide-tape: The volume is currently locked - %s\n",capabilities->locked ? "Yes":"No");
4504 printk(KERN_INFO "ide-tape: The device defaults in the prevent state - %s\n",capabilities->prevent ? "Yes":"No");
4505 printk(KERN_INFO "ide-tape: Supports ejecting the medium - %s\n",capabilities->eject ? "Yes":"No");
4506 printk(KERN_INFO "ide-tape: Supports error correction - %s\n",capabilities->ecc ? "Yes":"No");
4507 printk(KERN_INFO "ide-tape: Supports data compression - %s\n",capabilities->cmprs ? "Yes":"No");
4508 printk(KERN_INFO "ide-tape: Supports 512 bytes block size - %s\n",capabilities->blk512 ? "Yes":"No");
4509 printk(KERN_INFO "ide-tape: Supports 1024 bytes block size - %s\n",capabilities->blk1024 ? "Yes":"No");
4510 printk(KERN_INFO "ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities->blk32768 ? "Yes":"No");
4511 printk(KERN_INFO "ide-tape: Maximum supported speed in KBps - %d\n",capabilities->max_speed);
4512 printk(KERN_INFO "ide-tape: Continuous transfer limits in blocks - %d\n",capabilities->ctl);
4513 printk(KERN_INFO "ide-tape: Current speed in KBps - %d\n",capabilities->speed);
4514 printk(KERN_INFO "ide-tape: Buffer size - %d\n",capabilities->buffer_size*512);
4515#endif /* IDETAPE_DEBUG_INFO */
4516}
4517
4518/*
4519 * ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4520 * and if it succeeds sets the tape block size with the reported value
4521 */
4522static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive)
4523{
4524
4525 idetape_tape_t *tape = drive->driver_data;
4526 idetape_pc_t pc;
4527 idetape_mode_parameter_header_t *header;
4528 idetape_parameter_block_descriptor_t *block_descrp;
4529
4530 idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
4531 if (idetape_queue_pc_tail(drive, &pc)) {
4532 printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
4533 if (tape->tape_block_size == 0) {
4534 printk(KERN_WARNING "ide-tape: Cannot deal with zero block size, assume 32k\n");
4535 tape->tape_block_size = 32768;
4536 }
4537 return;
4538 }
4539 header = (idetape_mode_parameter_header_t *) pc.buffer;
4540 block_descrp = (idetape_parameter_block_descriptor_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t));
4541 tape->tape_block_size =( block_descrp->length[0]<<16) + (block_descrp->length[1]<<8) + block_descrp->length[2];
4542 tape->drv_write_prot = (header->dsp & 0x80) >> 7;
4543
4544#if IDETAPE_DEBUG_INFO
4545 printk(KERN_INFO "ide-tape: Adjusted block size - %d\n", tape->tape_block_size);
4546#endif /* IDETAPE_DEBUG_INFO */
4547}
4548static void idetape_add_settings (ide_drive_t *drive)
4549{
4550 idetape_tape_t *tape = drive->driver_data;
4551
4552/*
4553 * drive setting name read/write ioctl ioctl data type min max mul_factor div_factor data pointer set function
4554 */
4555 ide_add_setting(drive, "buffer", SETTING_READ, -1, -1, TYPE_SHORT, 0, 0xffff, 1, 2, &tape->capabilities.buffer_size, NULL);
4556 ide_add_setting(drive, "pipeline_min", SETTING_RW, -1, -1, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->min_pipeline, NULL);
4557 ide_add_setting(drive, "pipeline", SETTING_RW, -1, -1, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_stages, NULL);
4558 ide_add_setting(drive, "pipeline_max", SETTING_RW, -1, -1, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_pipeline, NULL);
4559 ide_add_setting(drive, "pipeline_used",SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_stages, NULL);
4560 ide_add_setting(drive, "pipeline_pending",SETTING_READ,-1, -1, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_pending_stages, NULL);
4561 ide_add_setting(drive, "speed", SETTING_READ, -1, -1, TYPE_SHORT, 0, 0xffff, 1, 1, &tape->capabilities.speed, NULL);
4562 ide_add_setting(drive, "stage", SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1024, &tape->stage_size, NULL);
4563 ide_add_setting(drive, "tdsc", SETTING_RW, -1, -1, TYPE_INT, IDETAPE_DSC_RW_MIN, IDETAPE_DSC_RW_MAX, 1000, HZ, &tape->best_dsc_rw_frequency, NULL);
4564 ide_add_setting(drive, "dsc_overlap", SETTING_RW, -1, -1, TYPE_BYTE, 0, 1, 1, 1, &drive->dsc_overlap, NULL);
4565 ide_add_setting(drive, "pipeline_head_speed_c",SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->controlled_pipeline_head_speed, NULL);
4566 ide_add_setting(drive, "pipeline_head_speed_u",SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->uncontrolled_pipeline_head_speed, NULL);
4567 ide_add_setting(drive, "avg_speed", SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->avg_speed, NULL);
4568 ide_add_setting(drive, "debug_level",SETTING_RW, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->debug_level, NULL);
4569}
4570
4571/*
4572 * ide_setup is called to:
4573 *
4574 * 1. Initialize our various state variables.
