blob: fc2faa44f8d185b6be9b8600a4ffb9991d5b980f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
Linus Torvalds1da177e2005-04-16 15:20:36 -070017#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
John McCutchan7a91bf72005-08-08 13:52:16 -040021#include <linux/fsnotify.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/smp_lock.h>
25#include <linux/hash.h>
26#include <linux/cache.h>
27#include <linux/module.h>
28#include <linux/mount.h>
29#include <linux/file.h>
30#include <asm/uaccess.h>
31#include <linux/security.h>
32#include <linux/seqlock.h>
33#include <linux/swap.h>
34#include <linux/bootmem.h>
David Howells07f3f052006-09-30 20:52:18 +020035#include "internal.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070036
Linus Torvalds1da177e2005-04-16 15:20:36 -070037
Eric Dumazetfa3536c2006-03-26 01:37:24 -080038int sysctl_vfs_cache_pressure __read_mostly = 100;
Linus Torvalds1da177e2005-04-16 15:20:36 -070039EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
Ingo Molnare4d91912006-07-03 00:24:34 -070042static __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -070043
44EXPORT_SYMBOL(dcache_lock);
45
Eric Dumazetfa3536c2006-03-26 01:37:24 -080046static kmem_cache_t *dentry_cache __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -070047
48#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49
50/*
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
54 *
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
57 */
58#define D_HASHBITS d_hash_shift
59#define D_HASHMASK d_hash_mask
60
Eric Dumazetfa3536c2006-03-26 01:37:24 -080061static unsigned int d_hash_mask __read_mostly;
62static unsigned int d_hash_shift __read_mostly;
63static struct hlist_head *dentry_hashtable __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -070064static LIST_HEAD(dentry_unused);
65
66/* Statistics gathering. */
67struct dentry_stat_t dentry_stat = {
68 .age_limit = 45,
69};
70
71static void d_callback(struct rcu_head *head)
72{
Eric Dumazet5160ee62006-01-08 01:03:32 -080073 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
Linus Torvalds1da177e2005-04-16 15:20:36 -070074
75 if (dname_external(dentry))
76 kfree(dentry->d_name.name);
77 kmem_cache_free(dentry_cache, dentry);
78}
79
80/*
81 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
82 * inside dcache_lock.
83 */
84static void d_free(struct dentry *dentry)
85{
86 if (dentry->d_op && dentry->d_op->d_release)
87 dentry->d_op->d_release(dentry);
Eric Dumazet5160ee62006-01-08 01:03:32 -080088 call_rcu(&dentry->d_u.d_rcu, d_callback);
Linus Torvalds1da177e2005-04-16 15:20:36 -070089}
90
91/*
92 * Release the dentry's inode, using the filesystem
93 * d_iput() operation if defined.
94 * Called with dcache_lock and per dentry lock held, drops both.
95 */
Arjan van de Ven858119e2006-01-14 13:20:43 -080096static void dentry_iput(struct dentry * dentry)
Linus Torvalds1da177e2005-04-16 15:20:36 -070097{
98 struct inode *inode = dentry->d_inode;
99 if (inode) {
100 dentry->d_inode = NULL;
101 list_del_init(&dentry->d_alias);
102 spin_unlock(&dentry->d_lock);
103 spin_unlock(&dcache_lock);
Linus Torvaldsf805fbd2005-09-19 19:54:29 -0700104 if (!inode->i_nlink)
105 fsnotify_inoderemove(inode);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700106 if (dentry->d_op && dentry->d_op->d_iput)
107 dentry->d_op->d_iput(dentry, inode);
108 else
109 iput(inode);
110 } else {
111 spin_unlock(&dentry->d_lock);
112 spin_unlock(&dcache_lock);
113 }
114}
115
116/*
117 * This is dput
118 *
119 * This is complicated by the fact that we do not want to put
120 * dentries that are no longer on any hash chain on the unused
121 * list: we'd much rather just get rid of them immediately.
122 *
123 * However, that implies that we have to traverse the dentry
124 * tree upwards to the parents which might _also_ now be
125 * scheduled for deletion (it may have been only waiting for
126 * its last child to go away).
127 *
128 * This tail recursion is done by hand as we don't want to depend
129 * on the compiler to always get this right (gcc generally doesn't).
130 * Real recursion would eat up our stack space.
131 */
132
133/*
134 * dput - release a dentry
135 * @dentry: dentry to release
136 *
137 * Release a dentry. This will drop the usage count and if appropriate
138 * call the dentry unlink method as well as removing it from the queues and
139 * releasing its resources. If the parent dentries were scheduled for release
140 * they too may now get deleted.
141 *
142 * no dcache lock, please.
143 */
144
145void dput(struct dentry *dentry)
146{
147 if (!dentry)
148 return;
149
150repeat:
151 if (atomic_read(&dentry->d_count) == 1)
152 might_sleep();
153 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
154 return;
155
156 spin_lock(&dentry->d_lock);
157 if (atomic_read(&dentry->d_count)) {
158 spin_unlock(&dentry->d_lock);
159 spin_unlock(&dcache_lock);
160 return;
161 }
162
163 /*
164 * AV: ->d_delete() is _NOT_ allowed to block now.
165 */
166 if (dentry->d_op && dentry->d_op->d_delete) {
167 if (dentry->d_op->d_delete(dentry))
168 goto unhash_it;
169 }
170 /* Unreachable? Get rid of it */
171 if (d_unhashed(dentry))
172 goto kill_it;
173 if (list_empty(&dentry->d_lru)) {
174 dentry->d_flags |= DCACHE_REFERENCED;
175 list_add(&dentry->d_lru, &dentry_unused);
176 dentry_stat.nr_unused++;
177 }
178 spin_unlock(&dentry->d_lock);
179 spin_unlock(&dcache_lock);
180 return;
181
182unhash_it:
183 __d_drop(dentry);
184
185kill_it: {
186 struct dentry *parent;
187
188 /* If dentry was on d_lru list
189 * delete it from there
190 */
191 if (!list_empty(&dentry->d_lru)) {
192 list_del(&dentry->d_lru);
193 dentry_stat.nr_unused--;
194 }
Eric Dumazet5160ee62006-01-08 01:03:32 -0800195 list_del(&dentry->d_u.d_child);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196 dentry_stat.nr_dentry--; /* For d_free, below */
197 /*drops the locks, at that point nobody can reach this dentry */
198 dentry_iput(dentry);
199 parent = dentry->d_parent;
200 d_free(dentry);
201 if (dentry == parent)
202 return;
203 dentry = parent;
204 goto repeat;
205 }
206}
207
208/**
209 * d_invalidate - invalidate a dentry
210 * @dentry: dentry to invalidate
211 *
212 * Try to invalidate the dentry if it turns out to be
213 * possible. If there are other dentries that can be
214 * reached through this one we can't delete it and we
215 * return -EBUSY. On success we return 0.
216 *
217 * no dcache lock.
218 */
219
220int d_invalidate(struct dentry * dentry)
221{
222 /*
223 * If it's already been dropped, return OK.
224 */
225 spin_lock(&dcache_lock);
226 if (d_unhashed(dentry)) {
227 spin_unlock(&dcache_lock);
228 return 0;
229 }
230 /*
231 * Check whether to do a partial shrink_dcache
232 * to get rid of unused child entries.
233 */
234 if (!list_empty(&dentry->d_subdirs)) {
235 spin_unlock(&dcache_lock);
236 shrink_dcache_parent(dentry);
237 spin_lock(&dcache_lock);
238 }
239
240 /*
241 * Somebody else still using it?
242 *
243 * If it's a directory, we can't drop it
244 * for fear of somebody re-populating it
245 * with children (even though dropping it
246 * would make it unreachable from the root,
247 * we might still populate it if it was a
248 * working directory or similar).
