Arnaud Giersch | 8e75f74 | 2006-02-03 03:04:16 -0800 | [diff] [blame] | 1 | /* Low-level parallel port routines for built-in port on SGI IP32 |
| 2 | * |
| 3 | * Author: Arnaud Giersch <arnaud.giersch@free.fr> |
| 4 | * |
| 5 | * Based on parport_pc.c by |
| 6 | * Phil Blundell, Tim Waugh, Jose Renau, David Campbell, |
| 7 | * Andrea Arcangeli, et al. |
| 8 | * |
| 9 | * Thanks to Ilya A. Volynets-Evenbakh for his help. |
| 10 | * |
| 11 | * Copyright (C) 2005, 2006 Arnaud Giersch. |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or modify it |
| 14 | * under the terms of the GNU General Public License as published by the Free |
| 15 | * Software Foundation; either version 2 of the License, or (at your option) |
| 16 | * any later version. |
| 17 | * |
| 18 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 19 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 20 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 21 | * more details. |
| 22 | * |
| 23 | * You should have received a copy of the GNU General Public License along |
| 24 | * with this program; if not, write to the Free Software Foundation, Inc., 59 |
| 25 | * Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 26 | */ |
| 27 | |
| 28 | /* Current status: |
| 29 | * |
| 30 | * Basic SPP and PS2 modes are supported. |
| 31 | * Support for parallel port IRQ is present. |
| 32 | * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are |
| 33 | * supported. |
| 34 | * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with |
| 35 | * or without interrupt support. |
| 36 | * |
| 37 | * Hardware ECP mode is not fully implemented (ecp_read_data and |
| 38 | * ecp_write_addr are actually missing). |
| 39 | * |
| 40 | * To do: |
| 41 | * |
| 42 | * Fully implement ECP mode. |
| 43 | * EPP and ECP mode need to be tested. I currently do not own any |
| 44 | * peripheral supporting these extended mode, and cannot test them. |
| 45 | * If DMA mode works well, decide if support for PIO FIFO modes should be |
| 46 | * dropped. |
| 47 | * Use the io{read,write} family functions when they become available in |
| 48 | * the linux-mips.org tree. Note: the MIPS specific functions readsb() |
| 49 | * and writesb() are to be translated by ioread8_rep() and iowrite8_rep() |
| 50 | * respectively. |
| 51 | */ |
| 52 | |
| 53 | /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an |
| 54 | * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1]. |
| 55 | * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte |
| 56 | * FIFO buffer and supports DMA transfers. |
| 57 | * |
| 58 | * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html |
| 59 | * |
| 60 | * Theoretically, we could simply use the parport_pc module. It is however |
| 61 | * not so simple. The parport_pc code assumes that the parallel port |
| 62 | * registers are port-mapped. On the O2, they are memory-mapped. |
| 63 | * Furthermore, each register is replicated on 256 consecutive addresses (as |
| 64 | * it is for the built-in serial ports on the same chip). |
| 65 | */ |
| 66 | |
| 67 | /*--- Some configuration defines ---------------------------------------*/ |
| 68 | |
| 69 | /* DEBUG_PARPORT_IP32 |
| 70 | * 0 disable debug |
| 71 | * 1 standard level: pr_debug1 is enabled |
| 72 | * 2 parport_ip32_dump_state is enabled |
| 73 | * >=3 verbose level: pr_debug is enabled |
| 74 | */ |
| 75 | #if !defined(DEBUG_PARPORT_IP32) |
| 76 | # define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */ |
| 77 | #endif |
| 78 | |
| 79 | /*----------------------------------------------------------------------*/ |
| 80 | |
| 81 | /* Setup DEBUG macros. This is done before any includes, just in case we |
| 82 | * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3. |
| 83 | */ |
| 84 | #if DEBUG_PARPORT_IP32 == 1 |
| 85 | # warning DEBUG_PARPORT_IP32 == 1 |
| 86 | #elif DEBUG_PARPORT_IP32 == 2 |
| 87 | # warning DEBUG_PARPORT_IP32 == 2 |
| 88 | #elif DEBUG_PARPORT_IP32 >= 3 |
| 89 | # warning DEBUG_PARPORT_IP32 >= 3 |
| 90 | # if !defined(DEBUG) |
| 91 | # define DEBUG /* enable pr_debug() in kernel.h */ |
| 92 | # endif |
| 93 | #endif |
| 94 | |
| 95 | #include <linux/completion.h> |
| 96 | #include <linux/delay.h> |
| 97 | #include <linux/dma-mapping.h> |
| 98 | #include <linux/err.h> |
| 99 | #include <linux/init.h> |
| 100 | #include <linux/interrupt.h> |
| 101 | #include <linux/jiffies.h> |
| 102 | #include <linux/kernel.h> |
| 103 | #include <linux/module.h> |
| 104 | #include <linux/parport.h> |
| 105 | #include <linux/sched.h> |
| 106 | #include <linux/spinlock.h> |
| 107 | #include <linux/stddef.h> |
| 108 | #include <linux/types.h> |
| 109 | #include <asm/io.h> |
| 110 | #include <asm/ip32/ip32_ints.h> |
| 111 | #include <asm/ip32/mace.h> |
| 112 | |
| 113 | /*--- Global variables -------------------------------------------------*/ |
| 114 | |
| 115 | /* Verbose probing on by default for debugging. */ |
| 116 | #if DEBUG_PARPORT_IP32 >= 1 |
| 117 | # define DEFAULT_VERBOSE_PROBING 1 |
| 118 | #else |
| 119 | # define DEFAULT_VERBOSE_PROBING 0 |
| 120 | #endif |
| 121 | |
| 122 | /* Default prefix for printk */ |
| 123 | #define PPIP32 "parport_ip32: " |
| 124 | |
| 125 | /* |
| 126 | * These are the module parameters: |
| 127 | * @features: bit mask of features to enable/disable |
| 128 | * (all enabled by default) |
| 129 | * @verbose_probing: log chit-chat during initialization |
| 130 | */ |
| 131 | #define PARPORT_IP32_ENABLE_IRQ (1U << 0) |
| 132 | #define PARPORT_IP32_ENABLE_DMA (1U << 1) |
| 133 | #define PARPORT_IP32_ENABLE_SPP (1U << 2) |
| 134 | #define PARPORT_IP32_ENABLE_EPP (1U << 3) |
| 135 | #define PARPORT_IP32_ENABLE_ECP (1U << 4) |
| 136 | static unsigned int features = ~0U; |
| 137 | static int verbose_probing = DEFAULT_VERBOSE_PROBING; |
| 138 | |
| 139 | /* We do not support more than one port. */ |
| 140 | static struct parport *this_port = NULL; |
| 141 | |
| 142 | /* Timing constants for FIFO modes. */ |
| 143 | #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */ |
| 144 | #define FIFO_POLLING_INTERVAL 50 /* microseconds */ |
| 145 | |
| 146 | /*--- I/O register definitions -----------------------------------------*/ |
| 147 | |
| 148 | /** |
| 149 | * struct parport_ip32_regs - virtual addresses of parallel port registers |
| 150 | * @data: Data Register |
| 151 | * @dsr: Device Status Register |
| 152 | * @dcr: Device Control Register |
| 153 | * @eppAddr: EPP Address Register |
| 154 | * @eppData0: EPP Data Register 0 |
| 155 | * @eppData1: EPP Data Register 1 |
| 156 | * @eppData2: EPP Data Register 2 |
| 157 | * @eppData3: EPP Data Register 3 |
| 158 | * @ecpAFifo: ECP Address FIFO |
| 159 | * @fifo: General FIFO register. The same address is used for: |
| 160 | * - cFifo, the Parallel Port DATA FIFO |
| 161 | * - ecpDFifo, the ECP Data FIFO |
| 162 | * - tFifo, the ECP Test FIFO |
| 163 | * @cnfgA: Configuration Register A |
| 164 | * @cnfgB: Configuration Register B |
| 165 | * @ecr: Extended Control Register |
| 166 | */ |
| 167 | struct parport_ip32_regs { |
| 168 | void __iomem *data; |
| 169 | void __iomem *dsr; |
| 170 | void __iomem *dcr; |
| 171 | void __iomem *eppAddr; |
| 172 | void __iomem *eppData0; |
| 173 | void __iomem *eppData1; |
| 174 | void __iomem *eppData2; |
| 175 | void __iomem *eppData3; |
| 176 | void __iomem *ecpAFifo; |
| 177 | void __iomem *fifo; |
| 178 | void __iomem *cnfgA; |
| 179 | void __iomem *cnfgB; |
| 180 | void __iomem *ecr; |
| 181 | }; |
| 182 | |
| 183 | /* Device Status Register */ |
| 184 | #define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */ |
| 185 | #define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */ |
| 186 | #define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */ |
| 187 | #define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */ |
| 188 | #define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */ |
| 189 | #define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */ |
| 190 | /* #define DSR_reserved (1U << 1) */ |
| 191 | #define DSR_TIMEOUT (1U << 0) /* EPP timeout */ |
| 192 | |
| 193 | /* Device Control Register */ |
| 194 | /* #define DCR_reserved (1U << 7) | (1U << 6) */ |
| 195 | #define DCR_DIR (1U << 5) /* direction */ |
| 196 | #define DCR_IRQ (1U << 4) /* interrupt on nAck */ |
| 197 | #define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */ |
| 198 | #define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */ |
| 199 | #define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */ |
| 200 | #define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */ |
| 201 | |
| 202 | /* ECP Configuration Register A */ |
| 203 | #define CNFGA_IRQ (1U << 7) |
| 204 | #define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4)) |
| 205 | #define CNFGA_ID_SHIFT 4 |
| 206 | #define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT) |
| 207 | #define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT) |
| 208 | #define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT) |
| 209 | /* #define CNFGA_reserved (1U << 3) */ |
| 210 | #define CNFGA_nBYTEINTRANS (1U << 2) |
| 211 | #define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0)) |
| 212 | |
| 213 | /* ECP Configuration Register B */ |
| 214 | #define CNFGB_COMPRESS (1U << 7) |
| 215 | #define CNFGB_INTRVAL (1U << 6) |
| 216 | #define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3)) |
| 217 | #define CNFGB_IRQ_SHIFT 3 |
| 218 | #define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0)) |
| 219 | #define CNFGB_DMA_SHIFT 0 |
| 220 | |
| 221 | /* Extended Control Register */ |
| 222 | #define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5)) |
| 223 | #define ECR_MODE_SHIFT 5 |
| 224 | #define ECR_MODE_SPP (00U << ECR_MODE_SHIFT) |
| 225 | #define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT) |
| 226 | #define ECR_MODE_PPF (02U << ECR_MODE_SHIFT) |
| 227 | #define ECR_MODE_ECP (03U << ECR_MODE_SHIFT) |
| 228 | #define ECR_MODE_EPP (04U << ECR_MODE_SHIFT) |
| 229 | /* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */ |
| 230 | #define ECR_MODE_TST (06U << ECR_MODE_SHIFT) |
| 231 | #define ECR_MODE_CFG (07U << ECR_MODE_SHIFT) |
| 232 | #define ECR_nERRINTR (1U << 4) |
| 233 | #define ECR_DMAEN (1U << 3) |
| 234 | #define ECR_SERVINTR (1U << 2) |
| 235 | #define ECR_F_FULL (1U << 1) |
| 236 | #define ECR_F_EMPTY (1U << 0) |
| 237 | |
| 238 | /*--- Private data -----------------------------------------------------*/ |
| 239 | |
| 240 | /** |
| 241 | * enum parport_ip32_irq_mode - operation mode of interrupt handler |
| 242 | * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer |
| 243 | * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally |
| 244 | */ |
| 245 | enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE }; |
| 246 | |
| 247 | /** |
| 248 | * struct parport_ip32_private - private stuff for &struct parport |
| 249 | * @regs: register addresses |
| 250 | * @dcr_cache: cached contents of DCR |
| 251 | * @dcr_writable: bit mask of writable DCR bits |
| 252 | * @pword: number of bytes per PWord |
| 253 | * @fifo_depth: number of PWords that FIFO will hold |
| 254 | * @readIntrThreshold: minimum number of PWords we can read |