4575 * 2. Ask the tape for its capabilities.
4576 * 3. Allocate a buffer which will be used for data
4577 * transfer. The buffer size is chosen based on
4578 * the recommendation which we received in step (2).
4579 *
4580 * Note that at this point ide.c already assigned us an irq, so that
4581 * we can queue requests here and wait for their completion.
4582 */
4583static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor)
4584{
4585 unsigned long t1, tmid, tn, t;
4586 int speed;
4587 struct idetape_id_gcw gcw;
4588 int stage_size;
4589 struct sysinfo si;
4590
4591 spin_lock_init(&tape->spinlock);
4592 drive->dsc_overlap = 1;
4593#ifdef CONFIG_BLK_DEV_IDEPCI
4594 if (HWIF(drive)->pci_dev != NULL) {
4595 /*
4596 * These two ide-pci host adapters appear to need DSC overlap disabled.
4597 * This probably needs further analysis.
4598 */
4599 if ((HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_ARTOP_ATP850UF) ||
4600 (HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_TTI_HPT343)) {
4601 printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n", tape->name);
4602 drive->dsc_overlap = 0;
4603 }
4604 }
4605#endif /* CONFIG_BLK_DEV_IDEPCI */
4606 /* Seagate Travan drives do not support DSC overlap. */
4607 if (strstr(drive->id->model, "Seagate STT3401"))
4608 drive->dsc_overlap = 0;
4609 tape->minor = minor;
4610 tape->name[0] = 'h';
4611 tape->name[1] = 't';
4612 tape->name[2] = '0' + minor;
4613 tape->chrdev_direction = idetape_direction_none;
4614 tape->pc = tape->pc_stack;
4615 tape->max_insert_speed = 10000;
4616 tape->speed_control = 1;
4617 *((unsigned short *) &gcw) = drive->id->config;
4618 if (gcw.drq_type == 1)
4619 set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags);
4620
4621 tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10;
4622
4623 idetape_get_inquiry_results(drive);
4624 idetape_get_mode_sense_results(drive);
4625 idetape_get_blocksize_from_block_descriptor(drive);
4626 tape->user_bs_factor = 1;
4627 tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4628 while (tape->stage_size > 0xffff) {
4629 printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
4630 tape->capabilities.ctl /= 2;
4631 tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4632 }
4633 stage_size = tape->stage_size;
4634 tape->pages_per_stage = stage_size / PAGE_SIZE;
4635 if (stage_size % PAGE_SIZE) {
4636 tape->pages_per_stage++;
4637 tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
4638 }
4639
4640 /*
4641 * Select the "best" DSC read/write polling frequency
4642 * and pipeline size.
