blob: 12b1e9f0b7aefb05d7286dfbcdf91d424a5dbe61 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
Shaohua Lic70f8f62008-02-28 16:47:50 +08006 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 *
10 * Derived from the x86 and Alpha versions.
11 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070012#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/errno.h>
17#include <linux/ptrace.h>
18#include <linux/smp_lock.h>
19#include <linux/user.h>
20#include <linux/security.h>
21#include <linux/audit.h>
Jesper Juhl7ed20e12005-05-01 08:59:14 -070022#include <linux/signal.h>
Shaohua Lic70f8f62008-02-28 16:47:50 +080023#include <linux/regset.h>
24#include <linux/elf.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070025
26#include <asm/pgtable.h>
27#include <asm/processor.h>
28#include <asm/ptrace_offsets.h>
29#include <asm/rse.h>
30#include <asm/system.h>
31#include <asm/uaccess.h>
32#include <asm/unwind.h>
33#ifdef CONFIG_PERFMON
34#include <asm/perfmon.h>
35#endif
36
37#include "entry.h"
38
39/*
40 * Bits in the PSR that we allow ptrace() to change:
41 * be, up, ac, mfl, mfh (the user mask; five bits total)
42 * db (debug breakpoint fault; one bit)
43 * id (instruction debug fault disable; one bit)
44 * dd (data debug fault disable; one bit)
45 * ri (restart instruction; two bits)
46 * is (instruction set; one bit)
47 */
48#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
49 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
50
51#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
52#define PFM_MASK MASK(38)
53
54#define PTRACE_DEBUG 0
55
56#if PTRACE_DEBUG
57# define dprintk(format...) printk(format)
58# define inline
59#else
60# define dprintk(format...)
61#endif
62
63/* Return TRUE if PT was created due to kernel-entry via a system-call. */
64
65static inline int
66in_syscall (struct pt_regs *pt)
67{
68 return (long) pt->cr_ifs >= 0;
69}
70
71/*
72 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
73 * bitset where bit i is set iff the NaT bit of register i is set.
74 */
75unsigned long
76ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
77{
78# define GET_BITS(first, last, unat) \
79 ({ \
80 unsigned long bit = ia64_unat_pos(&pt->r##first); \
81 unsigned long nbits = (last - first + 1); \
82 unsigned long mask = MASK(nbits) << first; \
83 unsigned long dist; \
84 if (bit < first) \
85 dist = 64 + bit - first; \
86 else \
87 dist = bit - first; \
88 ia64_rotr(unat, dist) & mask; \
89 })
90 unsigned long val;
91
92 /*
93 * Registers that are stored consecutively in struct pt_regs
94 * can be handled in parallel. If the register order in
95 * struct_pt_regs changes, this code MUST be updated.
96 */
97 val = GET_BITS( 1, 1, scratch_unat);
98 val |= GET_BITS( 2, 3, scratch_unat);
99 val |= GET_BITS(12, 13, scratch_unat);
100 val |= GET_BITS(14, 14, scratch_unat);
101 val |= GET_BITS(15, 15, scratch_unat);
102 val |= GET_BITS( 8, 11, scratch_unat);
103 val |= GET_BITS(16, 31, scratch_unat);
104 return val;
105
106# undef GET_BITS
107}
108
109/*
110 * Set the NaT bits for the scratch registers according to NAT and
111 * return the resulting unat (assuming the scratch registers are
112 * stored in PT).
113 */
114unsigned long
115ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
116{
117# define PUT_BITS(first, last, nat) \
118 ({ \
119 unsigned long bit = ia64_unat_pos(&pt->r##first); \
120 unsigned long nbits = (last - first + 1); \
121 unsigned long mask = MASK(nbits) << first; \
122 long dist; \
123 if (bit < first) \
124 dist = 64 + bit - first; \
125 else \
126 dist = bit - first; \
127 ia64_rotl(nat & mask, dist); \
128 })
129 unsigned long scratch_unat;
130
131 /*
132 * Registers that are stored consecutively in struct pt_regs
133 * can be handled in parallel. If the register order in
134 * struct_pt_regs changes, this code MUST be updated.
135 */
136 scratch_unat = PUT_BITS( 1, 1, nat);
137 scratch_unat |= PUT_BITS( 2, 3, nat);
138 scratch_unat |= PUT_BITS(12, 13, nat);
139 scratch_unat |= PUT_BITS(14, 14, nat);
140 scratch_unat |= PUT_BITS(15, 15, nat);
141 scratch_unat |= PUT_BITS( 8, 11, nat);
142 scratch_unat |= PUT_BITS(16, 31, nat);
143
144 return scratch_unat;
145
146# undef PUT_BITS
147}
148
149#define IA64_MLX_TEMPLATE 0x2
150#define IA64_MOVL_OPCODE 6
151
152void
153ia64_increment_ip (struct pt_regs *regs)
154{
155 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
156
157 if (ri > 2) {
158 ri = 0;
159 regs->cr_iip += 16;
160 } else if (ri == 2) {
161 get_user(w0, (char __user *) regs->cr_iip + 0);
162 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
163 /*
164 * rfi'ing to slot 2 of an MLX bundle causes
165 * an illegal operation fault. We don't want
166 * that to happen...
167 */
168 ri = 0;
169 regs->cr_iip += 16;
170 }
171 }
172 ia64_psr(regs)->ri = ri;
173}
174
175void
176ia64_decrement_ip (struct pt_regs *regs)
177{
178 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
179
180 if (ia64_psr(regs)->ri == 0) {
181 regs->cr_iip -= 16;
182 ri = 2;
183 get_user(w0, (char __user *) regs->cr_iip + 0);
184 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
185 /*
186 * rfi'ing to slot 2 of an MLX bundle causes
187 * an illegal operation fault. We don't want
188 * that to happen...
189 */
190 ri = 1;
191 }
192 }
193 ia64_psr(regs)->ri = ri;
194}
195
196/*
197 * This routine is used to read an rnat bits that are stored on the
198 * kernel backing store. Since, in general, the alignment of the user
199 * and kernel are different, this is not completely trivial. In
200 * essence, we need to construct the user RNAT based on up to two
201 * kernel RNAT values and/or the RNAT value saved in the child's
202 * pt_regs.
203 *
204 * user rbs
205 *
206 * +--------+ <-- lowest address
207 * | slot62 |
208 * +--------+
209 * | rnat | 0x....1f8
210 * +--------+
211 * | slot00 | \
212 * +--------+ |
213 * | slot01 | > child_regs->ar_rnat
214 * +--------+ |
215 * | slot02 | / kernel rbs
216 * +--------+ +--------+
217 * <- child_regs->ar_bspstore | slot61 | <-- krbs
218 * +- - - - + +--------+
219 * | slot62 |
220 * +- - - - + +--------+
221 * | rnat |
222 * +- - - - + +--------+
223 * vrnat | slot00 |
224 * +- - - - + +--------+
225 * = =
226 * +--------+
227 * | slot00 | \
228 * +--------+ |
229 * | slot01 | > child_stack->ar_rnat
230 * +--------+ |
231 * | slot02 | /
232 * +--------+
233 * <--- child_stack->ar_bspstore
234 *
235 * The way to think of this code is as follows: bit 0 in the user rnat
236 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
237 * value. The kernel rnat value holding this bit is stored in
238 * variable rnat0. rnat1 is loaded with the kernel rnat value that
239 * form the upper bits of the user rnat value.
240 *
241 * Boundary cases:
242 *
243 * o when reading the rnat "below" the first rnat slot on the kernel
244 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
245 * merged in from pt->ar_rnat.
246 *
247 * o when reading the rnat "above" the last rnat slot on the kernel
248 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
249 */
250static unsigned long
251get_rnat (struct task_struct *task, struct switch_stack *sw,
252 unsigned long *krbs, unsigned long *urnat_addr,
253 unsigned long *urbs_end)
254{
255 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
256 unsigned long umask = 0, mask, m;
257 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
258 long num_regs, nbits;
259 struct pt_regs *pt;
260
Al Viro64505782006-01-12 01:06:06 -0800261 pt = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262 kbsp = (unsigned long *) sw->ar_bspstore;
263 ubspstore = (unsigned long *) pt->ar_bspstore;
264
265 if (urbs_end < urnat_addr)
266 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
267 else
268 nbits = 63;
269 mask = MASK(nbits);
270 /*
271 * First, figure out which bit number slot 0 in user-land maps
272 * to in the kernel rnat. Do this by figuring out how many
273 * register slots we're beyond the user's backingstore and
274 * then computing the equivalent address in kernel space.
