Johan Hedberg | 05ddb47 | 2014-04-29 13:07:45 +0300 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2013, Kenneth MacKay |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions are |
| 7 | * met: |
| 8 | * * Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * * Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 15 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 16 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 17 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 18 | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 20 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 21 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 22 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | */ |
| 26 | |
| 27 | #include <linux/random.h> |
| 28 | |
| 29 | #include "ecc.h" |
| 30 | |
| 31 | /* 256-bit curve */ |
| 32 | #define ECC_BYTES 32 |
| 33 | |
| 34 | #define MAX_TRIES 16 |
| 35 | |
| 36 | /* Number of u64's needed */ |
| 37 | #define NUM_ECC_DIGITS (ECC_BYTES / 8) |
| 38 | |
| 39 | struct ecc_point { |
| 40 | u64 x[NUM_ECC_DIGITS]; |
| 41 | u64 y[NUM_ECC_DIGITS]; |
| 42 | }; |
| 43 | |
| 44 | typedef struct { |
| 45 | u64 m_low; |
| 46 | u64 m_high; |
| 47 | } uint128_t; |
| 48 | |
| 49 | #define CURVE_P_32 { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \ |
| 50 | 0x0000000000000000ull, 0xFFFFFFFF00000001ull } |
| 51 | |
| 52 | #define CURVE_G_32 { \ |
| 53 | { 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, \ |
| 54 | 0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }, \ |
| 55 | { 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, \ |
| 56 | 0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull } \ |
| 57 | } |
| 58 | |
| 59 | #define CURVE_N_32 { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, \ |
| 60 | 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull } |
| 61 | |
| 62 | static u64 curve_p[NUM_ECC_DIGITS] = CURVE_P_32; |
| 63 | static struct ecc_point curve_g = CURVE_G_32; |
| 64 | static u64 curve_n[NUM_ECC_DIGITS] = CURVE_N_32; |
| 65 | |
| 66 | static void vli_clear(u64 *vli) |
| 67 | { |
| 68 | int i; |
| 69 | |
| 70 | for (i = 0; i < NUM_ECC_DIGITS; i++) |
| 71 | vli[i] = 0; |
| 72 | } |
| 73 | |
| 74 | /* Returns true if vli == 0, false otherwise. */ |
| 75 | static bool vli_is_zero(const u64 *vli) |
| 76 | { |
| 77 | int i; |
| 78 | |
| 79 | for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| 80 | if (vli[i]) |
| 81 | return false; |
| 82 | } |
| 83 | |
| 84 | return true; |
| 85 | } |
| 86 | |
| 87 | /* Returns nonzero if bit bit of vli is set. */ |
| 88 | static u64 vli_test_bit(const u64 *vli, unsigned int bit) |
| 89 | { |
| 90 | return (vli[bit / 64] & ((u64) 1 << (bit % 64))); |
| 91 | } |
| 92 | |
| 93 | /* Counts the number of 64-bit "digits" in vli. */ |
| 94 | static unsigned int vli_num_digits(const u64 *vli) |
| 95 | { |
| 96 | int i; |
| 97 | |
| 98 | /* Search from the end until we find a non-zero digit. |
| 99 | * We do it in reverse because we expect that most digits will |
| 100 | * be nonzero. |
| 101 | */ |
| 102 | for (i = NUM_ECC_DIGITS - 1; i >= 0 && vli[i] == 0; i--); |
| 103 | |
| 104 | return (i + 1); |
| 105 | } |
| 106 | |
| 107 | /* Counts the number of bits required for vli. */ |
| 108 | static unsigned int vli_num_bits(const u64 *vli) |
| 109 | { |
| 110 | unsigned int i, num_digits; |
