blob: fd1ac1537f06eee25681fdf3610d8221436253d8 [file] [log] [blame]
Andi Kleen6a460792009-09-16 11:50:15 +02001/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a 2bit ECC memory or cache
11 * failure.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronous to other VM
15 * users, because memory failures could happen anytime and anywhere,
16 * possibly violating some of their assumptions. This is why this code
17 * has to be extremely careful. Generally it tries to use normal locking
18 * rules, as in get the standard locks, even if that means the
19 * error handling takes potentially a long time.
20 *
21 * The operation to map back from RMAP chains to processes has to walk
22 * the complete process list and has non linear complexity with the number
23 * mappings. In short it can be quite slow. But since memory corruptions
24 * are rare we hope to get away with this.
25 */
26
27/*
28 * Notebook:
29 * - hugetlb needs more code
30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31 * - pass bad pages to kdump next kernel
32 */
33#define DEBUG 1 /* remove me in 2.6.34 */
34#include <linux/kernel.h>
35#include <linux/mm.h>
36#include <linux/page-flags.h>
37#include <linux/sched.h>
Hugh Dickins01e00f82009-10-13 15:02:11 +010038#include <linux/ksm.h>
Andi Kleen6a460792009-09-16 11:50:15 +020039#include <linux/rmap.h>
40#include <linux/pagemap.h>
41#include <linux/swap.h>
42#include <linux/backing-dev.h>
43#include "internal.h"
44
45int sysctl_memory_failure_early_kill __read_mostly = 0;
46
47int sysctl_memory_failure_recovery __read_mostly = 1;
48
49atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
50
51/*
52 * Send all the processes who have the page mapped an ``action optional''
53 * signal.
54 */
55static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
56 unsigned long pfn)
57{
58 struct siginfo si;
59 int ret;
60
61 printk(KERN_ERR
62 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
63 pfn, t->comm, t->pid);
64 si.si_signo = SIGBUS;
65 si.si_errno = 0;
66 si.si_code = BUS_MCEERR_AO;
67 si.si_addr = (void *)addr;
68#ifdef __ARCH_SI_TRAPNO
69 si.si_trapno = trapno;
70#endif
71 si.si_addr_lsb = PAGE_SHIFT;
72 /*
73 * Don't use force here, it's convenient if the signal
74 * can be temporarily blocked.
75 * This could cause a loop when the user sets SIGBUS
76 * to SIG_IGN, but hopefully noone will do that?
77 */
78 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
79 if (ret < 0)
80 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
81 t->comm, t->pid, ret);
82 return ret;
83}
84
85/*
Andi Kleen588f9ce2009-12-16 12:19:57 +010086 * When a unknown page type is encountered drain as many buffers as possible
87 * in the hope to turn the page into a LRU or free page, which we can handle.
88 */
89void shake_page(struct page *p)
90{
91 if (!PageSlab(p)) {
92 lru_add_drain_all();
93 if (PageLRU(p))
94 return;
95 drain_all_pages();
96 if (PageLRU(p) || is_free_buddy_page(p))
97 return;
98 }
99 /*
100 * Could call shrink_slab here (which would also
101 * shrink other caches). Unfortunately that might
102 * also access the corrupted page, which could be fatal.
103 */
104}
105EXPORT_SYMBOL_GPL(shake_page);
106
107/*
Andi Kleen6a460792009-09-16 11:50:15 +0200108 * Kill all processes that have a poisoned page mapped and then isolate
109 * the page.
110 *
111 * General strategy:
112 * Find all processes having the page mapped and kill them.
113 * But we keep a page reference around so that the page is not
114 * actually freed yet.
115 * Then stash the page away
116 *
117 * There's no convenient way to get back to mapped processes
118 * from the VMAs. So do a brute-force search over all
119 * running processes.
120 *
121 * Remember that machine checks are not common (or rather
122 * if they are common you have other problems), so this shouldn't
123 * be a performance issue.
124 *
125 * Also there are some races possible while we get from the
126 * error detection to actually handle it.