275 */
276 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
277 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
278 shift = ia64_rse_slot_num(slot0_kaddr);
279 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
280 rnat0_kaddr = rnat1_kaddr - 64;
281
282 if (ubspstore + 63 > urnat_addr) {
283 /* some bits need to be merged in from pt->ar_rnat */
284 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
285 urnat = (pt->ar_rnat & umask);
286 mask &= ~umask;
287 if (!mask)
288 return urnat;
289 }
290
291 m = mask << shift;
292 if (rnat0_kaddr >= kbsp)
293 rnat0 = sw->ar_rnat;
294 else if (rnat0_kaddr > krbs)
295 rnat0 = *rnat0_kaddr;
296 urnat |= (rnat0 & m) >> shift;
297
298 m = mask >> (63 - shift);
299 if (rnat1_kaddr >= kbsp)
300 rnat1 = sw->ar_rnat;
301 else if (rnat1_kaddr > krbs)
302 rnat1 = *rnat1_kaddr;
303 urnat |= (rnat1 & m) << (63 - shift);
304 return urnat;
305}
306
307/*
308 * The reverse of get_rnat.
309 */
310static void
311put_rnat (struct task_struct *task, struct switch_stack *sw,
312 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
313 unsigned long *urbs_end)
314{
315 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
316 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
317 long num_regs, nbits;
318 struct pt_regs *pt;
319 unsigned long cfm, *urbs_kargs;
320
Al Viro64505782006-01-12 01:06:06 -0800321 pt = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700322 kbsp = (unsigned long *) sw->ar_bspstore;
323 ubspstore = (unsigned long *) pt->ar_bspstore;
324
325 urbs_kargs = urbs_end;
326 if (in_syscall(pt)) {
327 /*
328 * If entered via syscall, don't allow user to set rnat bits
329 * for syscall args.
330 */
331 cfm = pt->cr_ifs;
332 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
333 }
334
335 if (urbs_kargs >= urnat_addr)
336 nbits = 63;
337 else {
338 if ((urnat_addr - 63) >= urbs_kargs)
339 return;
340 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
341 }
342 mask = MASK(nbits);
343
344 /*
345 * First, figure out which bit number slot 0 in user-land maps
346 * to in the kernel rnat. Do this by figuring out how many
347 * register slots we're beyond the user's backingstore and
348 * then computing the equivalent address in kernel space.
349 */
350 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
351 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
352 shift = ia64_rse_slot_num(slot0_kaddr);
353 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
354 rnat0_kaddr = rnat1_kaddr - 64;
355
356 if (ubspstore + 63 > urnat_addr) {
357 /* some bits need to be place in pt->ar_rnat: */
358 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
359 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
360 mask &= ~umask;
361 if (!mask)
362 return;
363 }
364 /*
365 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
366 * rnat slot is ignored. so we don't have to clear it here.
367 */
368 rnat0 = (urnat << shift);
369 m = mask << shift;
370 if (rnat0_kaddr >= kbsp)
371 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
372 else if (rnat0_kaddr > krbs)
373 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
374
375 rnat1 = (urnat >> (63 - shift));
376 m = mask >> (63 - shift);
377 if (rnat1_kaddr >= kbsp)
378 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
379 else if (rnat1_kaddr > krbs)
380 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
381}
382
383static inline int
384on_kernel_rbs (unsigned long addr, unsigned long bspstore,
385 unsigned long urbs_end)
386{
387 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
388 urbs_end);
389 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
390}
391
392/*
393 * Read a word from the user-level backing store of task CHILD. ADDR
394 * is the user-level address to read the word from, VAL a pointer to
395 * the return value, and USER_BSP gives the end of the user-level
396 * backing store (i.e., it's the address that would be in ar.bsp after
397 * the user executed a "cover" instruction).
398 *
399 * This routine takes care of accessing the kernel register backing
400 * store for those registers that got spilled there. It also takes
401 * care of calculating the appropriate RNaT collection words.
402 */
403long
404ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
405 unsigned long user_rbs_end, unsigned long addr, long *val)
406{
407 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
408 struct pt_regs *child_regs;
409 size_t copied;
410 long ret;
411
412 urbs_end = (long *) user_rbs_end;
413 laddr = (unsigned long *) addr;
Al Viro64505782006-01-12 01:06:06 -0800414 child_regs = task_pt_regs(child);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415 bspstore = (unsigned long *) child_regs->ar_bspstore;
416 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
417 if (on_kernel_rbs(addr, (unsigned long) bspstore,
418 (unsigned long) urbs_end))
419 {
420 /*
421 * Attempt to read the RBS in an area that's actually
422 * on the kernel RBS => read the corresponding bits in
423 * the kernel RBS.
424 */
425 rnat_addr = ia64_rse_rnat_addr(laddr);
426 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
427
428 if (laddr == rnat_addr) {
429 /* return NaT collection word itself */
430 *val = ret;
431 return 0;
432 }
433
434 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
435 /*
436 * It is implementation dependent whether the
437 * data portion of a NaT value gets saved on a
438 * st8.spill or RSE spill (e.g., see EAS 2.6,
439 * 4.4.4.6 Register Spill and Fill). To get
440 * consistent behavior across all possible
441 * IA-64 implementations, we return zero in
442 * this case.
443 */
444 *val = 0;
445 return 0;
446 }
447
448 if (laddr < urbs_end) {
449 /*
450 * The desired word is on the kernel RBS and
451 * is not a NaT.
452 */
453 regnum = ia64_rse_num_regs(bspstore, laddr);
454 *val = *ia64_rse_skip_regs(krbs, regnum);
455 return 0;
456 }
457 }
458 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
459 if (copied != sizeof(ret))
460 return -EIO;
461 *val = ret;
462 return 0;
463}
464
465long
466ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
467 unsigned long user_rbs_end, unsigned long addr, long val)
468{
469 unsigned long *bspstore, *krbs, regnum, *laddr;
470 unsigned long *urbs_end = (long *) user_rbs_end;
471 struct pt_regs *child_regs;
472
473 laddr = (unsigned long *) addr;
Al Viro64505782006-01-12 01:06:06 -0800474 child_regs = task_pt_regs(child);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700475 bspstore = (unsigned long *) child_regs->ar_bspstore;
476 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
477 if (on_kernel_rbs(addr, (unsigned long) bspstore,
478 (unsigned long) urbs_end))
479 {
480 /*
481 * Attempt to write the RBS in an area that's actually
482 * on the kernel RBS => write the corresponding bits
483 * in the kernel RBS.
484 */
485 if (ia64_rse_is_rnat_slot(laddr))
486 put_rnat(child, child_stack, krbs, laddr, val,
487 urbs_end);
488 else {
489 if (laddr < urbs_end) {
490 regnum = ia64_rse_num_regs(bspstore, laddr);
491 *ia64_rse_skip_regs(krbs, regnum) = val;
492 }
493 }
494 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
495 != sizeof(val))
496 return -EIO;
497 return 0;
498}
499
500/*
501 * Calculate the address of the end of the user-level register backing
502 * store. This is the address that would have been stored in ar.bsp
503 * if the user had executed a "cover" instruction right before
504 * entering the kernel. If CFMP is not NULL, it is used to return the
505 * "current frame mask" that was active at the time the kernel was
506 * entered.
507 */
508unsigned long
509ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
510 unsigned long *cfmp)
511{
512 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
513 long ndirty;
514
515 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
516 bspstore = (unsigned long *) pt->ar_bspstore;
517 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
518
519 if (in_syscall(pt))
520 ndirty += (cfm & 0x7f);
521 else
522 cfm &= ~(1UL << 63); /* clear valid bit */
523
524 if (cfmp)
525 *cfmp = cfm;
526 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
527}
528
529/*
530 * Synchronize (i.e, write) the RSE backing store living in kernel
531 * space to the VM of the CHILD task. SW and PT are the pointers to
532 * the switch_stack and pt_regs structures, respectively.
533 * USER_RBS_END is the user-level address at which the backing store
534 * ends.
