blob: cdedc84e1372459b0b5710a44018bf904a4d6e90 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Anton Altaparmakovf25dfb52005-09-08 20:35:33 +01002 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003 *
Anton Altaparmakovf25dfb52005-09-08 20:35:33 +01004 * Copyright (c) 2001-2005 Anton Altaparmakov
Linus Torvalds1da177e2005-04-16 15:20:36 -07005 *
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include <linux/buffer_head.h>
Anton Altaparmakov98b27032005-10-11 15:40:40 +010023#include <linux/pagemap.h>
24#include <linux/pagevec.h>
25#include <linux/sched.h>
26#include <linux/swap.h>
27#include <linux/uio.h>
28#include <linux/writeback.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070029
Anton Altaparmakov98b27032005-10-11 15:40:40 +010030#include <asm/page.h>
31#include <asm/uaccess.h>
32
33#include "attrib.h"
34#include "bitmap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "inode.h"
36#include "debug.h"
Anton Altaparmakov98b27032005-10-11 15:40:40 +010037#include "lcnalloc.h"
38#include "malloc.h"
39#include "mft.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include "ntfs.h"
41
42/**
43 * ntfs_file_open - called when an inode is about to be opened
44 * @vi: inode to be opened
45 * @filp: file structure describing the inode
46 *
47 * Limit file size to the page cache limit on architectures where unsigned long
48 * is 32-bits. This is the most we can do for now without overflowing the page
49 * cache page index. Doing it this way means we don't run into problems because
50 * of existing too large files. It would be better to allow the user to read
51 * the beginning of the file but I doubt very much anyone is going to hit this
52 * check on a 32-bit architecture, so there is no point in adding the extra
53 * complexity required to support this.
54 *
55 * On 64-bit architectures, the check is hopefully optimized away by the
56 * compiler.
57 *
58 * After the check passes, just call generic_file_open() to do its work.
59 */
60static int ntfs_file_open(struct inode *vi, struct file *filp)
61{
62 if (sizeof(unsigned long) < 8) {
Anton Altaparmakovd4b9ba72004-11-17 15:45:08 +000063 if (i_size_read(vi) > MAX_LFS_FILESIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -070064 return -EFBIG;
65 }
66 return generic_file_open(vi, filp);
67}
68
69#ifdef NTFS_RW
70
71/**
Anton Altaparmakov98b27032005-10-11 15:40:40 +010072 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
73 * @ni: ntfs inode of the attribute to extend
74 * @new_init_size: requested new initialized size in bytes
75 * @cached_page: store any allocated but unused page here
76 * @lru_pvec: lru-buffering pagevec of the caller
77 *
78 * Extend the initialized size of an attribute described by the ntfs inode @ni
79 * to @new_init_size bytes. This involves zeroing any non-sparse space between
80 * the old initialized size and @new_init_size both in the page cache and on
81 * disk (if relevant complete pages are zeroed in the page cache then these may
82 * simply be marked dirty for later writeout). There is one caveat and that is
83 * that if any uptodate page cache pages between the old initialized size and
84 * the smaller of @new_init_size and the file size (vfs inode->i_size) are in
85 * memory, these need to be marked dirty without being zeroed since they could
86 * be non-zero due to mmap() based writes.
87 *
88 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
89 * in the resident attribute case, it is tied to the initialized size and, in
90 * the non-resident attribute case, it may not fall below the initialized size.
91 *
92 * Note that if the attribute is resident, we do not need to touch the page
93 * cache at all. This is because if the page cache page is not uptodate we
94 * bring it uptodate later, when doing the write to the mft record since we
95 * then already have the page mapped. And if the page is uptodate, the
96 * non-initialized region will already have been zeroed when the page was
97 * brought uptodate and the region may in fact already have been overwritten
98 * with new data via mmap() based writes, so we cannot just zero it. And since
99 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
100 * is unspecified, we choose not to do zeroing and thus we do not need to touch
101 * the page at all. For a more detailed explanation see ntfs_truncate() which
102 * is in fs/ntfs/inode.c.
103 *
104 * @cached_page and @lru_pvec are just optimisations for dealing with multiple
105 * pages.
106 *
107 * Return 0 on success and -errno on error. In the case that an error is
108 * encountered it is possible that the initialized size will already have been
109 * incremented some way towards @new_init_size but it is guaranteed that if
110 * this is the case, the necessary zeroing will also have happened and that all
111 * metadata is self-consistent.
112 *
113 * Locking: This function locks the mft record of the base ntfs inode and
114 * maintains the lock throughout execution of the function. This is required
115 * so that the initialized size of the attribute can be modified safely.
116 */
117static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size,
118 struct page **cached_page, struct pagevec *lru_pvec)
119{
120 s64 old_init_size;
121 loff_t old_i_size;
122 pgoff_t index, end_index;
123 unsigned long flags;
124 struct inode *vi = VFS_I(ni);
125 ntfs_inode *base_ni;
126 MFT_RECORD *m = NULL;
127 ATTR_RECORD *a;
128 ntfs_attr_search_ctx *ctx = NULL;
129 struct address_space *mapping;
130 struct page *page = NULL;
131 u8 *kattr;
132 int err;
133 u32 attr_len;
134
135 read_lock_irqsave(&ni->size_lock, flags);
136 old_init_size = ni->initialized_size;
137 old_i_size = i_size_read(vi);
138 BUG_ON(new_init_size > ni->allocated_size);
139 read_unlock_irqrestore(&ni->size_lock, flags);
140 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
141 "old_initialized_size 0x%llx, "
142 "new_initialized_size 0x%llx, i_size 0x%llx.",
143 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
144 (unsigned long long)old_init_size,
145 (unsigned long long)new_init_size, old_i_size);
146 if (!NInoAttr(ni))
147 base_ni = ni;
148 else
149 base_ni = ni->ext.base_ntfs_ino;
150 /* Use goto to reduce indentation and we need the label below anyway. */
151 if (NInoNonResident(ni))
152 goto do_non_resident_extend;
153 BUG_ON(old_init_size != old_i_size);
154 m = map_mft_record(base_ni);
155 if (IS_ERR(m)) {
156 err = PTR_ERR(m);
157 m = NULL;
158 goto err_out;
159 }
160 ctx = ntfs_attr_get_search_ctx(base_ni, m);
161 if (unlikely(!ctx)) {
162 err = -ENOMEM;
163 goto err_out;
164 }
165 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
166 CASE_SENSITIVE, 0, NULL, 0, ctx);
167 if (unlikely(err)) {
168 if (err == -ENOENT)
169 err = -EIO;
170 goto err_out;
171 }
172 m = ctx->mrec;
173 a = ctx->attr;
174 BUG_ON(a->non_resident);
175 /* The total length of the attribute value. */
176 attr_len = le32_to_cpu(a->data.resident.value_length);
177 BUG_ON(old_i_size != (loff_t)attr_len);
178 /*
179 * Do the zeroing in the mft record and update the attribute size in
180 * the mft record.
181 */
182 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
183 memset(kattr + attr_len, 0, new_init_size - attr_len);
184 a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
185 /* Finally, update the sizes in the vfs and ntfs inodes. */
186 write_lock_irqsave(&ni->size_lock, flags);
187 i_size_write(vi, new_init_size);
188 ni->initialized_size = new_init_size;
189 write_unlock_irqrestore(&ni->size_lock, flags);
190 goto done;
191do_non_resident_extend:
192 /*
193 * If the new initialized size @new_init_size exceeds the current file
194 * size (vfs inode->i_size), we need to extend the file size to the
195 * new initialized size.
196 */
197 if (new_init_size > old_i_size) {
198 m = map_mft_record(base_ni);
199 if (IS_ERR(m)) {
200 err = PTR_ERR(m);
201 m = NULL;
202 goto err_out;
203 }
204 ctx = ntfs_attr_get_search_ctx(base_ni, m);
205 if (unlikely(!ctx)) {
206 err = -ENOMEM;
207 goto err_out;
208 }
209 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
210 CASE_SENSITIVE, 0, NULL, 0, ctx);
211 if (unlikely(err)) {
212 if (err == -ENOENT)
213 err = -EIO;
214 goto err_out;
215 }
216 m = ctx->mrec;
217 a = ctx->attr;
218 BUG_ON(!a->non_resident);
219 BUG_ON(old_i_size != (loff_t)
220 sle64_to_cpu(a->data.non_resident.data_size));
221 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
222 flush_dcache_mft_record_page(ctx->ntfs_ino);
223 mark_mft_record_dirty(ctx->ntfs_ino);
224 /* Update the file size in the vfs inode. */
225 i_size_write(vi, new_init_size);
226 ntfs_attr_put_search_ctx(ctx);
227 ctx = NULL;
228 unmap_mft_record(base_ni);
229 m = NULL;
230 }
231 mapping = vi->i_mapping;
232 index = old_init_size >> PAGE_CACHE_SHIFT;
233 end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
234 do {
235 /*
236 * Read the page. If the page is not present, this will zero
237 * the uninitialized regions for us.
238 */
239 page = read_cache_page(mapping, index,
240 (filler_t*)mapping->a_ops->readpage, NULL);
241 if (IS_ERR(page)) {
242 err = PTR_ERR(page);
243 goto init_err_out;
244 }
245 wait_on_page_locked(page);
246 if (unlikely(!PageUptodate(page) || PageError(page))) {
247 page_cache_release(page);
248 err = -EIO;
249 goto init_err_out;
250 }
251 /*
252 * Update the initialized size in the ntfs inode. This is
253 * enough to make ntfs_writepage() work.
254 */
255 write_lock_irqsave(&ni->size_lock, flags);
256 ni->initialized_size = (index + 1) << PAGE_CACHE_SHIFT;
257 if (ni->initialized_size > new_init_size)
258 ni->initialized_size = new_init_size;
259 write_unlock_irqrestore(&ni->size_lock, flags);
260 /* Set the page dirty so it gets written out. */
261 set_page_dirty(page);
262 page_cache_release(page);
263 /*
264 * Play nice with the vm and the rest of the system. This is
265 * very much needed as we can potentially be modifying the
266 * initialised size from a very small value to a really huge
267 * value, e.g.
268 * f = open(somefile, O_TRUNC);
269 * truncate(f, 10GiB);
270 * seek(f, 10GiB);
271 * write(f, 1);
272 * And this would mean we would be marking dirty hundreds of
273 * thousands of pages or as in the above example more than
274 * two and a half million pages!
275 *
276 * TODO: For sparse pages could optimize this workload by using
277 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
278 * would be set in readpage for sparse pages and here we would
279 * not need to mark dirty any pages which have this bit set.