249 */
250 spin_lock(&dentry->d_lock);
251 if (atomic_read(&dentry->d_count) > 1) {
252 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
253 spin_unlock(&dentry->d_lock);
254 spin_unlock(&dcache_lock);
255 return -EBUSY;
256 }
257 }
258
259 __d_drop(dentry);
260 spin_unlock(&dentry->d_lock);
261 spin_unlock(&dcache_lock);
262 return 0;
263}
264
265/* This should be called _only_ with dcache_lock held */
266
267static inline struct dentry * __dget_locked(struct dentry *dentry)
268{
269 atomic_inc(&dentry->d_count);
270 if (!list_empty(&dentry->d_lru)) {
271 dentry_stat.nr_unused--;
272 list_del_init(&dentry->d_lru);
273 }
274 return dentry;
275}
276
277struct dentry * dget_locked(struct dentry *dentry)
278{
279 return __dget_locked(dentry);
280}
281
282/**
283 * d_find_alias - grab a hashed alias of inode
284 * @inode: inode in question
285 * @want_discon: flag, used by d_splice_alias, to request
286 * that only a DISCONNECTED alias be returned.
287 *
288 * If inode has a hashed alias, or is a directory and has any alias,
289 * acquire the reference to alias and return it. Otherwise return NULL.
290 * Notice that if inode is a directory there can be only one alias and
291 * it can be unhashed only if it has no children, or if it is the root
292 * of a filesystem.
293 *
294 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
295 * any other hashed alias over that one unless @want_discon is set,
296 * in which case only return a DCACHE_DISCONNECTED alias.
297 */
298
299static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
300{
301 struct list_head *head, *next, *tmp;
302 struct dentry *alias, *discon_alias=NULL;
303
304 head = &inode->i_dentry;
305 next = inode->i_dentry.next;
306 while (next != head) {
307 tmp = next;
308 next = tmp->next;
309 prefetch(next);
310 alias = list_entry(tmp, struct dentry, d_alias);
311 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
312 if (alias->d_flags & DCACHE_DISCONNECTED)
313 discon_alias = alias;
314 else if (!want_discon) {
315 __dget_locked(alias);
316 return alias;
317 }
318 }
319 }
320 if (discon_alias)
321 __dget_locked(discon_alias);
322 return discon_alias;
323}
324
325struct dentry * d_find_alias(struct inode *inode)
326{
David Howells214fda12006-03-25 03:06:36 -0800327 struct dentry *de = NULL;
328
329 if (!list_empty(&inode->i_dentry)) {
330 spin_lock(&dcache_lock);
331 de = __d_find_alias(inode, 0);
332 spin_unlock(&dcache_lock);
333 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700334 return de;
335}
336
337/*
338 * Try to kill dentries associated with this inode.
339 * WARNING: you must own a reference to inode.
340 */
341void d_prune_aliases(struct inode *inode)
342{
Domen Puncer0cdca3f2005-09-10 00:27:07 -0700343 struct dentry *dentry;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700344restart:
345 spin_lock(&dcache_lock);
Domen Puncer0cdca3f2005-09-10 00:27:07 -0700346 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700347 spin_lock(&dentry->d_lock);
348 if (!atomic_read(&dentry->d_count)) {
349 __dget_locked(dentry);
350 __d_drop(dentry);
351 spin_unlock(&dentry->d_lock);
352 spin_unlock(&dcache_lock);
353 dput(dentry);
354 goto restart;
355 }
356 spin_unlock(&dentry->d_lock);
357 }
358 spin_unlock(&dcache_lock);
359}
360
361/*
Andrew Mortond702ccb2006-06-22 14:47:31 -0700362 * Throw away a dentry - free the inode, dput the parent. This requires that
363 * the LRU list has already been removed.
364 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700365 * Called with dcache_lock, drops it and then regains.
Andrew Mortond702ccb2006-06-22 14:47:31 -0700366 * Called with dentry->d_lock held, drops it.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700367 */
Andrew Mortond702ccb2006-06-22 14:47:31 -0700368static void prune_one_dentry(struct dentry * dentry)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700369{
370 struct dentry * parent;
371
372 __d_drop(dentry);
Eric Dumazet5160ee62006-01-08 01:03:32 -0800373 list_del(&dentry->d_u.d_child);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374 dentry_stat.nr_dentry--; /* For d_free, below */
375 dentry_iput(dentry);
376 parent = dentry->d_parent;
377 d_free(dentry);
378 if (parent != dentry)
379 dput(parent);
380 spin_lock(&dcache_lock);
381}
382
383/**
384 * prune_dcache - shrink the dcache
385 * @count: number of entries to try and free
NeilBrown0feae5c2006-06-22 14:47:28 -0700386 * @sb: if given, ignore dentries for other superblocks
387 * which are being unmounted.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388 *
389 * Shrink the dcache. This is done when we need
390 * more memory, or simply when we need to unmount
391 * something (at which point we need to unuse
392 * all dentries).
393 *
394 * This function may fail to free any resources if
395 * all the dentries are in use.
396 */
397
NeilBrown0feae5c2006-06-22 14:47:28 -0700398static void prune_dcache(int count, struct super_block *sb)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399{
400 spin_lock(&dcache_lock);
401 for (; count ; count--) {
402 struct dentry *dentry;
403 struct list_head *tmp;
NeilBrown0feae5c2006-06-22 14:47:28 -0700404 struct rw_semaphore *s_umount;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700405
406 cond_resched_lock(&dcache_lock);
407
408 tmp = dentry_unused.prev;
Hua Zhongf58a1eb2006-06-25 05:49:32 -0700409 if (sb) {
NeilBrown0feae5c2006-06-22 14:47:28 -0700410 /* Try to find a dentry for this sb, but don't try
411 * too hard, if they aren't near the tail they will
412 * be moved down again soon
413 */
414 int skip = count;
415 while (skip && tmp != &dentry_unused &&
416 list_entry(tmp, struct dentry, d_lru)->d_sb != sb) {
417 skip--;
418 tmp = tmp->prev;
419 }
420 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700421 if (tmp == &dentry_unused)
422 break;
423 list_del_init(tmp);
424 prefetch(dentry_unused.prev);
425 dentry_stat.nr_unused--;
426 dentry = list_entry(tmp, struct dentry, d_lru);
427
428 spin_lock(&dentry->d_lock);
429 /*
430 * We found an inuse dentry which was not removed from
431 * dentry_unused because of laziness during lookup. Do not free
432 * it - just keep it off the dentry_unused list.
433 */
434 if (atomic_read(&dentry->d_count)) {
435 spin_unlock(&dentry->d_lock);
436 continue;
437 }
438 /* If the dentry was recently referenced, don't free it. */
439 if (dentry->d_flags & DCACHE_REFERENCED) {
440 dentry->d_flags &= ~DCACHE_REFERENCED;
441 list_add(&dentry->d_lru, &dentry_unused);
442 dentry_stat.nr_unused++;
443 spin_unlock(&dentry->d_lock);
444 continue;
445 }
NeilBrown0feae5c2006-06-22 14:47:28 -0700446 /*
447 * If the dentry is not DCACHED_REFERENCED, it is time
448 * to remove it from the dcache, provided the super block is
449 * NULL (which means we are trying to reclaim memory)
450 * or this dentry belongs to the same super block that
451 * we want to shrink.
452 */
453 /*
454 * If this dentry is for "my" filesystem, then I can prune it
455 * without taking the s_umount lock (I already hold it).
456 */
457 if (sb && dentry->d_sb == sb) {
458 prune_one_dentry(dentry);
459 continue;
460 }
461 /*
462 * ...otherwise we need to be sure this filesystem isn't being
463 * unmounted, otherwise we could race with
464 * generic_shutdown_super(), and end up holding a reference to
465 * an inode while the filesystem is unmounted.
466 * So we try to get s_umount, and make sure s_root isn't NULL.
467 * (Take a local copy of s_umount to avoid a use-after-free of
468 * `dentry').
469 */
470 s_umount = &dentry->d_sb->s_umount;
471 if (down_read_trylock(s_umount)) {
472 if (dentry->d_sb->s_root != NULL) {
473 prune_one_dentry(dentry);
474 up_read(s_umount);
475 continue;
476 }
477 up_read(s_umount);
478 }
479 spin_unlock(&dentry->d_lock);
480 /* Cannot remove the first dentry, and it isn't appropriate
481 * to move it to the head of the list, so give up, and try
482 * later
483 */
484 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700485 }
486 spin_unlock(&dcache_lock);
487}
488
489/*
490 * Shrink the dcache for the specified super block.
