blob: 2ab3bfbb8a63380b2505756fdfe301374123b569 [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
46
47#include "e1000.h"
48
49#define DRV_VERSION "0.2.0"
50char e1000e_driver_name[] = "e1000e";
51const char e1000e_driver_version[] = DRV_VERSION;
52
53static const struct e1000_info *e1000_info_tbl[] = {
54 [board_82571] = &e1000_82571_info,
55 [board_82572] = &e1000_82572_info,
56 [board_82573] = &e1000_82573_info,
57 [board_80003es2lan] = &e1000_es2_info,
58 [board_ich8lan] = &e1000_ich8_info,
59 [board_ich9lan] = &e1000_ich9_info,
60};
61
62#ifdef DEBUG
63/**
64 * e1000_get_hw_dev_name - return device name string
65 * used by hardware layer to print debugging information
66 **/
67char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
68{
Auke Kok589c0852007-10-04 11:38:43 -070069 return hw->adapter->netdev->name;
Auke Kokbc7f75f2007-09-17 12:30:59 -070070}
71#endif
72
73/**
74 * e1000_desc_unused - calculate if we have unused descriptors
75 **/
76static int e1000_desc_unused(struct e1000_ring *ring)
77{
78 if (ring->next_to_clean > ring->next_to_use)
79 return ring->next_to_clean - ring->next_to_use - 1;
80
81 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
82}
83
84/**
85 * e1000_receive_skb - helper function to handle rx indications
86 * @adapter: board private structure
87 * @status: descriptor status field as written by hardware
88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89 * @skb: pointer to sk_buff to be indicated to stack
90 **/
91static void e1000_receive_skb(struct e1000_adapter *adapter,
92 struct net_device *netdev,
93 struct sk_buff *skb,
94 u8 status, u16 vlan)
95{
96 skb->protocol = eth_type_trans(skb, netdev);
97
98 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100 le16_to_cpu(vlan) &
101 E1000_RXD_SPC_VLAN_MASK);
102 else
103 netif_receive_skb(skb);
104
105 netdev->last_rx = jiffies;
106}
107
108/**
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
114 **/
115static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
117{
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
121
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
130 }
131
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
135
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
141 /* IP fragment with UDP payload */
142 /* Hardware complements the payload checksum, so we undo it
143 * and then put the value in host order for further stack use.
144 */
145 csum = ntohl(csum ^ 0xFFFF);
146 skb->csum = csum;
147 skb->ip_summed = CHECKSUM_COMPLETE;
148 }
149 adapter->hw_csum_good++;
150}
151
152/**
153 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154 * @adapter: address of board private structure
155 **/
156static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
157 int cleaned_count)
158{
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 struct e1000_ring *rx_ring = adapter->rx_ring;
162 struct e1000_rx_desc *rx_desc;
163 struct e1000_buffer *buffer_info;
164 struct sk_buff *skb;
165 unsigned int i;
166 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
167
168 i = rx_ring->next_to_use;
169 buffer_info = &rx_ring->buffer_info[i];
170
171 while (cleaned_count--) {
172 skb = buffer_info->skb;
173 if (skb) {
174 skb_trim(skb, 0);
175 goto map_skb;
176 }
177
178 skb = netdev_alloc_skb(netdev, bufsz);
179 if (!skb) {
180 /* Better luck next round */
181 adapter->alloc_rx_buff_failed++;
182 break;
183 }
184
185 /* Make buffer alignment 2 beyond a 16 byte boundary
186 * this will result in a 16 byte aligned IP header after
187 * the 14 byte MAC header is removed
188 */
189 skb_reserve(skb, NET_IP_ALIGN);
190
191 buffer_info->skb = skb;
192map_skb:
193 buffer_info->dma = pci_map_single(pdev, skb->data,
194 adapter->rx_buffer_len,
195 PCI_DMA_FROMDEVICE);
196 if (pci_dma_mapping_error(buffer_info->dma)) {
197 dev_err(&pdev->dev, "RX DMA map failed\n");
198 adapter->rx_dma_failed++;
199 break;
200 }
201
202 rx_desc = E1000_RX_DESC(*rx_ring, i);
203 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
204
205 i++;
206 if (i == rx_ring->count)
207 i = 0;
208 buffer_info = &rx_ring->buffer_info[i];
209 }
210
211 if (rx_ring->next_to_use != i) {
212 rx_ring->next_to_use = i;
213 if (i-- == 0)
214 i = (rx_ring->count - 1);
215
216 /* Force memory writes to complete before letting h/w
217 * know there are new descriptors to fetch. (Only
218 * applicable for weak-ordered memory model archs,
219 * such as IA-64). */
220 wmb();
221 writel(i, adapter->hw.hw_addr + rx_ring->tail);
222 }
223}
224
225/**
226 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227 * @adapter: address of board private structure
228 **/
229static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
230 int cleaned_count)
231{
232 struct net_device *netdev = adapter->netdev;
233 struct pci_dev *pdev = adapter->pdev;
234 union e1000_rx_desc_packet_split *rx_desc;
235 struct e1000_ring *rx_ring = adapter->rx_ring;
236 struct e1000_buffer *buffer_info;
237 struct e1000_ps_page *ps_page;
238 struct sk_buff *skb;
239 unsigned int i, j;
240
241 i = rx_ring->next_to_use;
242 buffer_info = &rx_ring->buffer_info[i];
243
244 while (cleaned_count--) {
245 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
246
247 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
Auke Kok47f44e42007-10-25 13:57:44 -0700248 ps_page = &buffer_info->ps_pages[j];
249 if (j >= adapter->rx_ps_pages) {
250 /* all unused desc entries get hw null ptr */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700251 rx_desc->read.buffer_addr[j+1] = ~0;
Auke Kok47f44e42007-10-25 13:57:44 -0700252 continue;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700253 }
Auke Kok47f44e42007-10-25 13:57:44 -0700254 if (!ps_page->page) {
255 ps_page->page = alloc_page(GFP_ATOMIC);
256 if (!ps_page->page) {
257 adapter->alloc_rx_buff_failed++;
258 goto no_buffers;
259 }
260 ps_page->dma = pci_map_page(pdev,
261 ps_page->page,
262 0, PAGE_SIZE,
263 PCI_DMA_FROMDEVICE);
264 if (pci_dma_mapping_error(ps_page->dma)) {
265 dev_err(&adapter->pdev->dev,
266 "RX DMA page map failed\n");
267 adapter->rx_dma_failed++;
268 goto no_buffers;
269 }
270 }
271 /*
272 * Refresh the desc even if buffer_addrs
273 * didn't change because each write-back
274 * erases this info.
275 */
276 rx_desc->read.buffer_addr[j+1] =
277 cpu_to_le64(ps_page->dma);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700278 }
279
280 skb = netdev_alloc_skb(netdev,
281 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
282
283 if (!skb) {
284 adapter->alloc_rx_buff_failed++;
285 break;
286 }
287
288 /* Make buffer alignment 2 beyond a 16 byte boundary
289 * this will result in a 16 byte aligned IP header after
290 * the 14 byte MAC header is removed
291 */
292 skb_reserve(skb, NET_IP_ALIGN);
293
294 buffer_info->skb = skb;
295 buffer_info->dma = pci_map_single(pdev, skb->data,
296 adapter->rx_ps_bsize0,
297 PCI_DMA_FROMDEVICE);
298 if (pci_dma_mapping_error(buffer_info->dma)) {
299 dev_err(&pdev->dev, "RX DMA map failed\n");
300 adapter->rx_dma_failed++;
301 /* cleanup skb */
302 dev_kfree_skb_any(skb);
303 buffer_info->skb = NULL;
304 break;
305 }
306
307 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
308
309 i++;
310 if (i == rx_ring->count)
311 i = 0;
312 buffer_info = &rx_ring->buffer_info[i];
313 }
314
315no_buffers:
316 if (rx_ring->next_to_use != i) {
317 rx_ring->next_to_use = i;
318
319 if (!(i--))
320 i = (rx_ring->count - 1);
321
322 /* Force memory writes to complete before letting h/w
323 * know there are new descriptors to fetch. (Only
324 * applicable for weak-ordered memory model archs,
325 * such as IA-64). */
326 wmb();
327 /* Hardware increments by 16 bytes, but packet split
328 * descriptors are 32 bytes...so we increment tail
329 * twice as much.
330 */
331 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
332 }
333}
334
335/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700336 * e1000_clean_rx_irq - Send received data up the network stack; legacy
337 * @adapter: board private structure
338 *
339 * the return value indicates whether actual cleaning was done, there
340 * is no guarantee that everything was cleaned
341 **/
342static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
343 int *work_done, int work_to_do)
344{
345 struct net_device *netdev = adapter->netdev;
346 struct pci_dev *pdev = adapter->pdev;
347 struct e1000_ring *rx_ring = adapter->rx_ring;
348 struct e1000_rx_desc *rx_desc, *next_rxd;
349 struct e1000_buffer *buffer_info, *next_buffer;
350 u32 length;
351 unsigned int i;
352 int cleaned_count = 0;
353 bool cleaned = 0;
354 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
355
356 i = rx_ring->next_to_clean;
357 rx_desc = E1000_RX_DESC(*rx_ring, i);
358 buffer_info = &rx_ring->buffer_info[i];
359
360 while (rx_desc->status & E1000_RXD_STAT_DD) {
361 struct sk_buff *skb;
362 u8 status;
363
364 if (*work_done >= work_to_do)
365 break;
366 (*work_done)++;
367
368 status = rx_desc->status;
369 skb = buffer_info->skb;
370 buffer_info->skb = NULL;
371
372 prefetch(skb->data - NET_IP_ALIGN);
373
374 i++;
375 if (i == rx_ring->count)
376 i = 0;
377 next_rxd = E1000_RX_DESC(*rx_ring, i);
378 prefetch(next_rxd);
379
380 next_buffer = &rx_ring->buffer_info[i];
381
382 cleaned = 1;
383 cleaned_count++;
384 pci_unmap_single(pdev,
385 buffer_info->dma,
386 adapter->rx_buffer_len,
387 PCI_DMA_FROMDEVICE);
388 buffer_info->dma = 0;
389
390 length = le16_to_cpu(rx_desc->length);
391
392 /* !EOP means multiple descriptors were used to store a single
393 * packet, also make sure the frame isn't just CRC only */
394 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
395 /* All receives must fit into a single buffer */
396 ndev_dbg(netdev, "%s: Receive packet consumed "
397 "multiple buffers\n", netdev->name);
398 /* recycle */
399 buffer_info->skb = skb;
400 goto next_desc;
401 }
402
403 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
404 /* recycle */
405 buffer_info->skb = skb;
406 goto next_desc;
407 }
408
Auke Kokbc7f75f2007-09-17 12:30:59 -0700409 total_rx_bytes += length;
410 total_rx_packets++;
411
412 /* code added for copybreak, this should improve
413 * performance for small packets with large amounts
414 * of reassembly being done in the stack */
415 if (length < copybreak) {
416 struct sk_buff *new_skb =
417 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
418 if (new_skb) {
419 skb_reserve(new_skb, NET_IP_ALIGN);
420 memcpy(new_skb->data - NET_IP_ALIGN,
421 skb->data - NET_IP_ALIGN,
422 length + NET_IP_ALIGN);
423 /* save the skb in buffer_info as good */
424 buffer_info->skb = skb;
425 skb = new_skb;
426 }
427 /* else just continue with the old one */
428 }
429 /* end copybreak code */
430 skb_put(skb, length);
431
432 /* Receive Checksum Offload */
433 e1000_rx_checksum(adapter,
434 (u32)(status) |
435 ((u32)(rx_desc->errors) << 24),
436 le16_to_cpu(rx_desc->csum), skb);
437
438 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
439
440next_desc:
441 rx_desc->status = 0;
442
443 /* return some buffers to hardware, one at a time is too slow */
444 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
445 adapter->alloc_rx_buf(adapter, cleaned_count);
446 cleaned_count = 0;
447 }
448
449 /* use prefetched values */
450 rx_desc = next_rxd;
451 buffer_info = next_buffer;
452 }
453 rx_ring->next_to_clean = i;
454
455 cleaned_count = e1000_desc_unused(rx_ring);
456 if (cleaned_count)
457 adapter->alloc_rx_buf(adapter, cleaned_count);
458
459 adapter->total_rx_packets += total_rx_packets;
460 adapter->total_rx_bytes += total_rx_bytes;
461 return cleaned;
462}
463
Auke Kokbc7f75f2007-09-17 12:30:59 -0700464static void e1000_put_txbuf(struct e1000_adapter *adapter,
465 struct e1000_buffer *buffer_info)
466{
467 if (buffer_info->dma) {
468 pci_unmap_page(adapter->pdev, buffer_info->dma,
469 buffer_info->length, PCI_DMA_TODEVICE);
470 buffer_info->dma = 0;
471 }
472 if (buffer_info->skb) {
473 dev_kfree_skb_any(buffer_info->skb);
474 buffer_info->skb = NULL;
475 }
476}
477
478static void e1000_print_tx_hang(struct e1000_adapter *adapter)
479{
480 struct e1000_ring *tx_ring = adapter->tx_ring;
481 unsigned int i = tx_ring->next_to_clean;
482 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
483 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
484 struct net_device *netdev = adapter->netdev;
485
486 /* detected Tx unit hang */
487 ndev_err(netdev,
488 "Detected Tx Unit Hang:\n"
489 " TDH <%x>\n"
490 " TDT <%x>\n"
491 " next_to_use <%x>\n"
492 " next_to_clean <%x>\n"
493 "buffer_info[next_to_clean]:\n"
494 " time_stamp <%lx>\n"
495 " next_to_watch <%x>\n"
496 " jiffies <%lx>\n"
497 " next_to_watch.status <%x>\n",
498 readl(adapter->hw.hw_addr + tx_ring->head),
499 readl(adapter->hw.hw_addr + tx_ring->tail),
500 tx_ring->next_to_use,
501 tx_ring->next_to_clean,
502 tx_ring->buffer_info[eop].time_stamp,
503 eop,
504 jiffies,
505 eop_desc->upper.fields.status);
506}
507
508/**
509 * e1000_clean_tx_irq - Reclaim resources after transmit completes
510 * @adapter: board private structure
511 *
512 * the return value indicates whether actual cleaning was done, there
513 * is no guarantee that everything was cleaned
514 **/
515static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
516{
517 struct net_device *netdev = adapter->netdev;
518 struct e1000_hw *hw = &adapter->hw;
519 struct e1000_ring *tx_ring = adapter->tx_ring;
520 struct e1000_tx_desc *tx_desc, *eop_desc;
521 struct e1000_buffer *buffer_info;
522 unsigned int i, eop;
523 unsigned int count = 0;
524 bool cleaned = 0;
525 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
526
527 i = tx_ring->next_to_clean;
528 eop = tx_ring->buffer_info[i].next_to_watch;
529 eop_desc = E1000_TX_DESC(*tx_ring, eop);
530
531 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
532 for (cleaned = 0; !cleaned; ) {
533 tx_desc = E1000_TX_DESC(*tx_ring, i);
534 buffer_info = &tx_ring->buffer_info[i];
535 cleaned = (i == eop);
536
537 if (cleaned) {
538 struct sk_buff *skb = buffer_info->skb;
539 unsigned int segs, bytecount;
540 segs = skb_shinfo(skb)->gso_segs ?: 1;
541 /* multiply data chunks by size of headers */
542 bytecount = ((segs - 1) * skb_headlen(skb)) +
543 skb->len;
544 total_tx_packets += segs;
545 total_tx_bytes += bytecount;
546 }
547
548 e1000_put_txbuf(adapter, buffer_info);
549 tx_desc->upper.data = 0;
550
551 i++;
552 if (i == tx_ring->count)
553 i = 0;
554 }
555
556 eop = tx_ring->buffer_info[i].next_to_watch;
557 eop_desc = E1000_TX_DESC(*tx_ring, eop);
558#define E1000_TX_WEIGHT 64
559 /* weight of a sort for tx, to avoid endless transmit cleanup */
560 if (count++ == E1000_TX_WEIGHT)
561 break;
562 }
563
564 tx_ring->next_to_clean = i;
565
566#define TX_WAKE_THRESHOLD 32
567 if (cleaned && netif_carrier_ok(netdev) &&
568 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
569 /* Make sure that anybody stopping the queue after this
570 * sees the new next_to_clean.