| 111 | u64 digit; |
| 112 | |
| 113 | num_digits = vli_num_digits(vli); |
| 114 | if (num_digits == 0) |
| 115 | return 0; |
| 116 | |
| 117 | digit = vli[num_digits - 1]; |
| 118 | for (i = 0; digit; i++) |
| 119 | digit >>= 1; |
| 120 | |
| 121 | return ((num_digits - 1) * 64 + i); |
| 122 | } |
| 123 | |
| 124 | /* Sets dest = src. */ |
| 125 | static void vli_set(u64 *dest, const u64 *src) |
| 126 | { |
| 127 | int i; |
| 128 | |
| 129 | for (i = 0; i < NUM_ECC_DIGITS; i++) |
| 130 | dest[i] = src[i]; |
| 131 | } |
| 132 | |
| 133 | /* Returns sign of left - right. */ |
| 134 | static int vli_cmp(const u64 *left, const u64 *right) |
| 135 | { |
| 136 | int i; |
| 137 | |
| 138 | for (i = NUM_ECC_DIGITS - 1; i >= 0; i--) { |
| 139 | if (left[i] > right[i]) |
| 140 | return 1; |
| 141 | else if (left[i] < right[i]) |
| 142 | return -1; |
| 143 | } |
| 144 | |
| 145 | return 0; |
| 146 | } |
| 147 | |
| 148 | /* Computes result = in << c, returning carry. Can modify in place |
| 149 | * (if result == in). 0 < shift < 64. |
| 150 | */ |
| 151 | static u64 vli_lshift(u64 *result, const u64 *in, |
| 152 | unsigned int shift) |
| 153 | { |
| 154 | u64 carry = 0; |
| 155 | int i; |
| 156 | |
| 157 | for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| 158 | u64 temp = in[i]; |
| 159 | |
| 160 | result[i] = (temp << shift) | carry; |
| 161 | carry = temp >> (64 - shift); |
| 162 | } |
| 163 | |
| 164 | return carry; |
| 165 | } |
| 166 | |
| 167 | /* Computes vli = vli >> 1. */ |
| 168 | static void vli_rshift1(u64 *vli) |
| 169 | { |
| 170 | u64 *end = vli; |
| 171 | u64 carry = 0; |
| 172 | |
| 173 | vli += NUM_ECC_DIGITS; |
| 174 | |
| 175 | while (vli-- > end) { |
| 176 | u64 temp = *vli; |
| 177 | *vli = (temp >> 1) | carry; |
| 178 | carry = temp << 63; |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | /* Computes result = left + right, returning carry. Can modify in place. */ |
| 183 | static u64 vli_add(u64 *result, const u64 *left, |
| 184 | const u64 *right) |
| 185 | { |
| 186 | u64 carry = 0; |
| 187 | int i; |
| 188 | |
| 189 | for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| 190 | u64 sum; |
| 191 | |
| 192 | sum = left[i] + right[i] + carry; |
| 193 | if (sum != left[i]) |
| 194 | carry = (sum < left[i]); |
| 195 | |
| 196 | result[i] = sum; |
| 197 | } |
| 198 | |
| 199 | return carry; |
| 200 | } |
| 201 | |
| 202 | /* Computes result = left - right, returning borrow. Can modify in place. */ |
| 203 | static u64 vli_sub(u64 *result, const u64 *left, const u64 *right) |
| 204 | { |
| 205 | u64 borrow = 0; |
| 206 | int i; |
| 207 | |
| 208 | for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| 209 | u64 diff; |
| 210 | |
| 211 | diff = left[i] - right[i] - borrow; |
| 212 | if (diff != left[i]) |
| 213 | borrow = (diff > left[i]); |
| 214 | |
| 215 | result[i] = diff; |
| 216 | } |
| 217 | |
| 218 | return borrow; |
| 219 | } |
| 220 | |
| 221 | static uint128_t mul_64_64(u64 left, u64 right) |
| 222 | { |
| 223 | u64 a0 = left & 0xffffffffull; |
| 224 | u64 a1 = left >> 32; |
| 225 | u64 b0 = right & 0xffffffffull; |
| 226 | u64 b1 = right >> 32; |
| 227 | u64 m0 = a0 * b0; |
| 228 | u64 m1 = a0 * b1; |
| 229 | u64 m2 = a1 * b0; |
| 230 | u64 m3 = a1 * b1; |
| 231 | uint128_t result; |
| 232 | |
| 233 | m2 += (m0 >> 32); |
| 234 | m2 += m1; |