491 * This allows us to unmount a device without disturbing
492 * the dcache for the other devices.
493 *
494 * This implementation makes just two traversals of the
495 * unused list. On the first pass we move the selected
496 * dentries to the most recent end, and on the second
497 * pass we free them. The second pass must restart after
498 * each dput(), but since the target dentries are all at
499 * the end, it's really just a single traversal.
500 */
501
502/**
503 * shrink_dcache_sb - shrink dcache for a superblock
504 * @sb: superblock
505 *
506 * Shrink the dcache for the specified super block. This
507 * is used to free the dcache before unmounting a file
508 * system
509 */
510
511void shrink_dcache_sb(struct super_block * sb)
512{
513 struct list_head *tmp, *next;
514 struct dentry *dentry;
515
516 /*
517 * Pass one ... move the dentries for the specified
518 * superblock to the most recent end of the unused list.
519 */
520 spin_lock(&dcache_lock);
Domen Puncer0cdca3f2005-09-10 00:27:07 -0700521 list_for_each_safe(tmp, next, &dentry_unused) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700522 dentry = list_entry(tmp, struct dentry, d_lru);
523 if (dentry->d_sb != sb)
524 continue;
Akinobu Mita1bfba4e2006-06-26 00:24:40 -0700525 list_move(tmp, &dentry_unused);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526 }
527
528 /*
529 * Pass two ... free the dentries for this superblock.
530 */
531repeat:
Domen Puncer0cdca3f2005-09-10 00:27:07 -0700532 list_for_each_safe(tmp, next, &dentry_unused) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533 dentry = list_entry(tmp, struct dentry, d_lru);
534 if (dentry->d_sb != sb)
535 continue;
536 dentry_stat.nr_unused--;
537 list_del_init(tmp);
538 spin_lock(&dentry->d_lock);
539 if (atomic_read(&dentry->d_count)) {
540 spin_unlock(&dentry->d_lock);
541 continue;
542 }
543 prune_one_dentry(dentry);
Kirill Korotaev2ab13462006-03-25 03:07:45 -0800544 cond_resched_lock(&dcache_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700545 goto repeat;
546 }
547 spin_unlock(&dcache_lock);
548}
549
550/*
551 * Search for at least 1 mount point in the dentry's subdirs.
552 * We descend to the next level whenever the d_subdirs
553 * list is non-empty and continue searching.
554 */
555
556/**
557 * have_submounts - check for mounts over a dentry
558 * @parent: dentry to check.
559 *
560 * Return true if the parent or its subdirectories contain
561 * a mount point
562 */
563
564int have_submounts(struct dentry *parent)
565{
566 struct dentry *this_parent = parent;
567 struct list_head *next;
568
569 spin_lock(&dcache_lock);
570 if (d_mountpoint(parent))
571 goto positive;
572repeat:
573 next = this_parent->d_subdirs.next;
574resume:
575 while (next != &this_parent->d_subdirs) {
576 struct list_head *tmp = next;
Eric Dumazet5160ee62006-01-08 01:03:32 -0800577 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578 next = tmp->next;
579 /* Have we found a mount point ? */
580 if (d_mountpoint(dentry))
581 goto positive;
582 if (!list_empty(&dentry->d_subdirs)) {
583 this_parent = dentry;
584 goto repeat;
585 }
586 }
587 /*
588 * All done at this level ... ascend and resume the search.
589 */
590 if (this_parent != parent) {
Eric Dumazet5160ee62006-01-08 01:03:32 -0800591 next = this_parent->d_u.d_child.next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700592 this_parent = this_parent->d_parent;
593 goto resume;
594 }
595 spin_unlock(&dcache_lock);
596 return 0; /* No mount points found in tree */
597positive:
598 spin_unlock(&dcache_lock);
599 return 1;
600}
601
602/*
603 * Search the dentry child list for the specified parent,
604 * and move any unused dentries to the end of the unused
605 * list for prune_dcache(). We descend to the next level
606 * whenever the d_subdirs list is non-empty and continue
607 * searching.
608 *
609 * It returns zero iff there are no unused children,
610 * otherwise it returns the number of children moved to
611 * the end of the unused list. This may not be the total
612 * number of unused children, because select_parent can
613 * drop the lock and return early due to latency
614 * constraints.
615 */
616static int select_parent(struct dentry * parent)
617{
618 struct dentry *this_parent = parent;
619 struct list_head *next;
620 int found = 0;
621
622 spin_lock(&dcache_lock);
623repeat:
624 next = this_parent->d_subdirs.next;
625resume:
626 while (next != &this_parent->d_subdirs) {
627 struct list_head *tmp = next;
Eric Dumazet5160ee62006-01-08 01:03:32 -0800628 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629 next = tmp->next;
630
631 if (!list_empty(&dentry->d_lru)) {
632 dentry_stat.nr_unused--;
633 list_del_init(&dentry->d_lru);
634 }
635 /*
636 * move only zero ref count dentries to the end
637 * of the unused list for prune_dcache
638 */
639 if (!atomic_read(&dentry->d_count)) {
Akinobu Mita8e130592006-06-26 00:24:37 -0700640 list_add_tail(&dentry->d_lru, &dentry_unused);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700641 dentry_stat.nr_unused++;
642 found++;
643 }
644
645 /*
646 * We can return to the caller if we have found some (this
647 * ensures forward progress). We'll be coming back to find
648 * the rest.
649 */
650 if (found && need_resched())
651 goto out;
652
653 /*
654 * Descend a level if the d_subdirs list is non-empty.
655 */
656 if (!list_empty(&dentry->d_subdirs)) {
657 this_parent = dentry;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700658 goto repeat;
659 }
660 }
661 /*
662 * All done at this level ... ascend and resume the search.
663 */
664 if (this_parent != parent) {
Eric Dumazet5160ee62006-01-08 01:03:32 -0800665 next = this_parent->d_u.d_child.next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700666 this_parent = this_parent->d_parent;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700667 goto resume;
668 }
669out:
670 spin_unlock(&dcache_lock);
671 return found;
672}
673
674/**
675 * shrink_dcache_parent - prune dcache
676 * @parent: parent of entries to prune
677 *
678 * Prune the dcache to remove unused children of the parent dentry.
679 */
680
681void shrink_dcache_parent(struct dentry * parent)
682{
683 int found;
684
685 while ((found = select_parent(parent)) != 0)
NeilBrown0feae5c2006-06-22 14:47:28 -0700686 prune_dcache(found, parent->d_sb);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700687}
688
Linus Torvalds1da177e2005-04-16 15:20:36 -0700689/*
690 * Scan `nr' dentries and return the number which remain.
691 *
692 * We need to avoid reentering the filesystem if the caller is performing a
693 * GFP_NOFS allocation attempt. One example deadlock is:
694 *
695 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
696 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
697 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
698 *
699 * In this case we return -1 to tell the caller that we baled.
700 */
Al Viro27496a82005-10-21 03:20:48 -0400701static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700702{
703 if (nr) {
704 if (!(gfp_mask & __GFP_FS))
705 return -1;
NeilBrown0feae5c2006-06-22 14:47:28 -0700706 prune_dcache(nr, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700707 }
708 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
709}
710
711/**
712 * d_alloc - allocate a dcache entry
713 * @parent: parent of entry to allocate
714 * @name: qstr of the name
715 *
716 * Allocates a dentry. It returns %NULL if there is insufficient memory
717 * available. On a success the dentry is returned. The name passed in is
718 * copied and the copy passed in may be reused after this call.