127 */
128
129struct to_kill {
130 struct list_head nd;
131 struct task_struct *tsk;
132 unsigned long addr;
133 unsigned addr_valid:1;
134};
135
136/*
137 * Failure handling: if we can't find or can't kill a process there's
138 * not much we can do. We just print a message and ignore otherwise.
139 */
140
141/*
142 * Schedule a process for later kill.
143 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
144 * TBD would GFP_NOIO be enough?
145 */
146static void add_to_kill(struct task_struct *tsk, struct page *p,
147 struct vm_area_struct *vma,
148 struct list_head *to_kill,
149 struct to_kill **tkc)
150{
151 struct to_kill *tk;
152
153 if (*tkc) {
154 tk = *tkc;
155 *tkc = NULL;
156 } else {
157 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
158 if (!tk) {
159 printk(KERN_ERR
160 "MCE: Out of memory while machine check handling\n");
161 return;
162 }
163 }
164 tk->addr = page_address_in_vma(p, vma);
165 tk->addr_valid = 1;
166
167 /*
168 * In theory we don't have to kill when the page was
169 * munmaped. But it could be also a mremap. Since that's
170 * likely very rare kill anyways just out of paranoia, but use
171 * a SIGKILL because the error is not contained anymore.
172 */
173 if (tk->addr == -EFAULT) {
174 pr_debug("MCE: Unable to find user space address %lx in %s\n",
175 page_to_pfn(p), tsk->comm);
176 tk->addr_valid = 0;
177 }
178 get_task_struct(tsk);
179 tk->tsk = tsk;
180 list_add_tail(&tk->nd, to_kill);
181}
182
183/*
184 * Kill the processes that have been collected earlier.
185 *
186 * Only do anything when DOIT is set, otherwise just free the list
187 * (this is used for clean pages which do not need killing)
188 * Also when FAIL is set do a force kill because something went
189 * wrong earlier.
190 */
191static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
192 int fail, unsigned long pfn)
193{
194 struct to_kill *tk, *next;
195
196 list_for_each_entry_safe (tk, next, to_kill, nd) {
197 if (doit) {
198 /*
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200199 * In case something went wrong with munmapping
Andi Kleen6a460792009-09-16 11:50:15 +0200200 * make sure the process doesn't catch the
201 * signal and then access the memory. Just kill it.
202 * the signal handlers
203 */
204 if (fail || tk->addr_valid == 0) {
205 printk(KERN_ERR
206 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
207 pfn, tk->tsk->comm, tk->tsk->pid);
208 force_sig(SIGKILL, tk->tsk);
209 }
210
211 /*
212 * In theory the process could have mapped
213 * something else on the address in-between. We could
214 * check for that, but we need to tell the
215 * process anyways.
216 */
217 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
218 pfn) < 0)
219 printk(KERN_ERR
220 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
221 pfn, tk->tsk->comm, tk->tsk->pid);
222 }
223 put_task_struct(tk->tsk);
224 kfree(tk);
225 }
226}
227
228static int task_early_kill(struct task_struct *tsk)
229{
230 if (!tsk->mm)
231 return 0;
232 if (tsk->flags & PF_MCE_PROCESS)
233 return !!(tsk->flags & PF_MCE_EARLY);
234 return sysctl_memory_failure_early_kill;
235}
236
237/*
238 * Collect processes when the error hit an anonymous page.
239 */
240static void collect_procs_anon(struct page *page, struct list_head *to_kill,
241 struct to_kill **tkc)
242{
243 struct vm_area_struct *vma;
244 struct task_struct *tsk;
245 struct anon_vma *av;
246
247 read_lock(&tasklist_lock);
248 av = page_lock_anon_vma(page);
249 if (av == NULL) /* Not actually mapped anymore */
250 goto out;
251 for_each_process (tsk) {
252 if (!task_early_kill(tsk))
253 continue;
254 list_for_each_entry (vma, &av->head, anon_vma_node) {
255 if (!page_mapped_in_vma(page, vma))
256 continue;
257 if (vma->vm_mm == tsk->mm)
258 add_to_kill(tsk, page, vma, to_kill, tkc);
259 }
260 }
261 page_unlock_anon_vma(av);
262out:
263 read_unlock(&tasklist_lock);
264}
265
266/*
267 * Collect processes when the error hit a file mapped page.