| 255 | * if we get an interrupt |
| 256 | * @writeIntrThreshold: minimum number of PWords we can write |
| 257 | * if we get an interrupt |
| 258 | * @irq_mode: operation mode of interrupt handler for this port |
| 259 | * @irq_complete: mutex used to wait for an interrupt to occur |
| 260 | */ |
| 261 | struct parport_ip32_private { |
| 262 | struct parport_ip32_regs regs; |
| 263 | unsigned int dcr_cache; |
| 264 | unsigned int dcr_writable; |
| 265 | unsigned int pword; |
| 266 | unsigned int fifo_depth; |
| 267 | unsigned int readIntrThreshold; |
| 268 | unsigned int writeIntrThreshold; |
| 269 | enum parport_ip32_irq_mode irq_mode; |
| 270 | struct completion irq_complete; |
| 271 | }; |
| 272 | |
| 273 | /*--- Debug code -------------------------------------------------------*/ |
| 274 | |
| 275 | /* |
| 276 | * pr_debug1 - print debug messages |
| 277 | * |
| 278 | * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1 |
| 279 | */ |
| 280 | #if DEBUG_PARPORT_IP32 >= 1 |
| 281 | # define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__) |
| 282 | #else /* DEBUG_PARPORT_IP32 < 1 */ |
| 283 | # define pr_debug1(...) do { } while (0) |
| 284 | #endif |
| 285 | |
| 286 | /* |
| 287 | * pr_trace, pr_trace1 - trace function calls |
| 288 | * @p: pointer to &struct parport |
| 289 | * @fmt: printk format string |
| 290 | * @...: parameters for format string |
| 291 | * |
| 292 | * Macros used to trace function calls. The given string is formatted after |
| 293 | * function name. pr_trace() uses pr_debug(), and pr_trace1() uses |
| 294 | * pr_debug1(). __pr_trace() is the low-level macro and is not to be used |
| 295 | * directly. |
| 296 | */ |
| 297 | #define __pr_trace(pr, p, fmt, ...) \ |
| 298 | pr("%s: %s" fmt "\n", \ |
| 299 | ({ const struct parport *__p = (p); \ |
| 300 | __p ? __p->name : "parport_ip32"; }), \ |
| 301 | __func__ , ##__VA_ARGS__) |
| 302 | #define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__) |
| 303 | #define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__) |
| 304 | |
| 305 | /* |
| 306 | * __pr_probe, pr_probe - print message if @verbose_probing is true |
| 307 | * @p: pointer to &struct parport |
| 308 | * @fmt: printk format string |
| 309 | * @...: parameters for format string |
| 310 | * |
| 311 | * For new lines, use pr_probe(). Use __pr_probe() for continued lines. |
| 312 | */ |
| 313 | #define __pr_probe(...) \ |
| 314 | do { if (verbose_probing) printk(__VA_ARGS__); } while (0) |
| 315 | #define pr_probe(p, fmt, ...) \ |
| 316 | __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__) |
| 317 | |
| 318 | /* |
| 319 | * parport_ip32_dump_state - print register status of parport |
| 320 | * @p: pointer to &struct parport |
| 321 | * @str: string to add in message |
| 322 | * @show_ecp_config: shall we dump ECP configuration registers too? |
| 323 | * |
| 324 | * This function is only here for debugging purpose, and should be used with |
| 325 | * care. Reading the parallel port registers may have undesired side effects. |
| 326 | * Especially if @show_ecp_config is true, the parallel port is resetted. |
| 327 | * This function is only defined if %DEBUG_PARPORT_IP32 >= 2. |
| 328 | */ |
| 329 | #if DEBUG_PARPORT_IP32 >= 2 |
| 330 | static void parport_ip32_dump_state(struct parport *p, char *str, |
| 331 | unsigned int show_ecp_config) |
| 332 | { |
| 333 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 334 | unsigned int i; |
| 335 | |
| 336 | printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str); |
| 337 | { |
| 338 | static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF", |
| 339 | "ECP", "EPP", "???", |
| 340 | "TST", "CFG"}; |
| 341 | unsigned int ecr = readb(priv->regs.ecr); |
| 342 | printk(KERN_DEBUG PPIP32 " ecr=0x%02x", ecr); |
| 343 | printk(" %s", |
| 344 | ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]); |
| 345 | if (ecr & ECR_nERRINTR) |
| 346 | printk(",nErrIntrEn"); |
| 347 | if (ecr & ECR_DMAEN) |
| 348 | printk(",dmaEn"); |
| 349 | if (ecr & ECR_SERVINTR) |
| 350 | printk(",serviceIntr"); |
| 351 | if (ecr & ECR_F_FULL) |
| 352 | printk(",f_full"); |
| 353 | if (ecr & ECR_F_EMPTY) |
| 354 | printk(",f_empty"); |
| 355 | printk("\n"); |
| 356 | } |
| 357 | if (show_ecp_config) { |
| 358 | unsigned int oecr, cnfgA, cnfgB; |
| 359 | oecr = readb(priv->regs.ecr); |
| 360 | writeb(ECR_MODE_PS2, priv->regs.ecr); |
| 361 | writeb(ECR_MODE_CFG, priv->regs.ecr); |
| 362 | cnfgA = readb(priv->regs.cnfgA); |
| 363 | cnfgB = readb(priv->regs.cnfgB); |
| 364 | writeb(ECR_MODE_PS2, priv->regs.ecr); |
| 365 | writeb(oecr, priv->regs.ecr); |
| 366 | printk(KERN_DEBUG PPIP32 " cnfgA=0x%02x", cnfgA); |
| 367 | printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses"); |
| 368 | switch (cnfgA & CNFGA_ID_MASK) { |
| 369 | case CNFGA_ID_8: |
| 370 | printk(",8 bits"); |
| 371 | break; |
| 372 | case CNFGA_ID_16: |
| 373 | printk(",16 bits"); |
| 374 | break; |
| 375 | case CNFGA_ID_32: |
| 376 | printk(",32 bits"); |
| 377 | break; |
| 378 | default: |
| 379 | printk(",unknown ID"); |
| 380 | break; |
| 381 | } |
| 382 | if (!(cnfgA & CNFGA_nBYTEINTRANS)) |
| 383 | printk(",ByteInTrans"); |
| 384 | if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8) |
| 385 | printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT, |
| 386 | ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : ""); |
| 387 | printk("\n"); |
| 388 | printk(KERN_DEBUG PPIP32 " cnfgB=0x%02x", cnfgB); |
| 389 | printk(" irq=%u,dma=%u", |
| 390 | (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT, |
| 391 | (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT); |
| 392 | printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL)); |
| 393 | if (cnfgB & CNFGB_COMPRESS) |
| 394 | printk(",compress"); |
| 395 | printk("\n"); |
| 396 | } |
| 397 | for (i = 0; i < 2; i++) { |
| 398 | unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr); |
| 399 | printk(KERN_DEBUG PPIP32 " dcr(%s)=0x%02x", |
| 400 | i ? "soft" : "hard", dcr); |
| 401 | printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd"); |
| 402 | if (dcr & DCR_IRQ) |
| 403 | printk(",ackIntEn"); |
| 404 | if (!(dcr & DCR_SELECT)) |
| 405 | printk(",nSelectIn"); |
| 406 | if (dcr & DCR_nINIT) |
| 407 | printk(",nInit"); |
| 408 | if (!(dcr & DCR_AUTOFD)) |
| 409 | printk(",nAutoFD"); |
| 410 | if (!(dcr & DCR_STROBE)) |
| 411 | printk(",nStrobe"); |
| 412 | printk("\n"); |
| 413 | } |
| 414 | #define sep (f++ ? ',' : ' ') |
| 415 | { |
| 416 | unsigned int f = 0; |
| 417 | unsigned int dsr = readb(priv->regs.dsr); |
| 418 | printk(KERN_DEBUG PPIP32 " dsr=0x%02x", dsr); |
| 419 | if (!(dsr & DSR_nBUSY)) |
| 420 | printk("%cBusy", sep); |
| 421 | if (dsr & DSR_nACK) |
| 422 | printk("%cnAck", sep); |
| 423 | if (dsr & DSR_PERROR) |
| 424 | printk("%cPError", sep); |
| 425 | if (dsr & DSR_SELECT) |
| 426 | printk("%cSelect", sep); |
| 427 | if (dsr & DSR_nFAULT) |
| 428 | printk("%cnFault", sep); |
| 429 | if (!(dsr & DSR_nPRINT)) |
| 430 | printk("%c(Print)", sep); |
| 431 | if (dsr & DSR_TIMEOUT) |
| 432 | printk("%cTimeout", sep); |
| 433 | printk("\n"); |
| 434 | } |
| 435 | #undef sep |
| 436 | } |
| 437 | #else /* DEBUG_PARPORT_IP32 < 2 */ |
| 438 | #define parport_ip32_dump_state(...) do { } while (0) |
| 439 | #endif |
| 440 | |
| 441 | /* |
| 442 | * CHECK_EXTRA_BITS - track and log extra bits |
| 443 | * @p: pointer to &struct parport |
| 444 | * @b: byte to inspect |
| 445 | * @m: bit mask of authorized bits |
| 446 | * |
| 447 | * This is used to track and log extra bits that should not be there in |
| 448 | * parport_ip32_write_control() and parport_ip32_frob_control(). It is only |
| 449 | * defined if %DEBUG_PARPORT_IP32 >= 1. |
| 450 | */ |
| 451 | #if DEBUG_PARPORT_IP32 >= 1 |
| 452 | #define CHECK_EXTRA_BITS(p, b, m) \ |
| 453 | do { \ |
| 454 | unsigned int __b = (b), __m = (m); \ |
| 455 | if (__b & ~__m) \ |
| 456 | pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \ |
| 457 | "0x%02x/0x%02x\n", \ |
| 458 | (p)->name, __func__, #b, __b, __m); \ |
| 459 | } while (0) |
| 460 | #else /* DEBUG_PARPORT_IP32 < 1 */ |
| 461 | #define CHECK_EXTRA_BITS(...) do { } while (0) |
| 462 | #endif |
| 463 | |
| 464 | /*--- IP32 parallel port DMA operations --------------------------------*/ |
| 465 | |
| 466 | /** |
| 467 | * struct parport_ip32_dma_data - private data needed for DMA operation |
| 468 | * @dir: DMA direction (from or to device) |
| 469 | * @buf: buffer physical address |
| 470 | * @len: buffer length |
| 471 | * @next: address of next bytes to DMA transfer |
| 472 | * @left: number of bytes remaining |
| 473 | * @ctx: next context to write (0: context_a; 1: context_b) |
| 474 | * @irq_on: are the DMA IRQs currently enabled? |
| 475 | * @lock: spinlock to protect access to the structure |
| 476 | */ |
| 477 | struct parport_ip32_dma_data { |
| 478 | enum dma_data_direction dir; |
| 479 | dma_addr_t buf; |
| 480 | dma_addr_t next; |
| 481 | size_t len; |
| 482 | size_t left; |
| 483 | unsigned int ctx; |
| 484 | unsigned int irq_on; |
| 485 | spinlock_t lock; |
| 486 | }; |
| 487 | static struct parport_ip32_dma_data parport_ip32_dma; |
| 488 | |
| 489 | /** |
| 490 | * parport_ip32_dma_setup_context - setup next DMA context |
| 491 | * @limit: maximum data size for the context |
| 492 | * |
| 493 | * The alignment constraints must be verified in caller function, and the |
| 494 | * parameter @limit must be set accordingly. |
| 495 | */ |
| 496 | static void parport_ip32_dma_setup_context(unsigned int limit) |
| 497 | { |
| 498 | unsigned long flags; |
| 499 | |
| 500 | spin_lock_irqsave(&parport_ip32_dma.lock, flags); |
| 501 | if (parport_ip32_dma.left > 0) { |
| 502 | /* Note: ctxreg is "volatile" here only because |
| 503 | * mace->perif.ctrl.parport.context_a and context_b are |
| 504 | * "volatile". */ |
| 505 | volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ? |
| 506 | &mace->perif.ctrl.parport.context_a : |
| 507 | &mace->perif.ctrl.parport.context_b; |
| 508 | u64 count; |
| 509 | u64 ctxval; |
| 510 | if (parport_ip32_dma.left <= limit) { |
| 511 | count = parport_ip32_dma.left; |
| 512 | ctxval = MACEPAR_CONTEXT_LASTFLAG; |
| 513 | } else { |
| 514 | count = limit; |
| 515 | ctxval = 0; |
| 516 | } |
| 517 | |
| 518 | pr_trace(NULL, |
| 519 | "(%u): 0x%04x:0x%04x, %u -> %u%s", |
| 520 | limit, |
| 521 | (unsigned int)parport_ip32_dma.buf, |
| 522 | (unsigned int)parport_ip32_dma.next, |
| 523 | (unsigned int)count, |
| 524 | parport_ip32_dma.ctx, ctxval ? "*" : ""); |
| 525 | |
| 526 | ctxval |= parport_ip32_dma.next & |
| 527 | MACEPAR_CONTEXT_BASEADDR_MASK; |
| 528 | ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) & |
| 529 | MACEPAR_CONTEXT_DATALEN_MASK; |
| 530 | writeq(ctxval, ctxreg); |
| 531 | parport_ip32_dma.next += count; |
| 532 | parport_ip32_dma.left -= count; |
| 533 | parport_ip32_dma.ctx ^= 1U; |
| 534 | } |
| 535 | /* If there is nothing more to send, disable IRQs to avoid to |
| 536 | * face an IRQ storm which can lock the machine. Disable them |
| 537 | * only once. */ |
| 538 | if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) { |
| 539 | pr_debug(PPIP32 "IRQ off (ctx)\n"); |
