Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /*---------------------------------------------------------------------------+ |
| 2 | | poly_tan.c | |
| 3 | | | |
| 4 | | Compute the tan of a FPU_REG, using a polynomial approximation. | |
| 5 | | | |
| 6 | | Copyright (C) 1992,1993,1994,1997,1999 | |
| 7 | | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, | |
| 8 | | Australia. E-mail billm@melbpc.org.au | |
| 9 | | | |
| 10 | | | |
| 11 | +---------------------------------------------------------------------------*/ |
| 12 | |
| 13 | #include "exception.h" |
| 14 | #include "reg_constant.h" |
| 15 | #include "fpu_emu.h" |
| 16 | #include "fpu_system.h" |
| 17 | #include "control_w.h" |
| 18 | #include "poly.h" |
| 19 | |
| 20 | |
| 21 | #define HiPOWERop 3 /* odd poly, positive terms */ |
| 22 | static const unsigned long long oddplterm[HiPOWERop] = |
| 23 | { |
| 24 | 0x0000000000000000LL, |
| 25 | 0x0051a1cf08fca228LL, |
| 26 | 0x0000000071284ff7LL |
| 27 | }; |
| 28 | |
| 29 | #define HiPOWERon 2 /* odd poly, negative terms */ |
| 30 | static const unsigned long long oddnegterm[HiPOWERon] = |
| 31 | { |
| 32 | 0x1291a9a184244e80LL, |
| 33 | 0x0000583245819c21LL |
| 34 | }; |
| 35 | |
| 36 | #define HiPOWERep 2 /* even poly, positive terms */ |
| 37 | static const unsigned long long evenplterm[HiPOWERep] = |
| 38 | { |
| 39 | 0x0e848884b539e888LL, |
| 40 | 0x00003c7f18b887daLL |
| 41 | }; |
| 42 | |
| 43 | #define HiPOWERen 2 /* even poly, negative terms */ |
| 44 | static const unsigned long long evennegterm[HiPOWERen] = |
| 45 | { |
| 46 | 0xf1f0200fd51569ccLL, |
| 47 | 0x003afb46105c4432LL |
| 48 | }; |
| 49 | |
| 50 | static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL; |
| 51 | |
| 52 | |
| 53 | /*--- poly_tan() ------------------------------------------------------------+ |
| 54 | | | |
| 55 | +---------------------------------------------------------------------------*/ |
| 56 | void poly_tan(FPU_REG *st0_ptr) |
| 57 | { |
| 58 | long int exponent; |
| 59 | int invert; |
| 60 | Xsig argSq, argSqSq, accumulatoro, accumulatore, accum, |
| 61 | argSignif, fix_up; |
| 62 | unsigned long adj; |
| 63 | |
| 64 | exponent = exponent(st0_ptr); |
| 65 | |
| 66 | #ifdef PARANOID |
| 67 | if ( signnegative(st0_ptr) ) /* Can't hack a number < 0.0 */ |
| 68 | { arith_invalid(0); return; } /* Need a positive number */ |
| 69 | #endif /* PARANOID */ |
| 70 | |
| 71 | /* Split the problem into two domains, smaller and larger than pi/4 */ |
| 72 | if ( (exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) ) |
| 73 | { |
| 74 | /* The argument is greater than (approx) pi/4 */ |
| 75 | invert = 1; |
| 76 | accum.lsw = 0; |
| 77 | XSIG_LL(accum) = significand(st0_ptr); |
| 78 | |
| 79 | if ( exponent == 0 ) |
| 80 | { |
| 81 | /* The argument is >= 1.0 */ |
| 82 | /* Put the binary point at the left. */ |
| 83 | XSIG_LL(accum) <<= 1; |
| 84 | } |
| 85 | /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ |
| 86 | XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum); |
| 87 | /* This is a special case which arises due to rounding. */ |
| 88 | if ( XSIG_LL(accum) == 0xffffffffffffffffLL ) |
| 89 | { |
| 90 | FPU_settag0(TAG_Valid); |
| 91 | significand(st0_ptr) = 0x8a51e04daabda360LL; |
| 92 | setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative); |
| 93 | return; |
| 94 | } |
| 95 | |
| 96 | argSignif.lsw = accum.lsw; |
| 97 | XSIG_LL(argSignif) = XSIG_LL(accum); |
| 98 | exponent = -1 + norm_Xsig(&argSignif); |
| 99 | } |
| 100 | else |
| 101 | { |
| 102 | invert = 0; |
| 103 | argSignif.lsw = 0; |
| 104 | XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr); |
| 105 | |
| 106 | if ( exponent < -1 ) |
| 107 | { |
| 108 | /* shift the argument right by the required places */ |
| 109 | if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U ) |
| 110 | XSIG_LL(accum) ++; /* round up */ |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw; |
| 115 | mul_Xsig_Xsig(&argSq, &argSq); |
| 116 | XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw; |