268 */
269static void collect_procs_file(struct page *page, struct list_head *to_kill,
270 struct to_kill **tkc)
271{
272 struct vm_area_struct *vma;
273 struct task_struct *tsk;
274 struct prio_tree_iter iter;
275 struct address_space *mapping = page->mapping;
276
277 /*
278 * A note on the locking order between the two locks.
279 * We don't rely on this particular order.
280 * If you have some other code that needs a different order
281 * feel free to switch them around. Or add a reverse link
282 * from mm_struct to task_struct, then this could be all
283 * done without taking tasklist_lock and looping over all tasks.
284 */
285
286 read_lock(&tasklist_lock);
287 spin_lock(&mapping->i_mmap_lock);
288 for_each_process(tsk) {
289 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
290
291 if (!task_early_kill(tsk))
292 continue;
293
294 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
295 pgoff) {
296 /*
297 * Send early kill signal to tasks where a vma covers
298 * the page but the corrupted page is not necessarily
299 * mapped it in its pte.
300 * Assume applications who requested early kill want
301 * to be informed of all such data corruptions.
302 */
303 if (vma->vm_mm == tsk->mm)
304 add_to_kill(tsk, page, vma, to_kill, tkc);
305 }
306 }
307 spin_unlock(&mapping->i_mmap_lock);
308 read_unlock(&tasklist_lock);
309}
310
311/*
312 * Collect the processes who have the corrupted page mapped to kill.
313 * This is done in two steps for locking reasons.
314 * First preallocate one tokill structure outside the spin locks,
315 * so that we can kill at least one process reasonably reliable.
316 */
317static void collect_procs(struct page *page, struct list_head *tokill)
318{
319 struct to_kill *tk;
320
321 if (!page->mapping)
322 return;
323
324 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
325 if (!tk)
326 return;
327 if (PageAnon(page))
328 collect_procs_anon(page, tokill, &tk);
329 else
330 collect_procs_file(page, tokill, &tk);
331 kfree(tk);
332}
333
334/*
335 * Error handlers for various types of pages.
336 */
337
338enum outcome {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100339 IGNORED, /* Error: cannot be handled */
340 FAILED, /* Error: handling failed */
Andi Kleen6a460792009-09-16 11:50:15 +0200341 DELAYED, /* Will be handled later */
Andi Kleen6a460792009-09-16 11:50:15 +0200342 RECOVERED, /* Successfully recovered */
343};
344
345static const char *action_name[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100346 [IGNORED] = "Ignored",
Andi Kleen6a460792009-09-16 11:50:15 +0200347 [FAILED] = "Failed",
348 [DELAYED] = "Delayed",
Andi Kleen6a460792009-09-16 11:50:15 +0200349 [RECOVERED] = "Recovered",
350};
351
352/*
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100353 * XXX: It is possible that a page is isolated from LRU cache,
354 * and then kept in swap cache or failed to remove from page cache.
355 * The page count will stop it from being freed by unpoison.
356 * Stress tests should be aware of this memory leak problem.
357 */
358static int delete_from_lru_cache(struct page *p)
359{
360 if (!isolate_lru_page(p)) {
361 /*
362 * Clear sensible page flags, so that the buddy system won't
363 * complain when the page is unpoison-and-freed.
364 */
365 ClearPageActive(p);
366 ClearPageUnevictable(p);
367 /*
368 * drop the page count elevated by isolate_lru_page()
369 */
370 page_cache_release(p);
371 return 0;
372 }
373 return -EIO;
374}
375
376/*
Andi Kleen6a460792009-09-16 11:50:15 +0200377 * Error hit kernel page.
378 * Do nothing, try to be lucky and not touch this instead. For a few cases we
379 * could be more sophisticated.
380 */
381static int me_kernel(struct page *p, unsigned long pfn)
382{
Andi Kleen6a460792009-09-16 11:50:15 +0200383 return IGNORED;
384}
385
386/*
387 * Page in unknown state. Do nothing.