719 */
720
721struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
722{
723 struct dentry *dentry;
724 char *dname;
725
726 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
727 if (!dentry)
728 return NULL;
729
730 if (name->len > DNAME_INLINE_LEN-1) {
731 dname = kmalloc(name->len + 1, GFP_KERNEL);
732 if (!dname) {
733 kmem_cache_free(dentry_cache, dentry);
734 return NULL;
735 }
736 } else {
737 dname = dentry->d_iname;
738 }
739 dentry->d_name.name = dname;
740
741 dentry->d_name.len = name->len;
742 dentry->d_name.hash = name->hash;
743 memcpy(dname, name->name, name->len);
744 dname[name->len] = 0;
745
746 atomic_set(&dentry->d_count, 1);
747 dentry->d_flags = DCACHE_UNHASHED;
748 spin_lock_init(&dentry->d_lock);
749 dentry->d_inode = NULL;
750 dentry->d_parent = NULL;
751 dentry->d_sb = NULL;
752 dentry->d_op = NULL;
753 dentry->d_fsdata = NULL;
754 dentry->d_mounted = 0;
Marcelo Tosatti47ba87e2006-02-03 03:04:06 -0800755#ifdef CONFIG_PROFILING
Linus Torvalds1da177e2005-04-16 15:20:36 -0700756 dentry->d_cookie = NULL;
Marcelo Tosatti47ba87e2006-02-03 03:04:06 -0800757#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700758 INIT_HLIST_NODE(&dentry->d_hash);
759 INIT_LIST_HEAD(&dentry->d_lru);
760 INIT_LIST_HEAD(&dentry->d_subdirs);
761 INIT_LIST_HEAD(&dentry->d_alias);
762
763 if (parent) {
764 dentry->d_parent = dget(parent);
765 dentry->d_sb = parent->d_sb;
766 } else {
Eric Dumazet5160ee62006-01-08 01:03:32 -0800767 INIT_LIST_HEAD(&dentry->d_u.d_child);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700768 }
769
770 spin_lock(&dcache_lock);
771 if (parent)
Eric Dumazet5160ee62006-01-08 01:03:32 -0800772 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700773 dentry_stat.nr_dentry++;
774 spin_unlock(&dcache_lock);
775
776 return dentry;
777}
778
779struct dentry *d_alloc_name(struct dentry *parent, const char *name)
780{
781 struct qstr q;
782
783 q.name = name;
784 q.len = strlen(name);
785 q.hash = full_name_hash(q.name, q.len);
786 return d_alloc(parent, &q);
787}
788
789/**
790 * d_instantiate - fill in inode information for a dentry
791 * @entry: dentry to complete
792 * @inode: inode to attach to this dentry
793 *
794 * Fill in inode information in the entry.
795 *
796 * This turns negative dentries into productive full members
797 * of society.
798 *
799 * NOTE! This assumes that the inode count has been incremented
800 * (or otherwise set) by the caller to indicate that it is now
801 * in use by the dcache.
802 */
803
804void d_instantiate(struct dentry *entry, struct inode * inode)
805{
Eric Sesterhenn28133c72006-03-26 18:25:39 +0200806 BUG_ON(!list_empty(&entry->d_alias));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700807 spin_lock(&dcache_lock);
808 if (inode)
809 list_add(&entry->d_alias, &inode->i_dentry);
810 entry->d_inode = inode;
Nick Pigginc32ccd82006-03-25 03:07:09 -0800811 fsnotify_d_instantiate(entry, inode);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700812 spin_unlock(&dcache_lock);
813 security_d_instantiate(entry, inode);
814}
815
816/**
817 * d_instantiate_unique - instantiate a non-aliased dentry
818 * @entry: dentry to instantiate
819 * @inode: inode to attach to this dentry
820 *
821 * Fill in inode information in the entry. On success, it returns NULL.
822 * If an unhashed alias of "entry" already exists, then we return the
Oleg Drokine866cfa2006-01-09 20:52:51 -0800823 * aliased dentry instead and drop one reference to inode.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700824 *
825 * Note that in order to avoid conflicts with rename() etc, the caller
826 * had better be holding the parent directory semaphore.
Oleg Drokine866cfa2006-01-09 20:52:51 -0800827 *
828 * This also assumes that the inode count has been incremented
829 * (or otherwise set) by the caller to indicate that it is now
830 * in use by the dcache.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700831 */
David Howells770bfad2006-08-22 20:06:07 -0400832static struct dentry *__d_instantiate_unique(struct dentry *entry,
833 struct inode *inode)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700834{
835 struct dentry *alias;
836 int len = entry->d_name.len;
837 const char *name = entry->d_name.name;
838 unsigned int hash = entry->d_name.hash;
839
David Howells770bfad2006-08-22 20:06:07 -0400840 if (!inode) {
841 entry->d_inode = NULL;
842 return NULL;
843 }
844
Linus Torvalds1da177e2005-04-16 15:20:36 -0700845 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
846 struct qstr *qstr = &alias->d_name;
847
848 if (qstr->hash != hash)
849 continue;
850 if (alias->d_parent != entry->d_parent)
851 continue;
852 if (qstr->len != len)
853 continue;
854 if (memcmp(qstr->name, name, len))
855 continue;
856 dget_locked(alias);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857 return alias;
858 }
David Howells770bfad2006-08-22 20:06:07 -0400859
Linus Torvalds1da177e2005-04-16 15:20:36 -0700860 list_add(&entry->d_alias, &inode->i_dentry);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700861 entry->d_inode = inode;
Nick Pigginc32ccd82006-03-25 03:07:09 -0800862 fsnotify_d_instantiate(entry, inode);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700863 return NULL;
864}
David Howells770bfad2006-08-22 20:06:07 -0400865
866struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
867{
868 struct dentry *result;
869
870 BUG_ON(!list_empty(&entry->d_alias));
871
872 spin_lock(&dcache_lock);
873 result = __d_instantiate_unique(entry, inode);
874 spin_unlock(&dcache_lock);
875
876 if (!result) {
877 security_d_instantiate(entry, inode);
878 return NULL;
879 }
880
881 BUG_ON(!d_unhashed(result));
882 iput(inode);
883 return result;
884}
885
Linus Torvalds1da177e2005-04-16 15:20:36 -0700886EXPORT_SYMBOL(d_instantiate_unique);
887
888/**
889 * d_alloc_root - allocate root dentry
890 * @root_inode: inode to allocate the root for
891 *
892 * Allocate a root ("/") dentry for the inode given. The inode is
893 * instantiated and returned. %NULL is returned if there is insufficient
894 * memory or the inode passed is %NULL.
895 */
896
897struct dentry * d_alloc_root(struct inode * root_inode)
898{
899 struct dentry *res = NULL;
900
901 if (root_inode) {
902 static const struct qstr name = { .name = "/", .len = 1 };
903
904 res = d_alloc(NULL, &name);
905 if (res) {
906 res->d_sb = root_inode->i_sb;
907 res->d_parent = res;
908 d_instantiate(res, root_inode);
909 }
910 }
911 return res;
912}
913
914static inline struct hlist_head *d_hash(struct dentry *parent,
915 unsigned long hash)
916{
917 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
918 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
919 return dentry_hashtable + (hash & D_HASHMASK);
920}
921
922/**
923 * d_alloc_anon - allocate an anonymous dentry
924 * @inode: inode to allocate the dentry for
925 *
926 * This is similar to d_alloc_root. It is used by filesystems when
927 * creating a dentry for a given inode, often in the process of
928 * mapping a filehandle to a dentry. The returned dentry may be
929 * anonymous, or may have a full name (if the inode was already
930 * in the cache). The file system may need to make further
931 * efforts to connect this dentry into the dcache properly.
932 *
933 * When called on a directory inode, we must ensure that
934 * the inode only ever has one dentry. If a dentry is
935 * found, that is returned instead of allocating a new one.
936 *
937 * On successful return, the reference to the inode has been transferred
938 * to the dentry. If %NULL is returned (indicating kmalloc failure),
939 * the reference on the inode has not been released.
940 */
941
942struct dentry * d_alloc_anon(struct inode *inode)
943{
944 static const struct qstr anonstring = { .name = "" };
945 struct dentry *tmp;
946 struct dentry *res;
947
948 if ((res = d_find_alias(inode))) {
949 iput(inode);
950 return res;
951 }
952
953 tmp = d_alloc(NULL, &anonstring);
954 if (!tmp)
955 return NULL;
956
957 tmp->d_parent = tmp; /* make sure dput doesn't croak */
958
959 spin_lock(&dcache_lock);
960 res = __d_find_alias(inode, 0);
961 if (!res) {
962 /* attach a disconnected dentry */
963 res = tmp;
964 tmp = NULL;
965 spin_lock(&res->d_lock);
966 res->d_sb = inode->i_sb;
967 res->d_parent = res;
968 res->d_inode = inode;
969 res->d_flags |= DCACHE_DISCONNECTED;
970 res->d_flags &= ~DCACHE_UNHASHED;
971 list_add(&res->d_alias, &inode->i_dentry);
972 hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
973 spin_unlock(&res->d_lock);
974
975 inode = NULL; /* don't drop reference */
976 }
977 spin_unlock(&dcache_lock);
978
979 if (inode)
980 iput(inode);
981 if (tmp)
982 dput(tmp);
983 return res;
984}
985
986
987/**
988 * d_splice_alias - splice a disconnected dentry into the tree if one exists
989 * @inode: the inode which may have a disconnected dentry
990 * @dentry: a negative dentry which we want to point to the inode.