4643 */
4644 speed = max(tape->capabilities.speed, tape->capabilities.max_speed);
4645
4646 tape->max_stages = speed * 1000 * 10 / tape->stage_size;
4647
4648 /*
4649 * Limit memory use for pipeline to 10% of physical memory
4650 */
4651 si_meminfo(&si);
4652 if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10)
4653 tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size);
4654 tape->max_stages = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
4655 tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
4656 tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
4657 if (tape->max_stages == 0)
4658 tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1;
4659
4660 t1 = (tape->stage_size * HZ) / (speed * 1000);
4661 tmid = (tape->capabilities.buffer_size * 32 * HZ) / (speed * 125);
4662 tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
4663
4664 if (tape->max_stages)
4665 t = tn;
4666 else
4667 t = t1;
4668
4669 /*
4670 * Ensure that the number we got makes sense; limit
4671 * it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4672 */
4673 tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN);
4674 printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4675 "%dkB pipeline, %lums tDSC%s\n",
4676 drive->name, tape->name, tape->capabilities.speed,
4677 (tape->capabilities.buffer_size * 512) / tape->stage_size,
4678 tape->stage_size / 1024,
4679 tape->max_stages * tape->stage_size / 1024,
4680 tape->best_dsc_rw_frequency * 1000 / HZ,
4681 drive->using_dma ? ", DMA":"");
4682
4683 idetape_add_settings(drive);
4684}
4685
Russell King4031bbe2006-01-06 11:41:00 +00004686static void ide_tape_remove(ide_drive_t *drive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004687{
4688 idetape_tape_t *tape = drive->driver_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004689
Bartlomiej Zolnierkiewicz8604aff2005-05-26 14:55:34 +02004690 ide_unregister_subdriver(drive, tape->driver);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004691
4692 ide_unregister_region(tape->disk);
4693
4694 ide_tape_put(tape);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004695}
4696
4697static void ide_tape_release(struct kref *kref)
4698{
4699 struct ide_tape_obj *tape = to_ide_tape(kref);
4700 ide_drive_t *drive = tape->drive;
4701 struct gendisk *g = tape->disk;
4702
Bartlomiej Zolnierkiewicz8604aff2005-05-26 14:55:34 +02004703 BUG_ON(tape->first_stage != NULL || tape->merge_stage_size);
4704
Linus Torvalds1da177e2005-04-16 15:20:36 -07004705 drive->dsc_overlap = 0;
4706 drive->driver_data = NULL;
Will Dysond5dee802005-09-16 02:55:07 -07004707 class_device_destroy(idetape_sysfs_class,
4708 MKDEV(IDETAPE_MAJOR, tape->minor));
4709 class_device_destroy(idetape_sysfs_class,
4710 MKDEV(IDETAPE_MAJOR, tape->minor + 128));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004711 devfs_remove("%s/mt", drive->devfs_name);
4712 devfs_remove("%s/mtn", drive->devfs_name);
4713 devfs_unregister_tape(g->number);
4714 idetape_devs[tape->minor] = NULL;
4715 g->private_data = NULL;
4716 put_disk(g);
4717 kfree(tape);
4718}
4719
4720#ifdef CONFIG_PROC_FS
4721
4722static int proc_idetape_read_name
4723 (char *page, char **start, off_t off, int count, int *eof, void *data)
4724{
4725 ide_drive_t *drive = (ide_drive_t *) data;
4726 idetape_tape_t *tape = drive->driver_data;
4727 char *out = page;
4728 int len;
4729
4730 len = sprintf(out, "%s\n", tape->name);
4731 PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
4732}
4733
4734static ide_proc_entry_t idetape_proc[] = {
4735 { "capacity", S_IFREG|S_IRUGO, proc_ide_read_capacity, NULL },
4736 { "name", S_IFREG|S_IRUGO, proc_idetape_read_name, NULL },
4737 { NULL, 0, NULL, NULL }
4738};
4739
4740#else
4741
4742#define idetape_proc NULL
4743
4744#endif
4745
Russell King4031bbe2006-01-06 11:41:00 +00004746static int ide_tape_probe(ide_drive_t *);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004747
Linus Torvalds1da177e2005-04-16 15:20:36 -07004748static ide_driver_t idetape_driver = {
Bartlomiej Zolnierkiewicz8604aff2005-05-26 14:55:34 +02004749 .gen_driver = {
Laurent Riffard4ef3b8f2005-11-18 22:15:40 +01004750 .owner = THIS_MODULE,
Bartlomiej Zolnierkiewicz8604aff2005-05-26 14:55:34 +02004751 .name = "ide-tape",
4752 .bus = &ide_bus_type,
Bartlomiej Zolnierkiewicz8604aff2005-05-26 14:55:34 +02004753 },
Russell King4031bbe2006-01-06 11:41:00 +00004754 .probe = ide_tape_probe,
4755 .remove = ide_tape_remove,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004756 .version = IDETAPE_VERSION,
4757 .media = ide_tape,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004758 .supports_dsc_overlap = 1,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004759 .do_request = idetape_do_request,
4760 .end_request = idetape_end_request,
4761 .error = __ide_error,
4762 .abort = __ide_abort,
4763 .proc = idetape_proc,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004764};
4765
4766/*
4767 * Our character device supporting functions, passed to register_chrdev.