| 540 | disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); |
| 541 | disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); |
| 542 | parport_ip32_dma.irq_on = 0; |
| 543 | } |
| 544 | spin_unlock_irqrestore(&parport_ip32_dma.lock, flags); |
| 545 | } |
| 546 | |
| 547 | /** |
| 548 | * parport_ip32_dma_interrupt - DMA interrupt handler |
| 549 | * @irq: interrupt number |
| 550 | * @dev_id: unused |
Arnaud Giersch | 8e75f74 | 2006-02-03 03:04:16 -0800 | [diff] [blame] | 551 | */ |
David Howells | 7d12e78 | 2006-10-05 14:55:46 +0100 | [diff] [blame] | 552 | static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id) |
Arnaud Giersch | 8e75f74 | 2006-02-03 03:04:16 -0800 | [diff] [blame] | 553 | { |
| 554 | if (parport_ip32_dma.left) |
| 555 | pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx); |
| 556 | parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); |
| 557 | return IRQ_HANDLED; |
| 558 | } |
| 559 | |
| 560 | #if DEBUG_PARPORT_IP32 |
David Howells | 7d12e78 | 2006-10-05 14:55:46 +0100 | [diff] [blame] | 561 | static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id) |
Arnaud Giersch | 8e75f74 | 2006-02-03 03:04:16 -0800 | [diff] [blame] | 562 | { |
| 563 | pr_trace1(NULL, "(%d)", irq); |
| 564 | return IRQ_HANDLED; |
| 565 | } |
| 566 | #endif |
| 567 | |
| 568 | /** |
| 569 | * parport_ip32_dma_start - begins a DMA transfer |
| 570 | * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE |
| 571 | * @addr: pointer to data buffer |
| 572 | * @count: buffer size |
| 573 | * |
| 574 | * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be |
| 575 | * correctly balanced. |
| 576 | */ |
| 577 | static int parport_ip32_dma_start(enum dma_data_direction dir, |
| 578 | void *addr, size_t count) |
| 579 | { |
| 580 | unsigned int limit; |
| 581 | u64 ctrl; |
| 582 | |
| 583 | pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count); |
| 584 | |
| 585 | /* FIXME - add support for DMA_FROM_DEVICE. In this case, buffer must |
| 586 | * be 64 bytes aligned. */ |
| 587 | BUG_ON(dir != DMA_TO_DEVICE); |
| 588 | |
| 589 | /* Reset DMA controller */ |
| 590 | ctrl = MACEPAR_CTLSTAT_RESET; |
| 591 | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); |
| 592 | |
| 593 | /* DMA IRQs should normally be enabled */ |
| 594 | if (!parport_ip32_dma.irq_on) { |
| 595 | WARN_ON(1); |
| 596 | enable_irq(MACEISA_PAR_CTXA_IRQ); |
| 597 | enable_irq(MACEISA_PAR_CTXB_IRQ); |
| 598 | parport_ip32_dma.irq_on = 1; |
| 599 | } |
| 600 | |
| 601 | /* Prepare DMA pointers */ |
| 602 | parport_ip32_dma.dir = dir; |
| 603 | parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir); |
| 604 | parport_ip32_dma.len = count; |
| 605 | parport_ip32_dma.next = parport_ip32_dma.buf; |
| 606 | parport_ip32_dma.left = parport_ip32_dma.len; |
| 607 | parport_ip32_dma.ctx = 0; |
| 608 | |
| 609 | /* Setup DMA direction and first two contexts */ |
| 610 | ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION; |
| 611 | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); |
| 612 | /* Single transfer should not cross a 4K page boundary */ |
| 613 | limit = MACEPAR_CONTEXT_DATA_BOUND - |
| 614 | (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1)); |
| 615 | parport_ip32_dma_setup_context(limit); |
| 616 | parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); |
| 617 | |
| 618 | /* Real start of DMA transfer */ |
| 619 | ctrl |= MACEPAR_CTLSTAT_ENABLE; |
| 620 | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); |
| 621 | |
| 622 | return 0; |
| 623 | } |
| 624 | |
| 625 | /** |
| 626 | * parport_ip32_dma_stop - ends a running DMA transfer |
| 627 | * |
| 628 | * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be |
| 629 | * correctly balanced. |
| 630 | */ |
| 631 | static void parport_ip32_dma_stop(void) |
| 632 | { |
| 633 | u64 ctx_a; |
| 634 | u64 ctx_b; |
| 635 | u64 ctrl; |
| 636 | u64 diag; |
| 637 | size_t res[2]; /* {[0] = res_a, [1] = res_b} */ |
| 638 | |
| 639 | pr_trace(NULL, "()"); |
| 640 | |
| 641 | /* Disable IRQs */ |
| 642 | spin_lock_irq(&parport_ip32_dma.lock); |
| 643 | if (parport_ip32_dma.irq_on) { |
| 644 | pr_debug(PPIP32 "IRQ off (stop)\n"); |
| 645 | disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); |
| 646 | disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); |
| 647 | parport_ip32_dma.irq_on = 0; |
| 648 | } |
| 649 | spin_unlock_irq(&parport_ip32_dma.lock); |
| 650 | /* Force IRQ synchronization, even if the IRQs were disabled |
| 651 | * elsewhere. */ |
| 652 | synchronize_irq(MACEISA_PAR_CTXA_IRQ); |
| 653 | synchronize_irq(MACEISA_PAR_CTXB_IRQ); |
| 654 | |
| 655 | /* Stop DMA transfer */ |
| 656 | ctrl = readq(&mace->perif.ctrl.parport.cntlstat); |
| 657 | ctrl &= ~MACEPAR_CTLSTAT_ENABLE; |
| 658 | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); |
| 659 | |
| 660 | /* Adjust residue (parport_ip32_dma.left) */ |
| 661 | ctx_a = readq(&mace->perif.ctrl.parport.context_a); |
| 662 | ctx_b = readq(&mace->perif.ctrl.parport.context_b); |
| 663 | ctrl = readq(&mace->perif.ctrl.parport.cntlstat); |
| 664 | diag = readq(&mace->perif.ctrl.parport.diagnostic); |
| 665 | res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ? |
| 666 | 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >> |
| 667 | MACEPAR_CONTEXT_DATALEN_SHIFT) : |
| 668 | 0; |
| 669 | res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ? |
| 670 | 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >> |
| 671 | MACEPAR_CONTEXT_DATALEN_SHIFT) : |
| 672 | 0; |
| 673 | if (diag & MACEPAR_DIAG_DMACTIVE) |
| 674 | res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] = |
| 675 | 1 + ((diag & MACEPAR_DIAG_CTRMASK) >> |
| 676 | MACEPAR_DIAG_CTRSHIFT); |
| 677 | parport_ip32_dma.left += res[0] + res[1]; |
| 678 | |
| 679 | /* Reset DMA controller, and re-enable IRQs */ |
| 680 | ctrl = MACEPAR_CTLSTAT_RESET; |
| 681 | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); |
| 682 | pr_debug(PPIP32 "IRQ on (stop)\n"); |
| 683 | enable_irq(MACEISA_PAR_CTXA_IRQ); |
| 684 | enable_irq(MACEISA_PAR_CTXB_IRQ); |
| 685 | parport_ip32_dma.irq_on = 1; |
| 686 | |
| 687 | dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len, |
| 688 | parport_ip32_dma.dir); |
| 689 | } |
| 690 | |
| 691 | /** |
| 692 | * parport_ip32_dma_get_residue - get residue from last DMA transfer |
| 693 | * |
| 694 | * Returns the number of bytes remaining from last DMA transfer. |
| 695 | */ |
| 696 | static inline size_t parport_ip32_dma_get_residue(void) |
| 697 | { |
| 698 | return parport_ip32_dma.left; |
| 699 | } |
| 700 | |
| 701 | /** |
| 702 | * parport_ip32_dma_register - initialize DMA engine |
| 703 | * |
| 704 | * Returns zero for success. |
| 705 | */ |
| 706 | static int parport_ip32_dma_register(void) |
| 707 | { |
| 708 | int err; |
| 709 | |
| 710 | spin_lock_init(&parport_ip32_dma.lock); |
| 711 | parport_ip32_dma.irq_on = 1; |
| 712 | |
| 713 | /* Reset DMA controller */ |
| 714 | writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat); |
| 715 | |
| 716 | /* Request IRQs */ |
| 717 | err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt, |
| 718 | 0, "parport_ip32", NULL); |
| 719 | if (err) |
| 720 | goto fail_a; |
| 721 | err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt, |
| 722 | 0, "parport_ip32", NULL); |
| 723 | if (err) |
| 724 | goto fail_b; |
| 725 | #if DEBUG_PARPORT_IP32 |
| 726 | /* FIXME - what is this IRQ for? */ |
| 727 | err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt, |
| 728 | 0, "parport_ip32", NULL); |
| 729 | if (err) |
| 730 | goto fail_merr; |
| 731 | #endif |
| 732 | return 0; |
| 733 | |
| 734 | #if DEBUG_PARPORT_IP32 |
| 735 | fail_merr: |
| 736 | free_irq(MACEISA_PAR_CTXB_IRQ, NULL); |
| 737 | #endif |
| 738 | fail_b: |
| 739 | free_irq(MACEISA_PAR_CTXA_IRQ, NULL); |
| 740 | fail_a: |
| 741 | return err; |
| 742 | } |
| 743 | |
| 744 | /** |
| 745 | * parport_ip32_dma_unregister - release and free resources for DMA engine |
| 746 | */ |
| 747 | static void parport_ip32_dma_unregister(void) |
| 748 | { |
| 749 | #if DEBUG_PARPORT_IP32 |
| 750 | free_irq(MACEISA_PAR_MERR_IRQ, NULL); |
| 751 | #endif |
| 752 | free_irq(MACEISA_PAR_CTXB_IRQ, NULL); |
| 753 | free_irq(MACEISA_PAR_CTXA_IRQ, NULL); |
| 754 | } |
| 755 | |
| 756 | /*--- Interrupt handlers and associates --------------------------------*/ |
| 757 | |
| 758 | /** |
| 759 | * parport_ip32_wakeup - wakes up code waiting for an interrupt |
| 760 | * @p: pointer to &struct parport |
| 761 | */ |
| 762 | static inline void parport_ip32_wakeup(struct parport *p) |
| 763 | { |
| 764 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 765 | complete(&priv->irq_complete); |
| 766 | } |
| 767 | |
| 768 | /** |
| 769 | * parport_ip32_interrupt - interrupt handler |
| 770 | * @irq: interrupt number |
| 771 | * @dev_id: pointer to &struct parport |
Arnaud Giersch | 8e75f74 | 2006-02-03 03:04:16 -0800 | [diff] [blame] | 772 | * |
| 773 | * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is |
| 774 | * %PARPORT_IP32_IRQ_FWD. |
| 775 | */ |
David Howells | 7d12e78 | 2006-10-05 14:55:46 +0100 | [diff] [blame] | 776 | static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id) |
Arnaud Giersch | 8e75f74 | 2006-02-03 03:04:16 -0800 | [diff] [blame] | 777 | { |
| 778 | struct parport * const p = dev_id; |
| 779 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 780 | enum parport_ip32_irq_mode irq_mode = priv->irq_mode; |
Jeff Garzik | 3f2e40d | 2007-10-19 01:42:14 -0400 | [diff] [blame] | 781 | |
Arnaud Giersch | 8e75f74 | 2006-02-03 03:04:16 -0800 | [diff] [blame] | 782 | switch (irq_mode) { |
| 783 | case PARPORT_IP32_IRQ_FWD: |
Jeff Garzik | 3f2e40d | 2007-10-19 01:42:14 -0400 | [diff] [blame] | 784 | return parport_irq_handler(irq, dev_id); |
| 785 | |
Arnaud Giersch | 8e75f74 | 2006-02-03 03:04:16 -0800 | [diff] [blame] | 786 | case PARPORT_IP32_IRQ_HERE: |
| 787 | parport_ip32_wakeup(p); |
| 788 | break; |
| 789 | } |
Jeff Garzik | 3f2e40d | 2007-10-19 01:42:14 -0400 | [diff] [blame] | 790 | |
Arnaud Giersch | 8e75f74 | 2006-02-03 03:04:16 -0800 | [diff] [blame] | 791 | return IRQ_HANDLED; |
| 792 | } |
| 793 | |
| 794 | /*--- Some utility function to manipulate ECR register -----------------*/ |
| 795 | |
| 796 | /** |
| 797 | * parport_ip32_read_econtrol - read contents of the ECR register |
| 798 | * @p: pointer to &struct parport |
| 799 | */ |
| 800 | static inline unsigned int parport_ip32_read_econtrol(struct parport *p) |
| 801 | { |
| 802 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 803 | return readb(priv->regs.ecr); |
| 804 | } |
| 805 | |
| 806 | /** |
| 807 | * parport_ip32_write_econtrol - write new contents to the ECR register |
| 808 | * @p: pointer to &struct parport |
| 809 | * @c: new value to write |
| 810 | */ |
| 811 | static inline void parport_ip32_write_econtrol(struct parport *p, |
| 812 | unsigned int c) |
| 813 | { |
| 814 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 815 | writeb(c, priv->regs.ecr); |
| 816 | } |
| 817 | |
| 818 | /** |
| 819 | * parport_ip32_frob_econtrol - change bits from the ECR register |
| 820 | * @p: pointer to &struct parport |
| 821 | * @mask: bit mask of bits to change |