| 235 | |
| 236 | /* Overflow */ |
| 237 | if (m2 < m1) |
| 238 | m3 += 0x100000000ull; |
| 239 | |
| 240 | result.m_low = (m0 & 0xffffffffull) | (m2 << 32); |
| 241 | result.m_high = m3 + (m2 >> 32); |
| 242 | |
| 243 | return result; |
| 244 | } |
| 245 | |
| 246 | static uint128_t add_128_128(uint128_t a, uint128_t b) |
| 247 | { |
| 248 | uint128_t result; |
| 249 | |
| 250 | result.m_low = a.m_low + b.m_low; |
| 251 | result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); |
| 252 | |
| 253 | return result; |
| 254 | } |
| 255 | |
| 256 | static void vli_mult(u64 *result, const u64 *left, const u64 *right) |
| 257 | { |
| 258 | uint128_t r01 = { 0, 0 }; |
| 259 | u64 r2 = 0; |
| 260 | unsigned int i, k; |
| 261 | |
| 262 | /* Compute each digit of result in sequence, maintaining the |
| 263 | * carries. |
| 264 | */ |
| 265 | for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) { |
| 266 | unsigned int min; |
| 267 | |
| 268 | if (k < NUM_ECC_DIGITS) |
| 269 | min = 0; |
| 270 | else |
| 271 | min = (k + 1) - NUM_ECC_DIGITS; |
| 272 | |
| 273 | for (i = min; i <= k && i < NUM_ECC_DIGITS; i++) { |
| 274 | uint128_t product; |
| 275 | |
| 276 | product = mul_64_64(left[i], right[k - i]); |
| 277 | |
| 278 | r01 = add_128_128(r01, product); |
| 279 | r2 += (r01.m_high < product.m_high); |
| 280 | } |
| 281 | |
| 282 | result[k] = r01.m_low; |
| 283 | r01.m_low = r01.m_high; |
| 284 | r01.m_high = r2; |
| 285 | r2 = 0; |
| 286 | } |
| 287 | |
| 288 | result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low; |
| 289 | } |
| 290 | |
| 291 | static void vli_square(u64 *result, const u64 *left) |
| 292 | { |
| 293 | uint128_t r01 = { 0, 0 }; |
| 294 | u64 r2 = 0; |
| 295 | int i, k; |
| 296 | |
| 297 | for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) { |
| 298 | unsigned int min; |
| 299 | |
| 300 | if (k < NUM_ECC_DIGITS) |
| 301 | min = 0; |
| 302 | else |
| 303 | min = (k + 1) - NUM_ECC_DIGITS; |
| 304 | |
| 305 | for (i = min; i <= k && i <= k - i; i++) { |
| 306 | uint128_t product; |
| 307 | |
| 308 | product = mul_64_64(left[i], left[k - i]); |
| 309 | |
| 310 | if (i < k - i) { |
| 311 | r2 += product.m_high >> 63; |
| 312 | product.m_high = (product.m_high << 1) | |
| 313 | (product.m_low >> 63); |
| 314 | product.m_low <<= 1; |
| 315 | } |
| 316 | |
| 317 | r01 = add_128_128(r01, product); |
| 318 | r2 += (r01.m_high < product.m_high); |
| 319 | } |
| 320 | |
| 321 | result[k] = r01.m_low; |
| 322 | r01.m_low = r01.m_high; |
| 323 | r01.m_high = r2; |
| 324 | r2 = 0; |
| 325 | } |
| 326 | |
| 327 | result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low; |
| 328 | } |
| 329 | |
| 330 | /* Computes result = (left + right) % mod. |
| 331 | * Assumes that left < mod and right < mod, result != mod. |
| 332 | */ |
| 333 | static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, |
| 334 | const u64 *mod) |
| 335 | { |
| 336 | u64 carry; |
| 337 | |
| 338 | carry = vli_add(result, left, right); |
| 339 | |
| 340 | /* result > mod (result = mod + remainder), so subtract mod to |
| 341 | * get remainder. |
| 342 | */ |
| 343 | if (carry || vli_cmp(result, mod) >= 0) |
| 344 | vli_sub(result, result, mod); |
| 345 | } |
| 346 | |
| 347 | /* Computes result = (left - right) % mod. |
| 348 | * Assumes that left < mod and right < mod, result != mod. |