991 *
992 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
993 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
994 * and return it, else simply d_add the inode to the dentry and return NULL.
995 *
996 * This is needed in the lookup routine of any filesystem that is exportable
997 * (via knfsd) so that we can build dcache paths to directories effectively.
998 *
999 * If a dentry was found and moved, then it is returned. Otherwise NULL
1000 * is returned. This matches the expected return value of ->lookup.
1001 *
1002 */
1003struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1004{
1005 struct dentry *new = NULL;
1006
1007 if (inode) {
1008 spin_lock(&dcache_lock);
1009 new = __d_find_alias(inode, 1);
1010 if (new) {
1011 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
Nick Pigginc32ccd82006-03-25 03:07:09 -08001012 fsnotify_d_instantiate(new, inode);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001013 spin_unlock(&dcache_lock);
1014 security_d_instantiate(new, inode);
1015 d_rehash(dentry);
1016 d_move(new, dentry);
1017 iput(inode);
1018 } else {
1019 /* d_instantiate takes dcache_lock, so we do it by hand */
1020 list_add(&dentry->d_alias, &inode->i_dentry);
1021 dentry->d_inode = inode;
Nick Pigginc32ccd82006-03-25 03:07:09 -08001022 fsnotify_d_instantiate(dentry, inode);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023 spin_unlock(&dcache_lock);
1024 security_d_instantiate(dentry, inode);
1025 d_rehash(dentry);
1026 }
1027 } else
1028 d_add(dentry, inode);
1029 return new;
1030}
1031
1032
1033/**
1034 * d_lookup - search for a dentry
1035 * @parent: parent dentry
1036 * @name: qstr of name we wish to find
1037 *
1038 * Searches the children of the parent dentry for the name in question. If
1039 * the dentry is found its reference count is incremented and the dentry
1040 * is returned. The caller must use d_put to free the entry when it has
1041 * finished using it. %NULL is returned on failure.
1042 *
1043 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1044 * Memory barriers are used while updating and doing lockless traversal.
1045 * To avoid races with d_move while rename is happening, d_lock is used.
1046 *
1047 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1048 * and name pointer in one structure pointed by d_qstr.
1049 *
1050 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1051 * lookup is going on.
1052 *
1053 * dentry_unused list is not updated even if lookup finds the required dentry
1054 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1055 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1056 * acquisition.
1057 *
1058 * d_lookup() is protected against the concurrent renames in some unrelated
1059 * directory using the seqlockt_t rename_lock.
1060 */
1061
1062struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1063{
1064 struct dentry * dentry = NULL;
1065 unsigned long seq;
1066
1067 do {
1068 seq = read_seqbegin(&rename_lock);
1069 dentry = __d_lookup(parent, name);
1070 if (dentry)
1071 break;
1072 } while (read_seqretry(&rename_lock, seq));
1073 return dentry;
1074}
1075
1076struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1077{
1078 unsigned int len = name->len;
1079 unsigned int hash = name->hash;
1080 const unsigned char *str = name->name;
1081 struct hlist_head *head = d_hash(parent,hash);
1082 struct dentry *found = NULL;
1083 struct hlist_node *node;
Paul E. McKenney665a7582005-11-07 00:59:17 -08001084 struct dentry *dentry;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001085
1086 rcu_read_lock();
1087
Paul E. McKenney665a7582005-11-07 00:59:17 -08001088 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001089 struct qstr *qstr;
1090
Linus Torvalds1da177e2005-04-16 15:20:36 -07001091 if (dentry->d_name.hash != hash)
1092 continue;
1093 if (dentry->d_parent != parent)
1094 continue;
1095
1096 spin_lock(&dentry->d_lock);
1097
1098 /*
1099 * Recheck the dentry after taking the lock - d_move may have
1100 * changed things. Don't bother checking the hash because we're
1101 * about to compare the whole name anyway.
1102 */
1103 if (dentry->d_parent != parent)
1104 goto next;
1105
1106 /*
1107 * It is safe to compare names since d_move() cannot
1108 * change the qstr (protected by d_lock).
1109 */
1110 qstr = &dentry->d_name;
1111 if (parent->d_op && parent->d_op->d_compare) {
1112 if (parent->d_op->d_compare(parent, qstr, name))
1113 goto next;
1114 } else {
1115 if (qstr->len != len)
1116 goto next;
1117 if (memcmp(qstr->name, str, len))
1118 goto next;
1119 }
1120
1121 if (!d_unhashed(dentry)) {
1122 atomic_inc(&dentry->d_count);
1123 found = dentry;
1124 }
1125 spin_unlock(&dentry->d_lock);
1126 break;
1127next:
1128 spin_unlock(&dentry->d_lock);
1129 }
1130 rcu_read_unlock();
1131
1132 return found;
1133}
1134
1135/**
Eric W. Biederman3e7e2412006-03-31 02:31:43 -08001136 * d_hash_and_lookup - hash the qstr then search for a dentry
1137 * @dir: Directory to search in
1138 * @name: qstr of name we wish to find
1139 *
1140 * On hash failure or on lookup failure NULL is returned.
1141 */
1142struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1143{
1144 struct dentry *dentry = NULL;
1145
1146 /*
1147 * Check for a fs-specific hash function. Note that we must
1148 * calculate the standard hash first, as the d_op->d_hash()
1149 * routine may choose to leave the hash value unchanged.
1150 */
1151 name->hash = full_name_hash(name->name, name->len);
1152 if (dir->d_op && dir->d_op->d_hash) {
1153 if (dir->d_op->d_hash(dir, name) < 0)
1154 goto out;
1155 }
1156 dentry = d_lookup(dir, name);
1157out:
1158 return dentry;
1159}
1160
1161/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162 * d_validate - verify dentry provided from insecure source
1163 * @dentry: The dentry alleged to be valid child of @dparent
1164 * @dparent: The parent dentry (known to be valid)
1165 * @hash: Hash of the dentry
1166 * @len: Length of the name
1167 *
1168 * An insecure source has sent us a dentry, here we verify it and dget() it.
1169 * This is used by ncpfs in its readdir implementation.
1170 * Zero is returned in the dentry is invalid.
1171 */
1172
1173int d_validate(struct dentry *dentry, struct dentry *dparent)
1174{
1175 struct hlist_head *base;
1176 struct hlist_node *lhp;
1177
1178 /* Check whether the ptr might be valid at all.. */
1179 if (!kmem_ptr_validate(dentry_cache, dentry))
1180 goto out;
1181
1182 if (dentry->d_parent != dparent)
1183 goto out;
1184
1185 spin_lock(&dcache_lock);
1186 base = d_hash(dparent, dentry->d_name.hash);
1187 hlist_for_each(lhp,base) {
Paul E. McKenney665a7582005-11-07 00:59:17 -08001188 /* hlist_for_each_entry_rcu() not required for d_hash list
Linus Torvalds1da177e2005-04-16 15:20:36 -07001189 * as it is parsed under dcache_lock
1190 */
1191 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1192 __dget_locked(dentry);
1193 spin_unlock(&dcache_lock);
1194 return 1;
1195 }
1196 }
1197 spin_unlock(&dcache_lock);
1198out:
1199 return 0;
1200}
1201
1202/*
1203 * When a file is deleted, we have two options:
1204 * - turn this dentry into a negative dentry
1205 * - unhash this dentry and free it.
