Alexander Duyck | d4e0fe0 | 2009-04-07 14:37:34 +0000 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel(R) 82576 Virtual Function Linux driver |
| 4 | Copyright(c) 2009 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 25 | |
| 26 | *******************************************************************************/ |
| 27 | |
| 28 | |
| 29 | #include "vf.h" |
| 30 | |
| 31 | static s32 e1000_check_for_link_vf(struct e1000_hw *hw); |
| 32 | static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, |
| 33 | u16 *duplex); |
| 34 | static s32 e1000_init_hw_vf(struct e1000_hw *hw); |
| 35 | static s32 e1000_reset_hw_vf(struct e1000_hw *hw); |
| 36 | |
| 37 | static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, |
| 38 | u32, u32, u32); |
| 39 | static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); |
| 40 | static s32 e1000_read_mac_addr_vf(struct e1000_hw *); |
| 41 | static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool); |
| 42 | |
| 43 | /** |
| 44 | * e1000_init_mac_params_vf - Inits MAC params |
| 45 | * @hw: pointer to the HW structure |
| 46 | **/ |
Alexander Duyck | 2d16577 | 2009-04-09 22:49:20 +0000 | [diff] [blame] | 47 | static s32 e1000_init_mac_params_vf(struct e1000_hw *hw) |
Alexander Duyck | d4e0fe0 | 2009-04-07 14:37:34 +0000 | [diff] [blame] | 48 | { |
| 49 | struct e1000_mac_info *mac = &hw->mac; |
| 50 | |
| 51 | /* VF's have no MTA Registers - PF feature only */ |
| 52 | mac->mta_reg_count = 128; |
| 53 | /* VF's have no access to RAR entries */ |
| 54 | mac->rar_entry_count = 1; |
| 55 | |
| 56 | /* Function pointers */ |
| 57 | /* reset */ |
| 58 | mac->ops.reset_hw = e1000_reset_hw_vf; |
| 59 | /* hw initialization */ |
| 60 | mac->ops.init_hw = e1000_init_hw_vf; |
| 61 | /* check for link */ |
| 62 | mac->ops.check_for_link = e1000_check_for_link_vf; |
| 63 | /* link info */ |
| 64 | mac->ops.get_link_up_info = e1000_get_link_up_info_vf; |
| 65 | /* multicast address update */ |
| 66 | mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; |
| 67 | /* set mac address */ |
| 68 | mac->ops.rar_set = e1000_rar_set_vf; |
| 69 | /* read mac address */ |
| 70 | mac->ops.read_mac_addr = e1000_read_mac_addr_vf; |
| 71 | /* set vlan filter table array */ |
| 72 | mac->ops.set_vfta = e1000_set_vfta_vf; |
| 73 | |
| 74 | return E1000_SUCCESS; |
| 75 | } |
| 76 | |
| 77 | /** |
| 78 | * e1000_init_function_pointers_vf - Inits function pointers |
| 79 | * @hw: pointer to the HW structure |
| 80 | **/ |
| 81 | void e1000_init_function_pointers_vf(struct e1000_hw *hw) |
| 82 | { |
| 83 | hw->mac.ops.init_params = e1000_init_mac_params_vf; |
| 84 | hw->mbx.ops.init_params = e1000_init_mbx_params_vf; |
| 85 | } |
| 86 | |
| 87 | /** |
| 88 | * e1000_get_link_up_info_vf - Gets link info. |
| 89 | * @hw: pointer to the HW structure |
| 90 | * @speed: pointer to 16 bit value to store link speed. |
| 91 | * @duplex: pointer to 16 bit value to store duplex. |
| 92 | * |
| 93 | * Since we cannot read the PHY and get accurate link info, we must rely upon |
| 94 | * the status register's data which is often stale and inaccurate. |
| 95 | **/ |
| 96 | static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, |
| 97 | u16 *duplex) |
| 98 | { |
| 99 | s32 status; |
| 100 | |
| 101 | status = er32(STATUS); |
| 102 | if (status & E1000_STATUS_SPEED_1000) |
| 103 | *speed = SPEED_1000; |
| 104 | else if (status & E1000_STATUS_SPEED_100) |
| 105 | *speed = SPEED_100; |
| 106 | else |
| 107 | *speed = SPEED_10; |
| 108 | |
| 109 | if (status & E1000_STATUS_FD) |
| 110 | *duplex = FULL_DUPLEX; |
| 111 | else |
| 112 | *duplex = HALF_DUPLEX; |
| 113 | |