535 */
536long
537ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
538 unsigned long user_rbs_start, unsigned long user_rbs_end)
539{
540 unsigned long addr, val;
541 long ret;
542
543 /* now copy word for word from kernel rbs to user rbs: */
544 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
545 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
546 if (ret < 0)
547 return ret;
548 if (access_process_vm(child, addr, &val, sizeof(val), 1)
549 != sizeof(val))
550 return -EIO;
551 }
552 return 0;
553}
554
Petr Tesarik3b2ce0b2007-12-12 15:23:34 +0100555static long
556ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
557 unsigned long user_rbs_start, unsigned long user_rbs_end)
558{
559 unsigned long addr, val;
560 long ret;
561
562 /* now copy word for word from user rbs to kernel rbs: */
563 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
564 if (access_process_vm(child, addr, &val, sizeof(val), 0)
565 != sizeof(val))
566 return -EIO;
567
568 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
569 if (ret < 0)
570 return ret;
571 }
572 return 0;
573}
574
575typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
576 unsigned long, unsigned long);
577
578static void do_sync_rbs(struct unw_frame_info *info, void *arg)
579{
580 struct pt_regs *pt;
581 unsigned long urbs_end;
582 syncfunc_t fn = arg;
583
584 if (unw_unwind_to_user(info) < 0)
585 return;
586 pt = task_pt_regs(info->task);
587 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
588
589 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
590}
591
592/*
593 * when a thread is stopped (ptraced), debugger might change thread's user
594 * stack (change memory directly), and we must avoid the RSE stored in kernel
595 * to override user stack (user space's RSE is newer than kernel's in the
596 * case). To workaround the issue, we copy kernel RSE to user RSE before the
597 * task is stopped, so user RSE has updated data. we then copy user RSE to
598 * kernel after the task is resummed from traced stop and kernel will use the
599 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
600 * synchronize user RSE to kernel.
601 */
602void ia64_ptrace_stop(void)
603{
604 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
605 return;
606 tsk_set_notify_resume(current);
607 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
608}
609
610/*
611 * This is called to read back the register backing store.
612 */
613void ia64_sync_krbs(void)
614{
615 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
616 tsk_clear_notify_resume(current);
617
618 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
619}
620
Petr Tesarikaa91a2e2007-12-12 15:24:25 +0100621/*
622 * After PTRACE_ATTACH, a thread's register backing store area in user
623 * space is assumed to contain correct data whenever the thread is
624 * stopped. arch_ptrace_stop takes care of this on tracing stops.
625 * But if the child was already stopped for job control when we attach
626 * to it, then it might not ever get into ptrace_stop by the time we
627 * want to examine the user memory containing the RBS.
628 */
629void
630ptrace_attach_sync_user_rbs (struct task_struct *child)
631{
632 int stopped = 0;
633 struct unw_frame_info info;
634
635 /*
636 * If the child is in TASK_STOPPED, we need to change that to
637 * TASK_TRACED momentarily while we operate on it. This ensures
638 * that the child won't be woken up and return to user mode while
639 * we are doing the sync. (It can only be woken up for SIGKILL.)
640 */
641
642 read_lock(&tasklist_lock);
643 if (child->signal) {
644 spin_lock_irq(&child->sighand->siglock);
645 if (child->state == TASK_STOPPED &&
646 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
647 tsk_set_notify_resume(child);
648
649 child->state = TASK_TRACED;
650 stopped = 1;
651 }
652 spin_unlock_irq(&child->sighand->siglock);
653 }
654 read_unlock(&tasklist_lock);
655
656 if (!stopped)
657 return;
658
659 unw_init_from_blocked_task(&info, child);
660 do_sync_rbs(&info, ia64_sync_user_rbs);
661
662 /*
663 * Now move the child back into TASK_STOPPED if it should be in a
664 * job control stop, so that SIGCONT can be used to wake it up.
665 */
666 read_lock(&tasklist_lock);
667 if (child->signal) {
668 spin_lock_irq(&child->sighand->siglock);
669 if (child->state == TASK_TRACED &&
670 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
671 child->state = TASK_STOPPED;
672 }
673 spin_unlock_irq(&child->sighand->siglock);
674 }
675 read_unlock(&tasklist_lock);
676}
677
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678static inline int
679thread_matches (struct task_struct *thread, unsigned long addr)
680{
681 unsigned long thread_rbs_end;
682 struct pt_regs *thread_regs;
683
684 if (ptrace_check_attach(thread, 0) < 0)
685 /*
686 * If the thread is not in an attachable state, we'll
687 * ignore it. The net effect is that if ADDR happens
688 * to overlap with the portion of the thread's
689 * register backing store that is currently residing
690 * on the thread's kernel stack, then ptrace() may end
691 * up accessing a stale value. But if the thread
692 * isn't stopped, that's a problem anyhow, so we're
693 * doing as well as we can...
694 */
695 return 0;
696
Al Viro64505782006-01-12 01:06:06 -0800697 thread_regs = task_pt_regs(thread);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700698 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
699 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
700 return 0;
701
702 return 1; /* looks like we've got a winner */
703}
704
705/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700706 * Write f32-f127 back to task->thread.fph if it has been modified.
707 */
708inline void
709ia64_flush_fph (struct task_struct *task)
710{
Al Viro64505782006-01-12 01:06:06 -0800711 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700712
Peter Chubb05062d92005-06-08 15:50:20 -0700713 /*
714 * Prevent migrating this task while
715 * we're fiddling with the FPU state
716 */
717 preempt_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
719 psr->mfh = 0;
720 task->thread.flags |= IA64_THREAD_FPH_VALID;
721 ia64_save_fpu(&task->thread.fph[0]);
722 }
Peter Chubb05062d92005-06-08 15:50:20 -0700723 preempt_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700724}
725
726/*
727 * Sync the fph state of the task so that it can be manipulated
728 * through thread.fph. If necessary, f32-f127 are written back to
729 * thread.fph or, if the fph state hasn't been used before, thread.fph
730 * is cleared to zeroes. Also, access to f32-f127 is disabled to
731 * ensure that the task picks up the state from thread.fph when it
732 * executes again.
733 */
734void
735ia64_sync_fph (struct task_struct *task)
736{
Al Viro64505782006-01-12 01:06:06 -0800737 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700738
739 ia64_flush_fph(task);
740 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
741 task->thread.flags |= IA64_THREAD_FPH_VALID;
742 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
743 }
744 ia64_drop_fpu(task);
745 psr->dfh = 1;
746}
747
Linus Torvalds1da177e2005-04-16 15:20:36 -0700748/*
749 * Change the machine-state of CHILD such that it will return via the normal
750 * kernel exit-path, rather than the syscall-exit path.
751 */
752static void
753convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
754 unsigned long cfm)
755{
756 struct unw_frame_info info, prev_info;
David Mosberger-Tang02a017a2005-05-10 11:35:00 -0700757 unsigned long ip, sp, pr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700758
759 unw_init_from_blocked_task(&info, child);
760 while (1) {
761 prev_info = info;
762 if (unw_unwind(&info) < 0)
763 return;
David Mosberger-Tang02a017a2005-05-10 11:35:00 -0700764
765 unw_get_sp(&info, &sp);
766 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
767 < IA64_PT_REGS_SIZE) {
768 dprintk("ptrace.%s: ran off the top of the kernel "
Harvey Harrisond4ed8082008-03-04 15:15:00 -0800769 "stack\n", __func__);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770 return;
David Mosberger-Tang02a017a2005-05-10 11:35:00 -0700771 }
772 if (unw_get_pr (&prev_info, &pr) < 0) {
773 unw_get_rp(&prev_info, &ip);
774 dprintk("ptrace.%s: failed to read "
775 "predicate register (ip=0x%lx)\n",
Harvey Harrisond4ed8082008-03-04 15:15:00 -0800776 __func__, ip);
David Mosberger-Tang02a017a2005-05-10 11:35:00 -0700777 return;
778 }
779 if (unw_is_intr_frame(&info)
780 && (pr & (1UL << PRED_USER_STACK)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700781 break;
782 }
783
David Mosberger-Tang7f9eaed2005-05-10 12:49:00 -0700784 /*
785 * Note: at the time of this call, the target task is blocked
786 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
787 * (aka, "pLvSys") we redirect execution from
788 * .work_pending_syscall_end to .work_processed_kernel.
789 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700790 unw_get_pr(&prev_info, &pr);
David Mosberger-Tang7f9eaed2005-05-10 12:49:00 -0700791 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700792 pr |= (1UL << PRED_NON_SYSCALL);
793 unw_set_pr(&prev_info, pr);
794
795 pt->cr_ifs = (1UL << 63) | cfm;
David Mosberger-Tang7f9eaed2005-05-10 12:49:00 -0700796 /*
797 * Clear the memory that is NOT written on syscall-entry to
798 * ensure we do not leak kernel-state to user when execution
799 * resumes.