1206 *
1207 * Usually, we want to just turn this into
1208 * a negative dentry, but if anybody else is
1209 * currently using the dentry or the inode
1210 * we can't do that and we fall back on removing
1211 * it from the hash queues and waiting for
1212 * it to be deleted later when it has no users
1213 */
1214
1215/**
1216 * d_delete - delete a dentry
1217 * @dentry: The dentry to delete
1218 *
1219 * Turn the dentry into a negative dentry if possible, otherwise
1220 * remove it from the hash queues so it can be deleted later
1221 */
1222
1223void d_delete(struct dentry * dentry)
1224{
John McCutchan7a91bf72005-08-08 13:52:16 -04001225 int isdir = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001226 /*
1227 * Are we the only user?
1228 */
1229 spin_lock(&dcache_lock);
1230 spin_lock(&dentry->d_lock);
John McCutchan7a91bf72005-08-08 13:52:16 -04001231 isdir = S_ISDIR(dentry->d_inode->i_mode);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001232 if (atomic_read(&dentry->d_count) == 1) {
1233 dentry_iput(dentry);
John McCutchan7a91bf72005-08-08 13:52:16 -04001234 fsnotify_nameremove(dentry, isdir);
Amy Griffis7a2bd3f2006-03-31 02:30:54 -08001235
1236 /* remove this and other inotify debug checks after 2.6.18 */
1237 dentry->d_flags &= ~DCACHE_INOTIFY_PARENT_WATCHED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001238 return;
1239 }
1240
1241 if (!d_unhashed(dentry))
1242 __d_drop(dentry);
1243
1244 spin_unlock(&dentry->d_lock);
1245 spin_unlock(&dcache_lock);
John McCutchan7a91bf72005-08-08 13:52:16 -04001246
1247 fsnotify_nameremove(dentry, isdir);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001248}
1249
1250static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1251{
1252
1253 entry->d_flags &= ~DCACHE_UNHASHED;
1254 hlist_add_head_rcu(&entry->d_hash, list);
1255}
1256
David Howells770bfad2006-08-22 20:06:07 -04001257static void _d_rehash(struct dentry * entry)
1258{
1259 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1260}
1261
Linus Torvalds1da177e2005-04-16 15:20:36 -07001262/**
1263 * d_rehash - add an entry back to the hash
1264 * @entry: dentry to add to the hash
1265 *
1266 * Adds a dentry to the hash according to its name.
1267 */
1268
1269void d_rehash(struct dentry * entry)
1270{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001271 spin_lock(&dcache_lock);
1272 spin_lock(&entry->d_lock);
David Howells770bfad2006-08-22 20:06:07 -04001273 _d_rehash(entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001274 spin_unlock(&entry->d_lock);
1275 spin_unlock(&dcache_lock);
1276}
1277
1278#define do_switch(x,y) do { \
1279 __typeof__ (x) __tmp = x; \
1280 x = y; y = __tmp; } while (0)
1281
1282/*
1283 * When switching names, the actual string doesn't strictly have to
1284 * be preserved in the target - because we're dropping the target
1285 * anyway. As such, we can just do a simple memcpy() to copy over
1286 * the new name before we switch.
1287 *
1288 * Note that we have to be a lot more careful about getting the hash
1289 * switched - we have to switch the hash value properly even if it
1290 * then no longer matches the actual (corrupted) string of the target.
1291 * The hash value has to match the hash queue that the dentry is on..
1292 */
1293static void switch_names(struct dentry *dentry, struct dentry *target)
1294{
1295 if (dname_external(target)) {
1296 if (dname_external(dentry)) {
1297 /*
1298 * Both external: swap the pointers
1299 */
1300 do_switch(target->d_name.name, dentry->d_name.name);
1301 } else {
1302 /*
1303 * dentry:internal, target:external. Steal target's
1304 * storage and make target internal.
1305 */
1306 dentry->d_name.name = target->d_name.name;
1307 target->d_name.name = target->d_iname;
1308 }
1309 } else {
1310 if (dname_external(dentry)) {
1311 /*
1312 * dentry:external, target:internal. Give dentry's
1313 * storage to target and make dentry internal
1314 */
1315 memcpy(dentry->d_iname, target->d_name.name,
1316 target->d_name.len + 1);
1317 target->d_name.name = dentry->d_name.name;
1318 dentry->d_name.name = dentry->d_iname;
1319 } else {
1320 /*
1321 * Both are internal. Just copy target to dentry
1322 */
1323 memcpy(dentry->d_iname, target->d_name.name,
1324 target->d_name.len + 1);
1325 }
1326 }
1327}
1328
1329/*
1330 * We cannibalize "target" when moving dentry on top of it,
1331 * because it's going to be thrown away anyway. We could be more
1332 * polite about it, though.
1333 *
1334 * This forceful removal will result in ugly /proc output if
1335 * somebody holds a file open that got deleted due to a rename.
1336 * We could be nicer about the deleted file, and let it show
1337 * up under the name it got deleted rather than the name that
1338 * deleted it.
1339 */
1340
1341/**
1342 * d_move - move a dentry
1343 * @dentry: entry to move
1344 * @target: new dentry
1345 *
1346 * Update the dcache to reflect the move of a file name. Negative
1347 * dcache entries should not be moved in this way.
1348 */
1349
1350void d_move(struct dentry * dentry, struct dentry * target)
1351{
1352 struct hlist_head *list;
1353
1354 if (!dentry->d_inode)
1355 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1356
1357 spin_lock(&dcache_lock);
1358 write_seqlock(&rename_lock);
1359 /*
1360 * XXXX: do we really need to take target->d_lock?
1361 */
1362 if (target < dentry) {
1363 spin_lock(&target->d_lock);
Ingo Molnara90b9c02006-07-03 00:25:04 -07001364 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001365 } else {
1366 spin_lock(&dentry->d_lock);
Ingo Molnara90b9c02006-07-03 00:25:04 -07001367 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001368 }
1369
1370 /* Move the dentry to the target hash queue, if on different bucket */
1371 if (dentry->d_flags & DCACHE_UNHASHED)
1372 goto already_unhashed;
1373
1374 hlist_del_rcu(&dentry->d_hash);
1375
1376already_unhashed:
1377 list = d_hash(target->d_parent, target->d_name.hash);
1378 __d_rehash(dentry, list);
1379
1380 /* Unhash the target: dput() will then get rid of it */
1381 __d_drop(target);
1382
Eric Dumazet5160ee62006-01-08 01:03:32 -08001383 list_del(&dentry->d_u.d_child);
1384 list_del(&target->d_u.d_child);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385
1386 /* Switch the names.. */
1387 switch_names(dentry, target);
1388 do_switch(dentry->d_name.len, target->d_name.len);
1389 do_switch(dentry->d_name.hash, target->d_name.hash);
1390
1391 /* ... and switch the parents */
1392 if (IS_ROOT(dentry)) {
1393 dentry->d_parent = target->d_parent;
1394 target->d_parent = target;
Eric Dumazet5160ee62006-01-08 01:03:32 -08001395 INIT_LIST_HEAD(&target->d_u.d_child);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001396 } else {
1397 do_switch(dentry->d_parent, target->d_parent);
1398
1399 /* And add them back to the (new) parent lists */
Eric Dumazet5160ee62006-01-08 01:03:32 -08001400 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001401 }
1402
Eric Dumazet5160ee62006-01-08 01:03:32 -08001403 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001404 spin_unlock(&target->d_lock);
Nick Pigginc32ccd82006-03-25 03:07:09 -08001405 fsnotify_d_move(dentry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001406 spin_unlock(&dentry->d_lock);
1407 write_sequnlock(&rename_lock);
1408 spin_unlock(&dcache_lock);
1409}
1410
David Howells770bfad2006-08-22 20:06:07 -04001411/*
1412 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1413 * named dentry in place of the dentry to be replaced.