571 */
572 smp_mb();
573
574 if (netif_queue_stopped(netdev) &&
575 !(test_bit(__E1000_DOWN, &adapter->state))) {
576 netif_wake_queue(netdev);
577 ++adapter->restart_queue;
578 }
579 }
580
581 if (adapter->detect_tx_hung) {
582 /* Detect a transmit hang in hardware, this serializes the
583 * check with the clearing of time_stamp and movement of i */
584 adapter->detect_tx_hung = 0;
585 if (tx_ring->buffer_info[eop].dma &&
586 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
587 + (adapter->tx_timeout_factor * HZ))
588 && !(er32(STATUS) &
589 E1000_STATUS_TXOFF)) {
590 e1000_print_tx_hang(adapter);
591 netif_stop_queue(netdev);
592 }
593 }
594 adapter->total_tx_bytes += total_tx_bytes;
595 adapter->total_tx_packets += total_tx_packets;
596 return cleaned;
597}
598
599/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700600 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
601 * @adapter: board private structure
602 *
603 * the return value indicates whether actual cleaning was done, there
604 * is no guarantee that everything was cleaned
605 **/
606static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
607 int *work_done, int work_to_do)
608{
609 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
610 struct net_device *netdev = adapter->netdev;
611 struct pci_dev *pdev = adapter->pdev;
612 struct e1000_ring *rx_ring = adapter->rx_ring;
613 struct e1000_buffer *buffer_info, *next_buffer;
614 struct e1000_ps_page *ps_page;
615 struct sk_buff *skb;
616 unsigned int i, j;
617 u32 length, staterr;
618 int cleaned_count = 0;
619 bool cleaned = 0;
620 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
621
622 i = rx_ring->next_to_clean;
623 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
624 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
625 buffer_info = &rx_ring->buffer_info[i];
626
627 while (staterr & E1000_RXD_STAT_DD) {
628 if (*work_done >= work_to_do)
629 break;
630 (*work_done)++;
631 skb = buffer_info->skb;
632
633 /* in the packet split case this is header only */
634 prefetch(skb->data - NET_IP_ALIGN);
635
636 i++;
637 if (i == rx_ring->count)
638 i = 0;
639 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
640 prefetch(next_rxd);
641
642 next_buffer = &rx_ring->buffer_info[i];
643
644 cleaned = 1;
645 cleaned_count++;
646 pci_unmap_single(pdev, buffer_info->dma,
647 adapter->rx_ps_bsize0,
648 PCI_DMA_FROMDEVICE);
649 buffer_info->dma = 0;
650
651 if (!(staterr & E1000_RXD_STAT_EOP)) {
652 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
653 "up the full packet\n", netdev->name);
654 dev_kfree_skb_irq(skb);
655 goto next_desc;
656 }
657
658 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
659 dev_kfree_skb_irq(skb);
660 goto next_desc;
661 }
662
663 length = le16_to_cpu(rx_desc->wb.middle.length0);
664
665 if (!length) {
666 ndev_dbg(netdev, "%s: Last part of the packet spanning"
667 " multiple descriptors\n", netdev->name);
668 dev_kfree_skb_irq(skb);
669 goto next_desc;
670 }
671
672 /* Good Receive */
673 skb_put(skb, length);
674
675 {
676 /* this looks ugly, but it seems compiler issues make it
677 more efficient than reusing j */
678 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
679
680 /* page alloc/put takes too long and effects small packet
681 * throughput, so unsplit small packets and save the alloc/put*/
682 if (l1 && (l1 <= copybreak) &&
683 ((length + l1) <= adapter->rx_ps_bsize0)) {
684 u8 *vaddr;
685
Auke Kok47f44e42007-10-25 13:57:44 -0700686 ps_page = &buffer_info->ps_pages[0];
Auke Kokbc7f75f2007-09-17 12:30:59 -0700687
688 /* there is no documentation about how to call
689 * kmap_atomic, so we can't hold the mapping
690 * very long */
691 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
692 PAGE_SIZE, PCI_DMA_FROMDEVICE);
693 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
694 memcpy(skb_tail_pointer(skb), vaddr, l1);
695 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
696 pci_dma_sync_single_for_device(pdev, ps_page->dma,
697 PAGE_SIZE, PCI_DMA_FROMDEVICE);
Auke Kok140a7482007-10-25 13:57:58 -0700698
Auke Kokbc7f75f2007-09-17 12:30:59 -0700699 skb_put(skb, l1);
700 goto copydone;
701 } /* if */
702 }
703
704 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
705 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
706 if (!length)
707 break;
708
Auke Kok47f44e42007-10-25 13:57:44 -0700709 ps_page = &buffer_info->ps_pages[j];
Auke Kokbc7f75f2007-09-17 12:30:59 -0700710 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
711 PCI_DMA_FROMDEVICE);
712 ps_page->dma = 0;
713 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
714 ps_page->page = NULL;
715 skb->len += length;
716 skb->data_len += length;
717 skb->truesize += length;
718 }
719
Auke Kokbc7f75f2007-09-17 12:30:59 -0700720copydone:
721 total_rx_bytes += skb->len;
722 total_rx_packets++;
723
724 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
725 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
726
727 if (rx_desc->wb.upper.header_status &
728 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
729 adapter->rx_hdr_split++;
730
731 e1000_receive_skb(adapter, netdev, skb,
732 staterr, rx_desc->wb.middle.vlan);
733
734next_desc:
735 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
736 buffer_info->skb = NULL;
737
738 /* return some buffers to hardware, one at a time is too slow */
739 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
740 adapter->alloc_rx_buf(adapter, cleaned_count);
741 cleaned_count = 0;
742 }
743
744 /* use prefetched values */
745 rx_desc = next_rxd;
746 buffer_info = next_buffer;
747
748 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
749 }
750 rx_ring->next_to_clean = i;
751
752 cleaned_count = e1000_desc_unused(rx_ring);
753 if (cleaned_count)
754 adapter->alloc_rx_buf(adapter, cleaned_count);
755
756 adapter->total_rx_packets += total_rx_packets;
757 adapter->total_rx_bytes += total_rx_bytes;
758 return cleaned;
759}
760
761/**
762 * e1000_clean_rx_ring - Free Rx Buffers per Queue
763 * @adapter: board private structure
764 **/
765static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
766{
767 struct e1000_ring *rx_ring = adapter->rx_ring;
768 struct e1000_buffer *buffer_info;
769 struct e1000_ps_page *ps_page;
770 struct pci_dev *pdev = adapter->pdev;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700771 unsigned int i, j;
772
773 /* Free all the Rx ring sk_buffs */
774 for (i = 0; i < rx_ring->count; i++) {
775 buffer_info = &rx_ring->buffer_info[i];
776 if (buffer_info->dma) {
777 if (adapter->clean_rx == e1000_clean_rx_irq)
778 pci_unmap_single(pdev, buffer_info->dma,
779 adapter->rx_buffer_len,
780 PCI_DMA_FROMDEVICE);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700781 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
782 pci_unmap_single(pdev, buffer_info->dma,
783 adapter->rx_ps_bsize0,
784 PCI_DMA_FROMDEVICE);
785 buffer_info->dma = 0;
786 }
787
Auke Kokbc7f75f2007-09-17 12:30:59 -0700788 if (buffer_info->skb) {
789 dev_kfree_skb(buffer_info->skb);
790 buffer_info->skb = NULL;
791 }
792
793 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
Auke Kok47f44e42007-10-25 13:57:44 -0700794 ps_page = &buffer_info->ps_pages[j];
Auke Kokbc7f75f2007-09-17 12:30:59 -0700795 if (!ps_page->page)
796 break;
797 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
798 PCI_DMA_FROMDEVICE);
799 ps_page->dma = 0;
800 put_page(ps_page->page);
801 ps_page->page = NULL;
802 }
803 }
804
805 /* there also may be some cached data from a chained receive */
806 if (rx_ring->rx_skb_top) {
807 dev_kfree_skb(rx_ring->rx_skb_top);
808 rx_ring->rx_skb_top = NULL;
809 }
810
Auke Kokbc7f75f2007-09-17 12:30:59 -0700811 /* Zero out the descriptor ring */
812 memset(rx_ring->desc, 0, rx_ring->size);
813
814 rx_ring->next_to_clean = 0;
815 rx_ring->next_to_use = 0;
816
817 writel(0, adapter->hw.hw_addr + rx_ring->head);
818 writel(0, adapter->hw.hw_addr + rx_ring->tail);
819}
820
821/**
822 * e1000_intr_msi - Interrupt Handler
823 * @irq: interrupt number
824 * @data: pointer to a network interface device structure
825 **/
826static irqreturn_t e1000_intr_msi(int irq, void *data)
827{
828 struct net_device *netdev = data;
829 struct e1000_adapter *adapter = netdev_priv(netdev);
830 struct e1000_hw *hw = &adapter->hw;
831 u32 icr = er32(ICR);
832
833 /* read ICR disables interrupts using IAM, so keep up with our
834 * enable/disable accounting */
835 atomic_inc(&adapter->irq_sem);
836
837 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
838 hw->mac.get_link_status = 1;
839 /* ICH8 workaround-- Call gig speed drop workaround on cable
840 * disconnect (LSC) before accessing any PHY registers */
841 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
842 (!(er32(STATUS) & E1000_STATUS_LU)))
843 e1000e_gig_downshift_workaround_ich8lan(hw);
844
845 /* 80003ES2LAN workaround-- For packet buffer work-around on
846 * link down event; disable receives here in the ISR and reset
847 * adapter in watchdog */
848 if (netif_carrier_ok(netdev) &&
849 adapter->flags & FLAG_RX_NEEDS_RESTART) {
850 /* disable receives */
851 u32 rctl = er32(RCTL);
852 ew32(RCTL, rctl & ~E1000_RCTL_EN);
853 }
854 /* guard against interrupt when we're going down */
855 if (!test_bit(__E1000_DOWN, &adapter->state))
856 mod_timer(&adapter->watchdog_timer, jiffies + 1);
857 }
858
859 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
860 adapter->total_tx_bytes = 0;
861 adapter->total_tx_packets = 0;
862 adapter->total_rx_bytes = 0;
863 adapter->total_rx_packets = 0;
864 __netif_rx_schedule(netdev, &adapter->napi);
865 } else {
866 atomic_dec(&adapter->irq_sem);
867 }
868
869 return IRQ_HANDLED;
870}
871
872/**
873 * e1000_intr - Interrupt Handler
874 * @irq: interrupt number
875 * @data: pointer to a network interface device structure
876 **/
877static irqreturn_t e1000_intr(int irq, void *data)
878{
879 struct net_device *netdev = data;
880 struct e1000_adapter *adapter = netdev_priv(netdev);
881 struct e1000_hw *hw = &adapter->hw;
882
883 u32 rctl, icr = er32(ICR);
884 if (!icr)
885 return IRQ_NONE; /* Not our interrupt */
886
887 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
888 * not set, then the adapter didn't send an interrupt */
889 if (!(icr & E1000_ICR_INT_ASSERTED))
890 return IRQ_NONE;
891
892 /* Interrupt Auto-Mask...upon reading ICR,
893 * interrupts are masked. No need for the
894 * IMC write, but it does mean we should
895 * account for it ASAP. */
896 atomic_inc(&adapter->irq_sem);
897
898 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
899 hw->mac.get_link_status = 1;
900 /* ICH8 workaround-- Call gig speed drop workaround on cable
901 * disconnect (LSC) before accessing any PHY registers */
902 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
903 (!(er32(STATUS) & E1000_STATUS_LU)))
904 e1000e_gig_downshift_workaround_ich8lan(hw);
905
906 /* 80003ES2LAN workaround--
907 * For packet buffer work-around on link down event;
908 * disable receives here in the ISR and
909 * reset adapter in watchdog
910 */
911 if (netif_carrier_ok(netdev) &&
912 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
913 /* disable receives */
914 rctl = er32(RCTL);
915 ew32(RCTL, rctl & ~E1000_RCTL_EN);
916 }
917 /* guard against interrupt when we're going down */
918 if (!test_bit(__E1000_DOWN, &adapter->state))
919 mod_timer(&adapter->watchdog_timer, jiffies + 1);
920 }
921
922 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
923 adapter->total_tx_bytes = 0;
924 adapter->total_tx_packets = 0;
925 adapter->total_rx_bytes = 0;
926 adapter->total_rx_packets = 0;
927 __netif_rx_schedule(netdev, &adapter->napi);
928 } else {
929 atomic_dec(&adapter->irq_sem);
930 }
931
932 return IRQ_HANDLED;
933}
934
935static int e1000_request_irq(struct e1000_adapter *adapter)
936{
937 struct net_device *netdev = adapter->netdev;
938 void (*handler) = &e1000_intr;
939 int irq_flags = IRQF_SHARED;
940 int err;
941
942 err = pci_enable_msi(adapter->pdev);
943 if (err) {
944 ndev_warn(netdev,
945 "Unable to allocate MSI interrupt Error: %d\n", err);
946 } else {
947 adapter->flags |= FLAG_MSI_ENABLED;
948 handler = &e1000_intr_msi;
949 irq_flags = 0;
950 }
951
952 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
953 netdev);
954 if (err) {
955 if (adapter->flags & FLAG_MSI_ENABLED)
956 pci_disable_msi(adapter->pdev);
957 ndev_err(netdev,
958 "Unable to allocate interrupt Error: %d\n", err);
959 }
960
961 return err;
962}
963
964static void e1000_free_irq(struct e1000_adapter *adapter)
965{
966 struct net_device *netdev = adapter->netdev;
967
968 free_irq(adapter->pdev->irq, netdev);
969 if (adapter->flags & FLAG_MSI_ENABLED) {
970 pci_disable_msi(adapter->pdev);
971 adapter->flags &= ~FLAG_MSI_ENABLED;
972 }
973}
974
975/**
976 * e1000_irq_disable - Mask off interrupt generation on the NIC
977 **/
978static void e1000_irq_disable(struct e1000_adapter *adapter)
979{
980 struct e1000_hw *hw = &adapter->hw;
981
982 atomic_inc(&adapter->irq_sem);
983 ew32(IMC, ~0);
984 e1e_flush();
985 synchronize_irq(adapter->pdev->irq);
986}
987
988/**
989 * e1000_irq_enable - Enable default interrupt generation settings
990 **/
991static void e1000_irq_enable(struct e1000_adapter *adapter)
992{
993 struct e1000_hw *hw = &adapter->hw;
994
995 if (atomic_dec_and_test(&adapter->irq_sem)) {
996 ew32(IMS, IMS_ENABLE_MASK);
997 e1e_flush();
998 }
999}
1000
1001/**
1002 * e1000_get_hw_control - get control of the h/w from f/w
1003 * @adapter: address of board private structure
1004 *
1005 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1006 * For ASF and Pass Through versions of f/w this means that
1007 * the driver is loaded. For AMT version (only with 82573)
1008 * of the f/w this means that the network i/f is open.
1009 **/
1010static void e1000_get_hw_control(struct e1000_adapter *adapter)
1011{
1012 struct e1000_hw *hw = &adapter->hw;
1013 u32 ctrl_ext;
1014 u32 swsm;
1015
1016 /* Let firmware know the driver has taken over */
1017 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1018 swsm = er32(SWSM);
1019 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1020 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1021 ctrl_ext = er32(CTRL_EXT);
1022 ew32(CTRL_EXT,
1023 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1024 }
1025}
1026
1027/**
1028 * e1000_release_hw_control - release control of the h/w to f/w
1029 * @adapter: address of board private structure
1030 *
1031 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1032 * For ASF and Pass Through versions of f/w this means that the
1033 * driver is no longer loaded. For AMT version (only with 82573) i
1034 * of the f/w this means that the network i/f is closed.