| 117 | mul_Xsig_Xsig(&argSqSq, &argSqSq); |
| 118 | |
| 119 | /* Compute the negative terms for the numerator polynomial */ |
| 120 | accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0; |
| 121 | polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1); |
| 122 | mul_Xsig_Xsig(&accumulatoro, &argSq); |
| 123 | negate_Xsig(&accumulatoro); |
| 124 | /* Add the positive terms */ |
| 125 | polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1); |
| 126 | |
| 127 | |
| 128 | /* Compute the positive terms for the denominator polynomial */ |
| 129 | accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0; |
| 130 | polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1); |
| 131 | mul_Xsig_Xsig(&accumulatore, &argSq); |
| 132 | negate_Xsig(&accumulatore); |
| 133 | /* Add the negative terms */ |
| 134 | polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1); |
| 135 | /* Multiply by arg^2 */ |
| 136 | mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); |
| 137 | mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); |
| 138 | /* de-normalize and divide by 2 */ |
| 139 | shr_Xsig(&accumulatore, -2*(1+exponent) + 1); |
| 140 | negate_Xsig(&accumulatore); /* This does 1 - accumulator */ |
| 141 | |
| 142 | /* Now find the ratio. */ |
| 143 | if ( accumulatore.msw == 0 ) |
| 144 | { |
| 145 | /* accumulatoro must contain 1.0 here, (actually, 0) but it |
| 146 | really doesn't matter what value we use because it will |
| 147 | have negligible effect in later calculations |
| 148 | */ |
| 149 | XSIG_LL(accum) = 0x8000000000000000LL; |
| 150 | accum.lsw = 0; |
| 151 | } |
| 152 | else |
| 153 | { |
| 154 | div_Xsig(&accumulatoro, &accumulatore, &accum); |
| 155 | } |
| 156 | |
| 157 | /* Multiply by 1/3 * arg^3 */ |
| 158 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); |
| 159 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); |
| 160 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); |
| 161 | mul64_Xsig(&accum, &twothirds); |
| 162 | shr_Xsig(&accum, -2*(exponent+1)); |
| 163 | |
| 164 | /* tan(arg) = arg + accum */ |
| 165 | add_two_Xsig(&accum, &argSignif, &exponent); |
| 166 | |
| 167 | if ( invert ) |
| 168 | { |
| 169 | /* We now have the value of tan(pi_2 - arg) where pi_2 is an |
| 170 | approximation for pi/2 |
| 171 | */ |
| 172 | /* The next step is to fix the answer to compensate for the |
| 173 | error due to the approximation used for pi/2 |
| 174 | */ |
| 175 | |
| 176 | /* This is (approx) delta, the error in our approx for pi/2 |
| 177 | (see above). It has an exponent of -65 |
| 178 | */ |
| 179 | XSIG_LL(fix_up) = 0x898cc51701b839a2LL; |
| 180 | fix_up.lsw = 0; |
| 181 | |
| 182 | if ( exponent == 0 ) |
| 183 | adj = 0xffffffff; /* We want approx 1.0 here, but |
| 184 | this is close enough. */ |
| 185 | else if ( exponent > -30 ) |
| 186 | { |
| 187 | adj = accum.msw >> -(exponent+1); /* tan */ |
| 188 | adj = mul_32_32(adj, adj); /* tan^2 */ |
| 189 | } |
| 190 | else |
| 191 | adj = 0; |
| 192 | adj = mul_32_32(0x898cc517, adj); /* delta * tan^2 */ |
| 193 | |
| 194 | fix_up.msw += adj; |
| 195 | if ( !(fix_up.msw & 0x80000000) ) /* did fix_up overflow ? */ |
| 196 | { |
| 197 | /* Yes, we need to add an msb */ |
| 198 | shr_Xsig(&fix_up, 1); |
| 199 | fix_up.msw |= 0x80000000; |
| 200 | shr_Xsig(&fix_up, 64 + exponent); |
| 201 | } |
| 202 | else |
| 203 | shr_Xsig(&fix_up, 65 + exponent); |
| 204 | |
| 205 | add_two_Xsig(&accum, &fix_up, &exponent); |
| 206 | |
| 207 | /* accum now contains tan(pi/2 - arg). |
| 208 | Use tan(arg) = 1.0 / tan(pi/2 - arg) |
| 209 | */ |
| 210 | accumulatoro.lsw = accumulatoro.midw = 0; |
| 211 | accumulatoro.msw = 0x80000000; |
| 212 | div_Xsig(&accumulatoro, &accum, &accum); |
| 213 | exponent = - exponent - 1; |
| 214 | } |
| 215 | |
| 216 | /* Transfer the result */ |
| 217 | round_Xsig(&accum); |
| 218 | FPU_settag0(TAG_Valid); |
| 219 | significand(st0_ptr) = XSIG_LL(accum); |
| 220 | setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */ |
| 221 | |
| 222 | } |