800 */
801 pt->r2 = 0;
802 pt->r3 = 0;
803 pt->r14 = 0;
804 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
805 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
806 pt->b7 = 0;
807 pt->ar_ccv = 0;
808 pt->ar_csd = 0;
809 pt->ar_ssd = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700810}
811
812static int
813access_nat_bits (struct task_struct *child, struct pt_regs *pt,
814 struct unw_frame_info *info,
815 unsigned long *data, int write_access)
816{
817 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
818 char nat = 0;
819
820 if (write_access) {
821 nat_bits = *data;
822 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
823 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
824 dprintk("ptrace: failed to set ar.unat\n");
825 return -1;
826 }
827 for (regnum = 4; regnum <= 7; ++regnum) {
828 unw_get_gr(info, regnum, &dummy, &nat);
829 unw_set_gr(info, regnum, dummy,
830 (nat_bits >> regnum) & 1);
831 }
832 } else {
833 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
834 dprintk("ptrace: failed to read ar.unat\n");
835 return -1;
836 }
837 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
838 for (regnum = 4; regnum <= 7; ++regnum) {
839 unw_get_gr(info, regnum, &dummy, &nat);
840 nat_bits |= (nat != 0) << regnum;
841 }
842 *data = nat_bits;
843 }
844 return 0;
845}
846
847static int
848access_uarea (struct task_struct *child, unsigned long addr,
Shaohua Li4cd8dc82008-02-28 16:09:42 +0800849 unsigned long *data, int write_access);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700850
851static long
852ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
853{
854 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
855 struct unw_frame_info info;
856 struct ia64_fpreg fpval;
857 struct switch_stack *sw;
858 struct pt_regs *pt;
859 long ret, retval = 0;
860 char nat = 0;
861 int i;
862
863 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
864 return -EIO;
865
Al Viro64505782006-01-12 01:06:06 -0800866 pt = task_pt_regs(child);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700867 sw = (struct switch_stack *) (child->thread.ksp + 16);
868 unw_init_from_blocked_task(&info, child);
869 if (unw_unwind_to_user(&info) < 0) {
870 return -EIO;
871 }
872
873 if (((unsigned long) ppr & 0x7) != 0) {
874 dprintk("ptrace:unaligned register address %p\n", ppr);
875 return -EIO;
876 }
877
878 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
879 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
880 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
881 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
882 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
883 || access_uarea(child, PT_CFM, &cfm, 0)
884 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
885 return -EIO;
886
887 /* control regs */
888
889 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
890 retval |= __put_user(psr, &ppr->cr_ipsr);
891
892 /* app regs */
893
894 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
895 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
896 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
897 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
898 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
899 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
900
901 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
902 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
903 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
904 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
905 retval |= __put_user(cfm, &ppr->cfm);
906
907 /* gr1-gr3 */
908
909 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
910 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
911
912 /* gr4-gr7 */
913
914 for (i = 4; i < 8; i++) {
915 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
916 return -EIO;
917 retval |= __put_user(val, &ppr->gr[i]);
918 }
919
920 /* gr8-gr11 */
921
922 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
923
924 /* gr12-gr15 */
925
926 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
927 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
928 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
929
930 /* gr16-gr31 */
931
932 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
933
934 /* b0 */
935
936 retval |= __put_user(pt->b0, &ppr->br[0]);
937
938 /* b1-b5 */
939
940 for (i = 1; i < 6; i++) {
941 if (unw_access_br(&info, i, &val, 0) < 0)
942 return -EIO;
943 __put_user(val, &ppr->br[i]);
944 }
945
946 /* b6-b7 */
947
948 retval |= __put_user(pt->b6, &ppr->br[6]);
949 retval |= __put_user(pt->b7, &ppr->br[7]);
950
951 /* fr2-fr5 */
952
953 for (i = 2; i < 6; i++) {
954 if (unw_get_fr(&info, i, &fpval) < 0)
955 return -EIO;
956 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
957 }
958
959 /* fr6-fr11 */
960
961 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
962 sizeof(struct ia64_fpreg) * 6);
963
964 /* fp scratch regs(12-15) */
965
966 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
967 sizeof(struct ia64_fpreg) * 4);
968
969 /* fr16-fr31 */
970
971 for (i = 16; i < 32; i++) {
972 if (unw_get_fr(&info, i, &fpval) < 0)
973 return -EIO;
974 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
975 }
976
977 /* fph */
978
979 ia64_flush_fph(child);
980 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
981 sizeof(ppr->fr[32]) * 96);
982
983 /* preds */
984
985 retval |= __put_user(pt->pr, &ppr->pr);
986
987 /* nat bits */
988
989 retval |= __put_user(nat_bits, &ppr->nat);
990
991 ret = retval ? -EIO : 0;
992 return ret;
993}
994
995static long
996ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
997{
Matthew Chapman4ea78722005-06-21 16:19:20 -0700998 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700999 struct unw_frame_info info;
1000 struct switch_stack *sw;
1001 struct ia64_fpreg fpval;
1002 struct pt_regs *pt;
1003 long ret, retval = 0;
1004 int i;
1005
1006 memset(&fpval, 0, sizeof(fpval));
1007
1008 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1009 return -EIO;
1010
Al Viro64505782006-01-12 01:06:06 -08001011 pt = task_pt_regs(child);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001012 sw = (struct switch_stack *) (child->thread.ksp + 16);
1013 unw_init_from_blocked_task(&info, child);
1014 if (unw_unwind_to_user(&info) < 0) {
1015 return -EIO;
1016 }
1017
1018 if (((unsigned long) ppr & 0x7) != 0) {
1019 dprintk("ptrace:unaligned register address %p\n", ppr);
1020 return -EIO;
1021 }
1022
1023 /* control regs */
1024
1025 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1026 retval |= __get_user(psr, &ppr->cr_ipsr);
1027
1028 /* app regs */
1029
1030 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
Matthew Chapman4ea78722005-06-21 16:19:20 -07001031 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1033 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1034 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1035 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1036
1037 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1038 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1039 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1040 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1041 retval |= __get_user(cfm, &ppr->cfm);
1042
1043 /* gr1-gr3 */
1044
1045 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1046 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1047
1048 /* gr4-gr7 */
1049
1050 for (i = 4; i < 8; i++) {
1051 retval |= __get_user(val, &ppr->gr[i]);
1052 /* NaT bit will be set via PT_NAT_BITS: */
1053 if (unw_set_gr(&info, i, val, 0) < 0)
1054 return -EIO;
1055 }
1056
1057 /* gr8-gr11 */
1058
1059 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1060
1061 /* gr12-gr15 */
1062
1063 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1064 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1065 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1066
1067 /* gr16-gr31 */
1068
1069 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1070
1071 /* b0 */
1072
1073 retval |= __get_user(pt->b0, &ppr->br[0]);
1074
1075 /* b1-b5 */
1076
1077 for (i = 1; i < 6; i++) {
1078 retval |= __get_user(val, &ppr->br[i]);
1079 unw_set_br(&info, i, val);
1080 }
1081
1082 /* b6-b7 */
1083
1084 retval |= __get_user(pt->b6, &ppr->br[6]);
1085 retval |= __get_user(pt->b7, &ppr->br[7]);
1086
1087 /* fr2-fr5 */
1088
1089 for (i = 2; i < 6; i++) {
1090 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1091 if (unw_set_fr(&info, i, fpval) < 0)
1092 return -EIO;
1093 }
1094
1095 /* fr6-fr11 */
1096
1097 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1098 sizeof(ppr->fr[6]) * 6);
1099
1100 /* fp scratch regs(12-15) */
1101
1102 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1103 sizeof(ppr->fr[12]) * 4);
1104
1105 /* fr16-fr31 */
1106
1107 for (i = 16; i < 32; i++) {
1108 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1109 sizeof(fpval));
1110 if (unw_set_fr(&info, i, fpval) < 0)
1111 return -EIO;
1112 }
1113
1114 /* fph */
1115
1116 ia64_sync_fph(child);
1117 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1118 sizeof(ppr->fr[32]) * 96);
1119
1120 /* preds */
1121
1122 retval |= __get_user(pt->pr, &ppr->pr);
1123
1124 /* nat bits */
1125
1126 retval |= __get_user(nat_bits, &ppr->nat);
1127
1128 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
Matthew Chapman4ea78722005-06-21 16:19:20 -07001129 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1131 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1132 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1133 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1134 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1135 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1136
1137 ret = retval ? -EIO : 0;
1138 return ret;
1139}
1140
Petr Tesarik8db3f522008-02-11 22:43:38 +01001141void
1142user_enable_single_step (struct task_struct *child)
1143{
1144 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1145
1146 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1147 child_psr->ss = 1;
1148}
1149
1150void
1151user_enable_block_step (struct task_struct *child)
1152{
1153 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1154
1155 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1156 child_psr->tb = 1;
1157}
1158
1159void
1160user_disable_single_step (struct task_struct *child)
1161{
1162 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1163
1164 /* make sure the single step/taken-branch trap bits are not set: */
1165 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1166 child_psr->ss = 0;
1167 child_psr->tb = 0;
1168}
1169
Linus Torvalds1da177e2005-04-16 15:20:36 -07001170/*
1171 * Called by kernel/ptrace.c when detaching..