1035 *
1036 **/
1037static void e1000_release_hw_control(struct e1000_adapter *adapter)
1038{
1039 struct e1000_hw *hw = &adapter->hw;
1040 u32 ctrl_ext;
1041 u32 swsm;
1042
1043 /* Let firmware taken over control of h/w */
1044 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1045 swsm = er32(SWSM);
1046 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1047 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1048 ctrl_ext = er32(CTRL_EXT);
1049 ew32(CTRL_EXT,
1050 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1051 }
1052}
1053
1054static void e1000_release_manageability(struct e1000_adapter *adapter)
1055{
1056 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
1057 struct e1000_hw *hw = &adapter->hw;
1058
1059 u32 manc = er32(MANC);
1060
1061 /* re-enable hardware interception of ARP */
1062 manc |= E1000_MANC_ARP_EN;
1063 manc &= ~E1000_MANC_EN_MNG2HOST;
1064
1065 /* don't explicitly have to mess with MANC2H since
1066 * MANC has an enable disable that gates MANC2H */
1067 ew32(MANC, manc);
1068 }
1069}
1070
1071/**
1072 * @e1000_alloc_ring - allocate memory for a ring structure
1073 **/
1074static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1075 struct e1000_ring *ring)
1076{
1077 struct pci_dev *pdev = adapter->pdev;
1078
1079 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1080 GFP_KERNEL);
1081 if (!ring->desc)
1082 return -ENOMEM;
1083
1084 return 0;
1085}
1086
1087/**
1088 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1089 * @adapter: board private structure
1090 *
1091 * Return 0 on success, negative on failure
1092 **/
1093int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1094{
1095 struct e1000_ring *tx_ring = adapter->tx_ring;
1096 int err = -ENOMEM, size;
1097
1098 size = sizeof(struct e1000_buffer) * tx_ring->count;
1099 tx_ring->buffer_info = vmalloc(size);
1100 if (!tx_ring->buffer_info)
1101 goto err;
1102 memset(tx_ring->buffer_info, 0, size);
1103
1104 /* round up to nearest 4K */
1105 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1106 tx_ring->size = ALIGN(tx_ring->size, 4096);
1107
1108 err = e1000_alloc_ring_dma(adapter, tx_ring);
1109 if (err)
1110 goto err;
1111
1112 tx_ring->next_to_use = 0;
1113 tx_ring->next_to_clean = 0;
1114 spin_lock_init(&adapter->tx_queue_lock);
1115
1116 return 0;
1117err:
1118 vfree(tx_ring->buffer_info);
1119 ndev_err(adapter->netdev,
1120 "Unable to allocate memory for the transmit descriptor ring\n");
1121 return err;
1122}
1123
1124/**
1125 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1126 * @adapter: board private structure
1127 *
1128 * Returns 0 on success, negative on failure
1129 **/
1130int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1131{
1132 struct e1000_ring *rx_ring = adapter->rx_ring;
Auke Kok47f44e42007-10-25 13:57:44 -07001133 struct e1000_buffer *buffer_info;
1134 int i, size, desc_len, err = -ENOMEM;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001135
1136 size = sizeof(struct e1000_buffer) * rx_ring->count;
1137 rx_ring->buffer_info = vmalloc(size);
1138 if (!rx_ring->buffer_info)
1139 goto err;
1140 memset(rx_ring->buffer_info, 0, size);
1141
Auke Kok47f44e42007-10-25 13:57:44 -07001142 for (i = 0; i < rx_ring->count; i++) {
1143 buffer_info = &rx_ring->buffer_info[i];
1144 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1145 sizeof(struct e1000_ps_page),
1146 GFP_KERNEL);
1147 if (!buffer_info->ps_pages)
1148 goto err_pages;
1149 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001150
1151 desc_len = sizeof(union e1000_rx_desc_packet_split);
1152
1153 /* Round up to nearest 4K */
1154 rx_ring->size = rx_ring->count * desc_len;
1155 rx_ring->size = ALIGN(rx_ring->size, 4096);
1156
1157 err = e1000_alloc_ring_dma(adapter, rx_ring);
1158 if (err)
Auke Kok47f44e42007-10-25 13:57:44 -07001159 goto err_pages;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001160
1161 rx_ring->next_to_clean = 0;
1162 rx_ring->next_to_use = 0;
1163 rx_ring->rx_skb_top = NULL;
1164
1165 return 0;
Auke Kok47f44e42007-10-25 13:57:44 -07001166
1167err_pages:
1168 for (i = 0; i < rx_ring->count; i++) {
1169 buffer_info = &rx_ring->buffer_info[i];
1170 kfree(buffer_info->ps_pages);
1171 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001172err:
1173 vfree(rx_ring->buffer_info);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001174 ndev_err(adapter->netdev,
1175 "Unable to allocate memory for the transmit descriptor ring\n");
1176 return err;
1177}
1178
1179/**
1180 * e1000_clean_tx_ring - Free Tx Buffers
1181 * @adapter: board private structure
1182 **/
1183static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1184{
1185 struct e1000_ring *tx_ring = adapter->tx_ring;
1186 struct e1000_buffer *buffer_info;
1187 unsigned long size;
1188 unsigned int i;
1189
1190 for (i = 0; i < tx_ring->count; i++) {
1191 buffer_info = &tx_ring->buffer_info[i];
1192 e1000_put_txbuf(adapter, buffer_info);
1193 }
1194
1195 size = sizeof(struct e1000_buffer) * tx_ring->count;
1196 memset(tx_ring->buffer_info, 0, size);
1197
1198 memset(tx_ring->desc, 0, tx_ring->size);
1199
1200 tx_ring->next_to_use = 0;
1201 tx_ring->next_to_clean = 0;
1202
1203 writel(0, adapter->hw.hw_addr + tx_ring->head);
1204 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1205}
1206
1207/**
1208 * e1000e_free_tx_resources - Free Tx Resources per Queue
1209 * @adapter: board private structure
1210 *
1211 * Free all transmit software resources
1212 **/
1213void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1214{
1215 struct pci_dev *pdev = adapter->pdev;
1216 struct e1000_ring *tx_ring = adapter->tx_ring;
1217
1218 e1000_clean_tx_ring(adapter);
1219
1220 vfree(tx_ring->buffer_info);
1221 tx_ring->buffer_info = NULL;
1222
1223 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1224 tx_ring->dma);
1225 tx_ring->desc = NULL;
1226}
1227
1228/**
1229 * e1000e_free_rx_resources - Free Rx Resources
1230 * @adapter: board private structure
1231 *
1232 * Free all receive software resources
1233 **/
1234
1235void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1236{
1237 struct pci_dev *pdev = adapter->pdev;
1238 struct e1000_ring *rx_ring = adapter->rx_ring;
Auke Kok47f44e42007-10-25 13:57:44 -07001239 int i;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001240
1241 e1000_clean_rx_ring(adapter);
1242
Auke Kok47f44e42007-10-25 13:57:44 -07001243 for (i = 0; i < rx_ring->count; i++) {
1244 kfree(rx_ring->buffer_info[i].ps_pages);
1245 }
1246
Auke Kokbc7f75f2007-09-17 12:30:59 -07001247 vfree(rx_ring->buffer_info);
1248 rx_ring->buffer_info = NULL;
1249
Auke Kokbc7f75f2007-09-17 12:30:59 -07001250 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1251 rx_ring->dma);
1252 rx_ring->desc = NULL;
1253}
1254
1255/**
1256 * e1000_update_itr - update the dynamic ITR value based on statistics
1257 * Stores a new ITR value based on packets and byte
1258 * counts during the last interrupt. The advantage of per interrupt
1259 * computation is faster updates and more accurate ITR for the current
1260 * traffic pattern. Constants in this function were computed
1261 * based on theoretical maximum wire speed and thresholds were set based
1262 * on testing data as well as attempting to minimize response time
1263 * while increasing bulk throughput.
1264 * this functionality is controlled by the InterruptThrottleRate module
1265 * parameter (see e1000_param.c)
1266 * @adapter: pointer to adapter
1267 * @itr_setting: current adapter->itr
1268 * @packets: the number of packets during this measurement interval
1269 * @bytes: the number of bytes during this measurement interval
1270 **/
1271static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1272 u16 itr_setting, int packets,
1273 int bytes)
1274{
1275 unsigned int retval = itr_setting;
1276
1277 if (packets == 0)
1278 goto update_itr_done;
1279
1280 switch (itr_setting) {
1281 case lowest_latency:
1282 /* handle TSO and jumbo frames */
1283 if (bytes/packets > 8000)
1284 retval = bulk_latency;
1285 else if ((packets < 5) && (bytes > 512)) {
1286 retval = low_latency;
1287 }
1288 break;
1289 case low_latency: /* 50 usec aka 20000 ints/s */
1290 if (bytes > 10000) {
1291 /* this if handles the TSO accounting */
1292 if (bytes/packets > 8000) {
1293 retval = bulk_latency;
1294 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1295 retval = bulk_latency;
1296 } else if ((packets > 35)) {
1297 retval = lowest_latency;
1298 }
1299 } else if (bytes/packets > 2000) {
1300 retval = bulk_latency;
1301 } else if (packets <= 2 && bytes < 512) {
1302 retval = lowest_latency;
1303 }
1304 break;
1305 case bulk_latency: /* 250 usec aka 4000 ints/s */
1306 if (bytes > 25000) {
1307 if (packets > 35) {
1308 retval = low_latency;
1309 }
1310 } else if (bytes < 6000) {
1311 retval = low_latency;
1312 }
1313 break;
1314 }
1315
1316update_itr_done:
1317 return retval;
1318}
1319
1320static void e1000_set_itr(struct e1000_adapter *adapter)
1321{
1322 struct e1000_hw *hw = &adapter->hw;
1323 u16 current_itr;
1324 u32 new_itr = adapter->itr;
1325
1326 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1327 if (adapter->link_speed != SPEED_1000) {
1328 current_itr = 0;
1329 new_itr = 4000;
1330 goto set_itr_now;
1331 }
1332
1333 adapter->tx_itr = e1000_update_itr(adapter,
1334 adapter->tx_itr,
1335 adapter->total_tx_packets,
1336 adapter->total_tx_bytes);
1337 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1338 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1339 adapter->tx_itr = low_latency;
1340
1341 adapter->rx_itr = e1000_update_itr(adapter,
1342 adapter->rx_itr,
1343 adapter->total_rx_packets,
1344 adapter->total_rx_bytes);
1345 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1346 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1347 adapter->rx_itr = low_latency;
1348
1349 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1350
1351 switch (current_itr) {
1352 /* counts and packets in update_itr are dependent on these numbers */
1353 case lowest_latency:
1354 new_itr = 70000;
1355 break;
1356 case low_latency:
1357 new_itr = 20000; /* aka hwitr = ~200 */
1358 break;
1359 case bulk_latency:
1360 new_itr = 4000;
1361 break;
1362 default:
1363 break;
1364 }
1365
1366set_itr_now:
1367 if (new_itr != adapter->itr) {
1368 /* this attempts to bias the interrupt rate towards Bulk
1369 * by adding intermediate steps when interrupt rate is
1370 * increasing */
1371 new_itr = new_itr > adapter->itr ?
1372 min(adapter->itr + (new_itr >> 2), new_itr) :
1373 new_itr;
1374 adapter->itr = new_itr;
1375 ew32(ITR, 1000000000 / (new_itr * 256));
1376 }
1377}
1378
1379/**
1380 * e1000_clean - NAPI Rx polling callback
1381 * @adapter: board private structure
1382 **/
1383static int e1000_clean(struct napi_struct *napi, int budget)
1384{
1385 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1386 struct net_device *poll_dev = adapter->netdev;
David S. Millerd2c7ddd2008-01-15 22:43:24 -08001387 int tx_cleaned = 0, work_done = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001388
1389 /* Must NOT use netdev_priv macro here. */
1390 adapter = poll_dev->priv;
1391
Auke Kokbc7f75f2007-09-17 12:30:59 -07001392 /* e1000_clean is called per-cpu. This lock protects
1393 * tx_ring from being cleaned by multiple cpus
1394 * simultaneously. A failure obtaining the lock means
1395 * tx_ring is currently being cleaned anyway. */
1396 if (spin_trylock(&adapter->tx_queue_lock)) {
David S. Millerd2c7ddd2008-01-15 22:43:24 -08001397 tx_cleaned = e1000_clean_tx_irq(adapter);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001398 spin_unlock(&adapter->tx_queue_lock);
1399 }
1400
1401 adapter->clean_rx(adapter, &work_done, budget);
1402
David S. Millerd2c7ddd2008-01-15 22:43:24 -08001403 if (tx_cleaned)
1404 work_done = budget;
1405
David S. Miller53e52c72008-01-07 21:06:12 -08001406 /* If budget not fully consumed, exit the polling mode */
1407 if (work_done < budget) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001408 if (adapter->itr_setting & 3)
1409 e1000_set_itr(adapter);
1410 netif_rx_complete(poll_dev, napi);
1411 e1000_irq_enable(adapter);
1412 }
1413
1414 return work_done;
1415}
1416
1417static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1418{
1419 struct e1000_adapter *adapter = netdev_priv(netdev);
1420 struct e1000_hw *hw = &adapter->hw;
1421 u32 vfta, index;
1422
1423 /* don't update vlan cookie if already programmed */
1424 if ((adapter->hw.mng_cookie.status &
1425 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1426 (vid == adapter->mng_vlan_id))
1427 return;
1428 /* add VID to filter table */
1429 index = (vid >> 5) & 0x7F;
1430 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1431 vfta |= (1 << (vid & 0x1F));
1432 e1000e_write_vfta(hw, index, vfta);
1433}
1434
1435static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1436{
1437 struct e1000_adapter *adapter = netdev_priv(netdev);
1438 struct e1000_hw *hw = &adapter->hw;
1439 u32 vfta, index;
1440
1441 e1000_irq_disable(adapter);
1442 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1443 e1000_irq_enable(adapter);
1444
1445 if ((adapter->hw.mng_cookie.status &
1446 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1447 (vid == adapter->mng_vlan_id)) {
1448 /* release control to f/w */
1449 e1000_release_hw_control(adapter);
1450 return;
1451 }
1452
1453 /* remove VID from filter table */
1454 index = (vid >> 5) & 0x7F;
1455 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1456 vfta &= ~(1 << (vid & 0x1F));
1457 e1000e_write_vfta(hw, index, vfta);
1458}
1459
1460static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1461{
1462 struct net_device *netdev = adapter->netdev;
1463 u16 vid = adapter->hw.mng_cookie.vlan_id;
1464 u16 old_vid = adapter->mng_vlan_id;
1465
1466 if (!adapter->vlgrp)
1467 return;
1468
1469 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1470 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1471 if (adapter->hw.mng_cookie.status &
1472 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1473 e1000_vlan_rx_add_vid(netdev, vid);
1474 adapter->mng_vlan_id = vid;
1475 }
1476
1477 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1478 (vid != old_vid) &&
1479 !vlan_group_get_device(adapter->vlgrp, old_vid))
1480 e1000_vlan_rx_kill_vid(netdev, old_vid);
1481 } else {
1482 adapter->mng_vlan_id = vid;
1483 }
1484}
1485
1486
1487static void e1000_vlan_rx_register(struct net_device *netdev,
1488 struct vlan_group *grp)
1489{
1490 struct e1000_adapter *adapter = netdev_priv(netdev);
1491 struct e1000_hw *hw = &adapter->hw;
1492 u32 ctrl, rctl;
1493
1494 e1000_irq_disable(adapter);
1495 adapter->vlgrp = grp;
1496
1497 if (grp) {
1498 /* enable VLAN tag insert/strip */
1499 ctrl = er32(CTRL);
1500 ctrl |= E1000_CTRL_VME;
1501 ew32(CTRL, ctrl);
1502
1503 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1504 /* enable VLAN receive filtering */
1505 rctl = er32(RCTL);
1506 rctl |= E1000_RCTL_VFE;
1507 rctl &= ~E1000_RCTL_CFIEN;
1508 ew32(RCTL, rctl);
1509 e1000_update_mng_vlan(adapter);
1510 }
1511 } else {
1512 /* disable VLAN tag insert/strip */
1513 ctrl = er32(CTRL);
1514 ctrl &= ~E1000_CTRL_VME;
1515 ew32(CTRL, ctrl);
1516
1517 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1518 /* disable VLAN filtering */
1519 rctl = er32(RCTL);
1520 rctl &= ~E1000_RCTL_VFE;
1521 ew32(RCTL, rctl);
1522 if (adapter->mng_vlan_id !=
1523 (u16)E1000_MNG_VLAN_NONE) {
1524 e1000_vlan_rx_kill_vid(netdev,
1525 adapter->mng_vlan_id);
1526 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1527 }
1528 }
1529 }
1530
1531 e1000_irq_enable(adapter);
1532}
1533
1534static void e1000_restore_vlan(struct e1000_adapter *adapter)
1535{
1536 u16 vid;
1537
1538 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1539
1540 if (!adapter->vlgrp)
1541 return;
1542
1543 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1544 if (!vlan_group_get_device(adapter->vlgrp, vid))
1545 continue;
1546 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1547 }
1548}
1549
1550static void e1000_init_manageability(struct e1000_adapter *adapter)
1551{
1552 struct e1000_hw *hw = &adapter->hw;
1553 u32 manc, manc2h;
1554
1555 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1556 return;
1557
1558 manc = er32(MANC);
1559
1560 /* disable hardware interception of ARP */
1561 manc &= ~(E1000_MANC_ARP_EN);
1562
1563 /* enable receiving management packets to the host. this will probably
1564 * generate destination unreachable messages from the host OS, but
1565 * the packets will be handled on SMBUS */
1566 manc |= E1000_MANC_EN_MNG2HOST;
1567 manc2h = er32(MANC2H);
1568#define E1000_MNG2HOST_PORT_623 (1 << 5)
1569#define E1000_MNG2HOST_PORT_664 (1 << 6)
1570 manc2h |= E1000_MNG2HOST_PORT_623;
1571 manc2h |= E1000_MNG2HOST_PORT_664;
1572 ew32(MANC2H, manc2h);
1573 ew32(MANC, manc);
1574}
1575
1576/**
1577 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1578 * @adapter: board private structure
1579 *
1580 * Configure the Tx unit of the MAC after a reset.