388 */
389static int me_unknown(struct page *p, unsigned long pfn)
390{
391 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
392 return FAILED;
393}
394
395/*
Andi Kleen6a460792009-09-16 11:50:15 +0200396 * Clean (or cleaned) page cache page.
397 */
398static int me_pagecache_clean(struct page *p, unsigned long pfn)
399{
400 int err;
401 int ret = FAILED;
402 struct address_space *mapping;
403
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100404 delete_from_lru_cache(p);
405
Andi Kleen6a460792009-09-16 11:50:15 +0200406 /*
407 * For anonymous pages we're done the only reference left
408 * should be the one m_f() holds.
409 */
410 if (PageAnon(p))
411 return RECOVERED;
412
413 /*
414 * Now truncate the page in the page cache. This is really
415 * more like a "temporary hole punch"
416 * Don't do this for block devices when someone else
417 * has a reference, because it could be file system metadata
418 * and that's not safe to truncate.
419 */
420 mapping = page_mapping(p);
421 if (!mapping) {
422 /*
423 * Page has been teared down in the meanwhile
424 */
425 return FAILED;
426 }
427
428 /*
429 * Truncation is a bit tricky. Enable it per file system for now.
430 *
431 * Open: to take i_mutex or not for this? Right now we don't.
432 */
433 if (mapping->a_ops->error_remove_page) {
434 err = mapping->a_ops->error_remove_page(mapping, p);
435 if (err != 0) {
436 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
437 pfn, err);
438 } else if (page_has_private(p) &&
439 !try_to_release_page(p, GFP_NOIO)) {
440 pr_debug("MCE %#lx: failed to release buffers\n", pfn);
441 } else {
442 ret = RECOVERED;
443 }
444 } else {
445 /*
446 * If the file system doesn't support it just invalidate
447 * This fails on dirty or anything with private pages
448 */
449 if (invalidate_inode_page(p))
450 ret = RECOVERED;
451 else
452 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
453 pfn);
454 }
455 return ret;
456}
457
458/*
459 * Dirty cache page page
460 * Issues: when the error hit a hole page the error is not properly
461 * propagated.
462 */
463static int me_pagecache_dirty(struct page *p, unsigned long pfn)
464{
465 struct address_space *mapping = page_mapping(p);
466
467 SetPageError(p);
468 /* TBD: print more information about the file. */
469 if (mapping) {
470 /*
471 * IO error will be reported by write(), fsync(), etc.
472 * who check the mapping.
473 * This way the application knows that something went
474 * wrong with its dirty file data.
475 *
476 * There's one open issue:
477 *
478 * The EIO will be only reported on the next IO
479 * operation and then cleared through the IO map.
480 * Normally Linux has two mechanisms to pass IO error
481 * first through the AS_EIO flag in the address space
482 * and then through the PageError flag in the page.
483 * Since we drop pages on memory failure handling the
484 * only mechanism open to use is through AS_AIO.
485 *
486 * This has the disadvantage that it gets cleared on
487 * the first operation that returns an error, while
488 * the PageError bit is more sticky and only cleared
489 * when the page is reread or dropped. If an
490 * application assumes it will always get error on
491 * fsync, but does other operations on the fd before
492 * and the page is dropped inbetween then the error
493 * will not be properly reported.
494 *
495 * This can already happen even without hwpoisoned
496 * pages: first on metadata IO errors (which only
497 * report through AS_EIO) or when the page is dropped
498 * at the wrong time.
499 *
500 * So right now we assume that the application DTRT on
501 * the first EIO, but we're not worse than other parts
502 * of the kernel.
503 */
504 mapping_set_error(mapping, EIO);
505 }
506
507 return me_pagecache_clean(p, pfn);
508}
509
510/*
511 * Clean and dirty swap cache.