1172 *
1173 * Make sure the single step bit is not set.
1174 */
1175void
1176ptrace_disable (struct task_struct *child)
1177{
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001178 user_disable_single_step(child);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001179}
1180
Petr Tesarikeac738e2008-02-11 22:43:05 +01001181long
1182arch_ptrace (struct task_struct *child, long request, long addr, long data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001183{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001184 switch (request) {
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001185 case PTRACE_PEEKTEXT:
1186 case PTRACE_PEEKDATA:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001187 /* read word at location addr */
Petr Tesarik972559a2008-02-11 22:41:18 +01001188 if (access_process_vm(child, addr, &data, sizeof(data), 0)
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001189 != sizeof(data))
1190 return -EIO;
1191 /* ensure return value is not mistaken for error code */
Petr Tesarik972559a2008-02-11 22:41:18 +01001192 force_successful_syscall_return();
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001193 return data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001194
Petr Tesarik972559a2008-02-11 22:41:18 +01001195 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1196 * by the generic ptrace_request().
1197 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001199 case PTRACE_PEEKUSR:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001200 /* read the word at addr in the USER area */
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001201 if (access_uarea(child, addr, &data, 0) < 0)
1202 return -EIO;
1203 /* ensure return value is not mistaken for error code */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001204 force_successful_syscall_return();
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001205 return data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001206
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001207 case PTRACE_POKEUSR:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001208 /* write the word at addr in the USER area */
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001209 if (access_uarea(child, addr, &data, 1) < 0)
1210 return -EIO;
1211 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001212
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001213 case PTRACE_OLD_GETSIGINFO:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001214 /* for backwards-compatibility */
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001215 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001217 case PTRACE_OLD_SETSIGINFO:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001218 /* for backwards-compatibility */
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001219 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001220
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001221 case PTRACE_GETREGS:
1222 return ptrace_getregs(child,
1223 (struct pt_all_user_regs __user *) data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001224
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001225 case PTRACE_SETREGS:
1226 return ptrace_setregs(child,
1227 (struct pt_all_user_regs __user *) data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001228
Petr Tesarikaa17f6f2008-02-26 12:03:28 +01001229 default:
1230 return ptrace_request(child, request, addr, data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001231 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001232}
1233
1234
bibo,mao90f9d702007-01-31 17:50:31 +08001235static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07001236syscall_trace (void)
1237{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001238 /*
1239 * The 0x80 provides a way for the tracing parent to
1240 * distinguish between a syscall stop and SIGTRAP delivery.
1241 */
1242 ptrace_notify(SIGTRAP
1243 | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
1244
1245 /*
1246 * This isn't the same as continuing with a signal, but it
1247 * will do for normal use. strace only continues with a
1248 * signal if the stopping signal is not SIGTRAP. -brl
1249 */
1250 if (current->exit_code) {
1251 send_sig(current->exit_code, current, 1);
1252 current->exit_code = 0;
1253 }
1254}
1255
1256/* "asmlinkage" so the input arguments are preserved... */
1257
1258asmlinkage void
1259syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1260 long arg4, long arg5, long arg6, long arg7,
1261 struct pt_regs regs)
1262{
2fd6f582005-04-29 16:08:28 +01001263 if (test_thread_flag(TIF_SYSCALL_TRACE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001264 && (current->ptrace & PT_PTRACED))
1265 syscall_trace();
2fd6f582005-04-29 16:08:28 +01001266
Petr Tesarik3b2ce0b2007-12-12 15:23:34 +01001267 /* copy user rbs to kernel rbs */
1268 if (test_thread_flag(TIF_RESTORE_RSE))
1269 ia64_sync_krbs();
1270
2fd6f582005-04-29 16:08:28 +01001271 if (unlikely(current->audit_context)) {
1272 long syscall;
1273 int arch;
1274
1275 if (IS_IA32_PROCESS(&regs)) {
1276 syscall = regs.r1;
1277 arch = AUDIT_ARCH_I386;
1278 } else {
1279 syscall = regs.r15;
1280 arch = AUDIT_ARCH_IA64;
1281 }
1282
Al Viro5411be52006-03-29 20:23:36 -05001283 audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
2fd6f582005-04-29 16:08:28 +01001284 }
1285
Linus Torvalds1da177e2005-04-16 15:20:36 -07001286}
1287
1288/* "asmlinkage" so the input arguments are preserved... */
1289
1290asmlinkage void
1291syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1292 long arg4, long arg5, long arg6, long arg7,
1293 struct pt_regs regs)
1294{
David Woodhouseee436dc2005-11-18 14:43:54 +00001295 if (unlikely(current->audit_context)) {
1296 int success = AUDITSC_RESULT(regs.r10);
1297 long result = regs.r8;
1298
1299 if (success != AUDITSC_SUCCESS)
1300 result = -result;
Al Viro5411be52006-03-29 20:23:36 -05001301 audit_syscall_exit(success, result);
David Woodhouseee436dc2005-11-18 14:43:54 +00001302 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001303
bibo,mao90f9d702007-01-31 17:50:31 +08001304 if ((test_thread_flag(TIF_SYSCALL_TRACE)
1305 || test_thread_flag(TIF_SINGLESTEP))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001306 && (current->ptrace & PT_PTRACED))
1307 syscall_trace();
Petr Tesarik3b2ce0b2007-12-12 15:23:34 +01001308
1309 /* copy user rbs to kernel rbs */
1310 if (test_thread_flag(TIF_RESTORE_RSE))
1311 ia64_sync_krbs();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001312}
Shaohua Lic70f8f62008-02-28 16:47:50 +08001313
1314/* Utrace implementation starts here */
1315struct regset_get {
1316 void *kbuf;
1317 void __user *ubuf;
1318};
1319
1320struct regset_set {
1321 const void *kbuf;
1322 const void __user *ubuf;
1323};
1324
1325struct regset_getset {
1326 struct task_struct *target;
1327 const struct user_regset *regset;
1328 union {
1329 struct regset_get get;
1330 struct regset_set set;
1331 } u;
1332 unsigned int pos;
1333 unsigned int count;
1334 int ret;
1335};
1336
1337static int
1338access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1339 unsigned long addr, unsigned long *data, int write_access)
1340{
1341 struct pt_regs *pt;
1342 unsigned long *ptr = NULL;
1343 int ret;
1344 char nat = 0;
1345
1346 pt = task_pt_regs(target);
1347 switch (addr) {
1348 case ELF_GR_OFFSET(1):
1349 ptr = &pt->r1;
1350 break;
1351 case ELF_GR_OFFSET(2):
1352 case ELF_GR_OFFSET(3):
1353 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1354 break;
1355 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1356 if (write_access) {
1357 /* read NaT bit first: */
1358 unsigned long dummy;
1359
1360 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1361 if (ret < 0)
1362 return ret;
1363 }
1364 return unw_access_gr(info, addr/8, data, &nat, write_access);
1365 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1366 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1367 break;
1368 case ELF_GR_OFFSET(12):
1369 case ELF_GR_OFFSET(13):
1370 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1371 break;
1372 case ELF_GR_OFFSET(14):
1373 ptr = &pt->r14;
1374 break;
1375 case ELF_GR_OFFSET(15):
1376 ptr = &pt->r15;
1377 }
1378 if (write_access)
1379 *ptr = *data;
1380 else
1381 *data = *ptr;
1382 return 0;
1383}
1384
1385static int
1386access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1387 unsigned long addr, unsigned long *data, int write_access)
1388{
1389 struct pt_regs *pt;
1390 unsigned long *ptr = NULL;
1391
1392 pt = task_pt_regs(target);
1393 switch (addr) {
1394 case ELF_BR_OFFSET(0):
1395 ptr = &pt->b0;
1396 break;
1397 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1398 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1399 data, write_access);
1400 case ELF_BR_OFFSET(6):
1401 ptr = &pt->b6;
1402 break;
1403 case ELF_BR_OFFSET(7):
1404 ptr = &pt->b7;
1405 }
1406 if (write_access)
1407 *ptr = *data;
1408 else
1409 *data = *ptr;
1410 return 0;
1411}
1412
1413static int
1414access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1415 unsigned long addr, unsigned long *data, int write_access)
1416{
1417 struct pt_regs *pt;
1418 unsigned long cfm, urbs_end;
1419 unsigned long *ptr = NULL;
1420
1421 pt = task_pt_regs(target);
1422 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1423 switch (addr) {
1424 case ELF_AR_RSC_OFFSET:
1425 /* force PL3 */
1426 if (write_access)
1427 pt->ar_rsc = *data | (3 << 2);
1428 else
1429 *data = pt->ar_rsc;
1430 return 0;
1431 case ELF_AR_BSP_OFFSET:
1432 /*
1433 * By convention, we use PT_AR_BSP to refer to
1434 * the end of the user-level backing store.