| 822 | * @val: new value for changed bits |
| 823 | * |
| 824 | * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits |
| 825 | * in @val, and write the result to the ECR. |
| 826 | */ |
| 827 | static inline void parport_ip32_frob_econtrol(struct parport *p, |
| 828 | unsigned int mask, |
| 829 | unsigned int val) |
| 830 | { |
| 831 | unsigned int c; |
| 832 | c = (parport_ip32_read_econtrol(p) & ~mask) ^ val; |
| 833 | parport_ip32_write_econtrol(p, c); |
| 834 | } |
| 835 | |
| 836 | /** |
| 837 | * parport_ip32_set_mode - change mode of ECP port |
| 838 | * @p: pointer to &struct parport |
| 839 | * @mode: new mode to write in ECR |
| 840 | * |
| 841 | * ECR is reset in a sane state (interrupts and DMA disabled), and placed in |
| 842 | * mode @mode. Go through PS2 mode if needed. |
| 843 | */ |
| 844 | static void parport_ip32_set_mode(struct parport *p, unsigned int mode) |
| 845 | { |
| 846 | unsigned int omode; |
| 847 | |
| 848 | mode &= ECR_MODE_MASK; |
| 849 | omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK; |
| 850 | |
| 851 | if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2 |
| 852 | || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) { |
| 853 | /* We have to go through PS2 mode */ |
| 854 | unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; |
| 855 | parport_ip32_write_econtrol(p, ecr); |
| 856 | } |
| 857 | parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR); |
| 858 | } |
| 859 | |
| 860 | /*--- Basic functions needed for parport -------------------------------*/ |
| 861 | |
| 862 | /** |
| 863 | * parport_ip32_read_data - return current contents of the DATA register |
| 864 | * @p: pointer to &struct parport |
| 865 | */ |
| 866 | static inline unsigned char parport_ip32_read_data(struct parport *p) |
| 867 | { |
| 868 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 869 | return readb(priv->regs.data); |
| 870 | } |
| 871 | |
| 872 | /** |
| 873 | * parport_ip32_write_data - set new contents for the DATA register |
| 874 | * @p: pointer to &struct parport |
| 875 | * @d: new value to write |
| 876 | */ |
| 877 | static inline void parport_ip32_write_data(struct parport *p, unsigned char d) |
| 878 | { |
| 879 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 880 | writeb(d, priv->regs.data); |
| 881 | } |
| 882 | |
| 883 | /** |
| 884 | * parport_ip32_read_status - return current contents of the DSR register |
| 885 | * @p: pointer to &struct parport |
| 886 | */ |
| 887 | static inline unsigned char parport_ip32_read_status(struct parport *p) |
| 888 | { |
| 889 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 890 | return readb(priv->regs.dsr); |
| 891 | } |
| 892 | |
| 893 | /** |
| 894 | * __parport_ip32_read_control - return cached contents of the DCR register |
| 895 | * @p: pointer to &struct parport |
| 896 | */ |
| 897 | static inline unsigned int __parport_ip32_read_control(struct parport *p) |
| 898 | { |
| 899 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 900 | return priv->dcr_cache; /* use soft copy */ |
| 901 | } |
| 902 | |
| 903 | /** |
| 904 | * __parport_ip32_write_control - set new contents for the DCR register |
| 905 | * @p: pointer to &struct parport |
| 906 | * @c: new value to write |
| 907 | */ |
| 908 | static inline void __parport_ip32_write_control(struct parport *p, |
| 909 | unsigned int c) |
| 910 | { |
| 911 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 912 | CHECK_EXTRA_BITS(p, c, priv->dcr_writable); |
| 913 | c &= priv->dcr_writable; /* only writable bits */ |
| 914 | writeb(c, priv->regs.dcr); |
| 915 | priv->dcr_cache = c; /* update soft copy */ |
| 916 | } |
| 917 | |
| 918 | /** |
| 919 | * __parport_ip32_frob_control - change bits from the DCR register |
| 920 | * @p: pointer to &struct parport |
| 921 | * @mask: bit mask of bits to change |
| 922 | * @val: new value for changed bits |
| 923 | * |
| 924 | * This is equivalent to read from the DCR, mask out the bits in @mask, |
| 925 | * exclusive-or with the bits in @val, and write the result to the DCR. |
| 926 | * Actually, the cached contents of the DCR is used. |
| 927 | */ |
| 928 | static inline void __parport_ip32_frob_control(struct parport *p, |
| 929 | unsigned int mask, |
| 930 | unsigned int val) |
| 931 | { |
| 932 | unsigned int c; |
| 933 | c = (__parport_ip32_read_control(p) & ~mask) ^ val; |
| 934 | __parport_ip32_write_control(p, c); |
| 935 | } |
| 936 | |
| 937 | /** |
| 938 | * parport_ip32_read_control - return cached contents of the DCR register |
| 939 | * @p: pointer to &struct parport |
| 940 | * |
| 941 | * The return value is masked so as to only return the value of %DCR_STROBE, |
| 942 | * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. |
| 943 | */ |
| 944 | static inline unsigned char parport_ip32_read_control(struct parport *p) |
| 945 | { |
| 946 | const unsigned int rm = |
| 947 | DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; |
| 948 | return __parport_ip32_read_control(p) & rm; |
| 949 | } |
| 950 | |
| 951 | /** |
| 952 | * parport_ip32_write_control - set new contents for the DCR register |
| 953 | * @p: pointer to &struct parport |
| 954 | * @c: new value to write |
| 955 | * |
| 956 | * The value is masked so as to only change the value of %DCR_STROBE, |
| 957 | * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. |
| 958 | */ |
| 959 | static inline void parport_ip32_write_control(struct parport *p, |
| 960 | unsigned char c) |
| 961 | { |
| 962 | const unsigned int wm = |
| 963 | DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; |
| 964 | CHECK_EXTRA_BITS(p, c, wm); |
| 965 | __parport_ip32_frob_control(p, wm, c & wm); |
| 966 | } |
| 967 | |
| 968 | /** |
| 969 | * parport_ip32_frob_control - change bits from the DCR register |
| 970 | * @p: pointer to &struct parport |
| 971 | * @mask: bit mask of bits to change |
| 972 | * @val: new value for changed bits |
| 973 | * |
| 974 | * This differs from __parport_ip32_frob_control() in that it only allows to |
| 975 | * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. |
| 976 | */ |
| 977 | static inline unsigned char parport_ip32_frob_control(struct parport *p, |
| 978 | unsigned char mask, |
| 979 | unsigned char val) |
| 980 | { |
| 981 | const unsigned int wm = |
| 982 | DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; |
| 983 | CHECK_EXTRA_BITS(p, mask, wm); |
| 984 | CHECK_EXTRA_BITS(p, val, wm); |
| 985 | __parport_ip32_frob_control(p, mask & wm, val & wm); |
| 986 | return parport_ip32_read_control(p); |
| 987 | } |
| 988 | |
| 989 | /** |
| 990 | * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK |
| 991 | * @p: pointer to &struct parport |
| 992 | */ |
| 993 | static inline void parport_ip32_disable_irq(struct parport *p) |
| 994 | { |
| 995 | __parport_ip32_frob_control(p, DCR_IRQ, 0); |
| 996 | } |
| 997 | |
| 998 | /** |
| 999 | * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK |
| 1000 | * @p: pointer to &struct parport |
| 1001 | */ |
| 1002 | static inline void parport_ip32_enable_irq(struct parport *p) |
| 1003 | { |
| 1004 | __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ); |
| 1005 | } |
| 1006 | |
| 1007 | /** |
| 1008 | * parport_ip32_data_forward - enable host-to-peripheral communications |
| 1009 | * @p: pointer to &struct parport |
| 1010 | * |
| 1011 | * Enable the data line drivers, for 8-bit host-to-peripheral communications. |
| 1012 | */ |
| 1013 | static inline void parport_ip32_data_forward(struct parport *p) |
| 1014 | { |
| 1015 | __parport_ip32_frob_control(p, DCR_DIR, 0); |
| 1016 | } |
| 1017 | |
| 1018 | /** |
| 1019 | * parport_ip32_data_reverse - enable peripheral-to-host communications |
| 1020 | * @p: pointer to &struct parport |
| 1021 | * |
| 1022 | * Place the data bus in a high impedance state, if @p->modes has the |
| 1023 | * PARPORT_MODE_TRISTATE bit set. |
| 1024 | */ |
| 1025 | static inline void parport_ip32_data_reverse(struct parport *p) |
| 1026 | { |
| 1027 | __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR); |
| 1028 | } |
| 1029 | |
| 1030 | /** |
| 1031 | * parport_ip32_init_state - for core parport code |
| 1032 | * @dev: pointer to &struct pardevice |
| 1033 | * @s: pointer to &struct parport_state to initialize |
| 1034 | */ |
| 1035 | static void parport_ip32_init_state(struct pardevice *dev, |
| 1036 | struct parport_state *s) |
| 1037 | { |
| 1038 | s->u.ip32.dcr = DCR_SELECT | DCR_nINIT; |
| 1039 | s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; |
| 1040 | } |
| 1041 | |
| 1042 | /** |
| 1043 | * parport_ip32_save_state - for core parport code |
| 1044 | * @p: pointer to &struct parport |
| 1045 | * @s: pointer to &struct parport_state to save state to |
| 1046 | */ |
| 1047 | static void parport_ip32_save_state(struct parport *p, |
| 1048 | struct parport_state *s) |
| 1049 | { |
| 1050 | s->u.ip32.dcr = __parport_ip32_read_control(p); |
| 1051 | s->u.ip32.ecr = parport_ip32_read_econtrol(p); |
| 1052 | } |
| 1053 | |
| 1054 | /** |
| 1055 | * parport_ip32_restore_state - for core parport code |
| 1056 | * @p: pointer to &struct parport |
| 1057 | * @s: pointer to &struct parport_state to restore state from |
| 1058 | */ |
| 1059 | static void parport_ip32_restore_state(struct parport *p, |
| 1060 | struct parport_state *s) |
| 1061 | { |
| 1062 | parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK); |
| 1063 | parport_ip32_write_econtrol(p, s->u.ip32.ecr); |
| 1064 | __parport_ip32_write_control(p, s->u.ip32.dcr); |
| 1065 | } |
| 1066 | |
| 1067 | /*--- EPP mode functions -----------------------------------------------*/ |
| 1068 | |
| 1069 | /** |
| 1070 | * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode |
| 1071 | * @p: pointer to &struct parport |
| 1072 | * |
| 1073 | * Returns 1 if the Timeout bit is clear, and 0 otherwise. |
| 1074 | */ |
| 1075 | static unsigned int parport_ip32_clear_epp_timeout(struct parport *p) |
| 1076 | { |
| 1077 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1078 | unsigned int cleared; |
| 1079 | |
| 1080 | if (!(parport_ip32_read_status(p) & DSR_TIMEOUT)) |
| 1081 | cleared = 1; |
| 1082 | else { |
| 1083 | unsigned int r; |
| 1084 | /* To clear timeout some chips require double read */ |
| 1085 | parport_ip32_read_status(p); |
| 1086 | r = parport_ip32_read_status(p); |
| 1087 | /* Some reset by writing 1 */ |
| 1088 | writeb(r | DSR_TIMEOUT, priv->regs.dsr); |
| 1089 | /* Others by writing 0 */ |
| 1090 | writeb(r & ~DSR_TIMEOUT, priv->regs.dsr); |
| 1091 | |
| 1092 | r = parport_ip32_read_status(p); |
| 1093 | cleared = !(r & DSR_TIMEOUT); |
| 1094 | } |
| 1095 | |
| 1096 | pr_trace(p, "(): %s", cleared ? "cleared" : "failed"); |
| 1097 | return cleared; |
| 1098 | } |
| 1099 | |
| 1100 | /** |
| 1101 | * parport_ip32_epp_read - generic EPP read function |
| 1102 | * @eppreg: I/O register to read from |
| 1103 | * @p: pointer to &struct parport |
| 1104 | * @buf: buffer to store read data |
| 1105 | * @len: length of buffer @buf |
| 1106 | * @flags: may be PARPORT_EPP_FAST |
| 1107 | */ |
| 1108 | static size_t parport_ip32_epp_read(void __iomem *eppreg, |
| 1109 | struct parport *p, void *buf, |
| 1110 | size_t len, int flags) |