1581 **/
1582static void e1000_configure_tx(struct e1000_adapter *adapter)
1583{
1584 struct e1000_hw *hw = &adapter->hw;
1585 struct e1000_ring *tx_ring = adapter->tx_ring;
1586 u64 tdba;
1587 u32 tdlen, tctl, tipg, tarc;
1588 u32 ipgr1, ipgr2;
1589
1590 /* Setup the HW Tx Head and Tail descriptor pointers */
1591 tdba = tx_ring->dma;
1592 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1593 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1594 ew32(TDBAH, (tdba >> 32));
1595 ew32(TDLEN, tdlen);
1596 ew32(TDH, 0);
1597 ew32(TDT, 0);
1598 tx_ring->head = E1000_TDH;
1599 tx_ring->tail = E1000_TDT;
1600
1601 /* Set the default values for the Tx Inter Packet Gap timer */
1602 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1603 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1604 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1605
1606 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1607 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1608
1609 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1610 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1611 ew32(TIPG, tipg);
1612
1613 /* Set the Tx Interrupt Delay register */
1614 ew32(TIDV, adapter->tx_int_delay);
1615 /* tx irq moderation */
1616 ew32(TADV, adapter->tx_abs_int_delay);
1617
1618 /* Program the Transmit Control Register */
1619 tctl = er32(TCTL);
1620 tctl &= ~E1000_TCTL_CT;
1621 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1622 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1623
1624 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1625 tarc = er32(TARC0);
1626 /* set the speed mode bit, we'll clear it if we're not at
1627 * gigabit link later */
1628#define SPEED_MODE_BIT (1 << 21)
1629 tarc |= SPEED_MODE_BIT;
1630 ew32(TARC0, tarc);
1631 }
1632
1633 /* errata: program both queues to unweighted RR */
1634 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1635 tarc = er32(TARC0);
1636 tarc |= 1;
1637 ew32(TARC0, tarc);
1638 tarc = er32(TARC1);
1639 tarc |= 1;
1640 ew32(TARC1, tarc);
1641 }
1642
1643 e1000e_config_collision_dist(hw);
1644
1645 /* Setup Transmit Descriptor Settings for eop descriptor */
1646 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1647
1648 /* only set IDE if we are delaying interrupts using the timers */
1649 if (adapter->tx_int_delay)
1650 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1651
1652 /* enable Report Status bit */
1653 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1654
1655 ew32(TCTL, tctl);
1656
1657 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1658}
1659
1660/**
1661 * e1000_setup_rctl - configure the receive control registers
1662 * @adapter: Board private structure
1663 **/
1664#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1665 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1666static void e1000_setup_rctl(struct e1000_adapter *adapter)
1667{
1668 struct e1000_hw *hw = &adapter->hw;
1669 u32 rctl, rfctl;
1670 u32 psrctl = 0;
1671 u32 pages = 0;
1672
1673 /* Program MC offset vector base */
1674 rctl = er32(RCTL);
1675 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1676 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1677 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1678 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1679
1680 /* Do not Store bad packets */
1681 rctl &= ~E1000_RCTL_SBP;
1682
1683 /* Enable Long Packet receive */
1684 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1685 rctl &= ~E1000_RCTL_LPE;
1686 else
1687 rctl |= E1000_RCTL_LPE;
1688
1689 /* Setup buffer sizes */
1690 rctl &= ~E1000_RCTL_SZ_4096;
1691 rctl |= E1000_RCTL_BSEX;
1692 switch (adapter->rx_buffer_len) {
1693 case 256:
1694 rctl |= E1000_RCTL_SZ_256;
1695 rctl &= ~E1000_RCTL_BSEX;
1696 break;
1697 case 512:
1698 rctl |= E1000_RCTL_SZ_512;
1699 rctl &= ~E1000_RCTL_BSEX;
1700 break;
1701 case 1024:
1702 rctl |= E1000_RCTL_SZ_1024;
1703 rctl &= ~E1000_RCTL_BSEX;
1704 break;
1705 case 2048:
1706 default:
1707 rctl |= E1000_RCTL_SZ_2048;
1708 rctl &= ~E1000_RCTL_BSEX;
1709 break;
1710 case 4096:
1711 rctl |= E1000_RCTL_SZ_4096;
1712 break;
1713 case 8192:
1714 rctl |= E1000_RCTL_SZ_8192;
1715 break;
1716 case 16384:
1717 rctl |= E1000_RCTL_SZ_16384;
1718 break;
1719 }
1720
1721 /*
1722 * 82571 and greater support packet-split where the protocol
1723 * header is placed in skb->data and the packet data is
1724 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1725 * In the case of a non-split, skb->data is linearly filled,
1726 * followed by the page buffers. Therefore, skb->data is
1727 * sized to hold the largest protocol header.
1728 *
1729 * allocations using alloc_page take too long for regular MTU
1730 * so only enable packet split for jumbo frames
1731 *
1732 * Using pages when the page size is greater than 16k wastes
1733 * a lot of memory, since we allocate 3 pages at all times
1734 * per packet.
1735 */
1736 adapter->rx_ps_pages = 0;
1737 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1738 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1739 adapter->rx_ps_pages = pages;
1740
1741 if (adapter->rx_ps_pages) {
1742 /* Configure extra packet-split registers */
1743 rfctl = er32(RFCTL);
1744 rfctl |= E1000_RFCTL_EXTEN;
1745 /* disable packet split support for IPv6 extension headers,
1746 * because some malformed IPv6 headers can hang the RX */
1747 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1748 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1749
1750 ew32(RFCTL, rfctl);
1751
Auke Kok140a7482007-10-25 13:57:58 -07001752 /* Enable Packet split descriptors */
1753 rctl |= E1000_RCTL_DTYP_PS;
1754
1755 /* Enable hardware CRC frame stripping */
1756 rctl |= E1000_RCTL_SECRC;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001757
1758 psrctl |= adapter->rx_ps_bsize0 >>
1759 E1000_PSRCTL_BSIZE0_SHIFT;
1760
1761 switch (adapter->rx_ps_pages) {
1762 case 3:
1763 psrctl |= PAGE_SIZE <<
1764 E1000_PSRCTL_BSIZE3_SHIFT;
1765 case 2:
1766 psrctl |= PAGE_SIZE <<
1767 E1000_PSRCTL_BSIZE2_SHIFT;
1768 case 1:
1769 psrctl |= PAGE_SIZE >>
1770 E1000_PSRCTL_BSIZE1_SHIFT;
1771 break;
1772 }
1773
1774 ew32(PSRCTL, psrctl);
1775 }
1776
1777 ew32(RCTL, rctl);
1778}
1779
1780/**
1781 * e1000_configure_rx - Configure Receive Unit after Reset
1782 * @adapter: board private structure
1783 *
1784 * Configure the Rx unit of the MAC after a reset.
1785 **/
1786static void e1000_configure_rx(struct e1000_adapter *adapter)
1787{
1788 struct e1000_hw *hw = &adapter->hw;
1789 struct e1000_ring *rx_ring = adapter->rx_ring;
1790 u64 rdba;
1791 u32 rdlen, rctl, rxcsum, ctrl_ext;
1792
1793 if (adapter->rx_ps_pages) {
1794 /* this is a 32 byte descriptor */
1795 rdlen = rx_ring->count *
1796 sizeof(union e1000_rx_desc_packet_split);
1797 adapter->clean_rx = e1000_clean_rx_irq_ps;
1798 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001799 } else {
1800 rdlen = rx_ring->count *
1801 sizeof(struct e1000_rx_desc);
1802 adapter->clean_rx = e1000_clean_rx_irq;
1803 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1804 }
1805
1806 /* disable receives while setting up the descriptors */
1807 rctl = er32(RCTL);
1808 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1809 e1e_flush();
1810 msleep(10);
1811
1812 /* set the Receive Delay Timer Register */
1813 ew32(RDTR, adapter->rx_int_delay);
1814
1815 /* irq moderation */
1816 ew32(RADV, adapter->rx_abs_int_delay);
1817 if (adapter->itr_setting != 0)
1818 ew32(ITR,
1819 1000000000 / (adapter->itr * 256));
1820
1821 ctrl_ext = er32(CTRL_EXT);
1822 /* Reset delay timers after every interrupt */
1823 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1824 /* Auto-Mask interrupts upon ICR access */
1825 ctrl_ext |= E1000_CTRL_EXT_IAME;
1826 ew32(IAM, 0xffffffff);
1827 ew32(CTRL_EXT, ctrl_ext);
1828 e1e_flush();
1829
1830 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1831 * the Base and Length of the Rx Descriptor Ring */
1832 rdba = rx_ring->dma;
1833 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
1834 ew32(RDBAH, (rdba >> 32));
1835 ew32(RDLEN, rdlen);
1836 ew32(RDH, 0);
1837 ew32(RDT, 0);
1838 rx_ring->head = E1000_RDH;
1839 rx_ring->tail = E1000_RDT;
1840
1841 /* Enable Receive Checksum Offload for TCP and UDP */
1842 rxcsum = er32(RXCSUM);
1843 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
1844 rxcsum |= E1000_RXCSUM_TUOFL;
1845
1846 /* IPv4 payload checksum for UDP fragments must be
1847 * used in conjunction with packet-split. */
1848 if (adapter->rx_ps_pages)
1849 rxcsum |= E1000_RXCSUM_IPPCSE;
1850 } else {
1851 rxcsum &= ~E1000_RXCSUM_TUOFL;
1852 /* no need to clear IPPCSE as it defaults to 0 */
1853 }
1854 ew32(RXCSUM, rxcsum);
1855
1856 /* Enable early receives on supported devices, only takes effect when
1857 * packet size is equal or larger than the specified value (in 8 byte
1858 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
1859 if ((adapter->flags & FLAG_HAS_ERT) &&
1860 (adapter->netdev->mtu > ETH_DATA_LEN))
1861 ew32(ERT, E1000_ERT_2048);
1862
1863 /* Enable Receives */
1864 ew32(RCTL, rctl);
1865}
1866
1867/**
1868 * e1000_mc_addr_list_update - Update Multicast addresses
1869 * @hw: pointer to the HW structure
1870 * @mc_addr_list: array of multicast addresses to program
1871 * @mc_addr_count: number of multicast addresses to program
1872 * @rar_used_count: the first RAR register free to program
1873 * @rar_count: total number of supported Receive Address Registers
1874 *
1875 * Updates the Receive Address Registers and Multicast Table Array.
1876 * The caller must have a packed mc_addr_list of multicast addresses.
1877 * The parameter rar_count will usually be hw->mac.rar_entry_count
1878 * unless there are workarounds that change this. Currently no func pointer
1879 * exists and all implementations are handled in the generic version of this
1880 * function.
1881 **/
1882static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
1883 u32 mc_addr_count, u32 rar_used_count,
1884 u32 rar_count)
1885{
1886 hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
1887 rar_used_count, rar_count);
1888}
1889
1890/**
1891 * e1000_set_multi - Multicast and Promiscuous mode set
1892 * @netdev: network interface device structure
1893 *
1894 * The set_multi entry point is called whenever the multicast address
1895 * list or the network interface flags are updated. This routine is
1896 * responsible for configuring the hardware for proper multicast,
1897 * promiscuous mode, and all-multi behavior.
1898 **/
1899static void e1000_set_multi(struct net_device *netdev)
1900{
1901 struct e1000_adapter *adapter = netdev_priv(netdev);
1902 struct e1000_hw *hw = &adapter->hw;
1903 struct e1000_mac_info *mac = &hw->mac;
1904 struct dev_mc_list *mc_ptr;
1905 u8 *mta_list;
1906 u32 rctl;
1907 int i;
1908
1909 /* Check for Promiscuous and All Multicast modes */
1910
1911 rctl = er32(RCTL);
1912
1913 if (netdev->flags & IFF_PROMISC) {
1914 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1915 } else if (netdev->flags & IFF_ALLMULTI) {
1916 rctl |= E1000_RCTL_MPE;
1917 rctl &= ~E1000_RCTL_UPE;
1918 } else {
1919 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1920 }
1921
1922 ew32(RCTL, rctl);
1923
1924 if (netdev->mc_count) {
1925 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1926 if (!mta_list)
1927 return;
1928
1929 /* prepare a packed array of only addresses. */
1930 mc_ptr = netdev->mc_list;
1931
1932 for (i = 0; i < netdev->mc_count; i++) {
1933 if (!mc_ptr)
1934 break;
1935 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1936 ETH_ALEN);
1937 mc_ptr = mc_ptr->next;
1938 }
1939
1940 e1000_mc_addr_list_update(hw, mta_list, i, 1,
1941 mac->rar_entry_count);
1942 kfree(mta_list);
1943 } else {
1944 /*
1945 * if we're called from probe, we might not have
1946 * anything to do here, so clear out the list
1947 */
1948 e1000_mc_addr_list_update(hw, NULL, 0, 1,
1949 mac->rar_entry_count);
1950 }
1951}
1952
1953/**
1954 * e1000_configure - configure the hardware for RX and TX
1955 * @adapter: private board structure
1956 **/
1957static void e1000_configure(struct e1000_adapter *adapter)
1958{
1959 e1000_set_multi(adapter->netdev);
1960
1961 e1000_restore_vlan(adapter);
1962 e1000_init_manageability(adapter);
1963
1964 e1000_configure_tx(adapter);
1965 e1000_setup_rctl(adapter);
1966 e1000_configure_rx(adapter);
1967 adapter->alloc_rx_buf(adapter,
1968 e1000_desc_unused(adapter->rx_ring));
1969}
1970
1971/**
1972 * e1000e_power_up_phy - restore link in case the phy was powered down
1973 * @adapter: address of board private structure
1974 *
1975 * The phy may be powered down to save power and turn off link when the
1976 * driver is unloaded and wake on lan is not enabled (among others)
1977 * *** this routine MUST be followed by a call to e1000e_reset ***
1978 **/
1979void e1000e_power_up_phy(struct e1000_adapter *adapter)
1980{
1981 u16 mii_reg = 0;
1982
1983 /* Just clear the power down bit to wake the phy back up */
1984 if (adapter->hw.media_type == e1000_media_type_copper) {
1985 /* according to the manual, the phy will retain its
1986 * settings across a power-down/up cycle */
1987 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
1988 mii_reg &= ~MII_CR_POWER_DOWN;
1989 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
1990 }
1991
1992 adapter->hw.mac.ops.setup_link(&adapter->hw);
1993}
1994
1995/**
1996 * e1000_power_down_phy - Power down the PHY
1997 *
1998 * Power down the PHY so no link is implied when interface is down
1999 * The PHY cannot be powered down is management or WoL is active
2000 */
2001static void e1000_power_down_phy(struct e1000_adapter *adapter)
2002{
2003 struct e1000_hw *hw = &adapter->hw;
2004 u16 mii_reg;
2005
2006 /* WoL is enabled */
2007 if (!adapter->wol)
2008 return;
2009
2010 /* non-copper PHY? */
2011 if (adapter->hw.media_type != e1000_media_type_copper)
2012 return;
2013
2014 /* reset is blocked because of a SoL/IDER session */
2015 if (e1000e_check_mng_mode(hw) ||
2016 e1000_check_reset_block(hw))
2017 return;
2018
2019 /* managebility (AMT) is enabled */
2020 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2021 return;
2022
2023 /* power down the PHY */
2024 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2025 mii_reg |= MII_CR_POWER_DOWN;
2026 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2027 mdelay(1);
2028}
2029
2030/**
2031 * e1000e_reset - bring the hardware into a known good state
2032 *
2033 * This function boots the hardware and enables some settings that
2034 * require a configuration cycle of the hardware - those cannot be
2035 * set/changed during runtime. After reset the device needs to be
2036 * properly configured for rx, tx etc.
2037 */
2038void e1000e_reset(struct e1000_adapter *adapter)
2039{
2040 struct e1000_mac_info *mac = &adapter->hw.mac;
2041 struct e1000_hw *hw = &adapter->hw;
2042 u32 tx_space, min_tx_space, min_rx_space;
Auke Kokdf762462007-10-25 13:57:53 -07002043 u32 pba;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002044 u16 hwm;
2045
Auke Kokdf762462007-10-25 13:57:53 -07002046 ew32(PBA, adapter->pba);
2047
Auke Kokbc7f75f2007-09-17 12:30:59 -07002048 if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
2049 /* To maintain wire speed transmits, the Tx FIFO should be
2050 * large enough to accommodate two full transmit packets,
2051 * rounded up to the next 1KB and expressed in KB. Likewise,
2052 * the Rx FIFO should be large enough to accommodate at least
2053 * one full receive packet and is similarly rounded up and
2054 * expressed in KB. */
Auke Kokdf762462007-10-25 13:57:53 -07002055 pba = er32(PBA);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002056 /* upper 16 bits has Tx packet buffer allocation size in KB */
Auke Kokdf762462007-10-25 13:57:53 -07002057 tx_space = pba >> 16;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002058 /* lower 16 bits has Rx packet buffer allocation size in KB */
Auke Kokdf762462007-10-25 13:57:53 -07002059 pba &= 0xffff;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002060 /* the tx fifo also stores 16 bytes of information about the tx
2061 * but don't include ethernet FCS because hardware appends it */
2062 min_tx_space = (mac->max_frame_size +
2063 sizeof(struct e1000_tx_desc) -
2064 ETH_FCS_LEN) * 2;
2065 min_tx_space = ALIGN(min_tx_space, 1024);
2066 min_tx_space >>= 10;
2067 /* software strips receive CRC, so leave room for it */
2068 min_rx_space = mac->max_frame_size;
2069 min_rx_space = ALIGN(min_rx_space, 1024);
2070 min_rx_space >>= 10;
2071
2072 /* If current Tx allocation is less than the min Tx FIFO size,
2073 * and the min Tx FIFO size is less than the current Rx FIFO
2074 * allocation, take space away from current Rx allocation */
Auke Kokdf762462007-10-25 13:57:53 -07002075 if ((tx_space < min_tx_space) &&
2076 ((min_tx_space - tx_space) < pba)) {
2077 pba -= min_tx_space - tx_space;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002078
2079 /* if short on rx space, rx wins and must trump tx
2080 * adjustment or use Early Receive if available */
Auke Kokdf762462007-10-25 13:57:53 -07002081 if ((pba < min_rx_space) &&
Auke Kokbc7f75f2007-09-17 12:30:59 -07002082 (!(adapter->flags & FLAG_HAS_ERT)))
2083 /* ERT enabled in e1000_configure_rx */
Auke Kokdf762462007-10-25 13:57:53 -07002084 pba = min_rx_space;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002085 }
Auke Kokdf762462007-10-25 13:57:53 -07002086
2087 ew32(PBA, pba);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002088 }
2089
Auke Kokbc7f75f2007-09-17 12:30:59 -07002090
2091 /* flow control settings */
2092 /* The high water mark must be low enough to fit one full frame
2093 * (or the size used for early receive) above it in the Rx FIFO.