1435 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1436 * to get the real value of ar.bsp at the time
1437 * the kernel was entered.
1438 *
1439 * Furthermore, when changing the contents of
1440 * PT_AR_BSP (or PT_CFM) while the task is
1441 * blocked in a system call, convert the state
1442 * so that the non-system-call exit
1443 * path is used. This ensures that the proper
1444 * state will be picked up when resuming
1445 * execution. However, it *also* means that
1446 * once we write PT_AR_BSP/PT_CFM, it won't be
1447 * possible to modify the syscall arguments of
1448 * the pending system call any longer. This
1449 * shouldn't be an issue because modifying
1450 * PT_AR_BSP/PT_CFM generally implies that
1451 * we're either abandoning the pending system
1452 * call or that we defer it's re-execution
1453 * (e.g., due to GDB doing an inferior
1454 * function call).
1455 */
1456 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1457 if (write_access) {
1458 if (*data != urbs_end) {
1459 if (in_syscall(pt))
1460 convert_to_non_syscall(target,
1461 pt,
1462 cfm);
1463 /*
1464 * Simulate user-level write
1465 * of ar.bsp:
1466 */
1467 pt->loadrs = 0;
1468 pt->ar_bspstore = *data;
1469 }
1470 } else
1471 *data = urbs_end;
1472 return 0;
1473 case ELF_AR_BSPSTORE_OFFSET:
1474 ptr = &pt->ar_bspstore;
1475 break;
1476 case ELF_AR_RNAT_OFFSET:
1477 ptr = &pt->ar_rnat;
1478 break;
1479 case ELF_AR_CCV_OFFSET:
1480 ptr = &pt->ar_ccv;
1481 break;
1482 case ELF_AR_UNAT_OFFSET:
1483 ptr = &pt->ar_unat;
1484 break;
1485 case ELF_AR_FPSR_OFFSET:
1486 ptr = &pt->ar_fpsr;
1487 break;
1488 case ELF_AR_PFS_OFFSET:
1489 ptr = &pt->ar_pfs;
1490 break;
1491 case ELF_AR_LC_OFFSET:
1492 return unw_access_ar(info, UNW_AR_LC, data,
1493 write_access);
1494 case ELF_AR_EC_OFFSET:
1495 return unw_access_ar(info, UNW_AR_EC, data,
1496 write_access);
1497 case ELF_AR_CSD_OFFSET:
1498 ptr = &pt->ar_csd;
1499 break;
1500 case ELF_AR_SSD_OFFSET:
1501 ptr = &pt->ar_ssd;
1502 }
1503 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1504 switch (addr) {
1505 case ELF_CR_IIP_OFFSET:
1506 ptr = &pt->cr_iip;
1507 break;
1508 case ELF_CFM_OFFSET:
1509 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1510 if (write_access) {
1511 if (((cfm ^ *data) & PFM_MASK) != 0) {
1512 if (in_syscall(pt))
1513 convert_to_non_syscall(target,
1514 pt,
1515 cfm);
1516 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1517 | (*data & PFM_MASK));
1518 }
1519 } else
1520 *data = cfm;
1521 return 0;
1522 case ELF_CR_IPSR_OFFSET:
1523 if (write_access) {
1524 unsigned long tmp = *data;
1525 /* psr.ri==3 is a reserved value: SDM 2:25 */
1526 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1527 tmp &= ~IA64_PSR_RI;
1528 pt->cr_ipsr = ((tmp & IPSR_MASK)
1529 | (pt->cr_ipsr & ~IPSR_MASK));
1530 } else
1531 *data = (pt->cr_ipsr & IPSR_MASK);
1532 return 0;
1533 }
1534 } else if (addr == ELF_NAT_OFFSET)
1535 return access_nat_bits(target, pt, info,
1536 data, write_access);
1537 else if (addr == ELF_PR_OFFSET)
1538 ptr = &pt->pr;
1539 else
1540 return -1;
1541
1542 if (write_access)
1543 *ptr = *data;
1544 else
1545 *data = *ptr;
1546
1547 return 0;
1548}
1549
1550static int
1551access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1552 unsigned long addr, unsigned long *data, int write_access)
1553{
1554 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1555 return access_elf_gpreg(target, info, addr, data, write_access);
1556 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1557 return access_elf_breg(target, info, addr, data, write_access);
1558 else
1559 return access_elf_areg(target, info, addr, data, write_access);
1560}
1561
1562void do_gpregs_get(struct unw_frame_info *info, void *arg)
1563{
1564 struct pt_regs *pt;
1565 struct regset_getset *dst = arg;
1566 elf_greg_t tmp[16];
1567 unsigned int i, index, min_copy;
1568
1569 if (unw_unwind_to_user(info) < 0)
1570 return;
1571
1572 /*
1573 * coredump format:
1574 * r0-r31
1575 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1576 * predicate registers (p0-p63)
1577 * b0-b7
1578 * ip cfm user-mask
1579 * ar.rsc ar.bsp ar.bspstore ar.rnat
1580 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1581 */
1582
1583
1584 /* Skip r0 */
1585 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1586 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1587 &dst->u.get.kbuf,
1588 &dst->u.get.ubuf,
1589 0, ELF_GR_OFFSET(1));
1590 if (dst->ret || dst->count == 0)
1591 return;
1592 }
1593
1594 /* gr1 - gr15 */
1595 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1596 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1597 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1598 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1599 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1600 index++)
1601 if (access_elf_reg(dst->target, info, i,
1602 &tmp[index], 0) < 0) {
1603 dst->ret = -EIO;
1604 return;
1605 }
1606 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1607 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1608 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1609 if (dst->ret || dst->count == 0)
1610 return;
1611 }
1612
1613 /* r16-r31 */
1614 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1615 pt = task_pt_regs(dst->target);
1616 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1617 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1618 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1619 if (dst->ret || dst->count == 0)
1620 return;
1621 }
1622
1623 /* nat, pr, b0 - b7 */
1624 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1625 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1626 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1627 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1628 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1629 index++)
1630 if (access_elf_reg(dst->target, info, i,
1631 &tmp[index], 0) < 0) {
1632 dst->ret = -EIO;
1633 return;
1634 }
1635 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1636 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1637 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1638 if (dst->ret || dst->count == 0)
1639 return;
1640 }
1641
1642 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1643 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1644 */
1645 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1646 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1647 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1648 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1649 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1650 index++)
1651 if (access_elf_reg(dst->target, info, i,
1652 &tmp[index], 0) < 0) {
1653 dst->ret = -EIO;
1654 return;
1655 }
1656 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1657 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1658 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1659 }
1660}
1661
1662void do_gpregs_set(struct unw_frame_info *info, void *arg)
1663{
1664 struct pt_regs *pt;
1665 struct regset_getset *dst = arg;
1666 elf_greg_t tmp[16];
1667 unsigned int i, index;
1668
1669 if (unw_unwind_to_user(info) < 0)
1670 return;
1671
1672 /* Skip r0 */
1673 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1674 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1675 &dst->u.set.kbuf,
1676 &dst->u.set.ubuf,
1677 0, ELF_GR_OFFSET(1));
1678 if (dst->ret || dst->count == 0)
1679 return;
1680 }
1681
1682 /* gr1-gr15 */
1683 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1684 i = dst->pos;