280 * The only caveat is that we have to clear the bit everywhere
281 * where we allocate any clusters that lie in the page or that
282 * contain the page.
283 *
284 * TODO: An even greater optimization would be for us to only
285 * call readpage() on pages which are not in sparse regions as
286 * determined from the runlist. This would greatly reduce the
287 * number of pages we read and make dirty in the case of sparse
288 * files.
289 */
290 balance_dirty_pages_ratelimited(mapping);
291 cond_resched();
292 } while (++index < end_index);
293 read_lock_irqsave(&ni->size_lock, flags);
294 BUG_ON(ni->initialized_size != new_init_size);
295 read_unlock_irqrestore(&ni->size_lock, flags);
296 /* Now bring in sync the initialized_size in the mft record. */
297 m = map_mft_record(base_ni);
298 if (IS_ERR(m)) {
299 err = PTR_ERR(m);
300 m = NULL;
301 goto init_err_out;
302 }
303 ctx = ntfs_attr_get_search_ctx(base_ni, m);
304 if (unlikely(!ctx)) {
305 err = -ENOMEM;
306 goto init_err_out;
307 }
308 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
309 CASE_SENSITIVE, 0, NULL, 0, ctx);
310 if (unlikely(err)) {
311 if (err == -ENOENT)
312 err = -EIO;
313 goto init_err_out;
314 }
315 m = ctx->mrec;
316 a = ctx->attr;
317 BUG_ON(!a->non_resident);
318 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
319done:
320 flush_dcache_mft_record_page(ctx->ntfs_ino);
321 mark_mft_record_dirty(ctx->ntfs_ino);
322 if (ctx)
323 ntfs_attr_put_search_ctx(ctx);
324 if (m)
325 unmap_mft_record(base_ni);
326 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
327 (unsigned long long)new_init_size, i_size_read(vi));
328 return 0;
329init_err_out:
330 write_lock_irqsave(&ni->size_lock, flags);
331 ni->initialized_size = old_init_size;
332 write_unlock_irqrestore(&ni->size_lock, flags);
333err_out:
334 if (ctx)
335 ntfs_attr_put_search_ctx(ctx);
336 if (m)
337 unmap_mft_record(base_ni);
338 ntfs_debug("Failed. Returning error code %i.", err);
339 return err;
340}
341
342/**
343 * ntfs_fault_in_pages_readable -
344 *
345 * Fault a number of userspace pages into pagetables.
346 *
347 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
348 * with more than two userspace pages as well as handling the single page case
349 * elegantly.
350 *
351 * If you find this difficult to understand, then think of the while loop being
352 * the following code, except that we do without the integer variable ret:
353 *
354 * do {
355 * ret = __get_user(c, uaddr);
356 * uaddr += PAGE_SIZE;
357 * } while (!ret && uaddr < end);
358 *
359 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
360 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
361 * this is only a read and not a write, and since it is still in the same page,
362 * it should not matter and this makes the code much simpler.
363 */
364static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
365 int bytes)
366{
367 const char __user *end;
368 volatile char c;
369
370 /* Set @end to the first byte outside the last page we care about. */
371 end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes);
372
373 while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
374 ;
375}
376
377/**
378 * ntfs_fault_in_pages_readable_iovec -
379 *
380 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
381 */
382static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
383 size_t iov_ofs, int bytes)
384{
385 do {
386 const char __user *buf;
387 unsigned len;
388
389 buf = iov->iov_base + iov_ofs;
390 len = iov->iov_len - iov_ofs;
391 if (len > bytes)
392 len = bytes;
393 ntfs_fault_in_pages_readable(buf, len);
394 bytes -= len;
395 iov++;
396 iov_ofs = 0;
397 } while (bytes);
398}
399
400/**
401 * __ntfs_grab_cache_pages - obtain a number of locked pages
402 * @mapping: address space mapping from which to obtain page cache pages
403 * @index: starting index in @mapping at which to begin obtaining pages
404 * @nr_pages: number of page cache pages to obtain
405 * @pages: array of pages in which to return the obtained page cache pages
406 * @cached_page: allocated but as yet unused page
407 * @lru_pvec: lru-buffering pagevec of caller
408 *
409 * Obtain @nr_pages locked page cache pages from the mapping @maping and
410 * starting at index @index.
411 *
412 * If a page is newly created, increment its refcount and add it to the
413 * caller's lru-buffering pagevec @lru_pvec.
414 *
415 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
416 * are obtained at once instead of just one page and that 0 is returned on
417 * success and -errno on error.
418 *
419 * Note, the page locks are obtained in ascending page index order.
420 */
421static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
422 pgoff_t index, const unsigned nr_pages, struct page **pages,
423 struct page **cached_page, struct pagevec *lru_pvec)
424{
425 int err, nr;
426
427 BUG_ON(!nr_pages);
428 err = nr = 0;
429 do {
430 pages[nr] = find_lock_page(mapping, index);
431 if (!pages[nr]) {
432 if (!*cached_page) {
433 *cached_page = page_cache_alloc(mapping);
434 if (unlikely(!*cached_page)) {
435 err = -ENOMEM;
436 goto err_out;
437 }
438 }
439 err = add_to_page_cache(*cached_page, mapping, index,
440 GFP_KERNEL);
441 if (unlikely(err)) {
442 if (err == -EEXIST)
443 continue;
444 goto err_out;
445 }
446 pages[nr] = *cached_page;
447 page_cache_get(*cached_page);
448 if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
449 __pagevec_lru_add(lru_pvec);
450 *cached_page = NULL;
451 }
452 index++;
453 nr++;
454 } while (nr < nr_pages);
455out:
456 return err;
457err_out:
458 while (nr > 0) {
459 unlock_page(pages[--nr]);
460 page_cache_release(pages[nr]);
461 }
462 goto out;
463}
464
465static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
466{
467 lock_buffer(bh);
468 get_bh(bh);
469 bh->b_end_io = end_buffer_read_sync;
470 return submit_bh(READ, bh);
471}
472
473/**
474 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
475 * @pages: array of destination pages
476 * @nr_pages: number of pages in @pages
477 * @pos: byte position in file at which the write begins
478 * @bytes: number of bytes to be written
479 *
480 * This is called for non-resident attributes from ntfs_file_buffered_write()
481 * with i_sem held on the inode (@pages[0]->mapping->host). There are
482 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
483 * data has not yet been copied into the @pages.
484 *
485 * Need to fill any holes with actual clusters, allocate buffers if necessary,
486 * ensure all the buffers are mapped, and bring uptodate any buffers that are
487 * only partially being written to.
488 *
489 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
490 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
491 * the same cluster and that they are the entirety of that cluster, and that
492 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
493 *
494 * i_size is not to be modified yet.
495 *
496 * Return 0 on success or -errno on error.
497 */
498static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
499 unsigned nr_pages, s64 pos, size_t bytes)
500{
501 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
502 LCN lcn;
503 s64 bh_pos, vcn_len, end, initialized_size;
504 sector_t lcn_block;
505 struct page *page;
506 struct inode *vi;
507 ntfs_inode *ni, *base_ni = NULL;
508 ntfs_volume *vol;
509 runlist_element *rl, *rl2;
510 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
511 ntfs_attr_search_ctx *ctx = NULL;
512 MFT_RECORD *m = NULL;
513 ATTR_RECORD *a = NULL;
514 unsigned long flags;
515 u32 attr_rec_len = 0;
516 unsigned blocksize, u;
517 int err, mp_size;
518 BOOL rl_write_locked, was_hole, is_retry;
519 unsigned char blocksize_bits;
520 struct {
521 u8 runlist_merged:1;
522 u8 mft_attr_mapped:1;
523 u8 mp_rebuilt:1;
524 u8 attr_switched:1;
525 } status = { 0, 0, 0, 0 };
526
527 BUG_ON(!nr_pages);
528 BUG_ON(!pages);
529 BUG_ON(!*pages);
530 vi = pages[0]->mapping->host;
531 ni = NTFS_I(vi);
532 vol = ni->vol;
533 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
Anton Altaparmakovd04bd1f2005-10-24 08:41:24 +0100534 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
Anton Altaparmakov98b27032005-10-11 15:40:40 +0100535 vi->i_ino, ni->type, pages[0]->index, nr_pages,
536 (long long)pos, bytes);
537 blocksize_bits = vi->i_blkbits;
538 blocksize = 1 << blocksize_bits;
539 u = 0;
540 do {
541 struct page *page = pages[u];
542 /*
543 * create_empty_buffers() will create uptodate/dirty buffers if
544 * the page is uptodate/dirty.
545 */
546 if (!page_has_buffers(page)) {
547 create_empty_buffers(page, blocksize, 0);
548 if (unlikely(!page_has_buffers(page)))
549 return -ENOMEM;
550 }
551 } while (++u < nr_pages);
552 rl_write_locked = FALSE;
553 rl = NULL;
554 err = 0;
555 vcn = lcn = -1;
556 vcn_len = 0;
557 lcn_block = -1;
558 was_hole = FALSE;
559 cpos = pos >> vol->cluster_size_bits;
560 end = pos + bytes;
561 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
562 /*
563 * Loop over each page and for each page over each buffer. Use goto to
564 * reduce indentation.
565 */
566 u = 0;
567do_next_page:
568 page = pages[u];
569 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
570 bh = head = page_buffers(page);
571 do {
572 VCN cdelta;
573 s64 bh_end;
574 unsigned bh_cofs;
575
576 /* Clear buffer_new on all buffers to reinitialise state. */
577 if (buffer_new(bh))
578 clear_buffer_new(bh);
579 bh_end = bh_pos + blocksize;
580 bh_cpos = bh_pos >> vol->cluster_size_bits;
581 bh_cofs = bh_pos & vol->cluster_size_mask;
582 if (buffer_mapped(bh)) {
583 /*
584 * The buffer is already mapped. If it is uptodate,
585 * ignore it.
586 */
587 if (buffer_uptodate(bh))
588 continue;
589 /*
590 * The buffer is not uptodate. If the page is uptodate
591 * set the buffer uptodate and otherwise ignore it.
592 */
593 if (PageUptodate(page)) {
594 set_buffer_uptodate(bh);
595 continue;
596 }
597 /*
598 * Neither the page nor the buffer are uptodate. If
599 * the buffer is only partially being written to, we
600 * need to read it in before the write, i.e. now.
601 */
602 if ((bh_pos < pos && bh_end > pos) ||
603 (bh_pos < end && bh_end > end)) {
604 /*
605 * If the buffer is fully or partially within
606 * the initialized size, do an actual read.
607 * Otherwise, simply zero the buffer.