| 1111 | { |
| 1112 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1113 | size_t got; |
| 1114 | parport_ip32_set_mode(p, ECR_MODE_EPP); |
| 1115 | parport_ip32_data_reverse(p); |
| 1116 | parport_ip32_write_control(p, DCR_nINIT); |
| 1117 | if ((flags & PARPORT_EPP_FAST) && (len > 1)) { |
| 1118 | readsb(eppreg, buf, len); |
| 1119 | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { |
| 1120 | parport_ip32_clear_epp_timeout(p); |
| 1121 | return -EIO; |
| 1122 | } |
| 1123 | got = len; |
| 1124 | } else { |
| 1125 | u8 *bufp = buf; |
| 1126 | for (got = 0; got < len; got++) { |
| 1127 | *bufp++ = readb(eppreg); |
| 1128 | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { |
| 1129 | parport_ip32_clear_epp_timeout(p); |
| 1130 | break; |
| 1131 | } |
| 1132 | } |
| 1133 | } |
| 1134 | parport_ip32_data_forward(p); |
| 1135 | parport_ip32_set_mode(p, ECR_MODE_PS2); |
| 1136 | return got; |
| 1137 | } |
| 1138 | |
| 1139 | /** |
| 1140 | * parport_ip32_epp_write - generic EPP write function |
| 1141 | * @eppreg: I/O register to write to |
| 1142 | * @p: pointer to &struct parport |
| 1143 | * @buf: buffer of data to write |
| 1144 | * @len: length of buffer @buf |
| 1145 | * @flags: may be PARPORT_EPP_FAST |
| 1146 | */ |
| 1147 | static size_t parport_ip32_epp_write(void __iomem *eppreg, |
| 1148 | struct parport *p, const void *buf, |
| 1149 | size_t len, int flags) |
| 1150 | { |
| 1151 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1152 | size_t written; |
| 1153 | parport_ip32_set_mode(p, ECR_MODE_EPP); |
| 1154 | parport_ip32_data_forward(p); |
| 1155 | parport_ip32_write_control(p, DCR_nINIT); |
| 1156 | if ((flags & PARPORT_EPP_FAST) && (len > 1)) { |
| 1157 | writesb(eppreg, buf, len); |
| 1158 | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { |
| 1159 | parport_ip32_clear_epp_timeout(p); |
| 1160 | return -EIO; |
| 1161 | } |
| 1162 | written = len; |
| 1163 | } else { |
| 1164 | const u8 *bufp = buf; |
| 1165 | for (written = 0; written < len; written++) { |
| 1166 | writeb(*bufp++, eppreg); |
| 1167 | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { |
| 1168 | parport_ip32_clear_epp_timeout(p); |
| 1169 | break; |
| 1170 | } |
| 1171 | } |
| 1172 | } |
| 1173 | parport_ip32_set_mode(p, ECR_MODE_PS2); |
| 1174 | return written; |
| 1175 | } |
| 1176 | |
| 1177 | /** |
| 1178 | * parport_ip32_epp_read_data - read a block of data in EPP mode |
| 1179 | * @p: pointer to &struct parport |
| 1180 | * @buf: buffer to store read data |
| 1181 | * @len: length of buffer @buf |
| 1182 | * @flags: may be PARPORT_EPP_FAST |
| 1183 | */ |
| 1184 | static size_t parport_ip32_epp_read_data(struct parport *p, void *buf, |
| 1185 | size_t len, int flags) |
| 1186 | { |
| 1187 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1188 | return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags); |
| 1189 | } |
| 1190 | |
| 1191 | /** |
| 1192 | * parport_ip32_epp_write_data - write a block of data in EPP mode |
| 1193 | * @p: pointer to &struct parport |
| 1194 | * @buf: buffer of data to write |
| 1195 | * @len: length of buffer @buf |
| 1196 | * @flags: may be PARPORT_EPP_FAST |
| 1197 | */ |
| 1198 | static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf, |
| 1199 | size_t len, int flags) |
| 1200 | { |
| 1201 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1202 | return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags); |
| 1203 | } |
| 1204 | |
| 1205 | /** |
| 1206 | * parport_ip32_epp_read_addr - read a block of addresses in EPP mode |
| 1207 | * @p: pointer to &struct parport |
| 1208 | * @buf: buffer to store read data |
| 1209 | * @len: length of buffer @buf |
| 1210 | * @flags: may be PARPORT_EPP_FAST |
| 1211 | */ |
| 1212 | static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf, |
| 1213 | size_t len, int flags) |
| 1214 | { |
| 1215 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1216 | return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags); |
| 1217 | } |
| 1218 | |
| 1219 | /** |
| 1220 | * parport_ip32_epp_write_addr - write a block of addresses in EPP mode |
| 1221 | * @p: pointer to &struct parport |
| 1222 | * @buf: buffer of data to write |
| 1223 | * @len: length of buffer @buf |
| 1224 | * @flags: may be PARPORT_EPP_FAST |
| 1225 | */ |
| 1226 | static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf, |
| 1227 | size_t len, int flags) |
| 1228 | { |
| 1229 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1230 | return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags); |
| 1231 | } |
| 1232 | |
| 1233 | /*--- ECP mode functions (FIFO) ----------------------------------------*/ |
| 1234 | |
| 1235 | /** |
| 1236 | * parport_ip32_fifo_wait_break - check if the waiting function should return |
| 1237 | * @p: pointer to &struct parport |
| 1238 | * @expire: timeout expiring date, in jiffies |
| 1239 | * |
| 1240 | * parport_ip32_fifo_wait_break() checks if the waiting function should return |
| 1241 | * immediately or not. The break conditions are: |
| 1242 | * - expired timeout; |
| 1243 | * - a pending signal; |
| 1244 | * - nFault asserted low. |
| 1245 | * This function also calls cond_resched(). |
| 1246 | */ |
| 1247 | static unsigned int parport_ip32_fifo_wait_break(struct parport *p, |
| 1248 | unsigned long expire) |
| 1249 | { |
| 1250 | cond_resched(); |
| 1251 | if (time_after(jiffies, expire)) { |
| 1252 | pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name); |
| 1253 | return 1; |
| 1254 | } |
| 1255 | if (signal_pending(current)) { |
| 1256 | pr_debug1(PPIP32 "%s: Signal pending\n", p->name); |
| 1257 | return 1; |
| 1258 | } |
| 1259 | if (!(parport_ip32_read_status(p) & DSR_nFAULT)) { |
| 1260 | pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name); |
| 1261 | return 1; |
| 1262 | } |
| 1263 | return 0; |
| 1264 | } |
| 1265 | |
| 1266 | /** |
| 1267 | * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling) |
| 1268 | * @p: pointer to &struct parport |
| 1269 | * |
| 1270 | * Returns the number of bytes that can safely be written in the FIFO. A |
| 1271 | * return value of zero means that the calling function should terminate as |
| 1272 | * fast as possible. |
| 1273 | */ |
| 1274 | static unsigned int parport_ip32_fwp_wait_polling(struct parport *p) |
| 1275 | { |
| 1276 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1277 | struct parport * const physport = p->physport; |
| 1278 | unsigned long expire; |
| 1279 | unsigned int count; |
| 1280 | unsigned int ecr; |
| 1281 | |
| 1282 | expire = jiffies + physport->cad->timeout; |
| 1283 | count = 0; |
| 1284 | while (1) { |
| 1285 | if (parport_ip32_fifo_wait_break(p, expire)) |
| 1286 | break; |
| 1287 | |
| 1288 | /* Check FIFO state. We do nothing when the FIFO is nor full, |
| 1289 | * nor empty. It appears that the FIFO full bit is not always |
| 1290 | * reliable, the FIFO state is sometimes wrongly reported, and |
| 1291 | * the chip gets confused if we give it another byte. */ |
| 1292 | ecr = parport_ip32_read_econtrol(p); |
| 1293 | if (ecr & ECR_F_EMPTY) { |
| 1294 | /* FIFO is empty, fill it up */ |
| 1295 | count = priv->fifo_depth; |
| 1296 | break; |
| 1297 | } |
| 1298 | |
| 1299 | /* Wait a moment... */ |
| 1300 | udelay(FIFO_POLLING_INTERVAL); |
| 1301 | } /* while (1) */ |
| 1302 | |
| 1303 | return count; |
| 1304 | } |
| 1305 | |
| 1306 | /** |
| 1307 | * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven) |
| 1308 | * @p: pointer to &struct parport |
| 1309 | * |
| 1310 | * Returns the number of bytes that can safely be written in the FIFO. A |
| 1311 | * return value of zero means that the calling function should terminate as |
| 1312 | * fast as possible. |
| 1313 | */ |
| 1314 | static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p) |
| 1315 | { |
| 1316 | static unsigned int lost_interrupt = 0; |
| 1317 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1318 | struct parport * const physport = p->physport; |
| 1319 | unsigned long nfault_timeout; |
| 1320 | unsigned long expire; |
| 1321 | unsigned int count; |
| 1322 | unsigned int ecr; |
| 1323 | |
| 1324 | nfault_timeout = min((unsigned long)physport->cad->timeout, |
| 1325 | msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); |
| 1326 | expire = jiffies + physport->cad->timeout; |
| 1327 | count = 0; |
| 1328 | while (1) { |
| 1329 | if (parport_ip32_fifo_wait_break(p, expire)) |
| 1330 | break; |
| 1331 | |
| 1332 | /* Initialize mutex used to take interrupts into account */ |
| 1333 | INIT_COMPLETION(priv->irq_complete); |
| 1334 | |
| 1335 | /* Enable serviceIntr */ |
| 1336 | parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); |
| 1337 | |
| 1338 | /* Enabling serviceIntr while the FIFO is empty does not |
| 1339 | * always generate an interrupt, so check for emptiness |
| 1340 | * now. */ |
| 1341 | ecr = parport_ip32_read_econtrol(p); |
| 1342 | if (!(ecr & ECR_F_EMPTY)) { |
| 1343 | /* FIFO is not empty: wait for an interrupt or a |
| 1344 | * timeout to occur */ |
| 1345 | wait_for_completion_interruptible_timeout( |
| 1346 | &priv->irq_complete, nfault_timeout); |
| 1347 | ecr = parport_ip32_read_econtrol(p); |
| 1348 | if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR) |
| 1349 | && !lost_interrupt) { |
| 1350 | printk(KERN_WARNING PPIP32 |
| 1351 | "%s: lost interrupt in %s\n", |
| 1352 | p->name, __func__); |
| 1353 | lost_interrupt = 1; |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | /* Disable serviceIntr */ |
| 1358 | parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR); |
| 1359 | |
| 1360 | /* Check FIFO state */ |
| 1361 | if (ecr & ECR_F_EMPTY) { |
| 1362 | /* FIFO is empty, fill it up */ |
| 1363 | count = priv->fifo_depth; |
| 1364 | break; |
| 1365 | } else if (ecr & ECR_SERVINTR) { |
| 1366 | /* FIFO is not empty, but we know that can safely push |
| 1367 | * writeIntrThreshold bytes into it */ |
| 1368 | count = priv->writeIntrThreshold; |
| 1369 | break; |
| 1370 | } |
| 1371 | /* FIFO is not empty, and we did not get any interrupt. |
| 1372 | * Either it's time to check for nFault, or a signal is |
| 1373 | * pending. This is verified in |
| 1374 | * parport_ip32_fifo_wait_break(), so we continue the loop. */ |
| 1375 | } /* while (1) */ |
| 1376 | |
| 1377 | return count; |
| 1378 | } |
| 1379 | |
| 1380 | /** |
| 1381 | * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode) |
| 1382 | * @p: pointer to &struct parport |
| 1383 | * @buf: buffer of data to write |
| 1384 | * @len: length of buffer @buf |
| 1385 | * |
| 1386 | * Uses PIO to write the contents of the buffer @buf into the parallel port |
| 1387 | * FIFO. Returns the number of bytes that were actually written. It can work |
| 1388 | * with or without the help of interrupts. The parallel port must be |
| 1389 | * correctly initialized before calling parport_ip32_fifo_write_block_pio(). |
| 1390 | */ |
| 1391 | static size_t parport_ip32_fifo_write_block_pio(struct parport *p, |
| 1392 | const void *buf, size_t len) |
| 1393 | { |
| 1394 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1395 | const u8 *bufp = buf; |
| 1396 | size_t left = len; |
| 1397 | |