2094 * Set it to the lower of:
2095 * - 90% of the Rx FIFO size, and
2096 * - the full Rx FIFO size minus the early receive size (for parts
2097 * with ERT support assuming ERT set to E1000_ERT_2048), or
2098 * - the full Rx FIFO size minus one full frame */
2099 if (adapter->flags & FLAG_HAS_ERT)
2100 hwm = min(((adapter->pba << 10) * 9 / 10),
2101 ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
2102 else
2103 hwm = min(((adapter->pba << 10) * 9 / 10),
2104 ((adapter->pba << 10) - mac->max_frame_size));
2105
2106 mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
2107 mac->fc_low_water = mac->fc_high_water - 8;
2108
2109 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2110 mac->fc_pause_time = 0xFFFF;
2111 else
2112 mac->fc_pause_time = E1000_FC_PAUSE_TIME;
2113 mac->fc = mac->original_fc;
2114
2115 /* Allow time for pending master requests to run */
2116 mac->ops.reset_hw(hw);
2117 ew32(WUC, 0);
2118
2119 if (mac->ops.init_hw(hw))
2120 ndev_err(adapter->netdev, "Hardware Error\n");
2121
2122 e1000_update_mng_vlan(adapter);
2123
2124 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2125 ew32(VET, ETH_P_8021Q);
2126
2127 e1000e_reset_adaptive(hw);
2128 e1000_get_phy_info(hw);
2129
2130 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2131 u16 phy_data = 0;
2132 /* speed up time to link by disabling smart power down, ignore
2133 * the return value of this function because there is nothing
2134 * different we would do if it failed */
2135 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2136 phy_data &= ~IGP02E1000_PM_SPD;
2137 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2138 }
2139
2140 e1000_release_manageability(adapter);
2141}
2142
2143int e1000e_up(struct e1000_adapter *adapter)
2144{
2145 struct e1000_hw *hw = &adapter->hw;
2146
2147 /* hardware has been reset, we need to reload some things */
2148 e1000_configure(adapter);
2149
2150 clear_bit(__E1000_DOWN, &adapter->state);
2151
2152 napi_enable(&adapter->napi);
2153 e1000_irq_enable(adapter);
2154
2155 /* fire a link change interrupt to start the watchdog */
2156 ew32(ICS, E1000_ICS_LSC);
2157 return 0;
2158}
2159
2160void e1000e_down(struct e1000_adapter *adapter)
2161{
2162 struct net_device *netdev = adapter->netdev;
2163 struct e1000_hw *hw = &adapter->hw;
2164 u32 tctl, rctl;
2165
2166 /* signal that we're down so the interrupt handler does not
2167 * reschedule our watchdog timer */
2168 set_bit(__E1000_DOWN, &adapter->state);
2169
2170 /* disable receives in the hardware */
2171 rctl = er32(RCTL);
2172 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2173 /* flush and sleep below */
2174
2175 netif_stop_queue(netdev);
2176
2177 /* disable transmits in the hardware */
2178 tctl = er32(TCTL);
2179 tctl &= ~E1000_TCTL_EN;
2180 ew32(TCTL, tctl);
2181 /* flush both disables and wait for them to finish */
2182 e1e_flush();
2183 msleep(10);
2184
2185 napi_disable(&adapter->napi);
2186 e1000_irq_disable(adapter);
2187
2188 del_timer_sync(&adapter->watchdog_timer);
2189 del_timer_sync(&adapter->phy_info_timer);
2190
2191 netdev->tx_queue_len = adapter->tx_queue_len;
2192 netif_carrier_off(netdev);
2193 adapter->link_speed = 0;
2194 adapter->link_duplex = 0;
2195
2196 e1000e_reset(adapter);
2197 e1000_clean_tx_ring(adapter);
2198 e1000_clean_rx_ring(adapter);
2199
2200 /*
2201 * TODO: for power management, we could drop the link and
2202 * pci_disable_device here.
2203 */
2204}
2205
2206void e1000e_reinit_locked(struct e1000_adapter *adapter)
2207{
2208 might_sleep();
2209 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2210 msleep(1);
2211 e1000e_down(adapter);
2212 e1000e_up(adapter);
2213 clear_bit(__E1000_RESETTING, &adapter->state);
2214}
2215
2216/**
2217 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2218 * @adapter: board private structure to initialize
2219 *
2220 * e1000_sw_init initializes the Adapter private data structure.
2221 * Fields are initialized based on PCI device information and
2222 * OS network device settings (MTU size).
2223 **/
2224static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2225{
2226 struct e1000_hw *hw = &adapter->hw;
2227 struct net_device *netdev = adapter->netdev;
2228
2229 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2230 adapter->rx_ps_bsize0 = 128;
2231 hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2232 hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2233
2234 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2235 if (!adapter->tx_ring)
2236 goto err;
2237
2238 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2239 if (!adapter->rx_ring)
2240 goto err;
2241
2242 spin_lock_init(&adapter->tx_queue_lock);
2243
2244 /* Explicitly disable IRQ since the NIC can be in any state. */
2245 atomic_set(&adapter->irq_sem, 0);
2246 e1000_irq_disable(adapter);
2247
2248 spin_lock_init(&adapter->stats_lock);
2249
2250 set_bit(__E1000_DOWN, &adapter->state);
2251 return 0;
2252
2253err:
2254 ndev_err(netdev, "Unable to allocate memory for queues\n");
2255 kfree(adapter->rx_ring);
2256 kfree(adapter->tx_ring);
2257 return -ENOMEM;
2258}
2259
2260/**
2261 * e1000_open - Called when a network interface is made active
2262 * @netdev: network interface device structure
2263 *
2264 * Returns 0 on success, negative value on failure
2265 *
2266 * The open entry point is called when a network interface is made
2267 * active by the system (IFF_UP). At this point all resources needed
2268 * for transmit and receive operations are allocated, the interrupt
2269 * handler is registered with the OS, the watchdog timer is started,
2270 * and the stack is notified that the interface is ready.
2271 **/
2272static int e1000_open(struct net_device *netdev)
2273{
2274 struct e1000_adapter *adapter = netdev_priv(netdev);
2275 struct e1000_hw *hw = &adapter->hw;
2276 int err;
2277
2278 /* disallow open during test */
2279 if (test_bit(__E1000_TESTING, &adapter->state))
2280 return -EBUSY;
2281
2282 /* allocate transmit descriptors */
2283 err = e1000e_setup_tx_resources(adapter);
2284 if (err)
2285 goto err_setup_tx;
2286
2287 /* allocate receive descriptors */
2288 err = e1000e_setup_rx_resources(adapter);
2289 if (err)
2290 goto err_setup_rx;
2291
2292 e1000e_power_up_phy(adapter);
2293
2294 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2295 if ((adapter->hw.mng_cookie.status &
2296 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2297 e1000_update_mng_vlan(adapter);
2298
2299 /* If AMT is enabled, let the firmware know that the network
2300 * interface is now open */
2301 if ((adapter->flags & FLAG_HAS_AMT) &&
2302 e1000e_check_mng_mode(&adapter->hw))
2303 e1000_get_hw_control(adapter);
2304
2305 /* before we allocate an interrupt, we must be ready to handle it.
2306 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2307 * as soon as we call pci_request_irq, so we have to setup our
2308 * clean_rx handler before we do so. */
2309 e1000_configure(adapter);
2310
2311 err = e1000_request_irq(adapter);
2312 if (err)
2313 goto err_req_irq;
2314
2315 /* From here on the code is the same as e1000e_up() */
2316 clear_bit(__E1000_DOWN, &adapter->state);
2317
2318 napi_enable(&adapter->napi);
2319
2320 e1000_irq_enable(adapter);
2321
2322 /* fire a link status change interrupt to start the watchdog */
2323 ew32(ICS, E1000_ICS_LSC);
2324
2325 return 0;
2326
2327err_req_irq:
2328 e1000_release_hw_control(adapter);
2329 e1000_power_down_phy(adapter);
2330 e1000e_free_rx_resources(adapter);
2331err_setup_rx:
2332 e1000e_free_tx_resources(adapter);
2333err_setup_tx:
2334 e1000e_reset(adapter);
2335
2336 return err;
2337}
2338
2339/**
2340 * e1000_close - Disables a network interface
2341 * @netdev: network interface device structure
2342 *
2343 * Returns 0, this is not allowed to fail
2344 *
2345 * The close entry point is called when an interface is de-activated
2346 * by the OS. The hardware is still under the drivers control, but
2347 * needs to be disabled. A global MAC reset is issued to stop the
2348 * hardware, and all transmit and receive resources are freed.
2349 **/
2350static int e1000_close(struct net_device *netdev)
2351{
2352 struct e1000_adapter *adapter = netdev_priv(netdev);
2353
2354 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2355 e1000e_down(adapter);
2356 e1000_power_down_phy(adapter);
2357 e1000_free_irq(adapter);
2358
2359 e1000e_free_tx_resources(adapter);
2360 e1000e_free_rx_resources(adapter);
2361
2362 /* kill manageability vlan ID if supported, but not if a vlan with
2363 * the same ID is registered on the host OS (let 8021q kill it) */
2364 if ((adapter->hw.mng_cookie.status &
2365 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2366 !(adapter->vlgrp &&
2367 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2368 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2369
2370 /* If AMT is enabled, let the firmware know that the network
2371 * interface is now closed */
2372 if ((adapter->flags & FLAG_HAS_AMT) &&
2373 e1000e_check_mng_mode(&adapter->hw))
2374 e1000_release_hw_control(adapter);
2375
2376 return 0;
2377}
2378/**
2379 * e1000_set_mac - Change the Ethernet Address of the NIC
2380 * @netdev: network interface device structure
2381 * @p: pointer to an address structure
2382 *
2383 * Returns 0 on success, negative on failure
2384 **/
2385static int e1000_set_mac(struct net_device *netdev, void *p)
2386{
2387 struct e1000_adapter *adapter = netdev_priv(netdev);
2388 struct sockaddr *addr = p;
2389
2390 if (!is_valid_ether_addr(addr->sa_data))
2391 return -EADDRNOTAVAIL;
2392
2393 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2394 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2395
2396 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2397
2398 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2399 /* activate the work around */
2400 e1000e_set_laa_state_82571(&adapter->hw, 1);
2401
2402 /* Hold a copy of the LAA in RAR[14] This is done so that
2403 * between the time RAR[0] gets clobbered and the time it
2404 * gets fixed (in e1000_watchdog), the actual LAA is in one
2405 * of the RARs and no incoming packets directed to this port
2406 * are dropped. Eventually the LAA will be in RAR[0] and
2407 * RAR[14] */
2408 e1000e_rar_set(&adapter->hw,
2409 adapter->hw.mac.addr,
2410 adapter->hw.mac.rar_entry_count - 1);
2411 }
2412
2413 return 0;
2414}
2415
2416/* Need to wait a few seconds after link up to get diagnostic information from
2417 * the phy */
2418static void e1000_update_phy_info(unsigned long data)
2419{
2420 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2421 e1000_get_phy_info(&adapter->hw);
2422}
2423
2424/**
2425 * e1000e_update_stats - Update the board statistics counters
2426 * @adapter: board private structure
2427 **/
2428void e1000e_update_stats(struct e1000_adapter *adapter)
2429{
2430 struct e1000_hw *hw = &adapter->hw;
2431 struct pci_dev *pdev = adapter->pdev;
2432 unsigned long irq_flags;
2433 u16 phy_tmp;
2434
2435#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2436
2437 /*
2438 * Prevent stats update while adapter is being reset, or if the pci
2439 * connection is down.
2440 */
2441 if (adapter->link_speed == 0)
2442 return;
2443 if (pci_channel_offline(pdev))
2444 return;
2445
2446 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2447
2448 /* these counters are modified from e1000_adjust_tbi_stats,
2449 * called from the interrupt context, so they must only
2450 * be written while holding adapter->stats_lock
2451 */
2452
2453 adapter->stats.crcerrs += er32(CRCERRS);
2454 adapter->stats.gprc += er32(GPRC);
2455 adapter->stats.gorcl += er32(GORCL);
2456 adapter->stats.gorch += er32(GORCH);
2457 adapter->stats.bprc += er32(BPRC);
2458 adapter->stats.mprc += er32(MPRC);
2459 adapter->stats.roc += er32(ROC);
2460
2461 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2462 adapter->stats.prc64 += er32(PRC64);
2463 adapter->stats.prc127 += er32(PRC127);
2464 adapter->stats.prc255 += er32(PRC255);
2465 adapter->stats.prc511 += er32(PRC511);
2466 adapter->stats.prc1023 += er32(PRC1023);
2467 adapter->stats.prc1522 += er32(PRC1522);
2468 adapter->stats.symerrs += er32(SYMERRS);
2469 adapter->stats.sec += er32(SEC);
2470 }
2471
2472 adapter->stats.mpc += er32(MPC);
2473 adapter->stats.scc += er32(SCC);
2474 adapter->stats.ecol += er32(ECOL);
2475 adapter->stats.mcc += er32(MCC);
2476 adapter->stats.latecol += er32(LATECOL);
2477 adapter->stats.dc += er32(DC);
2478 adapter->stats.rlec += er32(RLEC);
2479 adapter->stats.xonrxc += er32(XONRXC);
2480 adapter->stats.xontxc += er32(XONTXC);
2481 adapter->stats.xoffrxc += er32(XOFFRXC);
2482 adapter->stats.xofftxc += er32(XOFFTXC);
2483 adapter->stats.fcruc += er32(FCRUC);
2484 adapter->stats.gptc += er32(GPTC);
2485 adapter->stats.gotcl += er32(GOTCL);
2486 adapter->stats.gotch += er32(GOTCH);
2487 adapter->stats.rnbc += er32(RNBC);
2488 adapter->stats.ruc += er32(RUC);
2489 adapter->stats.rfc += er32(RFC);
2490 adapter->stats.rjc += er32(RJC);
2491 adapter->stats.torl += er32(TORL);
2492 adapter->stats.torh += er32(TORH);
2493 adapter->stats.totl += er32(TOTL);
2494 adapter->stats.toth += er32(TOTH);
2495 adapter->stats.tpr += er32(TPR);
2496
2497 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2498 adapter->stats.ptc64 += er32(PTC64);
2499 adapter->stats.ptc127 += er32(PTC127);
2500 adapter->stats.ptc255 += er32(PTC255);
2501 adapter->stats.ptc511 += er32(PTC511);
2502 adapter->stats.ptc1023 += er32(PTC1023);
2503 adapter->stats.ptc1522 += er32(PTC1522);
2504 }
2505
2506 adapter->stats.mptc += er32(MPTC);
2507 adapter->stats.bptc += er32(BPTC);
2508
2509 /* used for adaptive IFS */
2510
2511 hw->mac.tx_packet_delta = er32(TPT);
2512 adapter->stats.tpt += hw->mac.tx_packet_delta;
2513 hw->mac.collision_delta = er32(COLC);
2514 adapter->stats.colc += hw->mac.collision_delta;
2515
2516 adapter->stats.algnerrc += er32(ALGNERRC);
2517 adapter->stats.rxerrc += er32(RXERRC);
2518 adapter->stats.tncrs += er32(TNCRS);
2519 adapter->stats.cexterr += er32(CEXTERR);
2520 adapter->stats.tsctc += er32(TSCTC);
2521 adapter->stats.tsctfc += er32(TSCTFC);
2522
2523 adapter->stats.iac += er32(IAC);
2524
2525 if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
2526 adapter->stats.icrxoc += er32(ICRXOC);
2527 adapter->stats.icrxptc += er32(ICRXPTC);
2528 adapter->stats.icrxatc += er32(ICRXATC);
2529 adapter->stats.ictxptc += er32(ICTXPTC);
2530 adapter->stats.ictxatc += er32(ICTXATC);
2531 adapter->stats.ictxqec += er32(ICTXQEC);
2532 adapter->stats.ictxqmtc += er32(ICTXQMTC);
2533 adapter->stats.icrxdmtc += er32(ICRXDMTC);
2534 }
2535
2536 /* Fill out the OS statistics structure */
2537 adapter->net_stats.rx_packets = adapter->stats.gprc;
2538 adapter->net_stats.tx_packets = adapter->stats.gptc;
2539 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2540 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2541 adapter->net_stats.multicast = adapter->stats.mprc;
2542 adapter->net_stats.collisions = adapter->stats.colc;
2543
2544 /* Rx Errors */
2545
2546 /* RLEC on some newer hardware can be incorrect so build
2547 * our own version based on RUC and ROC */
2548 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2549 adapter->stats.crcerrs + adapter->stats.algnerrc +
2550 adapter->stats.ruc + adapter->stats.roc +
2551 adapter->stats.cexterr;
2552 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2553 adapter->stats.roc;
2554 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2555 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2556 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2557
2558 /* Tx Errors */
2559 adapter->net_stats.tx_errors = adapter->stats.ecol +
2560 adapter->stats.latecol;
2561 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2562 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2563 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2564
2565 /* Tx Dropped needs to be maintained elsewhere */
2566
2567 /* Phy Stats */
2568 if (hw->media_type == e1000_media_type_copper) {
2569 if ((adapter->link_speed == SPEED_1000) &&
2570 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2571 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2572 adapter->phy_stats.idle_errors += phy_tmp;
2573 }
2574 }
2575
2576 /* Management Stats */
2577 adapter->stats.mgptc += er32(MGTPTC);
2578 adapter->stats.mgprc += er32(MGTPRC);
2579 adapter->stats.mgpdc += er32(MGTPDC);
2580
2581 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2582}
2583
2584static void e1000_print_link_info(struct e1000_adapter *adapter)
2585{
2586 struct net_device *netdev = adapter->netdev;
2587 struct e1000_hw *hw = &adapter->hw;
2588 u32 ctrl = er32(CTRL);
2589
2590 ndev_info(netdev,
2591 "Link is Up %d Mbps %s, Flow Control: %s\n",
2592 adapter->link_speed,
2593 (adapter->link_duplex == FULL_DUPLEX) ?