4768 */
4769static struct file_operations idetape_fops = {
4770 .owner = THIS_MODULE,
4771 .read = idetape_chrdev_read,
4772 .write = idetape_chrdev_write,
4773 .ioctl = idetape_chrdev_ioctl,
4774 .open = idetape_chrdev_open,
4775 .release = idetape_chrdev_release,
4776};
4777
4778static int idetape_open(struct inode *inode, struct file *filp)
4779{
4780 struct gendisk *disk = inode->i_bdev->bd_disk;
4781 struct ide_tape_obj *tape;
4782 ide_drive_t *drive;
4783
4784 if (!(tape = ide_tape_get(disk)))
4785 return -ENXIO;
4786
4787 drive = tape->drive;
4788
4789 drive->usage++;
4790
4791 return 0;
4792}
4793
4794static int idetape_release(struct inode *inode, struct file *filp)
4795{
4796 struct gendisk *disk = inode->i_bdev->bd_disk;
4797 struct ide_tape_obj *tape = ide_tape_g(disk);
4798 ide_drive_t *drive = tape->drive;
4799
4800 drive->usage--;
4801
4802 ide_tape_put(tape);
4803
4804 return 0;
4805}
4806
4807static int idetape_ioctl(struct inode *inode, struct file *file,
4808 unsigned int cmd, unsigned long arg)
4809{
4810 struct block_device *bdev = inode->i_bdev;
4811 struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk);
4812 ide_drive_t *drive = tape->drive;
4813 int err = generic_ide_ioctl(drive, file, bdev, cmd, arg);
4814 if (err == -EINVAL)
4815 err = idetape_blkdev_ioctl(drive, cmd, arg);
4816 return err;
4817}
4818
4819static struct block_device_operations idetape_block_ops = {
4820 .owner = THIS_MODULE,
4821 .open = idetape_open,
4822 .release = idetape_release,
4823 .ioctl = idetape_ioctl,
4824};
4825
Russell King4031bbe2006-01-06 11:41:00 +00004826static int ide_tape_probe(ide_drive_t *drive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004827{
4828 idetape_tape_t *tape;
4829 struct gendisk *g;
4830 int minor;
4831
4832 if (!strstr("ide-tape", drive->driver_req))
4833 goto failed;
4834 if (!drive->present)
4835 goto failed;
4836 if (drive->media != ide_tape)
4837 goto failed;
4838 if (!idetape_identify_device (drive)) {
4839 printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name);
4840 goto failed;
4841 }
4842 if (drive->scsi) {
4843 printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name);
4844 goto failed;
4845 }
4846 if (strstr(drive->id->model, "OnStream DI-")) {
4847 printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name);
4848 printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n");
4849 }
Deepak Saxenaf5e3c2f2005-11-07 01:01:25 -08004850 tape = (idetape_tape_t *) kzalloc (sizeof (idetape_tape_t), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004851 if (tape == NULL) {
4852 printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name);
4853 goto failed;
4854 }
4855
4856 g = alloc_disk(1 << PARTN_BITS);
4857 if (!g)
4858 goto out_free_tape;
4859
4860 ide_init_disk(g, drive);
4861
Bartlomiej Zolnierkiewicz8604aff2005-05-26 14:55:34 +02004862 ide_register_subdriver(drive, &idetape_driver);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004863
Linus Torvalds1da177e2005-04-16 15:20:36 -07004864 kref_init(&tape->kref);
4865
4866 tape->drive = drive;
4867 tape->driver = &idetape_driver;
4868 tape->disk = g;
4869
4870 g->private_data = &tape->driver;
4871
4872 drive->driver_data = tape;
4873
Arjan van de Vencf8b8972006-03-23 03:00:45 -08004874 mutex_lock(&idetape_ref_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004875 for (minor = 0; idetape_devs[minor]; minor++)