512 *
513 * Dirty swap cache page is tricky to handle. The page could live both in page
514 * cache and swap cache(ie. page is freshly swapped in). So it could be
515 * referenced concurrently by 2 types of PTEs:
516 * normal PTEs and swap PTEs. We try to handle them consistently by calling
517 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
518 * and then
519 * - clear dirty bit to prevent IO
520 * - remove from LRU
521 * - but keep in the swap cache, so that when we return to it on
522 * a later page fault, we know the application is accessing
523 * corrupted data and shall be killed (we installed simple
524 * interception code in do_swap_page to catch it).
525 *
526 * Clean swap cache pages can be directly isolated. A later page fault will
527 * bring in the known good data from disk.
528 */
529static int me_swapcache_dirty(struct page *p, unsigned long pfn)
530{
Andi Kleen6a460792009-09-16 11:50:15 +0200531 ClearPageDirty(p);
532 /* Trigger EIO in shmem: */
533 ClearPageUptodate(p);
534
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100535 if (!delete_from_lru_cache(p))
536 return DELAYED;
537 else
538 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200539}
540
541static int me_swapcache_clean(struct page *p, unsigned long pfn)
542{
Andi Kleen6a460792009-09-16 11:50:15 +0200543 delete_from_swap_cache(p);
Wu Fengguange43c3af2009-09-29 13:16:20 +0800544
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100545 if (!delete_from_lru_cache(p))
546 return RECOVERED;
547 else
548 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200549}
550
551/*
552 * Huge pages. Needs work.
553 * Issues:
554 * No rmap support so we cannot find the original mapper. In theory could walk
555 * all MMs and look for the mappings, but that would be non atomic and racy.
556 * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
557 * like just walking the current process and hoping it has it mapped (that
558 * should be usually true for the common "shared database cache" case)
559 * Should handle free huge pages and dequeue them too, but this needs to
560 * handle huge page accounting correctly.
561 */
562static int me_huge_page(struct page *p, unsigned long pfn)
563{
564 return FAILED;
565}
566
567/*
568 * Various page states we can handle.
569 *
570 * A page state is defined by its current page->flags bits.
571 * The table matches them in order and calls the right handler.
572 *
573 * This is quite tricky because we can access page at any time
574 * in its live cycle, so all accesses have to be extremly careful.
575 *
576 * This is not complete. More states could be added.
577 * For any missing state don't attempt recovery.
578 */
579
580#define dirty (1UL << PG_dirty)
581#define sc (1UL << PG_swapcache)
582#define unevict (1UL << PG_unevictable)
583#define mlock (1UL << PG_mlocked)
584#define writeback (1UL << PG_writeback)
585#define lru (1UL << PG_lru)
586#define swapbacked (1UL << PG_swapbacked)
587#define head (1UL << PG_head)
588#define tail (1UL << PG_tail)
589#define compound (1UL << PG_compound)
590#define slab (1UL << PG_slab)
Andi Kleen6a460792009-09-16 11:50:15 +0200591#define reserved (1UL << PG_reserved)
592
593static struct page_state {
594 unsigned long mask;
595 unsigned long res;
596 char *msg;
597 int (*action)(struct page *p, unsigned long pfn);
598} error_states[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100599 { reserved, reserved, "reserved kernel", me_kernel },
Wu Fengguang95d01fc2009-12-16 12:19:58 +0100600 /*
601 * free pages are specially detected outside this table:
602 * PG_buddy pages only make a small fraction of all free pages.
603 */
Andi Kleen6a460792009-09-16 11:50:15 +0200604
605 /*
606 * Could in theory check if slab page is free or if we can drop
607 * currently unused objects without touching them. But just
608 * treat it as standard kernel for now.
609 */
610 { slab, slab, "kernel slab", me_kernel },
611
612#ifdef CONFIG_PAGEFLAGS_EXTENDED
613 { head, head, "huge", me_huge_page },
614 { tail, tail, "huge", me_huge_page },
615#else
616 { compound, compound, "huge", me_huge_page },
617#endif
618
619 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
620 { sc|dirty, sc, "swapcache", me_swapcache_clean },
621
622 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
623 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
624
Andi Kleen6a460792009-09-16 11:50:15 +0200625 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
626 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200627
628 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
629 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200630
631 /*
632 * Catchall entry: must be at end.