| 349 | */ |
| 350 | static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, |
| 351 | const u64 *mod) |
| 352 | { |
| 353 | u64 borrow = vli_sub(result, left, right); |
| 354 | |
| 355 | /* In this case, p_result == -diff == (max int) - diff. |
| 356 | * Since -x % d == d - x, we can get the correct result from |
| 357 | * result + mod (with overflow). |
| 358 | */ |
| 359 | if (borrow) |
| 360 | vli_add(result, result, mod); |
| 361 | } |
| 362 | |
| 363 | /* Computes result = product % curve_p |
| 364 | from http://www.nsa.gov/ia/_files/nist-routines.pdf */ |
| 365 | static void vli_mmod_fast(u64 *result, const u64 *product) |
| 366 | { |
| 367 | u64 tmp[NUM_ECC_DIGITS]; |
| 368 | int carry; |
| 369 | |
| 370 | /* t */ |
| 371 | vli_set(result, product); |
| 372 | |
| 373 | /* s1 */ |
| 374 | tmp[0] = 0; |
| 375 | tmp[1] = product[5] & 0xffffffff00000000ull; |
| 376 | tmp[2] = product[6]; |
| 377 | tmp[3] = product[7]; |
| 378 | carry = vli_lshift(tmp, tmp, 1); |
| 379 | carry += vli_add(result, result, tmp); |
| 380 | |
| 381 | /* s2 */ |
| 382 | tmp[1] = product[6] << 32; |
| 383 | tmp[2] = (product[6] >> 32) | (product[7] << 32); |
| 384 | tmp[3] = product[7] >> 32; |
| 385 | carry += vli_lshift(tmp, tmp, 1); |
| 386 | carry += vli_add(result, result, tmp); |
| 387 | |
| 388 | /* s3 */ |
| 389 | tmp[0] = product[4]; |
| 390 | tmp[1] = product[5] & 0xffffffff; |
| 391 | tmp[2] = 0; |
| 392 | tmp[3] = product[7]; |
| 393 | carry += vli_add(result, result, tmp); |
| 394 | |
| 395 | /* s4 */ |
| 396 | tmp[0] = (product[4] >> 32) | (product[5] << 32); |
| 397 | tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); |
| 398 | tmp[2] = product[7]; |
| 399 | tmp[3] = (product[6] >> 32) | (product[4] << 32); |
| 400 | carry += vli_add(result, result, tmp); |
| 401 | |
| 402 | /* d1 */ |
| 403 | tmp[0] = (product[5] >> 32) | (product[6] << 32); |
| 404 | tmp[1] = (product[6] >> 32); |
| 405 | tmp[2] = 0; |
| 406 | tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); |
| 407 | carry -= vli_sub(result, result, tmp); |
| 408 | |
| 409 | /* d2 */ |
| 410 | tmp[0] = product[6]; |
| 411 | tmp[1] = product[7]; |
| 412 | tmp[2] = 0; |
| 413 | tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); |
| 414 | carry -= vli_sub(result, result, tmp); |
| 415 | |
| 416 | /* d3 */ |
| 417 | tmp[0] = (product[6] >> 32) | (product[7] << 32); |
| 418 | tmp[1] = (product[7] >> 32) | (product[4] << 32); |
| 419 | tmp[2] = (product[4] >> 32) | (product[5] << 32); |
| 420 | tmp[3] = (product[6] << 32); |
| 421 | carry -= vli_sub(result, result, tmp); |
| 422 | |
| 423 | /* d4 */ |
| 424 | tmp[0] = product[7]; |
| 425 | tmp[1] = product[4] & 0xffffffff00000000ull; |
| 426 | tmp[2] = product[5]; |
| 427 | tmp[3] = product[6] & 0xffffffff00000000ull; |
| 428 | carry -= vli_sub(result, result, tmp); |
| 429 | |
| 430 | if (carry < 0) { |
| 431 | do { |
| 432 | carry += vli_add(result, result, curve_p); |
| 433 | } while (carry < 0); |
| 434 | } else { |
| 435 | while (carry || vli_cmp(curve_p, result) != 1) |
| 436 | carry -= vli_sub(result, result, curve_p); |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | /* Computes result = (left * right) % curve_p. */ |
| 441 | static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right) |
| 442 | { |
| 443 | u64 product[2 * NUM_ECC_DIGITS]; |
| 444 | |