2594 "Full Duplex" : "Half Duplex",
2595 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2596 "RX/TX" :
2597 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2598 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2599}
2600
2601/**
2602 * e1000_watchdog - Timer Call-back
2603 * @data: pointer to adapter cast into an unsigned long
2604 **/
2605static void e1000_watchdog(unsigned long data)
2606{
2607 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2608
2609 /* Do the rest outside of interrupt context */
2610 schedule_work(&adapter->watchdog_task);
2611
2612 /* TODO: make this use queue_delayed_work() */
2613}
2614
2615static void e1000_watchdog_task(struct work_struct *work)
2616{
2617 struct e1000_adapter *adapter = container_of(work,
2618 struct e1000_adapter, watchdog_task);
2619
2620 struct net_device *netdev = adapter->netdev;
2621 struct e1000_mac_info *mac = &adapter->hw.mac;
2622 struct e1000_ring *tx_ring = adapter->tx_ring;
2623 struct e1000_hw *hw = &adapter->hw;
2624 u32 link, tctl;
2625 s32 ret_val;
2626 int tx_pending = 0;
2627
2628 if ((netif_carrier_ok(netdev)) &&
2629 (er32(STATUS) & E1000_STATUS_LU))
2630 goto link_up;
2631
2632 ret_val = mac->ops.check_for_link(hw);
2633 if ((ret_val == E1000_ERR_PHY) &&
2634 (adapter->hw.phy.type == e1000_phy_igp_3) &&
2635 (er32(CTRL) &
2636 E1000_PHY_CTRL_GBE_DISABLE)) {
2637 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2638 ndev_info(netdev,
2639 "Gigabit has been disabled, downgrading speed\n");
2640 }
2641
2642 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2643 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2644 e1000_update_mng_vlan(adapter);
2645
2646 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2647 !(er32(TXCW) & E1000_TXCW_ANE))
2648 link = adapter->hw.mac.serdes_has_link;
2649 else
2650 link = er32(STATUS) & E1000_STATUS_LU;
2651
2652 if (link) {
2653 if (!netif_carrier_ok(netdev)) {
2654 bool txb2b = 1;
2655 mac->ops.get_link_up_info(&adapter->hw,
2656 &adapter->link_speed,
2657 &adapter->link_duplex);
2658 e1000_print_link_info(adapter);
2659 /* tweak tx_queue_len according to speed/duplex
2660 * and adjust the timeout factor */
2661 netdev->tx_queue_len = adapter->tx_queue_len;
2662 adapter->tx_timeout_factor = 1;
2663 switch (adapter->link_speed) {
2664 case SPEED_10:
2665 txb2b = 0;
2666 netdev->tx_queue_len = 10;
2667 adapter->tx_timeout_factor = 14;
2668 break;
2669 case SPEED_100:
2670 txb2b = 0;
2671 netdev->tx_queue_len = 100;
2672 /* maybe add some timeout factor ? */
2673 break;
2674 }
2675
2676 /* workaround: re-program speed mode bit after
2677 * link-up event */
2678 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2679 !txb2b) {
2680 u32 tarc0;
2681 tarc0 = er32(TARC0);
2682 tarc0 &= ~SPEED_MODE_BIT;
2683 ew32(TARC0, tarc0);
2684 }
2685
2686 /* disable TSO for pcie and 10/100 speeds, to avoid
2687 * some hardware issues */
2688 if (!(adapter->flags & FLAG_TSO_FORCE)) {
2689 switch (adapter->link_speed) {
2690 case SPEED_10:
2691 case SPEED_100:
2692 ndev_info(netdev,
2693 "10/100 speed: disabling TSO\n");
2694 netdev->features &= ~NETIF_F_TSO;
2695 netdev->features &= ~NETIF_F_TSO6;
2696 break;
2697 case SPEED_1000:
2698 netdev->features |= NETIF_F_TSO;
2699 netdev->features |= NETIF_F_TSO6;
2700 break;
2701 default:
2702 /* oops */
2703 break;
2704 }
2705 }
2706
2707 /* enable transmits in the hardware, need to do this
2708 * after setting TARC0 */
2709 tctl = er32(TCTL);
2710 tctl |= E1000_TCTL_EN;
2711 ew32(TCTL, tctl);
2712
2713 netif_carrier_on(netdev);
2714 netif_wake_queue(netdev);
2715
2716 if (!test_bit(__E1000_DOWN, &adapter->state))
2717 mod_timer(&adapter->phy_info_timer,
2718 round_jiffies(jiffies + 2 * HZ));
2719 } else {
2720 /* make sure the receive unit is started */
2721 if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
2722 u32 rctl = er32(RCTL);
2723 ew32(RCTL, rctl |
2724 E1000_RCTL_EN);
2725 }
2726 }
2727 } else {
2728 if (netif_carrier_ok(netdev)) {
2729 adapter->link_speed = 0;
2730 adapter->link_duplex = 0;
2731 ndev_info(netdev, "Link is Down\n");
2732 netif_carrier_off(netdev);
2733 netif_stop_queue(netdev);
2734 if (!test_bit(__E1000_DOWN, &adapter->state))
2735 mod_timer(&adapter->phy_info_timer,
2736 round_jiffies(jiffies + 2 * HZ));
2737
2738 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
2739 schedule_work(&adapter->reset_task);
2740 }
2741 }
2742
2743link_up:
2744 e1000e_update_stats(adapter);
2745
2746 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2747 adapter->tpt_old = adapter->stats.tpt;
2748 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2749 adapter->colc_old = adapter->stats.colc;
2750
2751 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2752 adapter->gorcl_old = adapter->stats.gorcl;
2753 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2754 adapter->gotcl_old = adapter->stats.gotcl;
2755
2756 e1000e_update_adaptive(&adapter->hw);
2757
2758 if (!netif_carrier_ok(netdev)) {
2759 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
2760 tx_ring->count);
2761 if (tx_pending) {
2762 /* We've lost link, so the controller stops DMA,
2763 * but we've got queued Tx work that's never going
2764 * to get done, so reset controller to flush Tx.
2765 * (Do the reset outside of interrupt context). */
2766 adapter->tx_timeout_count++;
2767 schedule_work(&adapter->reset_task);
2768 }
2769 }
2770
2771 /* Cause software interrupt to ensure rx ring is cleaned */
2772 ew32(ICS, E1000_ICS_RXDMT0);
2773
2774 /* Force detection of hung controller every watchdog period */
2775 adapter->detect_tx_hung = 1;
2776
2777 /* With 82571 controllers, LAA may be overwritten due to controller
2778 * reset from the other port. Set the appropriate LAA in RAR[0] */
2779 if (e1000e_get_laa_state_82571(hw))
2780 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
2781
2782 /* Reset the timer */
2783 if (!test_bit(__E1000_DOWN, &adapter->state))
2784 mod_timer(&adapter->watchdog_timer,
2785 round_jiffies(jiffies + 2 * HZ));
2786}
2787
2788#define E1000_TX_FLAGS_CSUM 0x00000001
2789#define E1000_TX_FLAGS_VLAN 0x00000002
2790#define E1000_TX_FLAGS_TSO 0x00000004
2791#define E1000_TX_FLAGS_IPV4 0x00000008
2792#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2793#define E1000_TX_FLAGS_VLAN_SHIFT 16
2794
2795static int e1000_tso(struct e1000_adapter *adapter,
2796 struct sk_buff *skb)
2797{
2798 struct e1000_ring *tx_ring = adapter->tx_ring;
2799 struct e1000_context_desc *context_desc;
2800 struct e1000_buffer *buffer_info;
2801 unsigned int i;
2802 u32 cmd_length = 0;
2803 u16 ipcse = 0, tucse, mss;
2804 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2805 int err;
2806
2807 if (skb_is_gso(skb)) {
2808 if (skb_header_cloned(skb)) {
2809 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2810 if (err)
2811 return err;
2812 }
2813
2814 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2815 mss = skb_shinfo(skb)->gso_size;
2816 if (skb->protocol == htons(ETH_P_IP)) {
2817 struct iphdr *iph = ip_hdr(skb);
2818 iph->tot_len = 0;
2819 iph->check = 0;
2820 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2821 iph->daddr, 0,
2822 IPPROTO_TCP,
2823 0);
2824 cmd_length = E1000_TXD_CMD_IP;
2825 ipcse = skb_transport_offset(skb) - 1;
2826 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2827 ipv6_hdr(skb)->payload_len = 0;
2828 tcp_hdr(skb)->check =
2829 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2830 &ipv6_hdr(skb)->daddr,
2831 0, IPPROTO_TCP, 0);
2832 ipcse = 0;
2833 }
2834 ipcss = skb_network_offset(skb);
2835 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2836 tucss = skb_transport_offset(skb);
2837 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2838 tucse = 0;
2839
2840 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2841 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2842
2843 i = tx_ring->next_to_use;
2844 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2845 buffer_info = &tx_ring->buffer_info[i];
2846
2847 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2848 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2849 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2850 context_desc->upper_setup.tcp_fields.tucss = tucss;
2851 context_desc->upper_setup.tcp_fields.tucso = tucso;
2852 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2853 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2854 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2855 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2856
2857 buffer_info->time_stamp = jiffies;
2858 buffer_info->next_to_watch = i;
2859
2860 i++;
2861 if (i == tx_ring->count)
2862 i = 0;
2863 tx_ring->next_to_use = i;
2864
2865 return 1;
2866 }
2867
2868 return 0;
2869}
2870
2871static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
2872{
2873 struct e1000_ring *tx_ring = adapter->tx_ring;
2874 struct e1000_context_desc *context_desc;
2875 struct e1000_buffer *buffer_info;
2876 unsigned int i;
2877 u8 css;
2878
2879 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2880 css = skb_transport_offset(skb);
2881
2882 i = tx_ring->next_to_use;
2883 buffer_info = &tx_ring->buffer_info[i];
2884 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2885
2886 context_desc->lower_setup.ip_config = 0;
2887 context_desc->upper_setup.tcp_fields.tucss = css;
2888 context_desc->upper_setup.tcp_fields.tucso =
2889 css + skb->csum_offset;
2890 context_desc->upper_setup.tcp_fields.tucse = 0;
2891 context_desc->tcp_seg_setup.data = 0;
2892 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2893
2894 buffer_info->time_stamp = jiffies;
2895 buffer_info->next_to_watch = i;
2896
2897 i++;
2898 if (i == tx_ring->count)
2899 i = 0;
2900 tx_ring->next_to_use = i;
2901
2902 return 1;
2903 }
2904
2905 return 0;
2906}
2907
2908#define E1000_MAX_PER_TXD 8192
2909#define E1000_MAX_TXD_PWR 12
2910
2911static int e1000_tx_map(struct e1000_adapter *adapter,
2912 struct sk_buff *skb, unsigned int first,
2913 unsigned int max_per_txd, unsigned int nr_frags,
2914 unsigned int mss)
2915{
2916 struct e1000_ring *tx_ring = adapter->tx_ring;
2917 struct e1000_buffer *buffer_info;
2918 unsigned int len = skb->len - skb->data_len;
2919 unsigned int offset = 0, size, count = 0, i;
2920 unsigned int f;
2921
2922 i = tx_ring->next_to_use;
2923
2924 while (len) {
2925 buffer_info = &tx_ring->buffer_info[i];
2926 size = min(len, max_per_txd);
2927
2928 /* Workaround for premature desc write-backs
2929 * in TSO mode. Append 4-byte sentinel desc */
2930 if (mss && !nr_frags && size == len && size > 8)
2931 size -= 4;
2932
2933 buffer_info->length = size;
2934 /* set time_stamp *before* dma to help avoid a possible race */
2935 buffer_info->time_stamp = jiffies;
2936 buffer_info->dma =
2937 pci_map_single(adapter->pdev,
2938 skb->data + offset,
2939 size,
2940 PCI_DMA_TODEVICE);
2941 if (pci_dma_mapping_error(buffer_info->dma)) {
2942 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2943 adapter->tx_dma_failed++;
2944 return -1;
2945 }
2946 buffer_info->next_to_watch = i;
2947
2948 len -= size;
2949 offset += size;
2950 count++;
2951 i++;
2952 if (i == tx_ring->count)
2953 i = 0;
2954 }
2955
2956 for (f = 0; f < nr_frags; f++) {
2957 struct skb_frag_struct *frag;
2958
2959 frag = &skb_shinfo(skb)->frags[f];
2960 len = frag->size;
2961 offset = frag->page_offset;
2962
2963 while (len) {
2964 buffer_info = &tx_ring->buffer_info[i];
2965 size = min(len, max_per_txd);
2966 /* Workaround for premature desc write-backs
2967 * in TSO mode. Append 4-byte sentinel desc */
2968 if (mss && f == (nr_frags-1) && size == len && size > 8)
2969 size -= 4;
2970
2971 buffer_info->length = size;
2972 buffer_info->time_stamp = jiffies;
2973 buffer_info->dma =
2974 pci_map_page(adapter->pdev,
2975 frag->page,
2976 offset,
2977 size,
2978 PCI_DMA_TODEVICE);
2979 if (pci_dma_mapping_error(buffer_info->dma)) {
2980 dev_err(&adapter->pdev->dev,
2981 "TX DMA page map failed\n");
2982 adapter->tx_dma_failed++;
2983 return -1;
2984 }
2985
2986 buffer_info->next_to_watch = i;
2987
2988 len -= size;
2989 offset += size;
2990 count++;
2991
2992 i++;
2993 if (i == tx_ring->count)
2994 i = 0;
2995 }
2996 }
2997
2998 if (i == 0)
2999 i = tx_ring->count - 1;
3000 else
3001 i--;
3002
3003 tx_ring->buffer_info[i].skb = skb;
3004 tx_ring->buffer_info[first].next_to_watch = i;
3005
3006 return count;
3007}
3008
3009static void e1000_tx_queue(struct e1000_adapter *adapter,
3010 int tx_flags, int count)
3011{
3012 struct e1000_ring *tx_ring = adapter->tx_ring;
3013 struct e1000_tx_desc *tx_desc = NULL;
3014 struct e1000_buffer *buffer_info;
3015 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3016 unsigned int i;
3017
3018 if (tx_flags & E1000_TX_FLAGS_TSO) {
3019 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3020 E1000_TXD_CMD_TSE;
3021 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3022
3023 if (tx_flags & E1000_TX_FLAGS_IPV4)
3024 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3025 }
3026
3027 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3028 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3029 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3030 }
3031
3032 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3033 txd_lower |= E1000_TXD_CMD_VLE;
3034 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3035 }
3036
3037 i = tx_ring->next_to_use;
3038
3039 while (count--) {
3040 buffer_info = &tx_ring->buffer_info[i];
3041 tx_desc = E1000_TX_DESC(*tx_ring, i);
3042 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3043 tx_desc->lower.data =
3044 cpu_to_le32(txd_lower | buffer_info->length);
3045 tx_desc->upper.data = cpu_to_le32(txd_upper);
3046
3047 i++;
3048 if (i == tx_ring->count)
3049 i = 0;
3050 }
3051
3052 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3053
3054 /* Force memory writes to complete before letting h/w
3055 * know there are new descriptors to fetch. (Only
3056 * applicable for weak-ordered memory model archs,
3057 * such as IA-64). */
3058 wmb();
3059
3060 tx_ring->next_to_use = i;
3061 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3062 /* we need this if more than one processor can write to our tail
3063 * at a time, it synchronizes IO on IA64/Altix systems */
3064 mmiowb();
3065}
3066
3067#define MINIMUM_DHCP_PACKET_SIZE 282
3068static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3069 struct sk_buff *skb)
3070{
3071 struct e1000_hw *hw = &adapter->hw;
3072 u16 length, offset;
3073
3074 if (vlan_tx_tag_present(skb)) {
3075 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3076 && (adapter->hw.mng_cookie.status &
3077 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3078 return 0;
3079 }
3080
3081 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3082 return 0;
3083
3084 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3085 return 0;
3086
3087 {
3088 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3089 struct udphdr *udp;
3090
3091 if (ip->protocol != IPPROTO_UDP)
3092 return 0;
3093
3094 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3095 if (ntohs(udp->dest) != 67)
3096 return 0;
3097
3098 offset = (u8 *)udp + 8 - skb->data;
3099 length = skb->len - offset;
3100 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3101 }
3102
3103 return 0;
3104}
3105
3106static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3107{
3108 struct e1000_adapter *adapter = netdev_priv(netdev);
3109
3110 netif_stop_queue(netdev);
3111 /* Herbert's original patch had:
3112 * smp_mb__after_netif_stop_queue();
3113 * but since that doesn't exist yet, just open code it. */
3114 smp_mb();
3115
3116 /* We need to check again in a case another CPU has just
3117 * made room available. */
3118 if (e1000_desc_unused(adapter->tx_ring) < size)
3119 return -EBUSY;
3120
3121 /* A reprieve! */
3122 netif_start_queue(netdev);
3123 ++adapter->restart_queue;
3124 return 0;
3125}
3126
3127static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3128{
3129 struct e1000_adapter *adapter = netdev_priv(netdev);
3130
3131 if (e1000_desc_unused(adapter->tx_ring) >= size)
3132 return 0;
3133 return __e1000_maybe_stop_tx(netdev, size);
3134}
3135
3136#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3137static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3138{
3139 struct e1000_adapter *adapter = netdev_priv(netdev);
3140 struct e1000_ring *tx_ring = adapter->tx_ring;
3141 unsigned int first;
3142 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3143 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3144 unsigned int tx_flags = 0;
Auke Kok4e6c7092007-10-05 14:15:23 -07003145 unsigned int len = skb->len - skb->data_len;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003146 unsigned long irq_flags;
Auke Kok4e6c7092007-10-05 14:15:23 -07003147 unsigned int nr_frags;
3148 unsigned int mss;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003149 int count = 0;
3150 int tso;
3151 unsigned int f;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003152
3153 if (test_bit(__E1000_DOWN, &adapter->state)) {
3154 dev_kfree_skb_any(skb);
3155 return NETDEV_TX_OK;
3156 }
3157
3158 if (skb->len <= 0) {
3159 dev_kfree_skb_any(skb);
3160 return NETDEV_TX_OK;
3161 }
3162
3163 mss = skb_shinfo(skb)->gso_size;
3164 /* The controller does a simple calculation to
3165 * make sure there is enough room in the FIFO before
3166 * initiating the DMA for each buffer. The calc is:
3167 * 4 = ceil(buffer len/mss). To make sure we don't
3168 * overrun the FIFO, adjust the max buffer len if mss
3169 * drops. */
3170 if (mss) {
3171 u8 hdr_len;
3172 max_per_txd = min(mss << 2, max_per_txd);
3173 max_txd_pwr = fls(max_per_txd) - 1;
3174
3175 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3176 * points to just header, pull a few bytes of payload from
3177 * frags into skb->data */
3178 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
Auke Kok4e6c7092007-10-05 14:15:23 -07003179 if (skb->data_len && (hdr_len == len)) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07003180 unsigned int pull_size;
3181
3182 pull_size = min((unsigned int)4, skb->data_len);
3183 if (!__pskb_pull_tail(skb, pull_size)) {
3184 ndev_err(netdev,
3185 "__pskb_pull_tail failed.\n");
3186 dev_kfree_skb_any(skb);
3187 return NETDEV_TX_OK;
3188 }
3189 len = skb->len - skb->data_len;
3190 }
3191 }
3192
3193 /* reserve a descriptor for the offload context */
3194 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3195 count++;
3196 count++;
3197
3198 count += TXD_USE_COUNT(len, max_txd_pwr);
3199
3200 nr_frags = skb_shinfo(skb)->nr_frags;
3201 for (f = 0; f < nr_frags; f++)
3202 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3203 max_txd_pwr);
3204
3205 if (adapter->hw.mac.tx_pkt_filtering)
3206 e1000_transfer_dhcp_info(adapter, skb);
3207
3208 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3209 /* Collision - tell upper layer to requeue */
3210 return NETDEV_TX_LOCKED;
3211
3212 /* need: count + 2 desc gap to keep tail from touching
3213 * head, otherwise try next time */
3214 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3215 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3216 return NETDEV_TX_BUSY;
3217 }
3218
3219 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3220 tx_flags |= E1000_TX_FLAGS_VLAN;
3221 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3222 }
3223
3224 first = tx_ring->next_to_use;
3225
3226 tso = e1000_tso(adapter, skb);
3227 if (tso < 0) {
3228 dev_kfree_skb_any(skb);
3229 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3230 return NETDEV_TX_OK;
3231 }
3232
3233 if (tso)
3234 tx_flags |= E1000_TX_FLAGS_TSO;
3235 else if (e1000_tx_csum(adapter, skb))
3236 tx_flags |= E1000_TX_FLAGS_CSUM;
3237
3238 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3239 * 82571 hardware supports TSO capabilities for IPv6 as well...