| 114 | return E1000_SUCCESS; |
| 115 | } |
| 116 | |
| 117 | /** |
| 118 | * e1000_reset_hw_vf - Resets the HW |
| 119 | * @hw: pointer to the HW structure |
| 120 | * |
| 121 | * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. |
| 122 | * This is all the reset we can perform on a VF. |
| 123 | **/ |
| 124 | static s32 e1000_reset_hw_vf(struct e1000_hw *hw) |
| 125 | { |
| 126 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 127 | u32 timeout = E1000_VF_INIT_TIMEOUT; |
| 128 | u32 ret_val = -E1000_ERR_MAC_INIT; |
| 129 | u32 msgbuf[3]; |
| 130 | u8 *addr = (u8 *)(&msgbuf[1]); |
| 131 | u32 ctrl; |
| 132 | |
| 133 | /* assert vf queue/interrupt reset */ |
| 134 | ctrl = er32(CTRL); |
| 135 | ew32(CTRL, ctrl | E1000_CTRL_RST); |
| 136 | |
| 137 | /* we cannot initialize while the RSTI / RSTD bits are asserted */ |
| 138 | while (!mbx->ops.check_for_rst(hw) && timeout) { |
| 139 | timeout--; |
| 140 | udelay(5); |
| 141 | } |
| 142 | |
| 143 | if (timeout) { |
| 144 | /* mailbox timeout can now become active */ |
| 145 | mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; |
| 146 | |
| 147 | /* notify pf of vf reset completion */ |
| 148 | msgbuf[0] = E1000_VF_RESET; |
| 149 | mbx->ops.write_posted(hw, msgbuf, 1); |
| 150 | |
| 151 | msleep(10); |
| 152 | |
| 153 | /* set our "perm_addr" based on info provided by PF */ |
| 154 | ret_val = mbx->ops.read_posted(hw, msgbuf, 3); |
| 155 | if (!ret_val) { |
| 156 | if (msgbuf[0] == (E1000_VF_RESET | E1000_VT_MSGTYPE_ACK)) |
| 157 | memcpy(hw->mac.perm_addr, addr, 6); |
| 158 | else |
| 159 | ret_val = -E1000_ERR_MAC_INIT; |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | return ret_val; |
| 164 | } |
| 165 | |
| 166 | /** |
| 167 | * e1000_init_hw_vf - Inits the HW |
| 168 | * @hw: pointer to the HW structure |
| 169 | * |
| 170 | * Not much to do here except clear the PF Reset indication if there is one. |
| 171 | **/ |
| 172 | static s32 e1000_init_hw_vf(struct e1000_hw *hw) |
| 173 | { |
| 174 | /* attempt to set and restore our mac address */ |
| 175 | e1000_rar_set_vf(hw, hw->mac.addr, 0); |
| 176 | |
| 177 | return E1000_SUCCESS; |
| 178 | } |
| 179 | |
| 180 | /** |
| 181 | * e1000_hash_mc_addr_vf - Generate a multicast hash value |
| 182 | * @hw: pointer to the HW structure |
| 183 | * @mc_addr: pointer to a multicast address |
| 184 | * |
| 185 | * Generates a multicast address hash value which is used to determine |
| 186 | * the multicast filter table array address and new table value. See |
| 187 | * e1000_mta_set_generic() |
| 188 | **/ |
| 189 | static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) |
| 190 | { |
| 191 | u32 hash_value, hash_mask; |
| 192 | u8 bit_shift = 0; |
| 193 | |
| 194 | /* Register count multiplied by bits per register */ |
| 195 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; |
| 196 | |
| 197 | /* |
| 198 | * The bit_shift is the number of left-shifts |
| 199 | * where 0xFF would still fall within the hash mask. |
| 200 | */ |
| 201 | while (hash_mask >> bit_shift != 0xFF) |
| 202 | bit_shift++; |
| 203 | |
| 204 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | |
| 205 | (((u16) mc_addr[5]) << bit_shift))); |
| 206 | |
| 207 | return hash_value; |
| 208 | } |
| 209 | |
| 210 | /** |
| 211 | * e1000_update_mc_addr_list_vf - Update Multicast addresses |
| 212 | * @hw: pointer to the HW structure |
| 213 | * @mc_addr_list: array of multicast addresses to program |
| 214 | * @mc_addr_count: number of multicast addresses to program |
| 215 | * @rar_used_count: the first RAR register free to program |
| 216 | * @rar_count: total number of supported Receive Address Registers |