| 1398 | priv->irq_mode = PARPORT_IP32_IRQ_HERE; |
| 1399 | |
| 1400 | while (left > 0) { |
| 1401 | unsigned int count; |
| 1402 | |
| 1403 | count = (p->irq == PARPORT_IRQ_NONE) ? |
| 1404 | parport_ip32_fwp_wait_polling(p) : |
| 1405 | parport_ip32_fwp_wait_interrupt(p); |
| 1406 | if (count == 0) |
| 1407 | break; /* Transmission should be stopped */ |
| 1408 | if (count > left) |
| 1409 | count = left; |
| 1410 | if (count == 1) { |
| 1411 | writeb(*bufp, priv->regs.fifo); |
| 1412 | bufp++, left--; |
| 1413 | } else { |
| 1414 | writesb(priv->regs.fifo, bufp, count); |
| 1415 | bufp += count, left -= count; |
| 1416 | } |
| 1417 | } |
| 1418 | |
| 1419 | priv->irq_mode = PARPORT_IP32_IRQ_FWD; |
| 1420 | |
| 1421 | return len - left; |
| 1422 | } |
| 1423 | |
| 1424 | /** |
| 1425 | * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode) |
| 1426 | * @p: pointer to &struct parport |
| 1427 | * @buf: buffer of data to write |
| 1428 | * @len: length of buffer @buf |
| 1429 | * |
| 1430 | * Uses DMA to write the contents of the buffer @buf into the parallel port |
| 1431 | * FIFO. Returns the number of bytes that were actually written. The |
| 1432 | * parallel port must be correctly initialized before calling |
| 1433 | * parport_ip32_fifo_write_block_dma(). |
| 1434 | */ |
| 1435 | static size_t parport_ip32_fifo_write_block_dma(struct parport *p, |
| 1436 | const void *buf, size_t len) |
| 1437 | { |
| 1438 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1439 | struct parport * const physport = p->physport; |
| 1440 | unsigned long nfault_timeout; |
| 1441 | unsigned long expire; |
| 1442 | size_t written; |
| 1443 | unsigned int ecr; |
| 1444 | |
| 1445 | priv->irq_mode = PARPORT_IP32_IRQ_HERE; |
| 1446 | |
| 1447 | parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len); |
| 1448 | INIT_COMPLETION(priv->irq_complete); |
| 1449 | parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN); |
| 1450 | |
| 1451 | nfault_timeout = min((unsigned long)physport->cad->timeout, |
| 1452 | msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); |
| 1453 | expire = jiffies + physport->cad->timeout; |
| 1454 | while (1) { |
| 1455 | if (parport_ip32_fifo_wait_break(p, expire)) |
| 1456 | break; |
| 1457 | wait_for_completion_interruptible_timeout(&priv->irq_complete, |
| 1458 | nfault_timeout); |
| 1459 | ecr = parport_ip32_read_econtrol(p); |
| 1460 | if (ecr & ECR_SERVINTR) |
| 1461 | break; /* DMA transfer just finished */ |
| 1462 | } |
| 1463 | parport_ip32_dma_stop(); |
| 1464 | written = len - parport_ip32_dma_get_residue(); |
| 1465 | |
| 1466 | priv->irq_mode = PARPORT_IP32_IRQ_FWD; |
| 1467 | |
| 1468 | return written; |
| 1469 | } |
| 1470 | |
| 1471 | /** |
| 1472 | * parport_ip32_fifo_write_block - write a block of data |
| 1473 | * @p: pointer to &struct parport |
| 1474 | * @buf: buffer of data to write |
| 1475 | * @len: length of buffer @buf |
| 1476 | * |
| 1477 | * Uses PIO or DMA to write the contents of the buffer @buf into the parallel |
| 1478 | * p FIFO. Returns the number of bytes that were actually written. |
| 1479 | */ |
| 1480 | static size_t parport_ip32_fifo_write_block(struct parport *p, |
| 1481 | const void *buf, size_t len) |
| 1482 | { |
| 1483 | size_t written = 0; |
| 1484 | if (len) |
| 1485 | /* FIXME - Maybe some threshold value should be set for @len |
| 1486 | * under which we revert to PIO mode? */ |
| 1487 | written = (p->modes & PARPORT_MODE_DMA) ? |
| 1488 | parport_ip32_fifo_write_block_dma(p, buf, len) : |
| 1489 | parport_ip32_fifo_write_block_pio(p, buf, len); |
| 1490 | return written; |
| 1491 | } |
| 1492 | |
| 1493 | /** |
| 1494 | * parport_ip32_drain_fifo - wait for FIFO to empty |
| 1495 | * @p: pointer to &struct parport |
| 1496 | * @timeout: timeout, in jiffies |
| 1497 | * |
| 1498 | * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or |
| 1499 | * 0 if the timeout @timeout is reached before, or if a signal is pending. |
| 1500 | */ |
| 1501 | static unsigned int parport_ip32_drain_fifo(struct parport *p, |
| 1502 | unsigned long timeout) |
| 1503 | { |
| 1504 | unsigned long expire = jiffies + timeout; |
| 1505 | unsigned int polling_interval; |
| 1506 | unsigned int counter; |
| 1507 | |
| 1508 | /* Busy wait for approx. 200us */ |
| 1509 | for (counter = 0; counter < 40; counter++) { |
| 1510 | if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) |
| 1511 | break; |
| 1512 | if (time_after(jiffies, expire)) |
| 1513 | break; |
| 1514 | if (signal_pending(current)) |
| 1515 | break; |
| 1516 | udelay(5); |
| 1517 | } |
| 1518 | /* Poll slowly. Polling interval starts with 1 millisecond, and is |
| 1519 | * increased exponentially until 128. */ |
| 1520 | polling_interval = 1; /* msecs */ |
| 1521 | while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) { |
| 1522 | if (time_after_eq(jiffies, expire)) |
| 1523 | break; |
| 1524 | msleep_interruptible(polling_interval); |
| 1525 | if (signal_pending(current)) |
| 1526 | break; |
| 1527 | if (polling_interval < 128) |
| 1528 | polling_interval *= 2; |
| 1529 | } |
| 1530 | |
| 1531 | return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY); |
| 1532 | } |
| 1533 | |
| 1534 | /** |
| 1535 | * parport_ip32_get_fifo_residue - reset FIFO |
| 1536 | * @p: pointer to &struct parport |
| 1537 | * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP) |
| 1538 | * |
| 1539 | * This function resets FIFO, and returns the number of bytes remaining in it. |
| 1540 | */ |
| 1541 | static unsigned int parport_ip32_get_fifo_residue(struct parport *p, |
| 1542 | unsigned int mode) |
| 1543 | { |
| 1544 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1545 | unsigned int residue; |
| 1546 | unsigned int cnfga; |
| 1547 | |
| 1548 | /* FIXME - We are missing one byte if the printer is off-line. I |
| 1549 | * don't know how to detect this. It looks that the full bit is not |
| 1550 | * always reliable. For the moment, the problem is avoided in most |
| 1551 | * cases by testing for BUSY in parport_ip32_compat_write_data(). |
| 1552 | */ |
| 1553 | if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) |
| 1554 | residue = 0; |
| 1555 | else { |
| 1556 | pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name); |
| 1557 | |
| 1558 | /* Stop all transfers. |
| 1559 | * |
| 1560 | * Microsoft's document instructs to drive DCR_STROBE to 0, |
| 1561 | * but it doesn't work (at least in Compatibility mode, not |
| 1562 | * tested in ECP mode). Switching directly to Test mode (as |
| 1563 | * in parport_pc) is not an option: it does confuse the port, |
| 1564 | * ECP service interrupts are no more working after that. A |
| 1565 | * hard reset is then needed to revert to a sane state. |
| 1566 | * |
| 1567 | * Let's hope that the FIFO is really stuck and that the |
| 1568 | * peripheral doesn't wake up now. |
| 1569 | */ |
| 1570 | parport_ip32_frob_control(p, DCR_STROBE, 0); |
| 1571 | |
| 1572 | /* Fill up FIFO */ |
| 1573 | for (residue = priv->fifo_depth; residue > 0; residue--) { |
| 1574 | if (parport_ip32_read_econtrol(p) & ECR_F_FULL) |
| 1575 | break; |
| 1576 | writeb(0x00, priv->regs.fifo); |
| 1577 | } |
| 1578 | } |
| 1579 | if (residue) |
| 1580 | pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n", |
| 1581 | p->name, residue, |
| 1582 | (residue == 1) ? " was" : "s were"); |
| 1583 | |
| 1584 | /* Now reset the FIFO */ |
| 1585 | parport_ip32_set_mode(p, ECR_MODE_PS2); |
| 1586 | |
| 1587 | /* Host recovery for ECP mode */ |
| 1588 | if (mode == ECR_MODE_ECP) { |
| 1589 | parport_ip32_data_reverse(p); |
| 1590 | parport_ip32_frob_control(p, DCR_nINIT, 0); |
| 1591 | if (parport_wait_peripheral(p, DSR_PERROR, 0)) |
| 1592 | pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n", |
| 1593 | p->name, __func__); |
| 1594 | parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE); |
| 1595 | parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT); |
| 1596 | if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) |
| 1597 | pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n", |
| 1598 | p->name, __func__); |
| 1599 | } |
| 1600 | |
| 1601 | /* Adjust residue if needed */ |
| 1602 | parport_ip32_set_mode(p, ECR_MODE_CFG); |
| 1603 | cnfga = readb(priv->regs.cnfgA); |
| 1604 | if (!(cnfga & CNFGA_nBYTEINTRANS)) { |
| 1605 | pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n", |
| 1606 | p->name, cnfga); |
| 1607 | pr_debug1(PPIP32 "%s: Accounting for extra byte\n", |
| 1608 | p->name); |
| 1609 | residue++; |
| 1610 | } |
| 1611 | |
| 1612 | /* Don't care about partial PWords since we do not support |
| 1613 | * PWord != 1 byte. */ |
| 1614 | |
| 1615 | /* Back to forward PS2 mode. */ |
| 1616 | parport_ip32_set_mode(p, ECR_MODE_PS2); |
| 1617 | parport_ip32_data_forward(p); |
| 1618 | |
| 1619 | return residue; |
| 1620 | } |
| 1621 | |
| 1622 | /** |
| 1623 | * parport_ip32_compat_write_data - write a block of data in SPP mode |
| 1624 | * @p: pointer to &struct parport |
| 1625 | * @buf: buffer of data to write |
| 1626 | * @len: length of buffer @buf |
| 1627 | * @flags: ignored |
| 1628 | */ |
| 1629 | static size_t parport_ip32_compat_write_data(struct parport *p, |
| 1630 | const void *buf, size_t len, |
| 1631 | int flags) |
| 1632 | { |
| 1633 | static unsigned int ready_before = 1; |
| 1634 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1635 | struct parport * const physport = p->physport; |
| 1636 | size_t written = 0; |
| 1637 | |
| 1638 | /* Special case: a timeout of zero means we cannot call schedule(). |
| 1639 | * Also if O_NONBLOCK is set then use the default implementation. */ |
| 1640 | if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) |
| 1641 | return parport_ieee1284_write_compat(p, buf, len, flags); |
| 1642 | |
| 1643 | /* Reset FIFO, go in forward mode, and disable ackIntEn */ |
| 1644 | parport_ip32_set_mode(p, ECR_MODE_PS2); |
| 1645 | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); |
| 1646 | parport_ip32_data_forward(p); |
| 1647 | parport_ip32_disable_irq(p); |
| 1648 | parport_ip32_set_mode(p, ECR_MODE_PPF); |
| 1649 | physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; |
| 1650 | |
| 1651 | /* Wait for peripheral to become ready */ |
| 1652 | if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, |
| 1653 | DSR_nBUSY | DSR_nFAULT)) { |
| 1654 | /* Avoid to flood the logs */ |
| 1655 | if (ready_before) |
| 1656 | printk(KERN_INFO PPIP32 "%s: not ready in %s\n", |
| 1657 | p->name, __func__); |
| 1658 | ready_before = 0; |
| 1659 | goto stop; |
| 1660 | } |
| 1661 | ready_before = 1; |
| 1662 | |
| 1663 | written = parport_ip32_fifo_write_block(p, buf, len); |
| 1664 | |
| 1665 | /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */ |
| 1666 | parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); |
| 1667 | |
| 1668 | /* Check for a potential residue */ |
| 1669 | written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF); |
| 1670 | |
| 1671 | /* Then, wait for BUSY to get low. */ |
| 1672 | if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) |
| 1673 | printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", |
| 1674 | p->name, __func__); |
| 1675 | |