| 445 | vli_mult(product, left, right); |
| 446 | vli_mmod_fast(result, product); |
| 447 | } |
| 448 | |
| 449 | /* Computes result = left^2 % curve_p. */ |
| 450 | static void vli_mod_square_fast(u64 *result, const u64 *left) |
| 451 | { |
| 452 | u64 product[2 * NUM_ECC_DIGITS]; |
| 453 | |
| 454 | vli_square(product, left); |
| 455 | vli_mmod_fast(result, product); |
| 456 | } |
| 457 | |
| 458 | #define EVEN(vli) (!(vli[0] & 1)) |
| 459 | /* Computes result = (1 / p_input) % mod. All VLIs are the same size. |
| 460 | * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" |
| 461 | * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf |
| 462 | */ |
| 463 | static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod) |
| 464 | { |
| 465 | u64 a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS]; |
| 466 | u64 u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS]; |
| 467 | u64 carry; |
| 468 | int cmp_result; |
| 469 | |
| 470 | if (vli_is_zero(input)) { |
| 471 | vli_clear(result); |
| 472 | return; |
| 473 | } |
| 474 | |
| 475 | vli_set(a, input); |
| 476 | vli_set(b, mod); |
| 477 | vli_clear(u); |
| 478 | u[0] = 1; |
| 479 | vli_clear(v); |
| 480 | |
| 481 | while ((cmp_result = vli_cmp(a, b)) != 0) { |
| 482 | carry = 0; |
| 483 | |
| 484 | if (EVEN(a)) { |
| 485 | vli_rshift1(a); |
| 486 | |
| 487 | if (!EVEN(u)) |
| 488 | carry = vli_add(u, u, mod); |
| 489 | |
| 490 | vli_rshift1(u); |
| 491 | if (carry) |
| 492 | u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; |
| 493 | } else if (EVEN(b)) { |
| 494 | vli_rshift1(b); |
| 495 | |
| 496 | if (!EVEN(v)) |
| 497 | carry = vli_add(v, v, mod); |
| 498 | |
| 499 | vli_rshift1(v); |
| 500 | if (carry) |
| 501 | v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; |
| 502 | } else if (cmp_result > 0) { |
| 503 | vli_sub(a, a, b); |
| 504 | vli_rshift1(a); |
| 505 | |
| 506 | if (vli_cmp(u, v) < 0) |
| 507 | vli_add(u, u, mod); |
| 508 | |
| 509 | vli_sub(u, u, v); |
| 510 | if (!EVEN(u)) |
| 511 | carry = vli_add(u, u, mod); |
| 512 | |
| 513 | vli_rshift1(u); |
| 514 | if (carry) |
| 515 | u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; |
| 516 | } else { |
| 517 | vli_sub(b, b, a); |
| 518 | vli_rshift1(b); |
| 519 | |
| 520 | if (vli_cmp(v, u) < 0) |
| 521 | vli_add(v, v, mod); |
| 522 | |
| 523 | vli_sub(v, v, u); |
| 524 | if (!EVEN(v)) |
| 525 | carry = vli_add(v, v, mod); |
| 526 | |
| 527 | vli_rshift1(v); |
| 528 | if (carry) |
| 529 | v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | vli_set(result, u); |
| 534 | } |
| 535 | |
| 536 | /* ------ Point operations ------ */ |
| 537 | |
| 538 | /* Returns true if p_point is the point at infinity, false otherwise. */ |
| 539 | static bool ecc_point_is_zero(const struct ecc_point *point) |
| 540 | { |
| 541 | return (vli_is_zero(point->x) && vli_is_zero(point->y)); |
| 542 | } |
| 543 | |
| 544 | /* Point multiplication algorithm using Montgomery's ladder with co-Z |
| 545 | * coordinates. From http://eprint.iacr.org/2011/338.pdf |
| 546 | */ |
| 547 | |
| 548 | /* Double in place */ |
| 549 | static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1) |
| 550 | { |
| 551 | /* t1 = x, t2 = y, t3 = z */ |
| 552 | u64 t4[NUM_ECC_DIGITS]; |
| 553 | u64 t5[NUM_ECC_DIGITS]; |
| 554 | |
| 555 | if (vli_is_zero(z1)) |
| 556 | return; |
| 557 | |