| 217 | * |
| 218 | * Updates the Receive Address Registers and Multicast Table Array. |
| 219 | * The caller must have a packed mc_addr_list of multicast addresses. |
| 220 | * The parameter rar_count will usually be hw->mac.rar_entry_count |
| 221 | * unless there are workarounds that change this. |
| 222 | **/ |
| 223 | void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, |
| 224 | u8 *mc_addr_list, u32 mc_addr_count, |
| 225 | u32 rar_used_count, u32 rar_count) |
| 226 | { |
| 227 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 228 | u32 msgbuf[E1000_VFMAILBOX_SIZE]; |
| 229 | u16 *hash_list = (u16 *)&msgbuf[1]; |
| 230 | u32 hash_value; |
| 231 | u32 cnt, i; |
| 232 | |
| 233 | /* Each entry in the list uses 1 16 bit word. We have 30 |
| 234 | * 16 bit words available in our HW msg buffer (minus 1 for the |
| 235 | * msg type). That's 30 hash values if we pack 'em right. If |
| 236 | * there are more than 30 MC addresses to add then punt the |
| 237 | * extras for now and then add code to handle more than 30 later. |
| 238 | * It would be unusual for a server to request that many multi-cast |
| 239 | * addresses except for in large enterprise network environments. |
| 240 | */ |
| 241 | |
| 242 | cnt = (mc_addr_count > 30) ? 30 : mc_addr_count; |
| 243 | msgbuf[0] = E1000_VF_SET_MULTICAST; |
| 244 | msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT; |
| 245 | |
| 246 | for (i = 0; i < cnt; i++) { |
| 247 | hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); |
| 248 | hash_list[i] = hash_value & 0x0FFFF; |
| 249 | mc_addr_list += ETH_ADDR_LEN; |
| 250 | } |
| 251 | |
| 252 | mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE); |
| 253 | } |
| 254 | |
| 255 | /** |
| 256 | * e1000_set_vfta_vf - Set/Unset vlan filter table address |
| 257 | * @hw: pointer to the HW structure |
| 258 | * @vid: determines the vfta register and bit to set/unset |
| 259 | * @set: if true then set bit, else clear bit |
| 260 | **/ |
| 261 | static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set) |
| 262 | { |
| 263 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 264 | u32 msgbuf[2]; |
| 265 | s32 err; |
| 266 | |
| 267 | msgbuf[0] = E1000_VF_SET_VLAN; |
| 268 | msgbuf[1] = vid; |
| 269 | /* Setting the 8 bit field MSG INFO to true indicates "add" */ |
| 270 | if (set) |
| 271 | msgbuf[0] |= 1 << E1000_VT_MSGINFO_SHIFT; |
| 272 | |
| 273 | mbx->ops.write_posted(hw, msgbuf, 2); |
| 274 | |
| 275 | err = mbx->ops.read_posted(hw, msgbuf, 2); |
| 276 | |
Alexander Duyck | e0cff5e | 2009-08-04 11:46:41 -0700 | [diff] [blame] | 277 | msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; |
| 278 | |
Alexander Duyck | d4e0fe0 | 2009-04-07 14:37:34 +0000 | [diff] [blame] | 279 | /* if nacked the vlan was rejected */ |
| 280 | if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))) |
| 281 | err = -E1000_ERR_MAC_INIT; |
| 282 | |
| 283 | return err; |
| 284 | } |
| 285 | |
| 286 | /** e1000_rlpml_set_vf - Set the maximum receive packet length |
| 287 | * @hw: pointer to the HW structure |
| 288 | * @max_size: value to assign to max frame size |
| 289 | **/ |
| 290 | void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) |
| 291 | { |
| 292 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 293 | u32 msgbuf[2]; |
| 294 | |
| 295 | msgbuf[0] = E1000_VF_SET_LPE; |
| 296 | msgbuf[1] = max_size; |
| 297 | |
| 298 | mbx->ops.write_posted(hw, msgbuf, 2); |
| 299 | } |
| 300 | |
| 301 | /** |
| 302 | * e1000_rar_set_vf - set device MAC address |
| 303 | * @hw: pointer to the HW structure |
| 304 | * @addr: pointer to the receive address |