3240 * no longer assume, we must. */
3241 if (skb->protocol == htons(ETH_P_IP))
3242 tx_flags |= E1000_TX_FLAGS_IPV4;
3243
3244 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3245 if (count < 0) {
3246 /* handle pci_map_single() error in e1000_tx_map */
3247 dev_kfree_skb_any(skb);
3248 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
Krishna Kumar7b5dfe1a2007-09-21 09:41:15 -07003249 return NETDEV_TX_OK;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003250 }
3251
3252 e1000_tx_queue(adapter, tx_flags, count);
3253
3254 netdev->trans_start = jiffies;
3255
3256 /* Make sure there is space in the ring for the next send. */
3257 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3258
3259 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3260 return NETDEV_TX_OK;
3261}
3262
3263/**
3264 * e1000_tx_timeout - Respond to a Tx Hang
3265 * @netdev: network interface device structure
3266 **/
3267static void e1000_tx_timeout(struct net_device *netdev)
3268{
3269 struct e1000_adapter *adapter = netdev_priv(netdev);
3270
3271 /* Do the reset outside of interrupt context */
3272 adapter->tx_timeout_count++;
3273 schedule_work(&adapter->reset_task);
3274}
3275
3276static void e1000_reset_task(struct work_struct *work)
3277{
3278 struct e1000_adapter *adapter;
3279 adapter = container_of(work, struct e1000_adapter, reset_task);
3280
3281 e1000e_reinit_locked(adapter);
3282}
3283
3284/**
3285 * e1000_get_stats - Get System Network Statistics
3286 * @netdev: network interface device structure
3287 *
3288 * Returns the address of the device statistics structure.
3289 * The statistics are actually updated from the timer callback.
3290 **/
3291static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3292{
3293 struct e1000_adapter *adapter = netdev_priv(netdev);
3294
3295 /* only return the current stats */
3296 return &adapter->net_stats;
3297}
3298
3299/**
3300 * e1000_change_mtu - Change the Maximum Transfer Unit
3301 * @netdev: network interface device structure
3302 * @new_mtu: new value for maximum frame size
3303 *
3304 * Returns 0 on success, negative on failure
3305 **/
3306static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3307{
3308 struct e1000_adapter *adapter = netdev_priv(netdev);
3309 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3310
3311 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3312 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3313 ndev_err(netdev, "Invalid MTU setting\n");
3314 return -EINVAL;
3315 }
3316
3317 /* Jumbo frame size limits */
3318 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3319 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3320 ndev_err(netdev, "Jumbo Frames not supported.\n");
3321 return -EINVAL;
3322 }
3323 if (adapter->hw.phy.type == e1000_phy_ife) {
3324 ndev_err(netdev, "Jumbo Frames not supported.\n");
3325 return -EINVAL;
3326 }
3327 }
3328
3329#define MAX_STD_JUMBO_FRAME_SIZE 9234
3330 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3331 ndev_err(netdev, "MTU > 9216 not supported.\n");
3332 return -EINVAL;
3333 }
3334
3335 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3336 msleep(1);
3337 /* e1000e_down has a dependency on max_frame_size */
3338 adapter->hw.mac.max_frame_size = max_frame;
3339 if (netif_running(netdev))
3340 e1000e_down(adapter);
3341
3342 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3343 * means we reserve 2 more, this pushes us to allocate from the next
3344 * larger slab size.
Auke Kokf920c182007-10-25 13:58:03 -07003345 * i.e. RXBUFFER_2048 --> size-4096 slab */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003346
3347 if (max_frame <= 256)
3348 adapter->rx_buffer_len = 256;
3349 else if (max_frame <= 512)
3350 adapter->rx_buffer_len = 512;
3351 else if (max_frame <= 1024)
3352 adapter->rx_buffer_len = 1024;
3353 else if (max_frame <= 2048)
3354 adapter->rx_buffer_len = 2048;
3355 else
3356 adapter->rx_buffer_len = 4096;
3357
3358 /* adjust allocation if LPE protects us, and we aren't using SBP */
3359 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3360 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3361 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3362 + ETH_FCS_LEN ;
3363
3364 ndev_info(netdev, "changing MTU from %d to %d\n",
3365 netdev->mtu, new_mtu);
3366 netdev->mtu = new_mtu;
3367
3368 if (netif_running(netdev))
3369 e1000e_up(adapter);
3370 else
3371 e1000e_reset(adapter);
3372
3373 clear_bit(__E1000_RESETTING, &adapter->state);
3374
3375 return 0;
3376}
3377
3378static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3379 int cmd)
3380{
3381 struct e1000_adapter *adapter = netdev_priv(netdev);
3382 struct mii_ioctl_data *data = if_mii(ifr);
3383 unsigned long irq_flags;
3384
3385 if (adapter->hw.media_type != e1000_media_type_copper)
3386 return -EOPNOTSUPP;
3387
3388 switch (cmd) {
3389 case SIOCGMIIPHY:
3390 data->phy_id = adapter->hw.phy.addr;
3391 break;
3392 case SIOCGMIIREG:
3393 if (!capable(CAP_NET_ADMIN))
3394 return -EPERM;
3395 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3396 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
3397 &data->val_out)) {
3398 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3399 return -EIO;
3400 }
3401 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3402 break;
3403 case SIOCSMIIREG:
3404 default:
3405 return -EOPNOTSUPP;
3406 }
3407 return 0;
3408}
3409
3410static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3411{
3412 switch (cmd) {
3413 case SIOCGMIIPHY:
3414 case SIOCGMIIREG:
3415 case SIOCSMIIREG:
3416 return e1000_mii_ioctl(netdev, ifr, cmd);
3417 default:
3418 return -EOPNOTSUPP;
3419 }
3420}
3421
3422static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3423{
3424 struct net_device *netdev = pci_get_drvdata(pdev);
3425 struct e1000_adapter *adapter = netdev_priv(netdev);
3426 struct e1000_hw *hw = &adapter->hw;
3427 u32 ctrl, ctrl_ext, rctl, status;
3428 u32 wufc = adapter->wol;
3429 int retval = 0;
3430
3431 netif_device_detach(netdev);
3432
3433 if (netif_running(netdev)) {
3434 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3435 e1000e_down(adapter);
3436 e1000_free_irq(adapter);
3437 }
3438
3439 retval = pci_save_state(pdev);
3440 if (retval)
3441 return retval;
3442
3443 status = er32(STATUS);
3444 if (status & E1000_STATUS_LU)
3445 wufc &= ~E1000_WUFC_LNKC;
3446
3447 if (wufc) {
3448 e1000_setup_rctl(adapter);
3449 e1000_set_multi(netdev);
3450
3451 /* turn on all-multi mode if wake on multicast is enabled */
3452 if (wufc & E1000_WUFC_MC) {
3453 rctl = er32(RCTL);
3454 rctl |= E1000_RCTL_MPE;
3455 ew32(RCTL, rctl);
3456 }
3457
3458 ctrl = er32(CTRL);
3459 /* advertise wake from D3Cold */
3460 #define E1000_CTRL_ADVD3WUC 0x00100000
3461 /* phy power management enable */
3462 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3463 ctrl |= E1000_CTRL_ADVD3WUC |
3464 E1000_CTRL_EN_PHY_PWR_MGMT;
3465 ew32(CTRL, ctrl);
3466
3467 if (adapter->hw.media_type == e1000_media_type_fiber ||
3468 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3469 /* keep the laser running in D3 */
3470 ctrl_ext = er32(CTRL_EXT);
3471 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3472 ew32(CTRL_EXT, ctrl_ext);
3473 }
3474
3475 /* Allow time for pending master requests to run */
3476 e1000e_disable_pcie_master(&adapter->hw);
3477
3478 ew32(WUC, E1000_WUC_PME_EN);
3479 ew32(WUFC, wufc);
3480 pci_enable_wake(pdev, PCI_D3hot, 1);
3481 pci_enable_wake(pdev, PCI_D3cold, 1);
3482 } else {
3483 ew32(WUC, 0);
3484 ew32(WUFC, 0);
3485 pci_enable_wake(pdev, PCI_D3hot, 0);
3486 pci_enable_wake(pdev, PCI_D3cold, 0);
3487 }
3488
3489 e1000_release_manageability(adapter);
3490
3491 /* make sure adapter isn't asleep if manageability is enabled */
3492 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3493 pci_enable_wake(pdev, PCI_D3hot, 1);
3494 pci_enable_wake(pdev, PCI_D3cold, 1);
3495 }
3496
3497 if (adapter->hw.phy.type == e1000_phy_igp_3)
3498 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3499
3500 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3501 * would have already happened in close and is redundant. */
3502 e1000_release_hw_control(adapter);
3503
3504 pci_disable_device(pdev);
3505
3506 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3507
3508 return 0;
3509}
3510
3511#ifdef CONFIG_PM
3512static int e1000_resume(struct pci_dev *pdev)
3513{
3514 struct net_device *netdev = pci_get_drvdata(pdev);
3515 struct e1000_adapter *adapter = netdev_priv(netdev);
3516 struct e1000_hw *hw = &adapter->hw;
3517 u32 err;
3518
3519 pci_set_power_state(pdev, PCI_D0);
3520 pci_restore_state(pdev);
3521 err = pci_enable_device(pdev);
3522 if (err) {
3523 dev_err(&pdev->dev,
3524 "Cannot enable PCI device from suspend\n");
3525 return err;
3526 }
3527
3528 pci_set_master(pdev);
3529
3530 pci_enable_wake(pdev, PCI_D3hot, 0);
3531 pci_enable_wake(pdev, PCI_D3cold, 0);
3532
3533 if (netif_running(netdev)) {
3534 err = e1000_request_irq(adapter);
3535 if (err)
3536 return err;
3537 }
3538
3539 e1000e_power_up_phy(adapter);
3540 e1000e_reset(adapter);
3541 ew32(WUS, ~0);
3542
3543 e1000_init_manageability(adapter);
3544
3545 if (netif_running(netdev))
3546 e1000e_up(adapter);
3547
3548 netif_device_attach(netdev);
3549
3550 /* If the controller has AMT, do not set DRV_LOAD until the interface
3551 * is up. For all other cases, let the f/w know that the h/w is now
3552 * under the control of the driver. */
3553 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3554 e1000_get_hw_control(adapter);
3555
3556 return 0;
3557}
3558#endif
3559
3560static void e1000_shutdown(struct pci_dev *pdev)
3561{
3562 e1000_suspend(pdev, PMSG_SUSPEND);
3563}
3564
3565#ifdef CONFIG_NET_POLL_CONTROLLER
3566/*
3567 * Polling 'interrupt' - used by things like netconsole to send skbs
3568 * without having to re-enable interrupts. It's not called while
3569 * the interrupt routine is executing.
3570 */
3571static void e1000_netpoll(struct net_device *netdev)
3572{
3573 struct e1000_adapter *adapter = netdev_priv(netdev);
3574
3575 disable_irq(adapter->pdev->irq);
3576 e1000_intr(adapter->pdev->irq, netdev);
3577
3578 e1000_clean_tx_irq(adapter);
3579
3580 enable_irq(adapter->pdev->irq);
3581}
3582#endif
3583
3584/**
3585 * e1000_io_error_detected - called when PCI error is detected
3586 * @pdev: Pointer to PCI device
3587 * @state: The current pci connection state
3588 *
3589 * This function is called after a PCI bus error affecting
3590 * this device has been detected.
3591 */
3592static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3593 pci_channel_state_t state)
3594{
3595 struct net_device *netdev = pci_get_drvdata(pdev);
3596 struct e1000_adapter *adapter = netdev_priv(netdev);
3597
3598 netif_device_detach(netdev);
3599
3600 if (netif_running(netdev))
3601 e1000e_down(adapter);
3602 pci_disable_device(pdev);
3603
3604 /* Request a slot slot reset. */
3605 return PCI_ERS_RESULT_NEED_RESET;
3606}
3607
3608/**
3609 * e1000_io_slot_reset - called after the pci bus has been reset.
3610 * @pdev: Pointer to PCI device
3611 *
3612 * Restart the card from scratch, as if from a cold-boot. Implementation
3613 * resembles the first-half of the e1000_resume routine.
3614 */
3615static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3616{
3617 struct net_device *netdev = pci_get_drvdata(pdev);
3618 struct e1000_adapter *adapter = netdev_priv(netdev);
3619 struct e1000_hw *hw = &adapter->hw;
3620
3621 if (pci_enable_device(pdev)) {
3622 dev_err(&pdev->dev,
3623 "Cannot re-enable PCI device after reset.\n");
3624 return PCI_ERS_RESULT_DISCONNECT;
3625 }
3626 pci_set_master(pdev);
3627
3628 pci_enable_wake(pdev, PCI_D3hot, 0);
3629 pci_enable_wake(pdev, PCI_D3cold, 0);
3630
3631 e1000e_reset(adapter);
3632 ew32(WUS, ~0);
3633
3634 return PCI_ERS_RESULT_RECOVERED;
3635}
3636
3637/**
3638 * e1000_io_resume - called when traffic can start flowing again.