| 558 | vli_mod_square_fast(t4, y1); /* t4 = y1^2 */ |
| 559 | vli_mod_mult_fast(t5, x1, t4); /* t5 = x1*y1^2 = A */ |
| 560 | vli_mod_square_fast(t4, t4); /* t4 = y1^4 */ |
| 561 | vli_mod_mult_fast(y1, y1, z1); /* t2 = y1*z1 = z3 */ |
| 562 | vli_mod_square_fast(z1, z1); /* t3 = z1^2 */ |
| 563 | |
| 564 | vli_mod_add(x1, x1, z1, curve_p); /* t1 = x1 + z1^2 */ |
| 565 | vli_mod_add(z1, z1, z1, curve_p); /* t3 = 2*z1^2 */ |
| 566 | vli_mod_sub(z1, x1, z1, curve_p); /* t3 = x1 - z1^2 */ |
| 567 | vli_mod_mult_fast(x1, x1, z1); /* t1 = x1^2 - z1^4 */ |
| 568 | |
| 569 | vli_mod_add(z1, x1, x1, curve_p); /* t3 = 2*(x1^2 - z1^4) */ |
| 570 | vli_mod_add(x1, x1, z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */ |
| 571 | if (vli_test_bit(x1, 0)) { |
| 572 | u64 carry = vli_add(x1, x1, curve_p); |
| 573 | vli_rshift1(x1); |
| 574 | x1[NUM_ECC_DIGITS - 1] |= carry << 63; |
| 575 | } else { |
| 576 | vli_rshift1(x1); |
| 577 | } |
| 578 | /* t1 = 3/2*(x1^2 - z1^4) = B */ |
| 579 | |
| 580 | vli_mod_square_fast(z1, x1); /* t3 = B^2 */ |
| 581 | vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - A */ |
| 582 | vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */ |
| 583 | vli_mod_sub(t5, t5, z1, curve_p); /* t5 = A - x3 */ |
| 584 | vli_mod_mult_fast(x1, x1, t5); /* t1 = B * (A - x3) */ |
| 585 | vli_mod_sub(t4, x1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */ |
| 586 | |
| 587 | vli_set(x1, z1); |
| 588 | vli_set(z1, y1); |
| 589 | vli_set(y1, t4); |
| 590 | } |
| 591 | |
| 592 | /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ |
| 593 | static void apply_z(u64 *x1, u64 *y1, u64 *z) |
| 594 | { |
| 595 | u64 t1[NUM_ECC_DIGITS]; |
| 596 | |
| 597 | vli_mod_square_fast(t1, z); /* z^2 */ |
| 598 | vli_mod_mult_fast(x1, x1, t1); /* x1 * z^2 */ |
| 599 | vli_mod_mult_fast(t1, t1, z); /* z^3 */ |
| 600 | vli_mod_mult_fast(y1, y1, t1); /* y1 * z^3 */ |
| 601 | } |
| 602 | |
| 603 | /* P = (x1, y1) => 2P, (x2, y2) => P' */ |
| 604 | static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, |
| 605 | u64 *p_initial_z) |
| 606 | { |
| 607 | u64 z[NUM_ECC_DIGITS]; |
| 608 | |
| 609 | vli_set(x2, x1); |
| 610 | vli_set(y2, y1); |
| 611 | |
| 612 | vli_clear(z); |
| 613 | z[0] = 1; |
| 614 | |
| 615 | if (p_initial_z) |
| 616 | vli_set(z, p_initial_z); |
| 617 | |
| 618 | apply_z(x1, y1, z); |
| 619 | |
| 620 | ecc_point_double_jacobian(x1, y1, z); |
| 621 | |
| 622 | apply_z(x2, y2, z); |
| 623 | } |
| 624 | |
| 625 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| 626 | * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) |
| 627 | * or P => P', Q => P + Q |
| 628 | */ |
| 629 | static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2) |
| 630 | { |
| 631 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
| 632 | u64 t5[NUM_ECC_DIGITS]; |
| 633 | |
| 634 | vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */ |
| 635 | vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ |
| 636 | vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */ |
| 637 | vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */ |
| 638 | vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */ |
| 639 | vli_mod_square_fast(t5, y2); /* t5 = (y2 - y1)^2 = D */ |
| 640 | |
| 641 | vli_mod_sub(t5, t5, x1, curve_p); /* t5 = D - B */ |
| 642 | vli_mod_sub(t5, t5, x2, curve_p); /* t5 = D - B - C = x3 */ |