633 */
634 { 0, 0, "unknown page state", me_unknown },
635};
636
Andi Kleen6a460792009-09-16 11:50:15 +0200637static void action_result(unsigned long pfn, char *msg, int result)
638{
Wu Fengguanga7560fc2009-12-16 12:19:57 +0100639 struct page *page = pfn_to_page(pfn);
Andi Kleen6a460792009-09-16 11:50:15 +0200640
641 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
642 pfn,
Wu Fengguanga7560fc2009-12-16 12:19:57 +0100643 PageDirty(page) ? "dirty " : "",
Andi Kleen6a460792009-09-16 11:50:15 +0200644 msg, action_name[result]);
645}
646
647static int page_action(struct page_state *ps, struct page *p,
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100648 unsigned long pfn)
Andi Kleen6a460792009-09-16 11:50:15 +0200649{
650 int result;
Wu Fengguang7456b042009-10-19 08:15:01 +0200651 int count;
Andi Kleen6a460792009-09-16 11:50:15 +0200652
653 result = ps->action(p, pfn);
654 action_result(pfn, ps->msg, result);
Wu Fengguang7456b042009-10-19 08:15:01 +0200655
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100656 count = page_count(p) - 1;
Wu Fengguang7456b042009-10-19 08:15:01 +0200657 if (count != 0)
Andi Kleen6a460792009-09-16 11:50:15 +0200658 printk(KERN_ERR
659 "MCE %#lx: %s page still referenced by %d users\n",
Wu Fengguang7456b042009-10-19 08:15:01 +0200660 pfn, ps->msg, count);
Andi Kleen6a460792009-09-16 11:50:15 +0200661
662 /* Could do more checks here if page looks ok */
663 /*
664 * Could adjust zone counters here to correct for the missing page.
665 */
666
667 return result == RECOVERED ? 0 : -EBUSY;
668}
669
670#define N_UNMAP_TRIES 5
671
672/*
673 * Do all that is necessary to remove user space mappings. Unmap
674 * the pages and send SIGBUS to the processes if the data was dirty.
675 */
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100676static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
Andi Kleen6a460792009-09-16 11:50:15 +0200677 int trapno)
678{
679 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
680 struct address_space *mapping;
681 LIST_HEAD(tokill);
682 int ret;
683 int i;
684 int kill = 1;
685
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100686 if (PageReserved(p) || PageSlab(p))
687 return SWAP_SUCCESS;
Andi Kleen6a460792009-09-16 11:50:15 +0200688
Andi Kleen6a460792009-09-16 11:50:15 +0200689 /*
690 * This check implies we don't kill processes if their pages
691 * are in the swap cache early. Those are always late kills.
692 */
693 if (!page_mapped(p))
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100694 return SWAP_SUCCESS;
695
696 if (PageCompound(p) || PageKsm(p))
697 return SWAP_FAIL;
Andi Kleen6a460792009-09-16 11:50:15 +0200698
699 if (PageSwapCache(p)) {
700 printk(KERN_ERR
701 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
702 ttu |= TTU_IGNORE_HWPOISON;
703 }
704
705 /*
706 * Propagate the dirty bit from PTEs to struct page first, because we
707 * need this to decide if we should kill or just drop the page.
Wu Fengguangdb0480b2009-12-16 12:19:58 +0100708 * XXX: the dirty test could be racy: set_page_dirty() may not always
709 * be called inside page lock (it's recommended but not enforced).
Andi Kleen6a460792009-09-16 11:50:15 +0200710 */
711 mapping = page_mapping(p);
712 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
713 if (page_mkclean(p)) {
714 SetPageDirty(p);
715 } else {
716 kill = 0;
717 ttu |= TTU_IGNORE_HWPOISON;
718 printk(KERN_INFO
719 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
720 pfn);
721 }
722 }
723
724 /*
725 * First collect all the processes that have the page
726 * mapped in dirty form. This has to be done before try_to_unmap,
727 * because ttu takes the rmap data structures down.