1414 */
1415static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1416{
1417 struct dentry *dparent, *aparent;
1418
1419 switch_names(dentry, anon);
1420 do_switch(dentry->d_name.len, anon->d_name.len);
1421 do_switch(dentry->d_name.hash, anon->d_name.hash);
1422
1423 dparent = dentry->d_parent;
1424 aparent = anon->d_parent;
1425
1426 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1427 list_del(&dentry->d_u.d_child);
1428 if (!IS_ROOT(dentry))
1429 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1430 else
1431 INIT_LIST_HEAD(&dentry->d_u.d_child);
1432
1433 anon->d_parent = (dparent == dentry) ? anon : dparent;
1434 list_del(&anon->d_u.d_child);
1435 if (!IS_ROOT(anon))
1436 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1437 else
1438 INIT_LIST_HEAD(&anon->d_u.d_child);
1439
1440 anon->d_flags &= ~DCACHE_DISCONNECTED;
1441}
1442
1443/**
1444 * d_materialise_unique - introduce an inode into the tree
1445 * @dentry: candidate dentry
1446 * @inode: inode to bind to the dentry, to which aliases may be attached
1447 *
1448 * Introduces an dentry into the tree, substituting an extant disconnected
1449 * root directory alias in its place if there is one
1450 */
1451struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1452{
1453 struct dentry *alias, *actual;
1454
1455 BUG_ON(!d_unhashed(dentry));
1456
1457 spin_lock(&dcache_lock);
1458
1459 if (!inode) {
1460 actual = dentry;
1461 dentry->d_inode = NULL;
1462 goto found_lock;
1463 }
1464
1465 /* See if a disconnected directory already exists as an anonymous root
1466 * that we should splice into the tree instead */
1467 if (S_ISDIR(inode->i_mode) && (alias = __d_find_alias(inode, 1))) {
1468 spin_lock(&alias->d_lock);
1469
1470 /* Is this a mountpoint that we could splice into our tree? */
1471 if (IS_ROOT(alias))
1472 goto connect_mountpoint;
1473
1474 if (alias->d_name.len == dentry->d_name.len &&
1475 alias->d_parent == dentry->d_parent &&
1476 memcmp(alias->d_name.name,
1477 dentry->d_name.name,
1478 dentry->d_name.len) == 0)
1479 goto replace_with_alias;
1480
1481 spin_unlock(&alias->d_lock);
1482
1483 /* Doh! Seem to be aliasing directories for some reason... */
1484 dput(alias);
1485 }
1486
1487 /* Add a unique reference */
1488 actual = __d_instantiate_unique(dentry, inode);
1489 if (!actual)
1490 actual = dentry;
1491 else if (unlikely(!d_unhashed(actual)))
1492 goto shouldnt_be_hashed;
1493
1494found_lock:
1495 spin_lock(&actual->d_lock);
1496found:
1497 _d_rehash(actual);
1498 spin_unlock(&actual->d_lock);
1499 spin_unlock(&dcache_lock);
1500
1501 if (actual == dentry) {
1502 security_d_instantiate(dentry, inode);
1503 return NULL;
1504 }
1505
1506 iput(inode);
1507 return actual;
1508
1509 /* Convert the anonymous/root alias into an ordinary dentry */
1510connect_mountpoint:
1511 __d_materialise_dentry(dentry, alias);
1512
1513 /* Replace the candidate dentry with the alias in the tree */
1514replace_with_alias:
1515 __d_drop(alias);
1516 actual = alias;
1517 goto found;
1518
1519shouldnt_be_hashed:
1520 spin_unlock(&dcache_lock);
1521 BUG();
1522 goto shouldnt_be_hashed;
1523}
1524
Linus Torvalds1da177e2005-04-16 15:20:36 -07001525/**
1526 * d_path - return the path of a dentry
1527 * @dentry: dentry to report
1528 * @vfsmnt: vfsmnt to which the dentry belongs
1529 * @root: root dentry
1530 * @rootmnt: vfsmnt to which the root dentry belongs
1531 * @buffer: buffer to return value in
1532 * @buflen: buffer length
1533 *
1534 * Convert a dentry into an ASCII path name. If the entry has been deleted
1535 * the string " (deleted)" is appended. Note that this is ambiguous.
1536 *
1537 * Returns the buffer or an error code if the path was too long.
1538 *
1539 * "buflen" should be positive. Caller holds the dcache_lock.
1540 */
1541static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1542 struct dentry *root, struct vfsmount *rootmnt,
1543 char *buffer, int buflen)
1544{
1545 char * end = buffer+buflen;
1546 char * retval;
1547 int namelen;
1548
1549 *--end = '\0';
1550 buflen--;
1551 if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1552 buflen -= 10;
1553 end -= 10;
1554 if (buflen < 0)
1555 goto Elong;
1556 memcpy(end, " (deleted)", 10);
1557 }
1558
1559 if (buflen < 1)
1560 goto Elong;
1561 /* Get '/' right */
1562 retval = end-1;
1563 *retval = '/';
1564
1565 for (;;) {
1566 struct dentry * parent;
1567
1568 if (dentry == root && vfsmnt == rootmnt)
1569 break;
1570 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1571 /* Global root? */
1572 spin_lock(&vfsmount_lock);
1573 if (vfsmnt->mnt_parent == vfsmnt) {
1574 spin_unlock(&vfsmount_lock);
1575 goto global_root;
1576 }
1577 dentry = vfsmnt->mnt_mountpoint;
1578 vfsmnt = vfsmnt->mnt_parent;
1579 spin_unlock(&vfsmount_lock);
1580 continue;
1581 }
1582 parent = dentry->d_parent;
1583 prefetch(parent);
1584 namelen = dentry->d_name.len;
1585 buflen -= namelen + 1;
1586 if (buflen < 0)
1587 goto Elong;
1588 end -= namelen;
1589 memcpy(end, dentry->d_name.name, namelen);
1590 *--end = '/';
1591 retval = end;
1592 dentry = parent;
1593 }
1594
1595 return retval;
1596
1597global_root:
1598 namelen = dentry->d_name.len;
1599 buflen -= namelen;
1600 if (buflen < 0)
1601 goto Elong;
1602 retval -= namelen-1; /* hit the slash */
1603 memcpy(retval, dentry->d_name.name, namelen);
1604 return retval;
1605Elong:
1606 return ERR_PTR(-ENAMETOOLONG);
1607}
1608
1609/* write full pathname into buffer and return start of pathname */
1610char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1611 char *buf, int buflen)
1612{
1613 char *res;
1614 struct vfsmount *rootmnt;
1615 struct dentry *root;
1616
1617 read_lock(&current->fs->lock);
1618 rootmnt = mntget(current->fs->rootmnt);
1619 root = dget(current->fs->root);
1620 read_unlock(&current->fs->lock);
1621 spin_lock(&dcache_lock);
1622 res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1623 spin_unlock(&dcache_lock);
1624 dput(root);
1625 mntput(rootmnt);
1626 return res;
1627}
1628
1629/*
1630 * NOTE! The user-level library version returns a
1631 * character pointer. The kernel system call just
1632 * returns the length of the buffer filled (which
1633 * includes the ending '\0' character), or a negative
1634 * error value. So libc would do something like
1635 *
1636 * char *getcwd(char * buf, size_t size)
1637 * {
1638 * int retval;
1639 *
1640 * retval = sys_getcwd(buf, size);
1641 * if (retval >= 0)
1642 * return buf;
1643 * errno = -retval;
1644 * return NULL;
1645 * }
1646 */
1647asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1648{
1649 int error;
1650 struct vfsmount *pwdmnt, *rootmnt;
1651 struct dentry *pwd, *root;
1652 char *page = (char *) __get_free_page(GFP_USER);
1653
1654 if (!page)
1655 return -ENOMEM;
1656
1657 read_lock(&current->fs->lock);
1658 pwdmnt = mntget(current->fs->pwdmnt);
1659 pwd = dget(current->fs->pwd);
1660 rootmnt = mntget(current->fs->rootmnt);
1661 root = dget(current->fs->root);
1662 read_unlock(&current->fs->lock);
1663
1664 error = -ENOENT;
1665 /* Has the current directory has been unlinked? */
1666 spin_lock(&dcache_lock);
1667 if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1668 unsigned long len;
1669 char * cwd;
1670
1671 cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1672 spin_unlock(&dcache_lock);
1673
1674 error = PTR_ERR(cwd);
1675 if (IS_ERR(cwd))
1676 goto out;
1677
1678 error = -ERANGE;
1679 len = PAGE_SIZE + page - cwd;
1680 if (len <= size) {
1681 error = len;
1682 if (copy_to_user(buf, cwd, len))
1683 error = -EFAULT;
1684 }
1685 } else
1686 spin_unlock(&dcache_lock);
1687
1688out:
1689 dput(pwd);
1690 mntput(pwdmnt);
1691 dput(root);
1692 mntput(rootmnt);
1693 free_page((unsigned long) page);
1694 return error;
1695}
1696
1697/*
1698 * Test whether new_dentry is a subdirectory of old_dentry.