| 643 | vli_mod_sub(x2, x2, x1, curve_p); /* t3 = C - B */ |
| 644 | vli_mod_mult_fast(y1, y1, x2); /* t2 = y1*(C - B) */ |
| 645 | vli_mod_sub(x2, x1, t5, curve_p); /* t3 = B - x3 */ |
| 646 | vli_mod_mult_fast(y2, y2, x2); /* t4 = (y2 - y1)*(B - x3) */ |
| 647 | vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */ |
| 648 | |
| 649 | vli_set(x2, t5); |
| 650 | } |
| 651 | |
| 652 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| 653 | * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) |
| 654 | * or P => P - Q, Q => P + Q |
| 655 | */ |
| 656 | static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2) |
| 657 | { |
| 658 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
| 659 | u64 t5[NUM_ECC_DIGITS]; |
| 660 | u64 t6[NUM_ECC_DIGITS]; |
| 661 | u64 t7[NUM_ECC_DIGITS]; |
| 662 | |
| 663 | vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */ |
| 664 | vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ |
| 665 | vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */ |
| 666 | vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */ |
| 667 | vli_mod_add(t5, y2, y1, curve_p); /* t4 = y2 + y1 */ |
| 668 | vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */ |
| 669 | |
| 670 | vli_mod_sub(t6, x2, x1, curve_p); /* t6 = C - B */ |
| 671 | vli_mod_mult_fast(y1, y1, t6); /* t2 = y1 * (C - B) */ |
| 672 | vli_mod_add(t6, x1, x2, curve_p); /* t6 = B + C */ |
| 673 | vli_mod_square_fast(x2, y2); /* t3 = (y2 - y1)^2 */ |
| 674 | vli_mod_sub(x2, x2, t6, curve_p); /* t3 = x3 */ |
| 675 | |
| 676 | vli_mod_sub(t7, x1, x2, curve_p); /* t7 = B - x3 */ |
| 677 | vli_mod_mult_fast(y2, y2, t7); /* t4 = (y2 - y1)*(B - x3) */ |
| 678 | vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */ |
| 679 | |
| 680 | vli_mod_square_fast(t7, t5); /* t7 = (y2 + y1)^2 = F */ |
| 681 | vli_mod_sub(t7, t7, t6, curve_p); /* t7 = x3' */ |
| 682 | vli_mod_sub(t6, t7, x1, curve_p); /* t6 = x3' - B */ |
| 683 | vli_mod_mult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */ |
| 684 | vli_mod_sub(y1, t6, y1, curve_p); /* t2 = y3' */ |
| 685 | |
| 686 | vli_set(x1, t7); |
| 687 | } |
| 688 | |
| 689 | static void ecc_point_mult(struct ecc_point *result, |
| 690 | const struct ecc_point *point, u64 *scalar, |
| 691 | u64 *initial_z, int num_bits) |
| 692 | { |
| 693 | /* R0 and R1 */ |
| 694 | u64 rx[2][NUM_ECC_DIGITS]; |
| 695 | u64 ry[2][NUM_ECC_DIGITS]; |
| 696 | u64 z[NUM_ECC_DIGITS]; |
| 697 | int i, nb; |
| 698 | |
| 699 | vli_set(rx[1], point->x); |
| 700 | vli_set(ry[1], point->y); |
| 701 | |
| 702 | xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z); |
| 703 | |
| 704 | for (i = num_bits - 2; i > 0; i--) { |
| 705 | nb = !vli_test_bit(scalar, i); |
| 706 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]); |
| 707 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]); |
| 708 | } |
| 709 | |
| 710 | nb = !vli_test_bit(scalar, 0); |
| 711 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]); |
| 712 | |
| 713 | /* Find final 1/Z value. */ |
| 714 | vli_mod_sub(z, rx[1], rx[0], curve_p); /* X1 - X0 */ |
| 715 | vli_mod_mult_fast(z, z, ry[1 - nb]); /* Yb * (X1 - X0) */ |
| 716 | vli_mod_mult_fast(z, z, point->x); /* xP * Yb * (X1 - X0) */ |
| 717 | vli_mod_inv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */ |
| 718 | vli_mod_mult_fast(z, z, point->y); /* yP / (xP * Yb * (X1 - X0)) */ |