| 1676 | stop: |
| 1677 | /* Reset FIFO */ |
| 1678 | parport_ip32_set_mode(p, ECR_MODE_PS2); |
| 1679 | physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; |
| 1680 | |
| 1681 | return written; |
| 1682 | } |
| 1683 | |
| 1684 | /* |
| 1685 | * FIXME - Insert here parport_ip32_ecp_read_data(). |
| 1686 | */ |
| 1687 | |
| 1688 | /** |
| 1689 | * parport_ip32_ecp_write_data - write a block of data in ECP mode |
| 1690 | * @p: pointer to &struct parport |
| 1691 | * @buf: buffer of data to write |
| 1692 | * @len: length of buffer @buf |
| 1693 | * @flags: ignored |
| 1694 | */ |
| 1695 | static size_t parport_ip32_ecp_write_data(struct parport *p, |
| 1696 | const void *buf, size_t len, |
| 1697 | int flags) |
| 1698 | { |
| 1699 | static unsigned int ready_before = 1; |
| 1700 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1701 | struct parport * const physport = p->physport; |
| 1702 | size_t written = 0; |
| 1703 | |
| 1704 | /* Special case: a timeout of zero means we cannot call schedule(). |
| 1705 | * Also if O_NONBLOCK is set then use the default implementation. */ |
| 1706 | if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) |
| 1707 | return parport_ieee1284_ecp_write_data(p, buf, len, flags); |
| 1708 | |
| 1709 | /* Negotiate to forward mode if necessary. */ |
| 1710 | if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) { |
| 1711 | /* Event 47: Set nInit high. */ |
| 1712 | parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD, |
| 1713 | DCR_nINIT | DCR_AUTOFD); |
| 1714 | |
| 1715 | /* Event 49: PError goes high. */ |
| 1716 | if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) { |
| 1717 | printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s", |
| 1718 | p->name, __func__); |
| 1719 | physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN; |
| 1720 | return 0; |
| 1721 | } |
| 1722 | } |
| 1723 | |
| 1724 | /* Reset FIFO, go in forward mode, and disable ackIntEn */ |
| 1725 | parport_ip32_set_mode(p, ECR_MODE_PS2); |
| 1726 | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); |
| 1727 | parport_ip32_data_forward(p); |
| 1728 | parport_ip32_disable_irq(p); |
| 1729 | parport_ip32_set_mode(p, ECR_MODE_ECP); |
| 1730 | physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; |
| 1731 | |
| 1732 | /* Wait for peripheral to become ready */ |
| 1733 | if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, |
| 1734 | DSR_nBUSY | DSR_nFAULT)) { |
| 1735 | /* Avoid to flood the logs */ |
| 1736 | if (ready_before) |
| 1737 | printk(KERN_INFO PPIP32 "%s: not ready in %s\n", |
| 1738 | p->name, __func__); |
| 1739 | ready_before = 0; |
| 1740 | goto stop; |
| 1741 | } |
| 1742 | ready_before = 1; |
| 1743 | |
| 1744 | written = parport_ip32_fifo_write_block(p, buf, len); |
| 1745 | |
| 1746 | /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */ |
| 1747 | parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); |
| 1748 | |
| 1749 | /* Check for a potential residue */ |
| 1750 | written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP); |
| 1751 | |
| 1752 | /* Then, wait for BUSY to get low. */ |
| 1753 | if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) |
| 1754 | printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", |
| 1755 | p->name, __func__); |
| 1756 | |
| 1757 | stop: |
| 1758 | /* Reset FIFO */ |
| 1759 | parport_ip32_set_mode(p, ECR_MODE_PS2); |
| 1760 | physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; |
| 1761 | |
| 1762 | return written; |
| 1763 | } |
| 1764 | |
| 1765 | /* |
| 1766 | * FIXME - Insert here parport_ip32_ecp_write_addr(). |
| 1767 | */ |
| 1768 | |
| 1769 | /*--- Default parport operations ---------------------------------------*/ |
| 1770 | |
| 1771 | static __initdata struct parport_operations parport_ip32_ops = { |
| 1772 | .write_data = parport_ip32_write_data, |
| 1773 | .read_data = parport_ip32_read_data, |
| 1774 | |
| 1775 | .write_control = parport_ip32_write_control, |
| 1776 | .read_control = parport_ip32_read_control, |
| 1777 | .frob_control = parport_ip32_frob_control, |
| 1778 | |
| 1779 | .read_status = parport_ip32_read_status, |
| 1780 | |
| 1781 | .enable_irq = parport_ip32_enable_irq, |
| 1782 | .disable_irq = parport_ip32_disable_irq, |
| 1783 | |
| 1784 | .data_forward = parport_ip32_data_forward, |
| 1785 | .data_reverse = parport_ip32_data_reverse, |
| 1786 | |
| 1787 | .init_state = parport_ip32_init_state, |
| 1788 | .save_state = parport_ip32_save_state, |
| 1789 | .restore_state = parport_ip32_restore_state, |
| 1790 | |
| 1791 | .epp_write_data = parport_ieee1284_epp_write_data, |
| 1792 | .epp_read_data = parport_ieee1284_epp_read_data, |
| 1793 | .epp_write_addr = parport_ieee1284_epp_write_addr, |
| 1794 | .epp_read_addr = parport_ieee1284_epp_read_addr, |
| 1795 | |
| 1796 | .ecp_write_data = parport_ieee1284_ecp_write_data, |
| 1797 | .ecp_read_data = parport_ieee1284_ecp_read_data, |
| 1798 | .ecp_write_addr = parport_ieee1284_ecp_write_addr, |
| 1799 | |
| 1800 | .compat_write_data = parport_ieee1284_write_compat, |
| 1801 | .nibble_read_data = parport_ieee1284_read_nibble, |
| 1802 | .byte_read_data = parport_ieee1284_read_byte, |
| 1803 | |
| 1804 | .owner = THIS_MODULE, |
| 1805 | }; |
| 1806 | |
| 1807 | /*--- Device detection -------------------------------------------------*/ |
| 1808 | |
| 1809 | /** |
| 1810 | * parport_ip32_ecp_supported - check for an ECP port |
| 1811 | * @p: pointer to the &parport structure |
| 1812 | * |
| 1813 | * Returns 1 if an ECP port is found, and 0 otherwise. This function actually |
| 1814 | * checks if an Extended Control Register seems to be present. On successful |
| 1815 | * return, the port is placed in SPP mode. |
| 1816 | */ |
| 1817 | static __init unsigned int parport_ip32_ecp_supported(struct parport *p) |
| 1818 | { |
| 1819 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1820 | unsigned int ecr; |
| 1821 | |
| 1822 | ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; |
| 1823 | writeb(ecr, priv->regs.ecr); |
| 1824 | if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY)) |
| 1825 | goto fail; |
| 1826 | |
| 1827 | pr_probe(p, "Found working ECR register\n"); |
| 1828 | parport_ip32_set_mode(p, ECR_MODE_SPP); |
| 1829 | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); |
| 1830 | return 1; |
| 1831 | |
| 1832 | fail: |
| 1833 | pr_probe(p, "ECR register not found\n"); |
| 1834 | return 0; |
| 1835 | } |
| 1836 | |
| 1837 | /** |
| 1838 | * parport_ip32_fifo_supported - check for FIFO parameters |
| 1839 | * @p: pointer to the &parport structure |
| 1840 | * |
| 1841 | * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on |
| 1842 | * success, and 0 otherwise. Adjust FIFO parameters in the parport structure. |
| 1843 | * On return, the port is placed in SPP mode. |
| 1844 | */ |
| 1845 | static __init unsigned int parport_ip32_fifo_supported(struct parport *p) |
| 1846 | { |
| 1847 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 1848 | unsigned int configa, configb; |
| 1849 | unsigned int pword; |
| 1850 | unsigned int i; |
| 1851 | |
| 1852 | /* Configuration mode */ |
| 1853 | parport_ip32_set_mode(p, ECR_MODE_CFG); |
| 1854 | configa = readb(priv->regs.cnfgA); |
| 1855 | configb = readb(priv->regs.cnfgB); |
| 1856 | |
| 1857 | /* Find out PWord size */ |
| 1858 | switch (configa & CNFGA_ID_MASK) { |
| 1859 | case CNFGA_ID_8: |
| 1860 | pword = 1; |
| 1861 | break; |
| 1862 | case CNFGA_ID_16: |
| 1863 | pword = 2; |
| 1864 | break; |
| 1865 | case CNFGA_ID_32: |
| 1866 | pword = 4; |
| 1867 | break; |
| 1868 | default: |
| 1869 | pr_probe(p, "Unknown implementation ID: 0x%0x\n", |
| 1870 | (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT); |
| 1871 | goto fail; |
| 1872 | break; |
| 1873 | } |
| 1874 | if (pword != 1) { |
| 1875 | pr_probe(p, "Unsupported PWord size: %u\n", pword); |
| 1876 | goto fail; |
| 1877 | } |
| 1878 | priv->pword = pword; |
| 1879 | pr_probe(p, "PWord is %u bits\n", 8 * priv->pword); |
| 1880 | |
| 1881 | /* Check for compression support */ |
| 1882 | writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB); |
| 1883 | if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS) |
| 1884 | pr_probe(p, "Hardware compression detected (unsupported)\n"); |
| 1885 | writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB); |
| 1886 | |
| 1887 | /* Reset FIFO and go in test mode (no interrupt, no DMA) */ |
| 1888 | parport_ip32_set_mode(p, ECR_MODE_TST); |
| 1889 | |
| 1890 | /* FIFO must be empty now */ |
| 1891 | if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { |
| 1892 | pr_probe(p, "FIFO not reset\n"); |
| 1893 | goto fail; |
| 1894 | } |
| 1895 | |
| 1896 | /* Find out FIFO depth. */ |
| 1897 | priv->fifo_depth = 0; |
| 1898 | for (i = 0; i < 1024; i++) { |
| 1899 | if (readb(priv->regs.ecr) & ECR_F_FULL) { |
| 1900 | /* FIFO full */ |
| 1901 | priv->fifo_depth = i; |
| 1902 | break; |
| 1903 | } |
| 1904 | writeb((u8)i, priv->regs.fifo); |
| 1905 | } |
| 1906 | if (i >= 1024) { |
| 1907 | pr_probe(p, "Can't fill FIFO\n"); |
| 1908 | goto fail; |
| 1909 | } |
| 1910 | if (!priv->fifo_depth) { |
| 1911 | pr_probe(p, "Can't get FIFO depth\n"); |
| 1912 | goto fail; |
| 1913 | } |
| 1914 | pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth); |
| 1915 | |
| 1916 | /* Enable interrupts */ |
| 1917 | parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); |
| 1918 | |
| 1919 | /* Find out writeIntrThreshold: number of PWords we know we can write |
| 1920 | * if we get an interrupt. */ |
| 1921 | priv->writeIntrThreshold = 0; |
| 1922 | for (i = 0; i < priv->fifo_depth; i++) { |
| 1923 | if (readb(priv->regs.fifo) != (u8)i) { |
| 1924 | pr_probe(p, "Invalid data in FIFO\n"); |
| 1925 | goto fail; |
| 1926 | } |
| 1927 | if (!priv->writeIntrThreshold |
| 1928 | && readb(priv->regs.ecr) & ECR_SERVINTR) |
| 1929 | /* writeIntrThreshold reached */ |
| 1930 | priv->writeIntrThreshold = i + 1; |
| 1931 | if (i + 1 < priv->fifo_depth |
| 1932 | && readb(priv->regs.ecr) & ECR_F_EMPTY) { |
| 1933 | /* FIFO empty before the last byte? */ |
| 1934 | pr_probe(p, "Data lost in FIFO\n"); |
| 1935 | goto fail; |
| 1936 | } |
| 1937 | } |
| 1938 | if (!priv->writeIntrThreshold) { |
| 1939 | pr_probe(p, "Can't get writeIntrThreshold\n"); |
| 1940 | goto fail; |
| 1941 | } |
| 1942 | pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold); |
| 1943 | |
| 1944 | /* FIFO must be empty now */ |
| 1945 | if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { |
| 1946 | pr_probe(p, "Can't empty FIFO\n"); |
| 1947 | goto fail; |
| 1948 | } |
| 1949 | |
| 1950 | /* Reset FIFO */ |
| 1951 | parport_ip32_set_mode(p, ECR_MODE_PS2); |
| 1952 | /* Set reverse direction (must be in PS2 mode) */ |
| 1953 | parport_ip32_data_reverse(p); |
| 1954 | /* Test FIFO, no interrupt, no DMA */ |
| 1955 | parport_ip32_set_mode(p, ECR_MODE_TST); |
| 1956 | /* Enable interrupts */ |
| 1957 | parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); |
| 1958 | |
| 1959 | /* Find out readIntrThreshold: number of PWords we can read if we get |
| 1960 | * an interrupt. */ |
| 1961 | priv->readIntrThreshold = 0; |
| 1962 | for (i = 0; i < priv->fifo_depth; i++) { |