608 */
609 read_lock_irqsave(&ni->size_lock, flags);
610 initialized_size = ni->initialized_size;
611 read_unlock_irqrestore(&ni->size_lock, flags);
612 if (bh_pos < initialized_size) {
613 ntfs_submit_bh_for_read(bh);
614 *wait_bh++ = bh;
615 } else {
616 u8 *kaddr = kmap_atomic(page, KM_USER0);
617 memset(kaddr + bh_offset(bh), 0,
618 blocksize);
619 kunmap_atomic(kaddr, KM_USER0);
620 flush_dcache_page(page);
621 set_buffer_uptodate(bh);
622 }
623 }
624 continue;
625 }
626 /* Unmapped buffer. Need to map it. */
627 bh->b_bdev = vol->sb->s_bdev;
628 /*
629 * If the current buffer is in the same clusters as the map
630 * cache, there is no need to check the runlist again. The
631 * map cache is made up of @vcn, which is the first cached file
632 * cluster, @vcn_len which is the number of cached file
633 * clusters, @lcn is the device cluster corresponding to @vcn,
634 * and @lcn_block is the block number corresponding to @lcn.
635 */
636 cdelta = bh_cpos - vcn;
637 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
638map_buffer_cached:
639 BUG_ON(lcn < 0);
640 bh->b_blocknr = lcn_block +
641 (cdelta << (vol->cluster_size_bits -
642 blocksize_bits)) +
643 (bh_cofs >> blocksize_bits);
644 set_buffer_mapped(bh);
645 /*
646 * If the page is uptodate so is the buffer. If the
647 * buffer is fully outside the write, we ignore it if
648 * it was already allocated and we mark it dirty so it
649 * gets written out if we allocated it. On the other
650 * hand, if we allocated the buffer but we are not
651 * marking it dirty we set buffer_new so we can do
652 * error recovery.
653 */
654 if (PageUptodate(page)) {
655 if (!buffer_uptodate(bh))
656 set_buffer_uptodate(bh);
657 if (unlikely(was_hole)) {
658 /* We allocated the buffer. */
659 unmap_underlying_metadata(bh->b_bdev,
660 bh->b_blocknr);
661 if (bh_end <= pos || bh_pos >= end)
662 mark_buffer_dirty(bh);
663 else
664 set_buffer_new(bh);
665 }
666 continue;
667 }
668 /* Page is _not_ uptodate. */
669 if (likely(!was_hole)) {
670 /*
671 * Buffer was already allocated. If it is not
672 * uptodate and is only partially being written
673 * to, we need to read it in before the write,
674 * i.e. now.
675 */
676 if (!buffer_uptodate(bh) && ((bh_pos < pos &&
677 bh_end > pos) ||
678 (bh_end > end &&
679 bh_end > end))) {
680 /*
681 * If the buffer is fully or partially
682 * within the initialized size, do an
683 * actual read. Otherwise, simply zero
684 * the buffer.
685 */
686 read_lock_irqsave(&ni->size_lock,
687 flags);
688 initialized_size = ni->initialized_size;
689 read_unlock_irqrestore(&ni->size_lock,
690 flags);
691 if (bh_pos < initialized_size) {
692 ntfs_submit_bh_for_read(bh);
693 *wait_bh++ = bh;
694 } else {
695 u8 *kaddr = kmap_atomic(page,
696 KM_USER0);
697 memset(kaddr + bh_offset(bh),
698 0, blocksize);
699 kunmap_atomic(kaddr, KM_USER0);
700 flush_dcache_page(page);
701 set_buffer_uptodate(bh);
702 }
703 }
704 continue;
705 }
706 /* We allocated the buffer. */
707 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
708 /*
709 * If the buffer is fully outside the write, zero it,
710 * set it uptodate, and mark it dirty so it gets
711 * written out. If it is partially being written to,
712 * zero region surrounding the write but leave it to
713 * commit write to do anything else. Finally, if the
714 * buffer is fully being overwritten, do nothing.
715 */
716 if (bh_end <= pos || bh_pos >= end) {
717 if (!buffer_uptodate(bh)) {
718 u8 *kaddr = kmap_atomic(page, KM_USER0);
719 memset(kaddr + bh_offset(bh), 0,
720 blocksize);
721 kunmap_atomic(kaddr, KM_USER0);
722 flush_dcache_page(page);
723 set_buffer_uptodate(bh);
724 }
725 mark_buffer_dirty(bh);
726 continue;
727 }
728 set_buffer_new(bh);
729 if (!buffer_uptodate(bh) &&
730 (bh_pos < pos || bh_end > end)) {
731 u8 *kaddr;
732 unsigned pofs;
733
734 kaddr = kmap_atomic(page, KM_USER0);
735 if (bh_pos < pos) {
736 pofs = bh_pos & ~PAGE_CACHE_MASK;
737 memset(kaddr + pofs, 0, pos - bh_pos);
738 }
739 if (bh_end > end) {
740 pofs = end & ~PAGE_CACHE_MASK;
741 memset(kaddr + pofs, 0, bh_end - end);
742 }
743 kunmap_atomic(kaddr, KM_USER0);
744 flush_dcache_page(page);
745 }
746 continue;
747 }
748 /*
749 * Slow path: this is the first buffer in the cluster. If it
750 * is outside allocated size and is not uptodate, zero it and
751 * set it uptodate.
752 */
753 read_lock_irqsave(&ni->size_lock, flags);
754 initialized_size = ni->allocated_size;
755 read_unlock_irqrestore(&ni->size_lock, flags);
756 if (bh_pos > initialized_size) {
757 if (PageUptodate(page)) {
758 if (!buffer_uptodate(bh))
759 set_buffer_uptodate(bh);
760 } else if (!buffer_uptodate(bh)) {
761 u8 *kaddr = kmap_atomic(page, KM_USER0);
762 memset(kaddr + bh_offset(bh), 0, blocksize);
763 kunmap_atomic(kaddr, KM_USER0);
764 flush_dcache_page(page);
765 set_buffer_uptodate(bh);
766 }
767 continue;
768 }
769 is_retry = FALSE;
770 if (!rl) {
771 down_read(&ni->runlist.lock);
772retry_remap:
773 rl = ni->runlist.rl;
774 }
775 if (likely(rl != NULL)) {
776 /* Seek to element containing target cluster. */
777 while (rl->length && rl[1].vcn <= bh_cpos)
778 rl++;
779 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
780 if (likely(lcn >= 0)) {
781 /*
782 * Successful remap, setup the map cache and
783 * use that to deal with the buffer.
784 */
785 was_hole = FALSE;
786 vcn = bh_cpos;
787 vcn_len = rl[1].vcn - vcn;
788 lcn_block = lcn << (vol->cluster_size_bits -
789 blocksize_bits);
Anton Altaparmakovd5aeaef2005-10-19 12:23:10 +0100790 cdelta = 0;
Anton Altaparmakov98b27032005-10-11 15:40:40 +0100791 /*
792 * If the number of remaining clusters in the
793 * @pages is smaller or equal to the number of
794 * cached clusters, unlock the runlist as the
795 * map cache will be used from now on.
796 */
797 if (likely(vcn + vcn_len >= cend)) {
798 if (rl_write_locked) {
799 up_write(&ni->runlist.lock);
800 rl_write_locked = FALSE;
801 } else
802 up_read(&ni->runlist.lock);
803 rl = NULL;
804 }
805 goto map_buffer_cached;
806 }
807 } else
808 lcn = LCN_RL_NOT_MAPPED;
809 /*
810 * If it is not a hole and not out of bounds, the runlist is
811 * probably unmapped so try to map it now.
812 */
813 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
814 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
815 /* Attempt to map runlist. */
816 if (!rl_write_locked) {
817 /*
818 * We need the runlist locked for
819 * writing, so if it is locked for
820 * reading relock it now and retry in
821 * case it changed whilst we dropped
822 * the lock.
823 */
824 up_read(&ni->runlist.lock);
825 down_write(&ni->runlist.lock);
826 rl_write_locked = TRUE;
827 goto retry_remap;
828 }
829 err = ntfs_map_runlist_nolock(ni, bh_cpos,
830 NULL);
831 if (likely(!err)) {
832 is_retry = TRUE;
833 goto retry_remap;
834 }
835 /*
836 * If @vcn is out of bounds, pretend @lcn is
837 * LCN_ENOENT. As long as the buffer is out
838 * of bounds this will work fine.
839 */
840 if (err == -ENOENT) {
841 lcn = LCN_ENOENT;
842 err = 0;
843 goto rl_not_mapped_enoent;
844 }
845 } else
846 err = -EIO;
847 /* Failed to map the buffer, even after retrying. */
848 bh->b_blocknr = -1;
849 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
850 "attribute type 0x%x, vcn 0x%llx, "
851 "vcn offset 0x%x, because its "
852 "location on disk could not be "
853 "determined%s (error code %i).",
854 ni->mft_no, ni->type,
855 (unsigned long long)bh_cpos,
856 (unsigned)bh_pos &
857 vol->cluster_size_mask,
858 is_retry ? " even after retrying" : "",
859 err);
860 break;
861 }
862rl_not_mapped_enoent:
863 /*
864 * The buffer is in a hole or out of bounds. We need to fill
865 * the hole, unless the buffer is in a cluster which is not
866 * touched by the write, in which case we just leave the buffer
867 * unmapped. This can only happen when the cluster size is
868 * less than the page cache size.
869 */
870 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
871 bh_cend = (bh_end + vol->cluster_size - 1) >>
872 vol->cluster_size_bits;
873 if ((bh_cend <= cpos || bh_cpos >= cend)) {
874 bh->b_blocknr = -1;
875 /*
876 * If the buffer is uptodate we skip it. If it
877 * is not but the page is uptodate, we can set
878 * the buffer uptodate. If the page is not
879 * uptodate, we can clear the buffer and set it
880 * uptodate. Whether this is worthwhile is
881 * debatable and this could be removed.
882 */
883 if (PageUptodate(page)) {
884 if (!buffer_uptodate(bh))
885 set_buffer_uptodate(bh);
886 } else if (!buffer_uptodate(bh)) {
887 u8 *kaddr = kmap_atomic(page, KM_USER0);
888 memset(kaddr + bh_offset(bh), 0,
889 blocksize);
890 kunmap_atomic(kaddr, KM_USER0);
891 flush_dcache_page(page);
892 set_buffer_uptodate(bh);
893 }
894 continue;
895 }
896 }
897 /*
898 * Out of bounds buffer is invalid if it was not really out of
899 * bounds.
900 */
901 BUG_ON(lcn != LCN_HOLE);
902 /*
903 * We need the runlist locked for writing, so if it is locked
904 * for reading relock it now and retry in case it changed
905 * whilst we dropped the lock.