| 719 | vli_mod_mult_fast(z, z, rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */ |
| 720 | /* End 1/Z calculation */ |
| 721 | |
| 722 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]); |
| 723 | |
| 724 | apply_z(rx[0], ry[0], z); |
| 725 | |
| 726 | vli_set(result->x, rx[0]); |
| 727 | vli_set(result->y, ry[0]); |
| 728 | } |
| 729 | |
| 730 | static void ecc_bytes2native(const u8 bytes[ECC_BYTES], |
| 731 | u64 native[NUM_ECC_DIGITS]) |
| 732 | { |
| 733 | int i; |
| 734 | |
| 735 | for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| 736 | const u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i); |
| 737 | |
| 738 | native[NUM_ECC_DIGITS - 1 - i] = |
| 739 | ((u64) digit[0] << 0) | |
| 740 | ((u64) digit[1] << 8) | |
| 741 | ((u64) digit[2] << 16) | |
| 742 | ((u64) digit[3] << 24) | |
| 743 | ((u64) digit[4] << 32) | |
| 744 | ((u64) digit[5] << 40) | |
| 745 | ((u64) digit[6] << 48) | |
| 746 | ((u64) digit[7] << 56); |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | static void ecc_native2bytes(const u64 native[NUM_ECC_DIGITS], |
| 751 | u8 bytes[ECC_BYTES]) |
| 752 | { |
| 753 | int i; |
| 754 | |
| 755 | for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| 756 | u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i); |
| 757 | |
| 758 | digit[0] = native[NUM_ECC_DIGITS - 1 - i] >> 0; |
| 759 | digit[1] = native[NUM_ECC_DIGITS - 1 - i] >> 8; |
| 760 | digit[2] = native[NUM_ECC_DIGITS - 1 - i] >> 16; |
| 761 | digit[3] = native[NUM_ECC_DIGITS - 1 - i] >> 24; |
| 762 | digit[4] = native[NUM_ECC_DIGITS - 1 - i] >> 32; |
| 763 | digit[5] = native[NUM_ECC_DIGITS - 1 - i] >> 40; |
| 764 | digit[6] = native[NUM_ECC_DIGITS - 1 - i] >> 48; |
| 765 | digit[7] = native[NUM_ECC_DIGITS - 1 - i] >> 56; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | bool ecc_make_key(u8 public_key[64], u8 private_key[32]) |
| 770 | { |
| 771 | struct ecc_point pk; |
| 772 | u64 priv[NUM_ECC_DIGITS]; |
| 773 | unsigned int tries = 0; |
| 774 | |
| 775 | do { |
| 776 | if (tries++ >= MAX_TRIES) |
| 777 | return false; |
| 778 | |
| 779 | get_random_bytes(priv, ECC_BYTES); |
| 780 | |
| 781 | if (vli_is_zero(priv)) |
| 782 | continue; |
| 783 | |
| 784 | /* Make sure the private key is in the range [1, n-1]. */ |
| 785 | if (vli_cmp(curve_n, priv) != 1) |
| 786 | continue; |
| 787 | |
| 788 | ecc_point_mult(&pk, &curve_g, priv, NULL, vli_num_bits(priv)); |
| 789 | } while (ecc_point_is_zero(&pk)); |
| 790 | |
| 791 | ecc_native2bytes(priv, private_key); |
| 792 | ecc_native2bytes(pk.x, public_key); |
| 793 | ecc_native2bytes(pk.y, &public_key[32]); |
| 794 | |
| 795 | return true; |
| 796 | } |
| 797 | |
| 798 | bool ecdh_shared_secret(const u8 public_key[64], const u8 private_key[32], |
| 799 | u8 secret[32]) |
| 800 | { |
| 801 | u64 priv[NUM_ECC_DIGITS]; |
| 802 | u64 rand[NUM_ECC_DIGITS]; |
| 803 | struct ecc_point product, pk; |
| 804 | |
| 805 | get_random_bytes(rand, ECC_BYTES); |
| 806 | |
| 807 | ecc_bytes2native(public_key, pk.x); |
| 808 | ecc_bytes2native(&public_key[32], pk.y); |
| 809 | ecc_bytes2native(private_key, priv); |
| 810 | |
| 811 | ecc_point_mult(&product, &pk, priv, rand, vli_num_bits(priv)); |
| 812 | |
| 813 | ecc_native2bytes(product.x, secret); |
| 814 | |
| 815 | return !ecc_point_is_zero(&product); |
| 816 | } |