4876 ;
4877 idetape_devs[minor] = tape;
Arjan van de Vencf8b8972006-03-23 03:00:45 -08004878 mutex_unlock(&idetape_ref_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004879
4880 idetape_setup(drive, tape, minor);
4881
Greg Kroah-Hartman53f46542005-10-27 22:25:43 -07004882 class_device_create(idetape_sysfs_class, NULL,
Russell King4031bbe2006-01-06 11:41:00 +00004883 MKDEV(IDETAPE_MAJOR, minor), &drive->gendev, "%s", tape->name);
Greg Kroah-Hartman53f46542005-10-27 22:25:43 -07004884 class_device_create(idetape_sysfs_class, NULL,
Russell King4031bbe2006-01-06 11:41:00 +00004885 MKDEV(IDETAPE_MAJOR, minor + 128), &drive->gendev, "n%s", tape->name);
Will Dysond5dee802005-09-16 02:55:07 -07004886
Linus Torvalds1da177e2005-04-16 15:20:36 -07004887 devfs_mk_cdev(MKDEV(HWIF(drive)->major, minor),
4888 S_IFCHR | S_IRUGO | S_IWUGO,
4889 "%s/mt", drive->devfs_name);
4890 devfs_mk_cdev(MKDEV(HWIF(drive)->major, minor + 128),
4891 S_IFCHR | S_IRUGO | S_IWUGO,
4892 "%s/mtn", drive->devfs_name);
4893
4894 g->number = devfs_register_tape(drive->devfs_name);
4895 g->fops = &idetape_block_ops;
4896 ide_register_region(g);
4897
4898 return 0;
Bartlomiej Zolnierkiewicz8604aff2005-05-26 14:55:34 +02004899
Linus Torvalds1da177e2005-04-16 15:20:36 -07004900out_free_tape:
4901 kfree(tape);
4902failed:
Bartlomiej Zolnierkiewicz8604aff2005-05-26 14:55:34 +02004903 return -ENODEV;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004904}
4905
4906MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4907MODULE_LICENSE("GPL");
4908
4909static void __exit idetape_exit (void)
4910{
Bartlomiej Zolnierkiewicz8604aff2005-05-26 14:55:34 +02004911 driver_unregister(&idetape_driver.gen_driver);
Will Dysond5dee802005-09-16 02:55:07 -07004912 class_destroy(idetape_sysfs_class);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004913 unregister_chrdev(IDETAPE_MAJOR, "ht");
4914}
4915
Bartlomiej Zolnierkiewicz17514e82005-11-19 22:24:35 +01004916static int __init idetape_init(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004917{
Will Dysond5dee802005-09-16 02:55:07 -07004918 int error = 1;
4919 idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape");
4920 if (IS_ERR(idetape_sysfs_class)) {
4921 idetape_sysfs_class = NULL;
4922 printk(KERN_ERR "Unable to create sysfs class for ide tapes\n");
4923 error = -EBUSY;
4924 goto out;
4925 }
4926
Linus Torvalds1da177e2005-04-16 15:20:36 -07004927 if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
4928 printk(KERN_ERR "ide-tape: Failed to register character device interface\n");
Will Dysond5dee802005-09-16 02:55:07 -07004929 error = -EBUSY;
4930 goto out_free_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004931 }
Will Dysond5dee802005-09-16 02:55:07 -07004932
4933 error = driver_register(&idetape_driver.gen_driver);
4934 if (error)
4935 goto out_free_driver;
4936
4937 return 0;
4938
4939out_free_driver:
4940 driver_unregister(&idetape_driver.gen_driver);
4941out_free_class:
4942 class_destroy(idetape_sysfs_class);
4943out:
4944 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004945}
4946
Kay Sievers263756e2005-12-12 18:03:44 +01004947MODULE_ALIAS("ide:*m-tape*");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004948module_init(idetape_init);
4949module_exit(idetape_exit);
4950MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);