1699 *
1700 * Trivially implemented using the dcache structure
1701 */
1702
1703/**
1704 * is_subdir - is new dentry a subdirectory of old_dentry
1705 * @new_dentry: new dentry
1706 * @old_dentry: old dentry
1707 *
1708 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1709 * Returns 0 otherwise.
1710 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1711 */
1712
1713int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1714{
1715 int result;
1716 struct dentry * saved = new_dentry;
1717 unsigned long seq;
1718
1719 /* need rcu_readlock to protect against the d_parent trashing due to
1720 * d_move
1721 */
1722 rcu_read_lock();
1723 do {
1724 /* for restarting inner loop in case of seq retry */
1725 new_dentry = saved;
1726 result = 0;
1727 seq = read_seqbegin(&rename_lock);
1728 for (;;) {
1729 if (new_dentry != old_dentry) {
1730 struct dentry * parent = new_dentry->d_parent;
1731 if (parent == new_dentry)
1732 break;
1733 new_dentry = parent;
1734 continue;
1735 }
1736 result = 1;
1737 break;
1738 }
1739 } while (read_seqretry(&rename_lock, seq));
1740 rcu_read_unlock();
1741
1742 return result;
1743}
1744
1745void d_genocide(struct dentry *root)
1746{
1747 struct dentry *this_parent = root;
1748 struct list_head *next;
1749
1750 spin_lock(&dcache_lock);
1751repeat:
1752 next = this_parent->d_subdirs.next;
1753resume:
1754 while (next != &this_parent->d_subdirs) {
1755 struct list_head *tmp = next;
Eric Dumazet5160ee62006-01-08 01:03:32 -08001756 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757 next = tmp->next;
1758 if (d_unhashed(dentry)||!dentry->d_inode)
1759 continue;
1760 if (!list_empty(&dentry->d_subdirs)) {
1761 this_parent = dentry;
1762 goto repeat;
1763 }
1764 atomic_dec(&dentry->d_count);
1765 }
1766 if (this_parent != root) {
Eric Dumazet5160ee62006-01-08 01:03:32 -08001767 next = this_parent->d_u.d_child.next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001768 atomic_dec(&this_parent->d_count);
1769 this_parent = this_parent->d_parent;
1770 goto resume;
1771 }
1772 spin_unlock(&dcache_lock);
1773}
1774
1775/**
1776 * find_inode_number - check for dentry with name
1777 * @dir: directory to check
1778 * @name: Name to find.
1779 *
1780 * Check whether a dentry already exists for the given name,
1781 * and return the inode number if it has an inode. Otherwise
1782 * 0 is returned.
1783 *
1784 * This routine is used to post-process directory listings for
1785 * filesystems using synthetic inode numbers, and is necessary
1786 * to keep getcwd() working.
1787 */
1788
1789ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1790{
1791 struct dentry * dentry;
1792 ino_t ino = 0;
1793
Eric W. Biederman3e7e2412006-03-31 02:31:43 -08001794 dentry = d_hash_and_lookup(dir, name);
1795 if (dentry) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796 if (dentry->d_inode)
1797 ino = dentry->d_inode->i_ino;
1798 dput(dentry);
1799 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001800 return ino;
1801}
1802
1803static __initdata unsigned long dhash_entries;
1804static int __init set_dhash_entries(char *str)
1805{
1806 if (!str)
1807 return 0;
1808 dhash_entries = simple_strtoul(str, &str, 0);
1809 return 1;
1810}
1811__setup("dhash_entries=", set_dhash_entries);
1812
1813static void __init dcache_init_early(void)
1814{
1815 int loop;
1816
1817 /* If hashes are distributed across NUMA nodes, defer
1818 * hash allocation until vmalloc space is available.
1819 */
1820 if (hashdist)
1821 return;
1822
1823 dentry_hashtable =
1824 alloc_large_system_hash("Dentry cache",
1825 sizeof(struct hlist_head),
1826 dhash_entries,
1827 13,
1828 HASH_EARLY,
1829 &d_hash_shift,
1830 &d_hash_mask,
1831 0);
1832
1833 for (loop = 0; loop < (1 << d_hash_shift); loop++)
1834 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1835}
1836
1837static void __init dcache_init(unsigned long mempages)
1838{
1839 int loop;
1840
1841 /*
1842 * A constructor could be added for stable state like the lists,
1843 * but it is probably not worth it because of the cache nature
1844 * of the dcache.
1845 */
1846 dentry_cache = kmem_cache_create("dentry_cache",
1847 sizeof(struct dentry),
1848 0,
Paul Jacksonb0196002006-03-24 03:16:09 -08001849 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1850 SLAB_MEM_SPREAD),
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851 NULL, NULL);
1852
1853 set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1854
1855 /* Hash may have been set up in dcache_init_early */
1856 if (!hashdist)
1857 return;
1858
1859 dentry_hashtable =
1860 alloc_large_system_hash("Dentry cache",
1861 sizeof(struct hlist_head),
1862 dhash_entries,
1863 13,
1864 0,
1865 &d_hash_shift,
1866 &d_hash_mask,
1867 0);
1868
1869 for (loop = 0; loop < (1 << d_hash_shift); loop++)
1870 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1871}
1872
1873/* SLAB cache for __getname() consumers */
Eric Dumazetfa3536c2006-03-26 01:37:24 -08001874kmem_cache_t *names_cachep __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001875
1876/* SLAB cache for file structures */
Eric Dumazetfa3536c2006-03-26 01:37:24 -08001877kmem_cache_t *filp_cachep __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001878
1879EXPORT_SYMBOL(d_genocide);
1880
Linus Torvalds1da177e2005-04-16 15:20:36 -07001881void __init vfs_caches_init_early(void)
1882{
1883 dcache_init_early();
1884 inode_init_early();
1885}
1886
1887void __init vfs_caches_init(unsigned long mempages)
1888{
1889 unsigned long reserve;
1890
1891 /* Base hash sizes on available memory, with a reserve equal to
1892 150% of current kernel size */
1893
1894 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
1895 mempages -= reserve;
1896
1897 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
1898 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1899
1900 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
Dipankar Sarma529bf6b2006-03-07 21:55:35 -08001901 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001902
1903 dcache_init(mempages);
1904 inode_init(mempages);
1905 files_init(mempages);
1906 mnt_init(mempages);
1907 bdev_cache_init();
1908 chrdev_init();
1909}
1910
1911EXPORT_SYMBOL(d_alloc);
1912EXPORT_SYMBOL(d_alloc_anon);
1913EXPORT_SYMBOL(d_alloc_root);
1914EXPORT_SYMBOL(d_delete);
1915EXPORT_SYMBOL(d_find_alias);
1916EXPORT_SYMBOL(d_instantiate);
1917EXPORT_SYMBOL(d_invalidate);
1918EXPORT_SYMBOL(d_lookup);
1919EXPORT_SYMBOL(d_move);
David Howells770bfad2006-08-22 20:06:07 -04001920EXPORT_SYMBOL_GPL(d_materialise_unique);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001921EXPORT_SYMBOL(d_path);
1922EXPORT_SYMBOL(d_prune_aliases);
1923EXPORT_SYMBOL(d_rehash);
1924EXPORT_SYMBOL(d_splice_alias);
1925EXPORT_SYMBOL(d_validate);
1926EXPORT_SYMBOL(dget_locked);
1927EXPORT_SYMBOL(dput);
1928EXPORT_SYMBOL(find_inode_number);
1929EXPORT_SYMBOL(have_submounts);
1930EXPORT_SYMBOL(names_cachep);
1931EXPORT_SYMBOL(shrink_dcache_parent);
1932EXPORT_SYMBOL(shrink_dcache_sb);