906 */
907 BUG_ON(!rl);
908 if (!rl_write_locked) {
909 up_read(&ni->runlist.lock);
910 down_write(&ni->runlist.lock);
911 rl_write_locked = TRUE;
912 goto retry_remap;
913 }
914 /* Find the previous last allocated cluster. */
915 BUG_ON(rl->lcn != LCN_HOLE);
916 lcn = -1;
917 rl2 = rl;
918 while (--rl2 >= ni->runlist.rl) {
919 if (rl2->lcn >= 0) {
920 lcn = rl2->lcn + rl2->length;
921 break;
922 }
923 }
924 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
925 FALSE);
926 if (IS_ERR(rl2)) {
927 err = PTR_ERR(rl2);
928 ntfs_debug("Failed to allocate cluster, error code %i.",
929 err);
930 break;
931 }
932 lcn = rl2->lcn;
933 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
934 if (IS_ERR(rl)) {
935 err = PTR_ERR(rl);
936 if (err != -ENOMEM)
937 err = -EIO;
938 if (ntfs_cluster_free_from_rl(vol, rl2)) {
939 ntfs_error(vol->sb, "Failed to release "
940 "allocated cluster in error "
941 "code path. Run chkdsk to "
942 "recover the lost cluster.");
943 NVolSetErrors(vol);
944 }
945 ntfs_free(rl2);
946 break;
947 }
948 ni->runlist.rl = rl;
949 status.runlist_merged = 1;
950 ntfs_debug("Allocated cluster, lcn 0x%llx.", lcn);
951 /* Map and lock the mft record and get the attribute record. */
952 if (!NInoAttr(ni))
953 base_ni = ni;
954 else
955 base_ni = ni->ext.base_ntfs_ino;
956 m = map_mft_record(base_ni);
957 if (IS_ERR(m)) {
958 err = PTR_ERR(m);
959 break;
960 }
961 ctx = ntfs_attr_get_search_ctx(base_ni, m);
962 if (unlikely(!ctx)) {
963 err = -ENOMEM;
964 unmap_mft_record(base_ni);
965 break;
966 }
967 status.mft_attr_mapped = 1;
968 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
969 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
970 if (unlikely(err)) {
971 if (err == -ENOENT)
972 err = -EIO;
973 break;
974 }
975 m = ctx->mrec;
976 a = ctx->attr;
977 /*
978 * Find the runlist element with which the attribute extent
979 * starts. Note, we cannot use the _attr_ version because we
980 * have mapped the mft record. That is ok because we know the
981 * runlist fragment must be mapped already to have ever gotten
982 * here, so we can just use the _rl_ version.
983 */
984 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
985 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
986 BUG_ON(!rl2);
987 BUG_ON(!rl2->length);
988 BUG_ON(rl2->lcn < LCN_HOLE);
989 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
990 /*
991 * If @highest_vcn is zero, calculate the real highest_vcn
992 * (which can really be zero).
993 */
994 if (!highest_vcn)
995 highest_vcn = (sle64_to_cpu(
996 a->data.non_resident.allocated_size) >>
997 vol->cluster_size_bits) - 1;
998 /*
999 * Determine the size of the mapping pairs array for the new
1000 * extent, i.e. the old extent with the hole filled.
1001 */
1002 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1003 highest_vcn);
1004 if (unlikely(mp_size <= 0)) {
1005 if (!(err = mp_size))
1006 err = -EIO;
1007 ntfs_debug("Failed to get size for mapping pairs "
1008 "array, error code %i.", err);
1009 break;
1010 }
1011 /*
1012 * Resize the attribute record to fit the new mapping pairs
1013 * array.
1014 */
1015 attr_rec_len = le32_to_cpu(a->length);
1016 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1017 a->data.non_resident.mapping_pairs_offset));
1018 if (unlikely(err)) {
1019 BUG_ON(err != -ENOSPC);
1020 // TODO: Deal with this by using the current attribute
1021 // and fill it with as much of the mapping pairs
1022 // array as possible. Then loop over each attribute
1023 // extent rewriting the mapping pairs arrays as we go
1024 // along and if when we reach the end we have not
1025 // enough space, try to resize the last attribute
1026 // extent and if even that fails, add a new attribute
1027 // extent.
1028 // We could also try to resize at each step in the hope
1029 // that we will not need to rewrite every single extent.
1030 // Note, we may need to decompress some extents to fill
1031 // the runlist as we are walking the extents...
1032 ntfs_error(vol->sb, "Not enough space in the mft "
1033 "record for the extended attribute "
1034 "record. This case is not "
1035 "implemented yet.");
1036 err = -EOPNOTSUPP;
1037 break ;
1038 }
1039 status.mp_rebuilt = 1;
1040 /*
1041 * Generate the mapping pairs array directly into the attribute
1042 * record.
1043 */
1044 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1045 a->data.non_resident.mapping_pairs_offset),
1046 mp_size, rl2, vcn, highest_vcn, NULL);
1047 if (unlikely(err)) {
1048 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1049 "attribute type 0x%x, because building "
1050 "the mapping pairs failed with error "
1051 "code %i.", vi->i_ino,
1052 (unsigned)le32_to_cpu(ni->type), err);
1053 err = -EIO;
1054 break;
1055 }
1056 /* Update the highest_vcn but only if it was not set. */
1057 if (unlikely(!a->data.non_resident.highest_vcn))
1058 a->data.non_resident.highest_vcn =
1059 cpu_to_sle64(highest_vcn);
1060 /*
1061 * If the attribute is sparse/compressed, update the compressed
1062 * size in the ntfs_inode structure and the attribute record.
1063 */
1064 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1065 /*
1066 * If we are not in the first attribute extent, switch
1067 * to it, but first ensure the changes will make it to
1068 * disk later.
1069 */
1070 if (a->data.non_resident.lowest_vcn) {
1071 flush_dcache_mft_record_page(ctx->ntfs_ino);
1072 mark_mft_record_dirty(ctx->ntfs_ino);
1073 ntfs_attr_reinit_search_ctx(ctx);
1074 err = ntfs_attr_lookup(ni->type, ni->name,
1075 ni->name_len, CASE_SENSITIVE,
1076 0, NULL, 0, ctx);
1077 if (unlikely(err)) {
1078 status.attr_switched = 1;
1079 break;
1080 }
1081 /* @m is not used any more so do not set it. */
1082 a = ctx->attr;
1083 }
1084 write_lock_irqsave(&ni->size_lock, flags);
1085 ni->itype.compressed.size += vol->cluster_size;
1086 a->data.non_resident.compressed_size =
1087 cpu_to_sle64(ni->itype.compressed.size);
1088 write_unlock_irqrestore(&ni->size_lock, flags);
1089 }
1090 /* Ensure the changes make it to disk. */
1091 flush_dcache_mft_record_page(ctx->ntfs_ino);
1092 mark_mft_record_dirty(ctx->ntfs_ino);
1093 ntfs_attr_put_search_ctx(ctx);
1094 unmap_mft_record(base_ni);
1095 /* Successfully filled the hole. */
1096 status.runlist_merged = 0;
1097 status.mft_attr_mapped = 0;
1098 status.mp_rebuilt = 0;
1099 /* Setup the map cache and use that to deal with the buffer. */
1100 was_hole = TRUE;
1101 vcn = bh_cpos;
1102 vcn_len = 1;
1103 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1104 cdelta = 0;
1105 /*
1106 * If the number of remaining clusters in the @pages is smaller
1107 * or equal to the number of cached clusters, unlock the
1108 * runlist as the map cache will be used from now on.
1109 */
1110 if (likely(vcn + vcn_len >= cend)) {
1111 up_write(&ni->runlist.lock);
1112 rl_write_locked = FALSE;
1113 rl = NULL;
1114 }
1115 goto map_buffer_cached;
1116 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1117 /* If there are no errors, do the next page. */
1118 if (likely(!err && ++u < nr_pages))
1119 goto do_next_page;
1120 /* If there are no errors, release the runlist lock if we took it. */
1121 if (likely(!err)) {
1122 if (unlikely(rl_write_locked)) {
1123 up_write(&ni->runlist.lock);
1124 rl_write_locked = FALSE;
1125 } else if (unlikely(rl))
1126 up_read(&ni->runlist.lock);
1127 rl = NULL;
1128 }
1129 /* If we issued read requests, let them complete. */
1130 read_lock_irqsave(&ni->size_lock, flags);
1131 initialized_size = ni->initialized_size;
1132 read_unlock_irqrestore(&ni->size_lock, flags);
1133 while (wait_bh > wait) {
1134 bh = *--wait_bh;
1135 wait_on_buffer(bh);
1136 if (likely(buffer_uptodate(bh))) {
1137 page = bh->b_page;
1138 bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1139 bh_offset(bh);
1140 /*
1141 * If the buffer overflows the initialized size, need
1142 * to zero the overflowing region.
1143 */
1144 if (unlikely(bh_pos + blocksize > initialized_size)) {
1145 u8 *kaddr;
1146 int ofs = 0;
1147
1148 if (likely(bh_pos < initialized_size))
1149 ofs = initialized_size - bh_pos;
1150 kaddr = kmap_atomic(page, KM_USER0);
1151 memset(kaddr + bh_offset(bh) + ofs, 0,
1152 blocksize - ofs);
1153 kunmap_atomic(kaddr, KM_USER0);
1154 flush_dcache_page(page);
1155 }
1156 } else /* if (unlikely(!buffer_uptodate(bh))) */
1157 err = -EIO;
1158 }
1159 if (likely(!err)) {
1160 /* Clear buffer_new on all buffers. */
1161 u = 0;
1162 do {
1163 bh = head = page_buffers(pages[u]);
1164 do {
1165 if (buffer_new(bh))
1166 clear_buffer_new(bh);
1167 } while ((bh = bh->b_this_page) != head);
1168 } while (++u < nr_pages);
1169 ntfs_debug("Done.");
1170 return err;
1171 }
1172 if (status.attr_switched) {
1173 /* Get back to the attribute extent we modified. */
1174 ntfs_attr_reinit_search_ctx(ctx);
1175 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1176 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1177 ntfs_error(vol->sb, "Failed to find required "
1178 "attribute extent of attribute in "
1179 "error code path. Run chkdsk to "
1180 "recover.");
1181 write_lock_irqsave(&ni->size_lock, flags);
1182 ni->itype.compressed.size += vol->cluster_size;
1183 write_unlock_irqrestore(&ni->size_lock, flags);
1184 flush_dcache_mft_record_page(ctx->ntfs_ino);
1185 mark_mft_record_dirty(ctx->ntfs_ino);
1186 /*
1187 * The only thing that is now wrong is the compressed
1188 * size of the base attribute extent which chkdsk
1189 * should be able to fix.