| 305 | * @index receive address array register |
| 306 | **/ |
| 307 | static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index) |
| 308 | { |
| 309 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 310 | u32 msgbuf[3]; |
| 311 | u8 *msg_addr = (u8 *)(&msgbuf[1]); |
| 312 | s32 ret_val; |
| 313 | |
| 314 | memset(msgbuf, 0, 12); |
| 315 | msgbuf[0] = E1000_VF_SET_MAC_ADDR; |
| 316 | memcpy(msg_addr, addr, 6); |
| 317 | ret_val = mbx->ops.write_posted(hw, msgbuf, 3); |
| 318 | |
| 319 | if (!ret_val) |
| 320 | ret_val = mbx->ops.read_posted(hw, msgbuf, 3); |
| 321 | |
Alexander Duyck | e0cff5e | 2009-08-04 11:46:41 -0700 | [diff] [blame] | 322 | msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; |
| 323 | |
Alexander Duyck | d4e0fe0 | 2009-04-07 14:37:34 +0000 | [diff] [blame] | 324 | /* if nacked the address was rejected, use "perm_addr" */ |
| 325 | if (!ret_val && |
| 326 | (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) |
| 327 | e1000_read_mac_addr_vf(hw); |
| 328 | } |
| 329 | |
| 330 | /** |
| 331 | * e1000_read_mac_addr_vf - Read device MAC address |
| 332 | * @hw: pointer to the HW structure |
| 333 | **/ |
| 334 | static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) |
| 335 | { |
| 336 | int i; |
| 337 | |
| 338 | for (i = 0; i < ETH_ADDR_LEN; i++) |
| 339 | hw->mac.addr[i] = hw->mac.perm_addr[i]; |
| 340 | |
| 341 | return E1000_SUCCESS; |
| 342 | } |
| 343 | |
| 344 | /** |
| 345 | * e1000_check_for_link_vf - Check for link for a virtual interface |
| 346 | * @hw: pointer to the HW structure |
| 347 | * |
| 348 | * Checks to see if the underlying PF is still talking to the VF and |
| 349 | * if it is then it reports the link state to the hardware, otherwise |
| 350 | * it reports link down and returns an error. |
| 351 | **/ |
| 352 | static s32 e1000_check_for_link_vf(struct e1000_hw *hw) |
| 353 | { |
| 354 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 355 | struct e1000_mac_info *mac = &hw->mac; |
| 356 | s32 ret_val = E1000_SUCCESS; |
| 357 | u32 in_msg = 0; |
| 358 | |
| 359 | /* |
| 360 | * We only want to run this if there has been a rst asserted. |
| 361 | * in this case that could mean a link change, device reset, |
| 362 | * or a virtual function reset |
| 363 | */ |
| 364 | |
| 365 | /* If we were hit with a reset drop the link */ |
| 366 | if (!mbx->ops.check_for_rst(hw)) |
| 367 | mac->get_link_status = true; |
| 368 | |
| 369 | if (!mac->get_link_status) |
| 370 | goto out; |
| 371 | |
| 372 | /* if link status is down no point in checking to see if pf is up */ |
| 373 | if (!(er32(STATUS) & E1000_STATUS_LU)) |
| 374 | goto out; |
| 375 | |
| 376 | /* if the read failed it could just be a mailbox collision, best wait |
| 377 | * until we are called again and don't report an error */ |
| 378 | if (mbx->ops.read(hw, &in_msg, 1)) |
| 379 | goto out; |
| 380 | |
| 381 | /* if incoming message isn't clear to send we are waiting on response */ |
| 382 | if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { |
| 383 | /* message is not CTS and is NACK we must have lost CTS status */ |
| 384 | if (in_msg & E1000_VT_MSGTYPE_NACK) |
| 385 | ret_val = -E1000_ERR_MAC_INIT; |
| 386 | goto out; |
| 387 | } |
| 388 | |
| 389 | /* the pf is talking, if we timed out in the past we reinit */ |
| 390 | if (!mbx->timeout) { |
| 391 | ret_val = -E1000_ERR_MAC_INIT; |
| 392 | goto out; |
| 393 | } |
| 394 | |
| 395 | /* if we passed all the tests above then the link is up and we no |
| 396 | * longer need to check for link */ |
| 397 | mac->get_link_status = false; |
| 398 | |
| 399 | out: |
| 400 | return ret_val; |
| 401 | } |
| 402 | |