| 1963 | writeb(0xaa, priv->regs.fifo); |
| 1964 | if (readb(priv->regs.ecr) & ECR_SERVINTR) { |
| 1965 | /* readIntrThreshold reached */ |
| 1966 | priv->readIntrThreshold = i + 1; |
| 1967 | break; |
| 1968 | } |
| 1969 | } |
| 1970 | if (!priv->readIntrThreshold) { |
| 1971 | pr_probe(p, "Can't get readIntrThreshold\n"); |
| 1972 | goto fail; |
| 1973 | } |
| 1974 | pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold); |
| 1975 | |
| 1976 | /* Reset ECR */ |
| 1977 | parport_ip32_set_mode(p, ECR_MODE_PS2); |
| 1978 | parport_ip32_data_forward(p); |
| 1979 | parport_ip32_set_mode(p, ECR_MODE_SPP); |
| 1980 | return 1; |
| 1981 | |
| 1982 | fail: |
| 1983 | priv->fifo_depth = 0; |
| 1984 | parport_ip32_set_mode(p, ECR_MODE_SPP); |
| 1985 | return 0; |
| 1986 | } |
| 1987 | |
| 1988 | /*--- Initialization code ----------------------------------------------*/ |
| 1989 | |
| 1990 | /** |
| 1991 | * parport_ip32_make_isa_registers - compute (ISA) register addresses |
| 1992 | * @regs: pointer to &struct parport_ip32_regs to fill |
| 1993 | * @base: base address of standard and EPP registers |
| 1994 | * @base_hi: base address of ECP registers |
| 1995 | * @regshift: how much to shift register offset by |
| 1996 | * |
| 1997 | * Compute register addresses, according to the ISA standard. The addresses |
| 1998 | * of the standard and EPP registers are computed from address @base. The |
| 1999 | * addresses of the ECP registers are computed from address @base_hi. |
| 2000 | */ |
| 2001 | static void __init |
| 2002 | parport_ip32_make_isa_registers(struct parport_ip32_regs *regs, |
| 2003 | void __iomem *base, void __iomem *base_hi, |
| 2004 | unsigned int regshift) |
| 2005 | { |
| 2006 | #define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift)) |
| 2007 | #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift)) |
| 2008 | *regs = (struct parport_ip32_regs){ |
| 2009 | .data = r_base(0), |
| 2010 | .dsr = r_base(1), |
| 2011 | .dcr = r_base(2), |
| 2012 | .eppAddr = r_base(3), |
| 2013 | .eppData0 = r_base(4), |
| 2014 | .eppData1 = r_base(5), |
| 2015 | .eppData2 = r_base(6), |
| 2016 | .eppData3 = r_base(7), |
| 2017 | .ecpAFifo = r_base(0), |
| 2018 | .fifo = r_base_hi(0), |
| 2019 | .cnfgA = r_base_hi(0), |
| 2020 | .cnfgB = r_base_hi(1), |
| 2021 | .ecr = r_base_hi(2) |
| 2022 | }; |
| 2023 | #undef r_base_hi |
| 2024 | #undef r_base |
| 2025 | } |
| 2026 | |
| 2027 | /** |
| 2028 | * parport_ip32_probe_port - probe and register IP32 built-in parallel port |
| 2029 | * |
| 2030 | * Returns the new allocated &parport structure. On error, an error code is |
| 2031 | * encoded in return value with the ERR_PTR function. |
| 2032 | */ |
| 2033 | static __init struct parport *parport_ip32_probe_port(void) |
| 2034 | { |
| 2035 | struct parport_ip32_regs regs; |
| 2036 | struct parport_ip32_private *priv = NULL; |
| 2037 | struct parport_operations *ops = NULL; |
| 2038 | struct parport *p = NULL; |
| 2039 | int err; |
| 2040 | |
| 2041 | parport_ip32_make_isa_registers(®s, &mace->isa.parallel, |
| 2042 | &mace->isa.ecp1284, 8 /* regshift */); |
| 2043 | |
| 2044 | ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL); |
| 2045 | priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL); |
| 2046 | p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops); |
| 2047 | if (ops == NULL || priv == NULL || p == NULL) { |
| 2048 | err = -ENOMEM; |
| 2049 | goto fail; |
| 2050 | } |
| 2051 | p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel); |
| 2052 | p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284); |
| 2053 | p->private_data = priv; |
| 2054 | |
| 2055 | *ops = parport_ip32_ops; |
| 2056 | *priv = (struct parport_ip32_private){ |
| 2057 | .regs = regs, |
| 2058 | .dcr_writable = DCR_DIR | DCR_SELECT | DCR_nINIT | |
| 2059 | DCR_AUTOFD | DCR_STROBE, |
| 2060 | .irq_mode = PARPORT_IP32_IRQ_FWD, |
| 2061 | }; |
| 2062 | init_completion(&priv->irq_complete); |
| 2063 | |
| 2064 | /* Probe port. */ |
| 2065 | if (!parport_ip32_ecp_supported(p)) { |
| 2066 | err = -ENODEV; |
| 2067 | goto fail; |
| 2068 | } |
| 2069 | parport_ip32_dump_state(p, "begin init", 0); |
| 2070 | |
| 2071 | /* We found what looks like a working ECR register. Simply assume |
| 2072 | * that all modes are correctly supported. Enable basic modes. */ |
| 2073 | p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT; |
| 2074 | p->modes |= PARPORT_MODE_TRISTATE; |
| 2075 | |
| 2076 | if (!parport_ip32_fifo_supported(p)) { |
| 2077 | printk(KERN_WARNING PPIP32 |
| 2078 | "%s: error: FIFO disabled\n", p->name); |
| 2079 | /* Disable hardware modes depending on a working FIFO. */ |
| 2080 | features &= ~PARPORT_IP32_ENABLE_SPP; |
| 2081 | features &= ~PARPORT_IP32_ENABLE_ECP; |
| 2082 | /* DMA is not needed if FIFO is not supported. */ |
| 2083 | features &= ~PARPORT_IP32_ENABLE_DMA; |
| 2084 | } |
| 2085 | |
| 2086 | /* Request IRQ */ |
| 2087 | if (features & PARPORT_IP32_ENABLE_IRQ) { |
| 2088 | int irq = MACEISA_PARALLEL_IRQ; |
| 2089 | if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) { |
| 2090 | printk(KERN_WARNING PPIP32 |
| 2091 | "%s: error: IRQ disabled\n", p->name); |
| 2092 | /* DMA cannot work without interrupts. */ |
| 2093 | features &= ~PARPORT_IP32_ENABLE_DMA; |
| 2094 | } else { |
| 2095 | pr_probe(p, "Interrupt support enabled\n"); |
| 2096 | p->irq = irq; |
| 2097 | priv->dcr_writable |= DCR_IRQ; |
| 2098 | } |
| 2099 | } |
| 2100 | |
| 2101 | /* Allocate DMA resources */ |
| 2102 | if (features & PARPORT_IP32_ENABLE_DMA) { |
| 2103 | if (parport_ip32_dma_register()) |
| 2104 | printk(KERN_WARNING PPIP32 |
| 2105 | "%s: error: DMA disabled\n", p->name); |
| 2106 | else { |
| 2107 | pr_probe(p, "DMA support enabled\n"); |
| 2108 | p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */ |
| 2109 | p->modes |= PARPORT_MODE_DMA; |
| 2110 | } |
| 2111 | } |
| 2112 | |
| 2113 | if (features & PARPORT_IP32_ENABLE_SPP) { |
| 2114 | /* Enable compatibility FIFO mode */ |
| 2115 | p->ops->compat_write_data = parport_ip32_compat_write_data; |
| 2116 | p->modes |= PARPORT_MODE_COMPAT; |
| 2117 | pr_probe(p, "Hardware support for SPP mode enabled\n"); |
| 2118 | } |
| 2119 | if (features & PARPORT_IP32_ENABLE_EPP) { |
| 2120 | /* Set up access functions to use EPP hardware. */ |
| 2121 | p->ops->epp_read_data = parport_ip32_epp_read_data; |
| 2122 | p->ops->epp_write_data = parport_ip32_epp_write_data; |
| 2123 | p->ops->epp_read_addr = parport_ip32_epp_read_addr; |
| 2124 | p->ops->epp_write_addr = parport_ip32_epp_write_addr; |
| 2125 | p->modes |= PARPORT_MODE_EPP; |
| 2126 | pr_probe(p, "Hardware support for EPP mode enabled\n"); |
| 2127 | } |
| 2128 | if (features & PARPORT_IP32_ENABLE_ECP) { |
| 2129 | /* Enable ECP FIFO mode */ |
| 2130 | p->ops->ecp_write_data = parport_ip32_ecp_write_data; |
| 2131 | /* FIXME - not implemented */ |
| 2132 | /* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */ |
| 2133 | /* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */ |
| 2134 | p->modes |= PARPORT_MODE_ECP; |
| 2135 | pr_probe(p, "Hardware support for ECP mode enabled\n"); |
| 2136 | } |
| 2137 | |
| 2138 | /* Initialize the port with sensible values */ |
| 2139 | parport_ip32_set_mode(p, ECR_MODE_PS2); |
| 2140 | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); |
| 2141 | parport_ip32_data_forward(p); |
| 2142 | parport_ip32_disable_irq(p); |
| 2143 | parport_ip32_write_data(p, 0x00); |
| 2144 | parport_ip32_dump_state(p, "end init", 0); |
| 2145 | |
| 2146 | /* Print out what we found */ |
| 2147 | printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)", |
| 2148 | p->name, p->base, p->base_hi); |
| 2149 | if (p->irq != PARPORT_IRQ_NONE) |
| 2150 | printk(", irq %d", p->irq); |
| 2151 | printk(" ["); |
| 2152 | #define printmode(x) if (p->modes & PARPORT_MODE_##x) \ |
| 2153 | printk("%s%s", f++ ? "," : "", #x) |
| 2154 | { |
| 2155 | unsigned int f = 0; |
| 2156 | printmode(PCSPP); |
| 2157 | printmode(TRISTATE); |
| 2158 | printmode(COMPAT); |
| 2159 | printmode(EPP); |
| 2160 | printmode(ECP); |
| 2161 | printmode(DMA); |
| 2162 | } |
| 2163 | #undef printmode |
| 2164 | printk("]\n"); |
| 2165 | |
| 2166 | parport_announce_port(p); |
| 2167 | return p; |
| 2168 | |
| 2169 | fail: |
| 2170 | if (p) |
| 2171 | parport_put_port(p); |
| 2172 | kfree(priv); |
| 2173 | kfree(ops); |
| 2174 | return ERR_PTR(err); |
| 2175 | } |
| 2176 | |
| 2177 | /** |
| 2178 | * parport_ip32_unregister_port - unregister a parallel port |
| 2179 | * @p: pointer to the &struct parport |
| 2180 | * |
| 2181 | * Unregisters a parallel port and free previously allocated resources |
| 2182 | * (memory, IRQ, ...). |
| 2183 | */ |
| 2184 | static __exit void parport_ip32_unregister_port(struct parport *p) |
| 2185 | { |
| 2186 | struct parport_ip32_private * const priv = p->physport->private_data; |
| 2187 | struct parport_operations *ops = p->ops; |
| 2188 | |
| 2189 | parport_remove_port(p); |
| 2190 | if (p->modes & PARPORT_MODE_DMA) |
| 2191 | parport_ip32_dma_unregister(); |
| 2192 | if (p->irq != PARPORT_IRQ_NONE) |
| 2193 | free_irq(p->irq, p); |
| 2194 | parport_put_port(p); |
| 2195 | kfree(priv); |
| 2196 | kfree(ops); |
| 2197 | } |
| 2198 | |
| 2199 | /** |
| 2200 | * parport_ip32_init - module initialization function |
| 2201 | */ |
| 2202 | static int __init parport_ip32_init(void) |
| 2203 | { |
| 2204 | pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n"); |
| 2205 | pr_debug1(PPIP32 "Compiled on %s, %s\n", __DATE__, __TIME__); |
| 2206 | this_port = parport_ip32_probe_port(); |
| 2207 | return IS_ERR(this_port) ? PTR_ERR(this_port) : 0; |
| 2208 | } |
| 2209 | |
| 2210 | /** |
| 2211 | * parport_ip32_exit - module termination function |
| 2212 | */ |
| 2213 | static void __exit parport_ip32_exit(void) |
| 2214 | { |
| 2215 | parport_ip32_unregister_port(this_port); |
| 2216 | } |
| 2217 | |
| 2218 | /*--- Module stuff -----------------------------------------------------*/ |
| 2219 | |
| 2220 | MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>"); |
| 2221 | MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver"); |
| 2222 | MODULE_LICENSE("GPL"); |
| 2223 | MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */ |
| 2224 | |
| 2225 | module_init(parport_ip32_init); |
| 2226 | module_exit(parport_ip32_exit); |
| 2227 | |
| 2228 | module_param(verbose_probing, bool, S_IRUGO); |
| 2229 | MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization"); |
| 2230 | |
| 2231 | module_param(features, uint, S_IRUGO); |
| 2232 | MODULE_PARM_DESC(features, |
| 2233 | "Bit mask of features to enable" |
| 2234 | ", bit 0: IRQ support" |
| 2235 | ", bit 1: DMA support" |
| 2236 | ", bit 2: hardware SPP mode" |
| 2237 | ", bit 3: hardware EPP mode" |
| 2238 | ", bit 4: hardware ECP mode"); |
| 2239 | |
| 2240 | /*--- Inform (X)Emacs about preferred coding style ---------------------*/ |
| 2241 | /* |
| 2242 | * Local Variables: |
| 2243 | * mode: c |
| 2244 | * c-file-style: "linux" |
| 2245 | * indent-tabs-mode: t |
| 2246 | * tab-width: 8 |
| 2247 | * fill-column: 78 |
| 2248 | * ispell-local-dictionary: "american" |
| 2249 | * End: |
| 2250 | */ |