1190 */
1191 NVolSetErrors(vol);
1192 } else {
1193 m = ctx->mrec;
1194 a = ctx->attr;
1195 status.attr_switched = 0;
1196 }
1197 }
1198 /*
1199 * If the runlist has been modified, need to restore it by punching a
1200 * hole into it and we then need to deallocate the on-disk cluster as
1201 * well. Note, we only modify the runlist if we are able to generate a
1202 * new mapping pairs array, i.e. only when the mapped attribute extent
1203 * is not switched.
1204 */
1205 if (status.runlist_merged && !status.attr_switched) {
1206 BUG_ON(!rl_write_locked);
1207 /* Make the file cluster we allocated sparse in the runlist. */
1208 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1209 ntfs_error(vol->sb, "Failed to punch hole into "
1210 "attribute runlist in error code "
1211 "path. Run chkdsk to recover the "
1212 "lost cluster.");
1213 make_bad_inode(vi);
1214 make_bad_inode(VFS_I(base_ni));
1215 NVolSetErrors(vol);
1216 } else /* if (success) */ {
1217 status.runlist_merged = 0;
1218 /*
1219 * Deallocate the on-disk cluster we allocated but only
1220 * if we succeeded in punching its vcn out of the
1221 * runlist.
1222 */
1223 down_write(&vol->lcnbmp_lock);
1224 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1225 ntfs_error(vol->sb, "Failed to release "
1226 "allocated cluster in error "
1227 "code path. Run chkdsk to "
1228 "recover the lost cluster.");
1229 NVolSetErrors(vol);
1230 }
1231 up_write(&vol->lcnbmp_lock);
1232 }
1233 }
1234 /*
1235 * Resize the attribute record to its old size and rebuild the mapping
1236 * pairs array. Note, we only can do this if the runlist has been
1237 * restored to its old state which also implies that the mapped
1238 * attribute extent is not switched.
1239 */
1240 if (status.mp_rebuilt && !status.runlist_merged) {
1241 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1242 ntfs_error(vol->sb, "Failed to restore attribute "
1243 "record in error code path. Run "
1244 "chkdsk to recover.");
1245 make_bad_inode(vi);
1246 make_bad_inode(VFS_I(base_ni));
1247 NVolSetErrors(vol);
1248 } else /* if (success) */ {
1249 if (ntfs_mapping_pairs_build(vol, (u8*)a +
1250 le16_to_cpu(a->data.non_resident.
1251 mapping_pairs_offset), attr_rec_len -
1252 le16_to_cpu(a->data.non_resident.
1253 mapping_pairs_offset), ni->runlist.rl,
1254 vcn, highest_vcn, NULL)) {
1255 ntfs_error(vol->sb, "Failed to restore "
1256 "mapping pairs array in error "
1257 "code path. Run chkdsk to "
1258 "recover.");
1259 make_bad_inode(vi);
1260 make_bad_inode(VFS_I(base_ni));
1261 NVolSetErrors(vol);
1262 }
1263 flush_dcache_mft_record_page(ctx->ntfs_ino);
1264 mark_mft_record_dirty(ctx->ntfs_ino);
1265 }
1266 }
1267 /* Release the mft record and the attribute. */
1268 if (status.mft_attr_mapped) {
1269 ntfs_attr_put_search_ctx(ctx);
1270 unmap_mft_record(base_ni);
1271 }
1272 /* Release the runlist lock. */
1273 if (rl_write_locked)
1274 up_write(&ni->runlist.lock);
1275 else if (rl)
1276 up_read(&ni->runlist.lock);
1277 /*
1278 * Zero out any newly allocated blocks to avoid exposing stale data.
1279 * If BH_New is set, we know that the block was newly allocated above
1280 * and that it has not been fully zeroed and marked dirty yet.
1281 */
1282 nr_pages = u;
1283 u = 0;
1284 end = bh_cpos << vol->cluster_size_bits;
1285 do {
1286 page = pages[u];
1287 bh = head = page_buffers(page);
1288 do {
1289 if (u == nr_pages &&
1290 ((s64)page->index << PAGE_CACHE_SHIFT) +
1291 bh_offset(bh) >= end)
1292 break;
1293 if (!buffer_new(bh))
1294 continue;
1295 clear_buffer_new(bh);
1296 if (!buffer_uptodate(bh)) {
1297 if (PageUptodate(page))
1298 set_buffer_uptodate(bh);
1299 else {
1300 u8 *kaddr = kmap_atomic(page, KM_USER0);
1301 memset(kaddr + bh_offset(bh), 0,
1302 blocksize);
1303 kunmap_atomic(kaddr, KM_USER0);
1304 flush_dcache_page(page);
1305 set_buffer_uptodate(bh);
1306 }
1307 }
1308 mark_buffer_dirty(bh);
1309 } while ((bh = bh->b_this_page) != head);
1310 } while (++u <= nr_pages);
1311 ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
1312 return err;
1313}
1314
1315/*
1316 * Copy as much as we can into the pages and return the number of bytes which
1317 * were sucessfully copied. If a fault is encountered then clear the pages
1318 * out to (ofs + bytes) and return the number of bytes which were copied.
1319 */
1320static inline size_t ntfs_copy_from_user(struct page **pages,
1321 unsigned nr_pages, unsigned ofs, const char __user *buf,
1322 size_t bytes)
1323{
1324 struct page **last_page = pages + nr_pages;
1325 char *kaddr;
1326 size_t total = 0;
1327 unsigned len;
1328 int left;
1329
1330 do {
1331 len = PAGE_CACHE_SIZE - ofs;
1332 if (len > bytes)
1333 len = bytes;
1334 kaddr = kmap_atomic(*pages, KM_USER0);
1335 left = __copy_from_user_inatomic(kaddr + ofs, buf, len);
1336 kunmap_atomic(kaddr, KM_USER0);
1337 if (unlikely(left)) {
1338 /* Do it the slow way. */
1339 kaddr = kmap(*pages);
1340 left = __copy_from_user(kaddr + ofs, buf, len);
1341 kunmap(*pages);
1342 if (unlikely(left))
1343 goto err_out;
1344 }
1345 total += len;
1346 bytes -= len;
1347 if (!bytes)
1348 break;
1349 buf += len;
1350 ofs = 0;
1351 } while (++pages < last_page);
1352out:
1353 return total;
1354err_out:
1355 total += len - left;
1356 /* Zero the rest of the target like __copy_from_user(). */
1357 while (++pages < last_page) {
1358 bytes -= len;
1359 if (!bytes)
1360 break;
1361 len = PAGE_CACHE_SIZE;
1362 if (len > bytes)
1363 len = bytes;
1364 kaddr = kmap_atomic(*pages, KM_USER0);
1365 memset(kaddr, 0, len);
1366 kunmap_atomic(kaddr, KM_USER0);
1367 }
1368 goto out;
1369}
1370
1371static size_t __ntfs_copy_from_user_iovec(char *vaddr,
1372 const struct iovec *iov, size_t iov_ofs, size_t bytes)
1373{
1374 size_t total = 0;
1375
1376 while (1) {
1377 const char __user *buf = iov->iov_base + iov_ofs;
1378 unsigned len;
1379 size_t left;
1380
1381 len = iov->iov_len - iov_ofs;
1382 if (len > bytes)
1383 len = bytes;
1384 left = __copy_from_user_inatomic(vaddr, buf, len);
1385 total += len;
1386 bytes -= len;
1387 vaddr += len;
1388 if (unlikely(left)) {
1389 /*
1390 * Zero the rest of the target like __copy_from_user().
1391 */
1392 memset(vaddr, 0, bytes);
1393 total -= left;
1394 break;
1395 }
1396 if (!bytes)
1397 break;
1398 iov++;
1399 iov_ofs = 0;
1400 }
1401 return total;
1402}
1403
1404static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1405 size_t *iov_ofsp, size_t bytes)
1406{
1407 const struct iovec *iov = *iovp;
1408 size_t iov_ofs = *iov_ofsp;
1409
1410 while (bytes) {
1411 unsigned len;
1412
1413 len = iov->iov_len - iov_ofs;
1414 if (len > bytes)
1415 len = bytes;
1416 bytes -= len;
1417 iov_ofs += len;
1418 if (iov->iov_len == iov_ofs) {
1419 iov++;
1420 iov_ofs = 0;
1421 }
1422 }
1423 *iovp = iov;
1424 *iov_ofsp = iov_ofs;
1425}
1426
1427/*
1428 * This has the same side-effects and return value as ntfs_copy_from_user().
1429 * The difference is that on a fault we need to memset the remainder of the
1430 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1431 * single-segment behaviour.
1432 *
1433 * We call the same helper (__ntfs_copy_from_user_iovec()) both when atomic and
1434 * when not atomic. This is ok because __ntfs_copy_from_user_iovec() calls
1435 * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In
1436 * fact, the only difference between __copy_from_user_inatomic() and
1437 * __copy_from_user() is that the latter calls might_sleep(). And on many
1438 * architectures __copy_from_user_inatomic() is just defined to
1439 * __copy_from_user() so it makes no difference at all on those architectures.
1440 */
1441static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1442 unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1443 size_t *iov_ofs, size_t bytes)
1444{
1445 struct page **last_page = pages + nr_pages;
1446 char *kaddr;
1447 size_t copied, len, total = 0;
1448
1449 do {
1450 len = PAGE_CACHE_SIZE - ofs;
1451 if (len > bytes)
1452 len = bytes;
1453 kaddr = kmap_atomic(*pages, KM_USER0);
1454 copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
1455 *iov, *iov_ofs, len);
1456 kunmap_atomic(kaddr, KM_USER0);
1457 if (unlikely(copied != len)) {
1458 /* Do it the slow way. */
1459 kaddr = kmap(*pages);
1460 copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
1461 *iov, *iov_ofs, len);
1462 kunmap(*pages);
1463 if (unlikely(copied != len))
1464 goto err_out;
1465 }
1466 total += len;
1467 bytes -= len;
1468 if (!bytes)
1469 break;
1470 ntfs_set_next_iovec(iov, iov_ofs, len);
1471 ofs = 0;
1472 } while (++pages < last_page);
1473out:
1474 return total;
1475err_out:
1476 total += copied;
1477 /* Zero the rest of the target like __copy_from_user(). */
1478 while (++pages < last_page) {
1479 bytes -= len;
1480 if (!bytes)
1481 break;
1482 len = PAGE_CACHE_SIZE;
1483 if (len > bytes)
1484 len = bytes;
1485 kaddr = kmap_atomic(*pages, KM_USER0);
1486 memset(kaddr, 0, len);
1487 kunmap_atomic(kaddr, KM_USER0);
1488 }
1489 goto out;
1490}
1491
1492static inline void ntfs_flush_dcache_pages(struct page **pages,
1493 unsigned nr_pages)
1494{
1495 BUG_ON(!nr_pages);
1496 do {
1497 /*
1498 * Warning: Do not do the decrement at the same time as the
1499 * call because flush_dcache_page() is a NULL macro on i386
1500 * and hence the decrement never happens.