728 *
729 * Error handling: We ignore errors here because
730 * there's nothing that can be done.
731 */
732 if (kill)
733 collect_procs(p, &tokill);
734
735 /*
736 * try_to_unmap can fail temporarily due to races.
737 * Try a few times (RED-PEN better strategy?)
738 */
739 for (i = 0; i < N_UNMAP_TRIES; i++) {
740 ret = try_to_unmap(p, ttu);
741 if (ret == SWAP_SUCCESS)
742 break;
743 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
744 }
745
746 if (ret != SWAP_SUCCESS)
747 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
748 pfn, page_mapcount(p));
749
750 /*
751 * Now that the dirty bit has been propagated to the
752 * struct page and all unmaps done we can decide if
753 * killing is needed or not. Only kill when the page
754 * was dirty, otherwise the tokill list is merely
755 * freed. When there was a problem unmapping earlier
756 * use a more force-full uncatchable kill to prevent
757 * any accesses to the poisoned memory.
758 */
759 kill_procs_ao(&tokill, !!PageDirty(p), trapno,
760 ret != SWAP_SUCCESS, pfn);
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100761
762 return ret;
Andi Kleen6a460792009-09-16 11:50:15 +0200763}
764
Andi Kleen82ba0112009-12-16 12:19:57 +0100765int __memory_failure(unsigned long pfn, int trapno, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200766{
767 struct page_state *ps;
768 struct page *p;
769 int res;
770
771 if (!sysctl_memory_failure_recovery)
772 panic("Memory failure from trap %d on page %lx", trapno, pfn);
773
774 if (!pfn_valid(pfn)) {
Wu Fengguanga7560fc2009-12-16 12:19:57 +0100775 printk(KERN_ERR
776 "MCE %#lx: memory outside kernel control\n",
777 pfn);
778 return -ENXIO;
Andi Kleen6a460792009-09-16 11:50:15 +0200779 }
780
781 p = pfn_to_page(pfn);
782 if (TestSetPageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100783 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
Andi Kleen6a460792009-09-16 11:50:15 +0200784 return 0;
785 }
786
787 atomic_long_add(1, &mce_bad_pages);
788
789 /*
790 * We need/can do nothing about count=0 pages.
791 * 1) it's a free page, and therefore in safe hand:
792 * prep_new_page() will be the gate keeper.
793 * 2) it's part of a non-compound high order page.
794 * Implies some kernel user: cannot stop them from
795 * R/W the page; let's pray that the page has been
796 * used and will be freed some time later.
797 * In fact it's dangerous to directly bump up page count from 0,
798 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
799 */
Andi Kleen82ba0112009-12-16 12:19:57 +0100800 if (!(flags & MF_COUNT_INCREASED) &&
801 !get_page_unless_zero(compound_head(p))) {
Wu Fengguang8d22ba12009-12-16 12:19:58 +0100802 if (is_free_buddy_page(p)) {
803 action_result(pfn, "free buddy", DELAYED);
804 return 0;
805 } else {
806 action_result(pfn, "high order kernel", IGNORED);
807 return -EBUSY;
808 }
Andi Kleen6a460792009-09-16 11:50:15 +0200809 }
810
811 /*
Wu Fengguange43c3af2009-09-29 13:16:20 +0800812 * We ignore non-LRU pages for good reasons.
813 * - PG_locked is only well defined for LRU pages and a few others
814 * - to avoid races with __set_page_locked()
815 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
816 * The check (unnecessarily) ignores LRU pages being isolated and
817 * walked by the page reclaim code, however that's not a big loss.
818 */
819 if (!PageLRU(p))
820 lru_add_drain_all();
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100821 if (!PageLRU(p)) {
Wu Fengguange43c3af2009-09-29 13:16:20 +0800822 action_result(pfn, "non LRU", IGNORED);
823 put_page(p);
824 return -EBUSY;
825 }
Wu Fengguange43c3af2009-09-29 13:16:20 +0800826
827 /*
Andi Kleen6a460792009-09-16 11:50:15 +0200828 * Lock the page and wait for writeback to finish.