3639 * @pdev: Pointer to PCI device
3640 *
3641 * This callback is called when the error recovery driver tells us that
3642 * its OK to resume normal operation. Implementation resembles the
3643 * second-half of the e1000_resume routine.
3644 */
3645static void e1000_io_resume(struct pci_dev *pdev)
3646{
3647 struct net_device *netdev = pci_get_drvdata(pdev);
3648 struct e1000_adapter *adapter = netdev_priv(netdev);
3649
3650 e1000_init_manageability(adapter);
3651
3652 if (netif_running(netdev)) {
3653 if (e1000e_up(adapter)) {
3654 dev_err(&pdev->dev,
3655 "can't bring device back up after reset\n");
3656 return;
3657 }
3658 }
3659
3660 netif_device_attach(netdev);
3661
3662 /* If the controller has AMT, do not set DRV_LOAD until the interface
3663 * is up. For all other cases, let the f/w know that the h/w is now
3664 * under the control of the driver. */
3665 if (!(adapter->flags & FLAG_HAS_AMT) ||
3666 !e1000e_check_mng_mode(&adapter->hw))
3667 e1000_get_hw_control(adapter);
3668
3669}
3670
3671static void e1000_print_device_info(struct e1000_adapter *adapter)
3672{
3673 struct e1000_hw *hw = &adapter->hw;
3674 struct net_device *netdev = adapter->netdev;
3675 u32 part_num;
3676
3677 /* print bus type/speed/width info */
3678 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3679 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3680 /* bus width */
3681 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3682 "Width x1"),
3683 /* MAC address */
3684 netdev->dev_addr[0], netdev->dev_addr[1],
3685 netdev->dev_addr[2], netdev->dev_addr[3],
3686 netdev->dev_addr[4], netdev->dev_addr[5]);
3687 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3688 (hw->phy.type == e1000_phy_ife)
3689 ? "10/100" : "1000");
3690 e1000e_read_part_num(hw, &part_num);
3691 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3692 hw->mac.type, hw->phy.type,
3693 (part_num >> 8), (part_num & 0xff));
3694}
3695
3696/**
3697 * e1000_probe - Device Initialization Routine
3698 * @pdev: PCI device information struct
3699 * @ent: entry in e1000_pci_tbl
3700 *
3701 * Returns 0 on success, negative on failure
3702 *
3703 * e1000_probe initializes an adapter identified by a pci_dev structure.
3704 * The OS initialization, configuring of the adapter private structure,
3705 * and a hardware reset occur.
3706 **/
3707static int __devinit e1000_probe(struct pci_dev *pdev,
3708 const struct pci_device_id *ent)
3709{
3710 struct net_device *netdev;
3711 struct e1000_adapter *adapter;
3712 struct e1000_hw *hw;
3713 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3714 unsigned long mmio_start, mmio_len;
3715 unsigned long flash_start, flash_len;
3716
3717 static int cards_found;
3718 int i, err, pci_using_dac;
3719 u16 eeprom_data = 0;
3720 u16 eeprom_apme_mask = E1000_EEPROM_APME;
3721
3722 err = pci_enable_device(pdev);
3723 if (err)
3724 return err;
3725
3726 pci_using_dac = 0;
3727 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
3728 if (!err) {
3729 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3730 if (!err)
3731 pci_using_dac = 1;
3732 } else {
3733 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3734 if (err) {
3735 err = pci_set_consistent_dma_mask(pdev,
3736 DMA_32BIT_MASK);
3737 if (err) {
3738 dev_err(&pdev->dev, "No usable DMA "
3739 "configuration, aborting\n");
3740 goto err_dma;
3741 }
3742 }
3743 }
3744
3745 err = pci_request_regions(pdev, e1000e_driver_name);
3746 if (err)
3747 goto err_pci_reg;
3748
3749 pci_set_master(pdev);
3750
3751 err = -ENOMEM;
3752 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
3753 if (!netdev)
3754 goto err_alloc_etherdev;
3755
Auke Kokbc7f75f2007-09-17 12:30:59 -07003756 SET_NETDEV_DEV(netdev, &pdev->dev);
3757
3758 pci_set_drvdata(pdev, netdev);
3759 adapter = netdev_priv(netdev);
3760 hw = &adapter->hw;
3761 adapter->netdev = netdev;
3762 adapter->pdev = pdev;
3763 adapter->ei = ei;
3764 adapter->pba = ei->pba;
3765 adapter->flags = ei->flags;
3766 adapter->hw.adapter = adapter;
3767 adapter->hw.mac.type = ei->mac;
3768 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
3769
3770 mmio_start = pci_resource_start(pdev, 0);
3771 mmio_len = pci_resource_len(pdev, 0);
3772
3773 err = -EIO;
3774 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
3775 if (!adapter->hw.hw_addr)
3776 goto err_ioremap;
3777
3778 if ((adapter->flags & FLAG_HAS_FLASH) &&
3779 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
3780 flash_start = pci_resource_start(pdev, 1);
3781 flash_len = pci_resource_len(pdev, 1);
3782 adapter->hw.flash_address = ioremap(flash_start, flash_len);
3783 if (!adapter->hw.flash_address)
3784 goto err_flashmap;
3785 }
3786
3787 /* construct the net_device struct */
3788 netdev->open = &e1000_open;
3789 netdev->stop = &e1000_close;
3790 netdev->hard_start_xmit = &e1000_xmit_frame;
3791 netdev->get_stats = &e1000_get_stats;
3792 netdev->set_multicast_list = &e1000_set_multi;
3793 netdev->set_mac_address = &e1000_set_mac;
3794 netdev->change_mtu = &e1000_change_mtu;
3795 netdev->do_ioctl = &e1000_ioctl;
3796 e1000e_set_ethtool_ops(netdev);
3797 netdev->tx_timeout = &e1000_tx_timeout;
3798 netdev->watchdog_timeo = 5 * HZ;
3799 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
3800 netdev->vlan_rx_register = e1000_vlan_rx_register;
3801 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
3802 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
3803#ifdef CONFIG_NET_POLL_CONTROLLER
3804 netdev->poll_controller = e1000_netpoll;
3805#endif
3806 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3807
3808 netdev->mem_start = mmio_start;
3809 netdev->mem_end = mmio_start + mmio_len;
3810
3811 adapter->bd_number = cards_found++;
3812
3813 /* setup adapter struct */
3814 err = e1000_sw_init(adapter);
3815 if (err)
3816 goto err_sw_init;
3817
3818 err = -EIO;
3819
3820 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3821 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3822 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3823
3824 err = ei->get_invariants(adapter);
3825 if (err)
3826 goto err_hw_init;
3827
3828 hw->mac.ops.get_bus_info(&adapter->hw);
3829
3830 adapter->hw.phy.wait_for_link = 0;
3831
3832 /* Copper options */
3833 if (adapter->hw.media_type == e1000_media_type_copper) {
3834 adapter->hw.phy.mdix = AUTO_ALL_MODES;
3835 adapter->hw.phy.disable_polarity_correction = 0;
3836 adapter->hw.phy.ms_type = e1000_ms_hw_default;
3837 }
3838
3839 if (e1000_check_reset_block(&adapter->hw))
3840 ndev_info(netdev,
3841 "PHY reset is blocked due to SOL/IDER session.\n");
3842
3843 netdev->features = NETIF_F_SG |
3844 NETIF_F_HW_CSUM |
3845 NETIF_F_HW_VLAN_TX |
3846 NETIF_F_HW_VLAN_RX;
3847
3848 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3849 netdev->features |= NETIF_F_HW_VLAN_FILTER;
3850
3851 netdev->features |= NETIF_F_TSO;
3852 netdev->features |= NETIF_F_TSO6;
3853
3854 if (pci_using_dac)
3855 netdev->features |= NETIF_F_HIGHDMA;
3856
3857 /* We should not be using LLTX anymore, but we are still TX faster with
3858 * it. */
3859 netdev->features |= NETIF_F_LLTX;
3860
3861 if (e1000e_enable_mng_pass_thru(&adapter->hw))
3862 adapter->flags |= FLAG_MNG_PT_ENABLED;
3863
3864 /* before reading the NVM, reset the controller to
3865 * put the device in a known good starting state */
3866 adapter->hw.mac.ops.reset_hw(&adapter->hw);
3867
3868 /*
3869 * systems with ASPM and others may see the checksum fail on the first
3870 * attempt. Let's give it a few tries
3871 */
3872 for (i = 0;; i++) {
3873 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
3874 break;
3875 if (i == 2) {
3876 ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
3877 err = -EIO;
3878 goto err_eeprom;
3879 }
3880 }
3881
3882 /* copy the MAC address out of the NVM */
3883 if (e1000e_read_mac_addr(&adapter->hw))
3884 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
3885
3886 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3887 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3888
3889 if (!is_valid_ether_addr(netdev->perm_addr)) {
3890 ndev_err(netdev, "Invalid MAC Address: "
3891 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3892 netdev->perm_addr[0], netdev->perm_addr[1],
3893 netdev->perm_addr[2], netdev->perm_addr[3],
3894 netdev->perm_addr[4], netdev->perm_addr[5]);
3895 err = -EIO;
3896 goto err_eeprom;
3897 }
3898
3899 init_timer(&adapter->watchdog_timer);
3900 adapter->watchdog_timer.function = &e1000_watchdog;
3901 adapter->watchdog_timer.data = (unsigned long) adapter;
3902
3903 init_timer(&adapter->phy_info_timer);
3904 adapter->phy_info_timer.function = &e1000_update_phy_info;
3905 adapter->phy_info_timer.data = (unsigned long) adapter;
3906
3907 INIT_WORK(&adapter->reset_task, e1000_reset_task);
3908 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
3909
3910 e1000e_check_options(adapter);
3911
3912 /* Initialize link parameters. User can change them with ethtool */
3913 adapter->hw.mac.autoneg = 1;
Auke Kok309af402007-10-05 15:22:02 -07003914 adapter->fc_autoneg = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003915 adapter->hw.mac.original_fc = e1000_fc_default;
3916 adapter->hw.mac.fc = e1000_fc_default;
3917 adapter->hw.phy.autoneg_advertised = 0x2f;
3918
3919 /* ring size defaults */
3920 adapter->rx_ring->count = 256;
3921 adapter->tx_ring->count = 256;
3922
3923 /*
3924 * Initial Wake on LAN setting - If APM wake is enabled in
3925 * the EEPROM, enable the ACPI Magic Packet filter
3926 */
3927 if (adapter->flags & FLAG_APME_IN_WUC) {
3928 /* APME bit in EEPROM is mapped to WUC.APME */
3929 eeprom_data = er32(WUC);
3930 eeprom_apme_mask = E1000_WUC_APME;
3931 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
3932 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
3933 (adapter->hw.bus.func == 1))
3934 e1000_read_nvm(&adapter->hw,
3935 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3936 else
3937 e1000_read_nvm(&adapter->hw,
3938 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3939 }
3940
3941 /* fetch WoL from EEPROM */
3942 if (eeprom_data & eeprom_apme_mask)
3943 adapter->eeprom_wol |= E1000_WUFC_MAG;
3944
3945 /*
3946 * now that we have the eeprom settings, apply the special cases
3947 * where the eeprom may be wrong or the board simply won't support
3948 * wake on lan on a particular port
3949 */
3950 if (!(adapter->flags & FLAG_HAS_WOL))
3951 adapter->eeprom_wol = 0;
3952
3953 /* initialize the wol settings based on the eeprom settings */
3954 adapter->wol = adapter->eeprom_wol;
3955
3956 /* reset the hardware with the new settings */
3957 e1000e_reset(adapter);
3958
3959 /* If the controller has AMT, do not set DRV_LOAD until the interface
3960 * is up. For all other cases, let the f/w know that the h/w is now
3961 * under the control of the driver. */
3962 if (!(adapter->flags & FLAG_HAS_AMT) ||
3963 !e1000e_check_mng_mode(&adapter->hw))
3964 e1000_get_hw_control(adapter);
3965
3966 /* tell the stack to leave us alone until e1000_open() is called */
3967 netif_carrier_off(netdev);
3968 netif_stop_queue(netdev);
3969
3970 strcpy(netdev->name, "eth%d");
3971 err = register_netdev(netdev);
3972 if (err)
3973 goto err_register;
3974
3975 e1000_print_device_info(adapter);
3976
3977 return 0;
3978
3979err_register:
3980err_hw_init:
3981 e1000_release_hw_control(adapter);
3982err_eeprom:
3983 if (!e1000_check_reset_block(&adapter->hw))
3984 e1000_phy_hw_reset(&adapter->hw);
3985
3986 if (adapter->hw.flash_address)
3987 iounmap(adapter->hw.flash_address);
3988
3989err_flashmap:
3990 kfree(adapter->tx_ring);
3991 kfree(adapter->rx_ring);
3992err_sw_init:
3993 iounmap(adapter->hw.hw_addr);
3994err_ioremap:
3995 free_netdev(netdev);
3996err_alloc_etherdev:
3997 pci_release_regions(pdev);
3998err_pci_reg:
3999err_dma:
4000 pci_disable_device(pdev);
4001 return err;
4002}
4003
4004/**
4005 * e1000_remove - Device Removal Routine
4006 * @pdev: PCI device information struct
4007 *
4008 * e1000_remove is called by the PCI subsystem to alert the driver
4009 * that it should release a PCI device. The could be caused by a
4010 * Hot-Plug event, or because the driver is going to be removed from
4011 * memory.
4012 **/
4013static void __devexit e1000_remove(struct pci_dev *pdev)
4014{
4015 struct net_device *netdev = pci_get_drvdata(pdev);
4016 struct e1000_adapter *adapter = netdev_priv(netdev);
4017
4018 /* flush_scheduled work may reschedule our watchdog task, so
4019 * explicitly disable watchdog tasks from being rescheduled */
4020 set_bit(__E1000_DOWN, &adapter->state);
4021 del_timer_sync(&adapter->watchdog_timer);
4022 del_timer_sync(&adapter->phy_info_timer);
4023
4024 flush_scheduled_work();
4025
4026 e1000_release_manageability(adapter);
4027
4028 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4029 * would have already happened in close and is redundant. */
4030 e1000_release_hw_control(adapter);
4031
4032 unregister_netdev(netdev);
4033
4034 if (!e1000_check_reset_block(&adapter->hw))
4035 e1000_phy_hw_reset(&adapter->hw);
4036
4037 kfree(adapter->tx_ring);
4038 kfree(adapter->rx_ring);
4039
4040 iounmap(adapter->hw.hw_addr);
4041 if (adapter->hw.flash_address)
4042 iounmap(adapter->hw.flash_address);
4043 pci_release_regions(pdev);
4044
4045 free_netdev(netdev);
4046
4047 pci_disable_device(pdev);
4048}
4049
4050/* PCI Error Recovery (ERS) */
4051static struct pci_error_handlers e1000_err_handler = {
4052 .error_detected = e1000_io_error_detected,
4053 .slot_reset = e1000_io_slot_reset,
4054 .resume = e1000_io_resume,
4055};
4056
4057static struct pci_device_id e1000_pci_tbl[] = {
4058 /*
4059 * Support for 82571/2/3, es2lan and ich8 will be phased in
4060 * stepwise.
4061
4062 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4063 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4064 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4065 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4066 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4067 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4068 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4069 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4070 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4071 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4072 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4073 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4074 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4075 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4076 board_80003es2lan },
4077 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4078 board_80003es2lan },
4079 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4080 board_80003es2lan },
4081 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4082 board_80003es2lan },
4083 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4084 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4085 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4086 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4087 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4088 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4089 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4090 */
4091
4092 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4093 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4094 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4095 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4096 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4097
4098 { } /* terminate list */
4099};
4100MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4101
4102/* PCI Device API Driver */
4103static struct pci_driver e1000_driver = {
4104 .name = e1000e_driver_name,
4105 .id_table = e1000_pci_tbl,
4106 .probe = e1000_probe,
4107 .remove = __devexit_p(e1000_remove),
4108#ifdef CONFIG_PM
4109 /* Power Managment Hooks */
4110 .suspend = e1000_suspend,
4111 .resume = e1000_resume,
4112#endif
4113 .shutdown = e1000_shutdown,
4114 .err_handler = &e1000_err_handler
4115};
4116
4117/**
4118 * e1000_init_module - Driver Registration Routine
4119 *
4120 * e1000_init_module is the first routine called when the driver is
4121 * loaded. All it does is register with the PCI subsystem.
4122 **/
4123static int __init e1000_init_module(void)
4124{
4125 int ret;
4126 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4127 e1000e_driver_name, e1000e_driver_version);
4128 printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4129 e1000e_driver_name);
4130 ret = pci_register_driver(&e1000_driver);
4131
4132 return ret;
4133}
4134module_init(e1000_init_module);
4135
4136/**
4137 * e1000_exit_module - Driver Exit Cleanup Routine
4138 *
4139 * e1000_exit_module is called just before the driver is removed
4140 * from memory.
4141 **/
4142static void __exit e1000_exit_module(void)
4143{
4144 pci_unregister_driver(&e1000_driver);
4145}
4146module_exit(e1000_exit_module);
4147
4148
4149MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4150MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4151MODULE_LICENSE("GPL");
4152MODULE_VERSION(DRV_VERSION);
4153
4154/* e1000_main.c */