1501 */
1502 flush_dcache_page(pages[nr_pages]);
1503 } while (--nr_pages > 0);
1504}
1505
1506/**
1507 * ntfs_commit_pages_after_non_resident_write - commit the received data
1508 * @pages: array of destination pages
1509 * @nr_pages: number of pages in @pages
1510 * @pos: byte position in file at which the write begins
1511 * @bytes: number of bytes to be written
1512 *
1513 * See description of ntfs_commit_pages_after_write(), below.
1514 */
1515static inline int ntfs_commit_pages_after_non_resident_write(
1516 struct page **pages, const unsigned nr_pages,
1517 s64 pos, size_t bytes)
1518{
1519 s64 end, initialized_size;
1520 struct inode *vi;
1521 ntfs_inode *ni, *base_ni;
1522 struct buffer_head *bh, *head;
1523 ntfs_attr_search_ctx *ctx;
1524 MFT_RECORD *m;
1525 ATTR_RECORD *a;
1526 unsigned long flags;
1527 unsigned blocksize, u;
1528 int err;
1529
1530 vi = pages[0]->mapping->host;
1531 ni = NTFS_I(vi);
1532 blocksize = 1 << vi->i_blkbits;
1533 end = pos + bytes;
1534 u = 0;
1535 do {
1536 s64 bh_pos;
1537 struct page *page;
1538 BOOL partial;
1539
1540 page = pages[u];
1541 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1542 bh = head = page_buffers(page);
1543 partial = FALSE;
1544 do {
1545 s64 bh_end;
1546
1547 bh_end = bh_pos + blocksize;
1548 if (bh_end <= pos || bh_pos >= end) {
1549 if (!buffer_uptodate(bh))
1550 partial = TRUE;
1551 } else {
1552 set_buffer_uptodate(bh);
1553 mark_buffer_dirty(bh);
1554 }
1555 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1556 /*
1557 * If all buffers are now uptodate but the page is not, set the
1558 * page uptodate.
1559 */
1560 if (!partial && !PageUptodate(page))
1561 SetPageUptodate(page);
1562 } while (++u < nr_pages);
1563 /*
1564 * Finally, if we do not need to update initialized_size or i_size we
1565 * are finished.
1566 */
1567 read_lock_irqsave(&ni->size_lock, flags);
1568 initialized_size = ni->initialized_size;
1569 read_unlock_irqrestore(&ni->size_lock, flags);
1570 if (end <= initialized_size) {
1571 ntfs_debug("Done.");
1572 return 0;
1573 }
1574 /*
1575 * Update initialized_size/i_size as appropriate, both in the inode and
1576 * the mft record.
1577 */
1578 if (!NInoAttr(ni))
1579 base_ni = ni;
1580 else
1581 base_ni = ni->ext.base_ntfs_ino;
1582 /* Map, pin, and lock the mft record. */
1583 m = map_mft_record(base_ni);
1584 if (IS_ERR(m)) {
1585 err = PTR_ERR(m);
1586 m = NULL;
1587 ctx = NULL;
1588 goto err_out;
1589 }
1590 BUG_ON(!NInoNonResident(ni));
1591 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1592 if (unlikely(!ctx)) {
1593 err = -ENOMEM;
1594 goto err_out;
1595 }
1596 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1597 CASE_SENSITIVE, 0, NULL, 0, ctx);
1598 if (unlikely(err)) {
1599 if (err == -ENOENT)
1600 err = -EIO;
1601 goto err_out;
1602 }
1603 a = ctx->attr;
1604 BUG_ON(!a->non_resident);
1605 write_lock_irqsave(&ni->size_lock, flags);
1606 BUG_ON(end > ni->allocated_size);
1607 ni->initialized_size = end;
1608 a->data.non_resident.initialized_size = cpu_to_sle64(end);
1609 if (end > i_size_read(vi)) {
1610 i_size_write(vi, end);
1611 a->data.non_resident.data_size =
1612 a->data.non_resident.initialized_size;
1613 }
1614 write_unlock_irqrestore(&ni->size_lock, flags);
1615 /* Mark the mft record dirty, so it gets written back. */
1616 flush_dcache_mft_record_page(ctx->ntfs_ino);
1617 mark_mft_record_dirty(ctx->ntfs_ino);
1618 ntfs_attr_put_search_ctx(ctx);
1619 unmap_mft_record(base_ni);
1620 ntfs_debug("Done.");
1621 return 0;
1622err_out:
1623 if (ctx)
1624 ntfs_attr_put_search_ctx(ctx);
1625 if (m)
1626 unmap_mft_record(base_ni);
1627 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1628 "code %i).", err);
1629 if (err != -ENOMEM) {
1630 NVolSetErrors(ni->vol);
1631 make_bad_inode(VFS_I(base_ni));
1632 make_bad_inode(vi);
1633 }
1634 return err;
1635}
1636
1637/**
1638 * ntfs_commit_pages_after_write - commit the received data
1639 * @pages: array of destination pages
1640 * @nr_pages: number of pages in @pages
1641 * @pos: byte position in file at which the write begins
1642 * @bytes: number of bytes to be written
1643 *
1644 * This is called from ntfs_file_buffered_write() with i_sem held on the inode
1645 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1646 * locked but not kmap()ped. The source data has already been copied into the
1647 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1648 * the data was copied (for non-resident attributes only) and it returned
1649 * success.
1650 *
1651 * Need to set uptodate and mark dirty all buffers within the boundary of the
1652 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1653 *
1654 * Setting the buffers dirty ensures that they get written out later when
1655 * ntfs_writepage() is invoked by the VM.
1656 *
1657 * Finally, we need to update i_size and initialized_size as appropriate both
1658 * in the inode and the mft record.
1659 *
1660 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1661 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1662 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1663 * that case, it also marks the inode dirty.
1664 *
1665 * If things have gone as outlined in
1666 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1667 * content modifications here for non-resident attributes. For resident
1668 * attributes we need to do the uptodate bringing here which we combine with
1669 * the copying into the mft record which means we save one atomic kmap.
1670 *
1671 * Return 0 on success or -errno on error.
1672 */
1673static int ntfs_commit_pages_after_write(struct page **pages,
1674 const unsigned nr_pages, s64 pos, size_t bytes)
1675{
1676 s64 end, initialized_size;
1677 loff_t i_size;
1678 struct inode *vi;
1679 ntfs_inode *ni, *base_ni;
1680 struct page *page;
1681 ntfs_attr_search_ctx *ctx;
1682 MFT_RECORD *m;
1683 ATTR_RECORD *a;
1684 char *kattr, *kaddr;
1685 unsigned long flags;
1686 u32 attr_len;
1687 int err;
1688
1689 BUG_ON(!nr_pages);
1690 BUG_ON(!pages);
1691 page = pages[0];
1692 BUG_ON(!page);
1693 vi = page->mapping->host;
1694 ni = NTFS_I(vi);
1695 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
Anton Altaparmakovd04bd1f2005-10-24 08:41:24 +01001696 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
Anton Altaparmakov98b27032005-10-11 15:40:40 +01001697 vi->i_ino, ni->type, page->index, nr_pages,
1698 (long long)pos, bytes);
1699 if (NInoNonResident(ni))
1700 return ntfs_commit_pages_after_non_resident_write(pages,
1701 nr_pages, pos, bytes);
1702 BUG_ON(nr_pages > 1);
1703 /*
1704 * Attribute is resident, implying it is not compressed, encrypted, or
1705 * sparse.
1706 */
1707 if (!NInoAttr(ni))
1708 base_ni = ni;
1709 else
1710 base_ni = ni->ext.base_ntfs_ino;
1711 BUG_ON(NInoNonResident(ni));
1712 /* Map, pin, and lock the mft record. */
1713 m = map_mft_record(base_ni);
1714 if (IS_ERR(m)) {
1715 err = PTR_ERR(m);
1716 m = NULL;
1717 ctx = NULL;
1718 goto err_out;
1719 }
1720 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1721 if (unlikely(!ctx)) {
1722 err = -ENOMEM;
1723 goto err_out;
1724 }
1725 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1726 CASE_SENSITIVE, 0, NULL, 0, ctx);
1727 if (unlikely(err)) {
1728 if (err == -ENOENT)
1729 err = -EIO;
1730 goto err_out;
1731 }
1732 a = ctx->attr;
1733 BUG_ON(a->non_resident);
1734 /* The total length of the attribute value. */
1735 attr_len = le32_to_cpu(a->data.resident.value_length);
1736 i_size = i_size_read(vi);
1737 BUG_ON(attr_len != i_size);
1738 BUG_ON(pos > attr_len);
1739 end = pos + bytes;
1740 BUG_ON(end > le32_to_cpu(a->length) -
1741 le16_to_cpu(a->data.resident.value_offset));
1742 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1743 kaddr = kmap_atomic(page, KM_USER0);
1744 /* Copy the received data from the page to the mft record. */
1745 memcpy(kattr + pos, kaddr + pos, bytes);
1746 /* Update the attribute length if necessary. */
1747 if (end > attr_len) {
1748 attr_len = end;
1749 a->data.resident.value_length = cpu_to_le32(attr_len);
1750 }
1751 /*
1752 * If the page is not uptodate, bring the out of bounds area(s)
1753 * uptodate by copying data from the mft record to the page.