829 * It's very difficult to mess with pages currently under IO
830 * and in many cases impossible, so we just avoid it here.
831 */
832 lock_page_nosync(p);
Wu Fengguang847ce402009-12-16 12:19:58 +0100833
834 /*
835 * unpoison always clear PG_hwpoison inside page lock
836 */
837 if (!PageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100838 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +0100839 res = 0;
840 goto out;
841 }
842
Andi Kleen6a460792009-09-16 11:50:15 +0200843 wait_on_page_writeback(p);
844
845 /*
846 * Now take care of user space mappings.
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100847 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
Andi Kleen6a460792009-09-16 11:50:15 +0200848 */
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100849 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
850 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
851 res = -EBUSY;
852 goto out;
853 }
Andi Kleen6a460792009-09-16 11:50:15 +0200854
855 /*
856 * Torn down by someone else?
857 */
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100858 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
Andi Kleen6a460792009-09-16 11:50:15 +0200859 action_result(pfn, "already truncated LRU", IGNORED);
Wu Fengguangd95ea512009-12-16 12:19:58 +0100860 res = -EBUSY;
Andi Kleen6a460792009-09-16 11:50:15 +0200861 goto out;
862 }
863
864 res = -EBUSY;
865 for (ps = error_states;; ps++) {
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100866 if ((p->flags & ps->mask) == ps->res) {
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100867 res = page_action(ps, p, pfn);
Andi Kleen6a460792009-09-16 11:50:15 +0200868 break;
869 }
870 }
871out:
872 unlock_page(p);
873 return res;
874}
875EXPORT_SYMBOL_GPL(__memory_failure);
876
877/**
878 * memory_failure - Handle memory failure of a page.
879 * @pfn: Page Number of the corrupted page
880 * @trapno: Trap number reported in the signal to user space.
881 *
882 * This function is called by the low level machine check code
883 * of an architecture when it detects hardware memory corruption
884 * of a page. It tries its best to recover, which includes
885 * dropping pages, killing processes etc.
886 *
887 * The function is primarily of use for corruptions that
888 * happen outside the current execution context (e.g. when
889 * detected by a background scrubber)
890 *
891 * Must run in process context (e.g. a work queue) with interrupts
892 * enabled and no spinlocks hold.
893 */
894void memory_failure(unsigned long pfn, int trapno)
895{
896 __memory_failure(pfn, trapno, 0);
897}
Wu Fengguang847ce402009-12-16 12:19:58 +0100898
899/**
900 * unpoison_memory - Unpoison a previously poisoned page
901 * @pfn: Page number of the to be unpoisoned page
902 *
903 * Software-unpoison a page that has been poisoned by
904 * memory_failure() earlier.
905 *
906 * This is only done on the software-level, so it only works
907 * for linux injected failures, not real hardware failures
908 *
909 * Returns 0 for success, otherwise -errno.
910 */
911int unpoison_memory(unsigned long pfn)
912{
913 struct page *page;
914 struct page *p;
915 int freeit = 0;
916
917 if (!pfn_valid(pfn))
918 return -ENXIO;
919
920 p = pfn_to_page(pfn);
921 page = compound_head(p);
922
923 if (!PageHWPoison(p)) {
924 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
925 return 0;
926 }
927
928 if (!get_page_unless_zero(page)) {
929 if (TestClearPageHWPoison(p))
930 atomic_long_dec(&mce_bad_pages);
931 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
932 return 0;
933 }
934
935 lock_page_nosync(page);
936 /*
937 * This test is racy because PG_hwpoison is set outside of page lock.
938 * That's acceptable because that won't trigger kernel panic. Instead,
939 * the PG_hwpoison page will be caught and isolated on the entrance to
940 * the free buddy page pool.
941 */
942 if (TestClearPageHWPoison(p)) {
943 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
944 atomic_long_dec(&mce_bad_pages);
945 freeit = 1;
946 }
947 unlock_page(page);
948
949 put_page(page);
950 if (freeit)
951 put_page(page);
952
953 return 0;
954}
955EXPORT_SYMBOL(unpoison_memory);