1685 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1686 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1687 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1688 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1689 if (dst->ret)
1690 return;
1691 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1692 if (access_elf_reg(dst->target, info, i,
1693 &tmp[index], 1) < 0) {
1694 dst->ret = -EIO;
1695 return;
1696 }
1697 if (dst->count == 0)
1698 return;
1699 }
1700
1701 /* gr16-gr31 */
1702 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1703 pt = task_pt_regs(dst->target);
1704 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1705 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1706 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1707 if (dst->ret || dst->count == 0)
1708 return;
1709 }
1710
1711 /* nat, pr, b0 - b7 */
1712 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1713 i = dst->pos;
1714 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1715 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1716 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1717 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1718 if (dst->ret)
1719 return;
1720 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1721 if (access_elf_reg(dst->target, info, i,
1722 &tmp[index], 1) < 0) {
1723 dst->ret = -EIO;
1724 return;
1725 }
1726 if (dst->count == 0)
1727 return;
1728 }
1729
1730 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1731 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1732 */
1733 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1734 i = dst->pos;
1735 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1736 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1737 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1738 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1739 if (dst->ret)
1740 return;
1741 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1742 if (access_elf_reg(dst->target, info, i,
1743 &tmp[index], 1) < 0) {
1744 dst->ret = -EIO;
1745 return;
1746 }
1747 }
1748}
1749
1750#define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1751
1752void do_fpregs_get(struct unw_frame_info *info, void *arg)
1753{
1754 struct regset_getset *dst = arg;
1755 struct task_struct *task = dst->target;
1756 elf_fpreg_t tmp[30];
1757 int index, min_copy, i;
1758
1759 if (unw_unwind_to_user(info) < 0)
1760 return;
1761
1762 /* Skip pos 0 and 1 */
1763 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1764 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1765 &dst->u.get.kbuf,
1766 &dst->u.get.ubuf,
1767 0, ELF_FP_OFFSET(2));
1768 if (dst->count == 0 || dst->ret)
1769 return;
1770 }
1771
1772 /* fr2-fr31 */
1773 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1774 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1775
1776 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1777 dst->pos + dst->count);
1778 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1779 index++)
1780 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1781 &tmp[index])) {
1782 dst->ret = -EIO;
1783 return;
1784 }
1785 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1786 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1787 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1788 if (dst->count == 0 || dst->ret)
1789 return;
1790 }
1791
1792 /* fph */
1793 if (dst->count > 0) {
1794 ia64_flush_fph(dst->target);
1795 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1796 dst->ret = user_regset_copyout(
1797 &dst->pos, &dst->count,
1798 &dst->u.get.kbuf, &dst->u.get.ubuf,
1799 &dst->target->thread.fph,
1800 ELF_FP_OFFSET(32), -1);
1801 else
1802 /* Zero fill instead. */
1803 dst->ret = user_regset_copyout_zero(
1804 &dst->pos, &dst->count,
1805 &dst->u.get.kbuf, &dst->u.get.ubuf,
1806 ELF_FP_OFFSET(32), -1);
1807 }
1808}
1809
1810void do_fpregs_set(struct unw_frame_info *info, void *arg)
1811{
1812 struct regset_getset *dst = arg;
1813 elf_fpreg_t fpreg, tmp[30];
1814 int index, start, end;
1815
1816 if (unw_unwind_to_user(info) < 0)
1817 return;
1818
1819 /* Skip pos 0 and 1 */
1820 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1821 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1822 &dst->u.set.kbuf,
1823 &dst->u.set.ubuf,
1824 0, ELF_FP_OFFSET(2));
1825 if (dst->count == 0 || dst->ret)
1826 return;
1827 }
1828
1829 /* fr2-fr31 */
1830 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1831 start = dst->pos;
1832 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1833 dst->pos + dst->count);
1834 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1835 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1836 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1837 if (dst->ret)
1838 return;
1839
1840 if (start & 0xF) { /* only write high part */
1841 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1842 &fpreg)) {
1843 dst->ret = -EIO;
1844 return;
1845 }
1846 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1847 = fpreg.u.bits[0];
1848 start &= ~0xFUL;
1849 }
1850 if (end & 0xF) { /* only write low part */
1851 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1852 &fpreg)) {
1853 dst->ret = -EIO;
1854 return;
1855 }
1856 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1857 = fpreg.u.bits[1];
1858 end = (end + 0xF) & ~0xFUL;
1859 }
1860
1861 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1862 index = start / sizeof(elf_fpreg_t);
1863 if (unw_set_fr(info, index, tmp[index - 2])) {
1864 dst->ret = -EIO;
1865 return;
1866 }
1867 }
1868 if (dst->ret || dst->count == 0)
1869 return;
1870 }
1871
1872 /* fph */
1873 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1874 ia64_sync_fph(dst->target);
1875 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1876 &dst->u.set.kbuf,
1877 &dst->u.set.ubuf,
1878 &dst->target->thread.fph,
1879 ELF_FP_OFFSET(32), -1);
1880 }
1881}
1882
1883static int
1884do_regset_call(void (*call)(struct unw_frame_info *, void *),
1885 struct task_struct *target,
1886 const struct user_regset *regset,
1887 unsigned int pos, unsigned int count,
1888 const void *kbuf, const void __user *ubuf)
1889{
1890 struct regset_getset info = { .target = target, .regset = regset,
1891 .pos = pos, .count = count,
1892 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1893 .ret = 0 };
1894
1895 if (target == current)
1896 unw_init_running(call, &info);
1897 else {
1898 struct unw_frame_info ufi;
1899 memset(&ufi, 0, sizeof(ufi));
1900 unw_init_from_blocked_task(&ufi, target);
1901 (*call)(&ufi, &info);
1902 }
1903
1904 return info.ret;
1905}
1906
1907static int
1908gpregs_get(struct task_struct *target,
1909 const struct user_regset *regset,
1910 unsigned int pos, unsigned int count,
1911 void *kbuf, void __user *ubuf)
1912{
1913 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1914 kbuf, ubuf);
1915}
1916
1917static int gpregs_set(struct task_struct *target,
1918 const struct user_regset *regset,
1919 unsigned int pos, unsigned int count,
1920 const void *kbuf, const void __user *ubuf)
1921{
1922 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1923 kbuf, ubuf);
1924}
1925
1926static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1927{
1928 do_sync_rbs(info, ia64_sync_user_rbs);
1929}
1930
1931/*
1932 * This is called to write back the register backing store.
1933 * ptrace does this before it stops, so that a tracer reading the user
1934 * memory after the thread stops will get the current register data.