1754 */
1755 if (!PageUptodate(page)) {
1756 if (pos > 0)
1757 memcpy(kaddr, kattr, pos);
1758 if (end < attr_len)
1759 memcpy(kaddr + end, kattr + end, attr_len - end);
1760 /* Zero the region outside the end of the attribute value. */
1761 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1762 flush_dcache_page(page);
1763 SetPageUptodate(page);
1764 }
1765 kunmap_atomic(kaddr, KM_USER0);
1766 /* Update initialized_size/i_size if necessary. */
1767 read_lock_irqsave(&ni->size_lock, flags);
1768 initialized_size = ni->initialized_size;
1769 BUG_ON(end > ni->allocated_size);
1770 read_unlock_irqrestore(&ni->size_lock, flags);
1771 BUG_ON(initialized_size != i_size);
1772 if (end > initialized_size) {
1773 unsigned long flags;
1774
1775 write_lock_irqsave(&ni->size_lock, flags);
1776 ni->initialized_size = end;
1777 i_size_write(vi, end);
1778 write_unlock_irqrestore(&ni->size_lock, flags);
1779 }
1780 /* Mark the mft record dirty, so it gets written back. */
1781 flush_dcache_mft_record_page(ctx->ntfs_ino);
1782 mark_mft_record_dirty(ctx->ntfs_ino);
1783 ntfs_attr_put_search_ctx(ctx);
1784 unmap_mft_record(base_ni);
1785 ntfs_debug("Done.");
1786 return 0;
1787err_out:
1788 if (err == -ENOMEM) {
1789 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1790 "commit the write.");
1791 if (PageUptodate(page)) {
1792 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1793 "dirty so the write will be retried "
1794 "later on by the VM.");
1795 /*
1796 * Put the page on mapping->dirty_pages, but leave its
1797 * buffers' dirty state as-is.
1798 */
1799 __set_page_dirty_nobuffers(page);
1800 err = 0;
1801 } else
1802 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
1803 "data has been lost.");
1804 } else {
1805 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1806 "with error %i.", err);
1807 NVolSetErrors(ni->vol);
1808 make_bad_inode(VFS_I(base_ni));
1809 make_bad_inode(vi);
1810 }
1811 if (ctx)
1812 ntfs_attr_put_search_ctx(ctx);
1813 if (m)
1814 unmap_mft_record(base_ni);
1815 return err;
1816}
1817
1818/**
1819 * ntfs_file_buffered_write -
1820 *
1821 * Locking: The vfs is holding ->i_sem on the inode.
1822 */
1823static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1824 const struct iovec *iov, unsigned long nr_segs,
1825 loff_t pos, loff_t *ppos, size_t count)
1826{
1827 struct file *file = iocb->ki_filp;
1828 struct address_space *mapping = file->f_mapping;
1829 struct inode *vi = mapping->host;
1830 ntfs_inode *ni = NTFS_I(vi);
1831 ntfs_volume *vol = ni->vol;
1832 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1833 struct page *cached_page = NULL;
1834 char __user *buf = NULL;
1835 s64 end, ll;
1836 VCN last_vcn;
1837 LCN lcn;
1838 unsigned long flags;
1839 size_t bytes, iov_ofs;
1840 ssize_t status, written;
1841 unsigned nr_pages;
1842 int err;
1843 struct pagevec lru_pvec;
1844
1845 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1846 "pos 0x%llx, count 0x%lx.",
1847 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1848 (unsigned long long)pos, (unsigned long)count);
1849 if (unlikely(!count))
1850 return 0;
1851 BUG_ON(NInoMstProtected(ni));
1852 /*
1853 * If the attribute is not an index root and it is encrypted or
1854 * compressed, we cannot write to it yet. Note we need to check for
1855 * AT_INDEX_ALLOCATION since this is the type of both directory and
1856 * index inodes.
1857 */
1858 if (ni->type != AT_INDEX_ALLOCATION) {
1859 /* If file is encrypted, deny access, just like NT4. */
1860 if (NInoEncrypted(ni)) {
Anton Altaparmakov7d0ffdb2005-10-19 12:21:19 +01001861 /*
1862 * Reminder for later: Encrypted files are _always_
1863 * non-resident so that the content can always be
1864 * encrypted.
1865 */
Anton Altaparmakov98b27032005-10-11 15:40:40 +01001866 ntfs_debug("Denying write access to encrypted file.");
1867 return -EACCES;
1868 }
1869 if (NInoCompressed(ni)) {
Anton Altaparmakov7d0ffdb2005-10-19 12:21:19 +01001870 /* Only unnamed $DATA attribute can be compressed. */
1871 BUG_ON(ni->type != AT_DATA);
1872 BUG_ON(ni->name_len);
1873 /*
1874 * Reminder for later: If resident, the data is not
1875 * actually compressed. Only on the switch to non-
1876 * resident does compression kick in. This is in
1877 * contrast to encrypted files (see above).
1878 */
Anton Altaparmakov98b27032005-10-11 15:40:40 +01001879 ntfs_error(vi->i_sb, "Writing to compressed files is "
1880 "not implemented yet. Sorry.");
1881 return -EOPNOTSUPP;
1882 }
1883 }
1884 /*
1885 * If a previous ntfs_truncate() failed, repeat it and abort if it
1886 * fails again.
1887 */
1888 if (unlikely(NInoTruncateFailed(ni))) {
1889 down_write(&vi->i_alloc_sem);
1890 err = ntfs_truncate(vi);
1891 up_write(&vi->i_alloc_sem);
1892 if (err || NInoTruncateFailed(ni)) {
1893 if (!err)
1894 err = -EIO;
1895 ntfs_error(vol->sb, "Cannot perform write to inode "
1896 "0x%lx, attribute type 0x%x, because "
1897 "ntfs_truncate() failed (error code "
1898 "%i).", vi->i_ino,
1899 (unsigned)le32_to_cpu(ni->type), err);
1900 return err;
1901 }
1902 }
1903 /* The first byte after the write. */
1904 end = pos + count;
1905 /*
1906 * If the write goes beyond the allocated size, extend the allocation
1907 * to cover the whole of the write, rounded up to the nearest cluster.
1908 */
1909 read_lock_irqsave(&ni->size_lock, flags);
1910 ll = ni->allocated_size;
1911 read_unlock_irqrestore(&ni->size_lock, flags);
1912 if (end > ll) {
1913 /* Extend the allocation without changing the data size. */
1914 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1915 if (likely(ll >= 0)) {
1916 BUG_ON(pos >= ll);
1917 /* If the extension was partial truncate the write. */
1918 if (end > ll) {
1919 ntfs_debug("Truncating write to inode 0x%lx, "
1920 "attribute type 0x%x, because "
1921 "the allocation was only "
1922 "partially extended.",
1923 vi->i_ino, (unsigned)
1924 le32_to_cpu(ni->type));
1925 end = ll;
1926 count = ll - pos;
1927 }
1928 } else {
1929 err = ll;
1930 read_lock_irqsave(&ni->size_lock, flags);
1931 ll = ni->allocated_size;
1932 read_unlock_irqrestore(&ni->size_lock, flags);
1933 /* Perform a partial write if possible or fail. */
1934 if (pos < ll) {
1935 ntfs_debug("Truncating write to inode 0x%lx, "
1936 "attribute type 0x%x, because "
1937 "extending the allocation "
1938 "failed (error code %i).",
1939 vi->i_ino, (unsigned)
1940 le32_to_cpu(ni->type), err);
1941 end = ll;
1942 count = ll - pos;
1943 } else {
1944 ntfs_error(vol->sb, "Cannot perform write to "
1945 "inode 0x%lx, attribute type "
1946 "0x%x, because extending the "
1947 "allocation failed (error "
1948 "code %i).", vi->i_ino,
1949 (unsigned)
1950 le32_to_cpu(ni->type), err);
1951 return err;
1952 }
1953 }
1954 }
1955 pagevec_init(&lru_pvec, 0);
1956 written = 0;
1957 /*
1958 * If the write starts beyond the initialized size, extend it up to the
1959 * beginning of the write and initialize all non-sparse space between
1960 * the old initialized size and the new one. This automatically also
1961 * increments the vfs inode->i_size to keep it above or equal to the
1962 * initialized_size.
1963 */
1964 read_lock_irqsave(&ni->size_lock, flags);
1965 ll = ni->initialized_size;
1966 read_unlock_irqrestore(&ni->size_lock, flags);
1967 if (pos > ll) {
1968 err = ntfs_attr_extend_initialized(ni, pos, &cached_page,
1969 &lru_pvec);
1970 if (err < 0) {
1971 ntfs_error(vol->sb, "Cannot perform write to inode "
1972 "0x%lx, attribute type 0x%x, because "
1973 "extending the initialized size "
1974 "failed (error code %i).", vi->i_ino,
1975 (unsigned)le32_to_cpu(ni->type), err);
1976 status = err;
1977 goto err_out;
1978 }
1979 }
1980 /*
1981 * Determine the number of pages per cluster for non-resident
1982 * attributes.
1983 */
1984 nr_pages = 1;
1985 if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1986 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1987 /* Finally, perform the actual write. */
1988 last_vcn = -1;
1989 if (likely(nr_segs == 1))
1990 buf = iov->iov_base;
1991 else
1992 iov_ofs = 0; /* Offset in the current iovec. */
1993 do {
1994 VCN vcn;
1995 pgoff_t idx, start_idx;
1996 unsigned ofs, do_pages, u;
1997 size_t copied;
1998
1999 start_idx = idx = pos >> PAGE_CACHE_SHIFT;
2000 ofs = pos & ~PAGE_CACHE_MASK;
2001 bytes = PAGE_CACHE_SIZE - ofs;
2002 do_pages = 1;
2003 if (nr_pages > 1) {
2004 vcn = pos >> vol->cluster_size_bits;
2005 if (vcn != last_vcn) {
2006 last_vcn = vcn;
2007 /*
2008 * Get the lcn of the vcn the write is in. If
2009 * it is a hole, need to lock down all pages in
2010 * the cluster.
2011 */
2012 down_read(&ni->runlist.lock);
2013 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
2014 vol->cluster_size_bits, FALSE);
2015 up_read(&ni->runlist.lock);
2016 if (unlikely(lcn < LCN_HOLE)) {
2017 status = -EIO;
2018 if (lcn == LCN_ENOMEM)
2019 status = -ENOMEM;
2020 else
2021 ntfs_error(vol->sb, "Cannot "
2022 "perform write to "
2023 "inode 0x%lx, "
2024 "attribute type 0x%x, "
2025 "because the attribute "
2026 "is corrupt.",
2027 vi->i_ino, (unsigned)
2028 le32_to_cpu(ni->type));
2029 break;
2030 }
2031 if (lcn == LCN_HOLE) {
2032 start_idx = (pos & ~(s64)
2033 vol->cluster_size_mask)
2034 >> PAGE_CACHE_SHIFT;
2035 bytes = vol->cluster_size - (pos &
2036 vol->cluster_size_mask);
2037 do_pages = nr_pages;
2038 }
2039 }
2040 }
2041 if (bytes > count)
2042 bytes = count;
2043 /*
2044 * Bring in the user page(s) that we will copy from _first_.
2045 * Otherwise there is a nasty deadlock on copying from the same
2046 * page(s) as we are writing to, without it/them being marked
2047 * up-to-date. Note, at present there is nothing to stop the
2048 * pages being swapped out between us bringing them into memory
2049 * and doing the actual copying.
2050 */
2051 if (likely(nr_segs == 1))
2052 ntfs_fault_in_pages_readable(buf, bytes);
2053 else
2054 ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2055 /* Get and lock @do_pages starting at index @start_idx. */
2056 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2057 pages, &cached_page, &lru_pvec);
2058 if (unlikely(status))
2059 break;
2060 /*
2061 * For non-resident attributes, we need to fill any holes with
2062 * actual clusters and ensure all bufferes are mapped. We also
2063 * need to bring uptodate any buffers that are only partially
2064 * being written to.
2065 */
2066 if (NInoNonResident(ni)) {
2067 status = ntfs_prepare_pages_for_non_resident_write(
2068 pages, do_pages, pos, bytes);
2069 if (unlikely(status)) {
2070 loff_t i_size;
2071
2072 do {
2073 unlock_page(pages[--do_pages]);
2074 page_cache_release(pages[do_pages]);
2075 } while (do_pages);
2076 /*
2077 * The write preparation may have instantiated
2078 * allocated space outside i_size. Trim this
2079 * off again. We can ignore any errors in this
2080 * case as we will just be waisting a bit of
2081 * allocated space, which is not a disaster.
2082 */
2083 i_size = i_size_read(vi);
2084 if (pos + bytes > i_size)
2085 vmtruncate(vi, i_size);
2086 break;
2087 }
2088 }
2089 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2090 if (likely(nr_segs == 1)) {
2091 copied = ntfs_copy_from_user(pages + u, do_pages - u,
2092 ofs, buf, bytes);
2093 buf += copied;
2094 } else
2095 copied = ntfs_copy_from_user_iovec(pages + u,
2096 do_pages - u, ofs, &iov, &iov_ofs,
2097 bytes);
2098 ntfs_flush_dcache_pages(pages + u, do_pages - u);
2099 status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2100 bytes);
2101 if (likely(!status)) {
2102 written += copied;
2103 count -= copied;
2104 pos += copied;
2105 if (unlikely(copied != bytes))
2106 status = -EFAULT;
2107 }
2108 do {
2109 unlock_page(pages[--do_pages]);
2110 mark_page_accessed(pages[do_pages]);
2111 page_cache_release(pages[do_pages]);
2112 } while (do_pages);
2113 if (unlikely(status))
2114 break;
2115 balance_dirty_pages_ratelimited(mapping);
2116 cond_resched();
2117 } while (count);
2118err_out:
2119 *ppos = pos;
2120 if (cached_page)
2121 page_cache_release(cached_page);
2122 /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
2123 if (likely(!status)) {
2124 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) {
2125 if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb))
2126 status = generic_osync_inode(vi, mapping,
2127 OSYNC_METADATA|OSYNC_DATA);
2128 }
2129 }
2130 pagevec_lru_add(&lru_pvec);
2131 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2132 written ? "written" : "status", (unsigned long)written,
2133 (long)status);
2134 return written ? written : status;
2135}
2136
2137/**
2138 * ntfs_file_aio_write_nolock -
2139 */
2140static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2141 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2142{
2143 struct file *file = iocb->ki_filp;
2144 struct address_space *mapping = file->f_mapping;
2145 struct inode *inode = mapping->host;
2146 loff_t pos;
2147 unsigned long seg;
2148 size_t count; /* after file limit checks */
2149 ssize_t written, err;
2150
2151 count = 0;
2152 for (seg = 0; seg < nr_segs; seg++) {
2153 const struct iovec *iv = &iov[seg];
2154 /*
2155 * If any segment has a negative length, or the cumulative
2156 * length ever wraps negative then return -EINVAL.
2157 */
2158 count += iv->iov_len;
2159 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
2160 return -EINVAL;
2161 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2162 continue;
2163 if (!seg)
2164 return -EFAULT;
2165 nr_segs = seg;
2166 count -= iv->iov_len; /* This segment is no good */
2167 break;
2168 }
2169 pos = *ppos;
2170 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2171 /* We can write back this queue in page reclaim. */
2172 current->backing_dev_info = mapping->backing_dev_info;
2173 written = 0;
2174 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2175 if (err)
2176 goto out;
2177 if (!count)
2178 goto out;
2179 err = remove_suid(file->f_dentry);
2180 if (err)
2181 goto out;
2182 inode_update_time(inode, 1);
2183 written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2184 count);
2185out:
2186 current->backing_dev_info = NULL;
2187 return written ? written : err;
2188}
2189
2190/**
2191 * ntfs_file_aio_write -
2192 */
2193static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const char __user *buf,
2194 size_t count, loff_t pos)
2195{
2196 struct file *file = iocb->ki_filp;
2197 struct address_space *mapping = file->f_mapping;
2198 struct inode *inode = mapping->host;
2199 ssize_t ret;
2200 struct iovec local_iov = { .iov_base = (void __user *)buf,
2201 .iov_len = count };
2202
2203 BUG_ON(iocb->ki_pos != pos);
2204
2205 down(&inode->i_sem);
2206 ret = ntfs_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos);
2207 up(&inode->i_sem);
2208 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2209 int err = sync_page_range(inode, mapping, pos, ret);
2210 if (err < 0)
2211 ret = err;
2212 }
2213 return ret;
2214}
2215
2216/**
2217 * ntfs_file_writev -
2218 *
2219 * Basically the same as generic_file_writev() except that it ends up calling
2220 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
2221 */
2222static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov,
2223 unsigned long nr_segs, loff_t *ppos)
2224{
2225 struct address_space *mapping = file->f_mapping;
2226 struct inode *inode = mapping->host;
2227 struct kiocb kiocb;
2228 ssize_t ret;
2229
2230 down(&inode->i_sem);
2231 init_sync_kiocb(&kiocb, file);
2232 ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2233 if (ret == -EIOCBQUEUED)
2234 ret = wait_on_sync_kiocb(&kiocb);
2235 up(&inode->i_sem);
2236 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2237 int err = sync_page_range(inode, mapping, *ppos - ret, ret);
2238 if (err < 0)
2239 ret = err;
2240 }
2241 return ret;
2242}
2243
2244/**
2245 * ntfs_file_write - simple wrapper for ntfs_file_writev()
2246 */
2247static ssize_t ntfs_file_write(struct file *file, const char __user *buf,
2248 size_t count, loff_t *ppos)
2249{
2250 struct iovec local_iov = { .iov_base = (void __user *)buf,
2251 .iov_len = count };
2252
2253 return ntfs_file_writev(file, &local_iov, 1, ppos);
2254}
2255
2256/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002257 * ntfs_file_fsync - sync a file to disk
2258 * @filp: file to be synced
2259 * @dentry: dentry describing the file to sync
2260 * @datasync: if non-zero only flush user data and not metadata
2261 *
2262 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2263 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2264 *
2265 * If @datasync is false, write the mft record and all associated extent mft
2266 * records as well as the $DATA attribute and then sync the block device.
2267 *
2268 * If @datasync is true and the attribute is non-resident, we skip the writing
2269 * of the mft record and all associated extent mft records (this might still
2270 * happen due to the write_inode_now() call).
2271 *
2272 * Also, if @datasync is true, we do not wait on the inode to be written out
2273 * but we always wait on the page cache pages to be written out.
2274 *
2275 * Note: In the past @filp could be NULL so we ignore it as we don't need it
2276 * anyway.
2277 *
2278 * Locking: Caller must hold i_sem on the inode.
2279 *
2280 * TODO: We should probably also write all attribute/index inodes associated
2281 * with this inode but since we have no simple way of getting to them we ignore
2282 * this problem for now.
2283 */
2284static int ntfs_file_fsync(struct file *filp, struct dentry *dentry,
2285 int datasync)
2286{
2287 struct inode *vi = dentry->d_inode;
2288 int err, ret = 0;
2289
2290 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2291 BUG_ON(S_ISDIR(vi->i_mode));
2292 if (!datasync || !NInoNonResident(NTFS_I(vi)))
2293 ret = ntfs_write_inode(vi, 1);
2294 write_inode_now(vi, !datasync);
Anton Altaparmakovf25dfb52005-09-08 20:35:33 +01002295 /*
2296 * NOTE: If we were to use mapping->private_list (see ext2 and
2297 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2298 * sync_mapping_buffers(vi->i_mapping).
2299 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002300 err = sync_blockdev(vi->i_sb->s_bdev);
2301 if (unlikely(err && !ret))
2302 ret = err;
2303 if (likely(!ret))
2304 ntfs_debug("Done.");
2305 else
2306 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
2307 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2308 return ret;
2309}
2310
2311#endif /* NTFS_RW */
2312
2313struct file_operations ntfs_file_ops = {
Anton Altaparmakov98b27032005-10-11 15:40:40 +01002314 .llseek = generic_file_llseek, /* Seek inside file. */
2315 .read = generic_file_read, /* Read from file. */
2316 .aio_read = generic_file_aio_read, /* Async read from file. */
2317 .readv = generic_file_readv, /* Read from file. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002318#ifdef NTFS_RW
Anton Altaparmakov98b27032005-10-11 15:40:40 +01002319 .write = ntfs_file_write, /* Write to file. */
2320 .aio_write = ntfs_file_aio_write, /* Async write to file. */
2321 .writev = ntfs_file_writev, /* Write to file. */
2322 /*.release = ,*/ /* Last file is closed. See
2323 fs/ext2/file.c::
2324 ext2_release_file() for
2325 how to use this to discard
2326 preallocated space for
2327 write opened files. */
2328 .fsync = ntfs_file_fsync, /* Sync a file to disk. */
2329 /*.aio_fsync = ,*/ /* Sync all outstanding async
2330 i/o operations on a
2331 kiocb. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332#endif /* NTFS_RW */
Anton Altaparmakov98b27032005-10-11 15:40:40 +01002333 /*.ioctl = ,*/ /* Perform function on the
2334 mounted filesystem. */
2335 .mmap = generic_file_mmap, /* Mmap file. */
2336 .open = ntfs_file_open, /* Open file. */
2337 .sendfile = generic_file_sendfile, /* Zero-copy data send with
2338 the data source being on
2339 the ntfs partition. We do
2340 not need to care about the
2341 data destination. */
2342 /*.sendpage = ,*/ /* Zero-copy data send with
2343 the data destination being
2344 on the ntfs partition. We
2345 do not need to care about
2346 the data source. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002347};
2348
2349struct inode_operations ntfs_file_inode_ops = {
2350#ifdef NTFS_RW
2351 .truncate = ntfs_truncate_vfs,
2352 .setattr = ntfs_setattr,
2353#endif /* NTFS_RW */
2354};
2355
2356struct file_operations ntfs_empty_file_ops = {};
2357
2358struct inode_operations ntfs_empty_inode_ops = {};