1935 */
1936static int
1937gpregs_writeback(struct task_struct *target,
1938 const struct user_regset *regset,
1939 int now)
1940{
1941 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1942 return 0;
1943 tsk_set_notify_resume(target);
1944 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1945 NULL, NULL);
1946}
1947
1948static int
1949fpregs_active(struct task_struct *target, const struct user_regset *regset)
1950{
1951 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1952}
1953
1954static int fpregs_get(struct task_struct *target,
1955 const struct user_regset *regset,
1956 unsigned int pos, unsigned int count,
1957 void *kbuf, void __user *ubuf)
1958{
1959 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1960 kbuf, ubuf);
1961}
1962
1963static int fpregs_set(struct task_struct *target,
1964 const struct user_regset *regset,
1965 unsigned int pos, unsigned int count,
1966 const void *kbuf, const void __user *ubuf)
1967{
1968 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1969 kbuf, ubuf);
1970}
1971
Shaohua Li4cd8dc82008-02-28 16:09:42 +08001972static int
1973access_uarea(struct task_struct *child, unsigned long addr,
1974 unsigned long *data, int write_access)
1975{
1976 unsigned int pos = -1; /* an invalid value */
1977 int ret;
1978 unsigned long *ptr, regnum;
1979
1980 if ((addr & 0x7) != 0) {
1981 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1982 return -1;
1983 }
1984 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1985 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1986 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1987 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1988 dprintk("ptrace: rejecting access to register "
1989 "address 0x%lx\n", addr);
1990 return -1;
1991 }
1992
1993 switch (addr) {
1994 case PT_F32 ... (PT_F127 + 15):
1995 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1996 break;
1997 case PT_F2 ... (PT_F5 + 15):
1998 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1999 break;
2000 case PT_F10 ... (PT_F31 + 15):
2001 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
2002 break;
2003 case PT_F6 ... (PT_F9 + 15):
2004 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
2005 break;
2006 }
2007
2008 if (pos != -1) {
2009 if (write_access)
2010 ret = fpregs_set(child, NULL, pos,
2011 sizeof(unsigned long), data, NULL);
2012 else
2013 ret = fpregs_get(child, NULL, pos,
2014 sizeof(unsigned long), data, NULL);
2015 if (ret != 0)
2016 return -1;
2017 return 0;
2018 }
2019
2020 switch (addr) {
2021 case PT_NAT_BITS:
2022 pos = ELF_NAT_OFFSET;
2023 break;
2024 case PT_R4 ... PT_R7:
2025 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
2026 break;
2027 case PT_B1 ... PT_B5:
2028 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
2029 break;
2030 case PT_AR_EC:
2031 pos = ELF_AR_EC_OFFSET;
2032 break;
2033 case PT_AR_LC:
2034 pos = ELF_AR_LC_OFFSET;
2035 break;
2036 case PT_CR_IPSR:
2037 pos = ELF_CR_IPSR_OFFSET;
2038 break;
2039 case PT_CR_IIP:
2040 pos = ELF_CR_IIP_OFFSET;
2041 break;
2042 case PT_CFM:
2043 pos = ELF_CFM_OFFSET;
2044 break;
2045 case PT_AR_UNAT:
2046 pos = ELF_AR_UNAT_OFFSET;
2047 break;
2048 case PT_AR_PFS:
2049 pos = ELF_AR_PFS_OFFSET;
2050 break;
2051 case PT_AR_RSC:
2052 pos = ELF_AR_RSC_OFFSET;
2053 break;
2054 case PT_AR_RNAT:
2055 pos = ELF_AR_RNAT_OFFSET;
2056 break;
2057 case PT_AR_BSPSTORE:
2058 pos = ELF_AR_BSPSTORE_OFFSET;
2059 break;
2060 case PT_PR:
2061 pos = ELF_PR_OFFSET;
2062 break;
2063 case PT_B6:
2064 pos = ELF_BR_OFFSET(6);
2065 break;
2066 case PT_AR_BSP:
2067 pos = ELF_AR_BSP_OFFSET;
2068 break;
2069 case PT_R1 ... PT_R3:
2070 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2071 break;
2072 case PT_R12 ... PT_R15:
2073 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2074 break;
2075 case PT_R8 ... PT_R11:
2076 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2077 break;
2078 case PT_R16 ... PT_R31:
2079 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2080 break;
2081 case PT_AR_CCV:
2082 pos = ELF_AR_CCV_OFFSET;
2083 break;
2084 case PT_AR_FPSR:
2085 pos = ELF_AR_FPSR_OFFSET;
2086 break;
2087 case PT_B0:
2088 pos = ELF_BR_OFFSET(0);
2089 break;
2090 case PT_B7:
2091 pos = ELF_BR_OFFSET(7);
2092 break;
2093 case PT_AR_CSD:
2094 pos = ELF_AR_CSD_OFFSET;
2095 break;
2096 case PT_AR_SSD:
2097 pos = ELF_AR_SSD_OFFSET;
2098 break;
2099 }
2100
2101 if (pos != -1) {
2102 if (write_access)
2103 ret = gpregs_set(child, NULL, pos,
2104 sizeof(unsigned long), data, NULL);
2105 else
2106 ret = gpregs_get(child, NULL, pos,
2107 sizeof(unsigned long), data, NULL);
2108 if (ret != 0)
2109 return -1;
2110 return 0;
2111 }
2112
2113 /* access debug registers */
2114 if (addr >= PT_IBR) {
2115 regnum = (addr - PT_IBR) >> 3;
2116 ptr = &child->thread.ibr[0];
2117 } else {
2118 regnum = (addr - PT_DBR) >> 3;
2119 ptr = &child->thread.dbr[0];
2120 }
2121
2122 if (regnum >= 8) {
2123 dprintk("ptrace: rejecting access to register "
2124 "address 0x%lx\n", addr);
2125 return -1;
2126 }
2127#ifdef CONFIG_PERFMON
2128 /*
2129 * Check if debug registers are used by perfmon. This
2130 * test must be done once we know that we can do the
2131 * operation, i.e. the arguments are all valid, but
2132 * before we start modifying the state.
2133 *
2134 * Perfmon needs to keep a count of how many processes
2135 * are trying to modify the debug registers for system
2136 * wide monitoring sessions.
2137 *
2138 * We also include read access here, because they may
2139 * cause the PMU-installed debug register state
2140 * (dbr[], ibr[]) to be reset. The two arrays are also
2141 * used by perfmon, but we do not use
2142 * IA64_THREAD_DBG_VALID. The registers are restored
2143 * by the PMU context switch code.
2144 */
2145 if (pfm_use_debug_registers(child))
2146 return -1;
2147#endif
2148
2149 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2150 child->thread.flags |= IA64_THREAD_DBG_VALID;
2151 memset(child->thread.dbr, 0,
2152 sizeof(child->thread.dbr));
2153 memset(child->thread.ibr, 0,
2154 sizeof(child->thread.ibr));
2155 }
2156
2157 ptr += regnum;
2158
2159 if ((regnum & 1) && write_access) {
2160 /* don't let the user set kernel-level breakpoints: */
2161 *ptr = *data & ~(7UL << 56);
2162 return 0;
2163 }
2164 if (write_access)
2165 *ptr = *data;
2166 else
2167 *data = *ptr;
2168 return 0;
2169}
2170
Shaohua Lic70f8f62008-02-28 16:47:50 +08002171static const struct user_regset native_regsets[] = {
2172 {
2173 .core_note_type = NT_PRSTATUS,
2174 .n = ELF_NGREG,
2175 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2176 .get = gpregs_get, .set = gpregs_set,
2177 .writeback = gpregs_writeback
2178 },
2179 {
2180 .core_note_type = NT_PRFPREG,
2181 .n = ELF_NFPREG,
2182 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2183 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2184 },
2185};
2186
2187static const struct user_regset_view user_ia64_view = {
2188 .name = "ia64",
2189 .e_machine = EM_IA_64,
2190 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2191};
2192
2193const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2194{
Shaohua Li75529212008-02-28 16:09:33 +08002195#ifdef CONFIG_IA32_SUPPORT
2196 extern const struct user_regset_view user_ia32_view;
2197 if (IS_IA32_PROCESS(task_pt_regs(tsk)))
2198 return &user_ia32_view;
2199#endif
Shaohua Lic70f8f62008-02-28 16:47:50 +08002200 return &user_ia64_view;
2201}
Shaohua Licfb361f2008-09-18 15:49:14 +08002202
2203struct syscall_get_set_args {
2204 unsigned int i;
2205 unsigned int n;
2206 unsigned long *args;
2207 struct pt_regs *regs;
2208 int rw;
2209};
2210
2211static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2212{
2213 struct syscall_get_set_args *args = data;
2214 struct pt_regs *pt = args->regs;
2215 unsigned long *krbs, cfm, ndirty;
2216 int i, count;
2217
2218 if (unw_unwind_to_user(info) < 0)
2219 return;
2220
2221 cfm = pt->cr_ifs;
2222 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2223 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2224
2225 count = 0;
2226 if (in_syscall(pt))
2227 count = min_t(int, args->n, cfm & 0x7f);
2228
2229 for (i = 0; i < count; i++) {
2230 if (args->rw)
2231 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2232 args->args[i];
2233 else
2234 args->args[i] = *ia64_rse_skip_regs(krbs,
2235 ndirty + i + args->i);
2236 }
2237
2238 if (!args->rw) {
2239 while (i < args->n) {
2240 args->args[i] = 0;
2241 i++;
2242 }
2243 }
2244}
2245
2246void ia64_syscall_get_set_arguments(struct task_struct *task,
2247 struct pt_regs *regs, unsigned int i, unsigned int n,
2248 unsigned long *args, int rw)
2249{
2250 struct syscall_get_set_args data = {
2251 .i = i,
2252 .n = n,
2253 .args = args,
2254 .regs = regs,
2255 .rw = rw,
2256 };
2257
2258 if (task == current)
2259 unw_init_running(syscall_get_set_args_cb, &data);
2260 else {
2261 struct unw_frame_info ufi;
2262 memset(&ufi, 0, sizeof(ufi));
2263 unw_init_from_blocked_task(&ufi, task);
2264 syscall_get_set_args_cb(&ufi, &data);
2265 }
2266}