blob: f2a5963b5a9562f153391c4f2b8b364742736d1b [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
Bruce Allanad680762008-03-28 09:15:03 -07004 Copyright(c) 1999 - 2008 Intel Corporation.
Auke Kokbc7f75f2007-09-17 12:30:59 -07005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
Bruce Allan16059272008-11-21 16:51:06 -080030 * 82562G 10/100 Network Connection
Auke Kokbc7f75f2007-09-17 12:30:59 -070031 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
Bruce Allan97ac8ca2008-04-29 09:16:05 -070042 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
Bruce Allan16059272008-11-21 16:51:06 -080044 * 82567V Gigabit Network Connection
Bruce Allan97ac8ca2008-04-29 09:16:05 -070045 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
Bruce Allanf4187b52008-08-26 18:36:50 -070048 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
Bruce Allan2f15f9d2008-08-26 18:36:36 -070050 * 82567LM-4 Gigabit Network Connection
Auke Kokbc7f75f2007-09-17 12:30:59 -070051 */
52
53#include <linux/netdevice.h>
54#include <linux/ethtool.h>
55#include <linux/delay.h>
56#include <linux/pci.h>
57
58#include "e1000.h"
59
60#define ICH_FLASH_GFPREG 0x0000
61#define ICH_FLASH_HSFSTS 0x0004
62#define ICH_FLASH_HSFCTL 0x0006
63#define ICH_FLASH_FADDR 0x0008
64#define ICH_FLASH_FDATA0 0x0010
Bruce Allan4a770352008-10-01 17:18:35 -070065#define ICH_FLASH_PR0 0x0074
Auke Kokbc7f75f2007-09-17 12:30:59 -070066
67#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
68#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
69#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
70#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
71#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
72
73#define ICH_CYCLE_READ 0
74#define ICH_CYCLE_WRITE 2
75#define ICH_CYCLE_ERASE 3
76
77#define FLASH_GFPREG_BASE_MASK 0x1FFF
78#define FLASH_SECTOR_ADDR_SHIFT 12
79
80#define ICH_FLASH_SEG_SIZE_256 256
81#define ICH_FLASH_SEG_SIZE_4K 4096
82#define ICH_FLASH_SEG_SIZE_8K 8192
83#define ICH_FLASH_SEG_SIZE_64K 65536
84
85
86#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
87
88#define E1000_ICH_MNG_IAMT_MODE 0x2
89
90#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
91 (ID_LED_DEF1_OFF2 << 8) | \
92 (ID_LED_DEF1_ON2 << 4) | \
93 (ID_LED_DEF1_DEF2))
94
95#define E1000_ICH_NVM_SIG_WORD 0x13
96#define E1000_ICH_NVM_SIG_MASK 0xC000
Bruce Allane2434552008-11-21 17:02:41 -080097#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
98#define E1000_ICH_NVM_SIG_VALUE 0x80
Auke Kokbc7f75f2007-09-17 12:30:59 -070099
100#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
101
102#define E1000_FEXTNVM_SW_CONFIG 1
103#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
104
105#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
106
107#define E1000_ICH_RAR_ENTRIES 7
108
109#define PHY_PAGE_SHIFT 5
110#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
111 ((reg) & MAX_PHY_REG_ADDRESS))
112#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
113#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
114
115#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
116#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
117#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
118
119/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
120/* Offset 04h HSFSTS */
121union ich8_hws_flash_status {
122 struct ich8_hsfsts {
123 u16 flcdone :1; /* bit 0 Flash Cycle Done */
124 u16 flcerr :1; /* bit 1 Flash Cycle Error */
125 u16 dael :1; /* bit 2 Direct Access error Log */
126 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
127 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
128 u16 reserved1 :2; /* bit 13:6 Reserved */
129 u16 reserved2 :6; /* bit 13:6 Reserved */
130 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
131 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
132 } hsf_status;
133 u16 regval;
134};
135
136/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
137/* Offset 06h FLCTL */
138union ich8_hws_flash_ctrl {
139 struct ich8_hsflctl {
140 u16 flcgo :1; /* 0 Flash Cycle Go */
141 u16 flcycle :2; /* 2:1 Flash Cycle */
142 u16 reserved :5; /* 7:3 Reserved */
143 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
144 u16 flockdn :6; /* 15:10 Reserved */
145 } hsf_ctrl;
146 u16 regval;
147};
148
149/* ICH Flash Region Access Permissions */
150union ich8_hws_flash_regacc {
151 struct ich8_flracc {
152 u32 grra :8; /* 0:7 GbE region Read Access */
153 u32 grwa :8; /* 8:15 GbE region Write Access */
154 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
155 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
156 } hsf_flregacc;
157 u16 regval;
158};
159
Bruce Allan4a770352008-10-01 17:18:35 -0700160/* ICH Flash Protected Region */
161union ich8_flash_protected_range {
162 struct ich8_pr {
163 u32 base:13; /* 0:12 Protected Range Base */
164 u32 reserved1:2; /* 13:14 Reserved */
165 u32 rpe:1; /* 15 Read Protection Enable */
166 u32 limit:13; /* 16:28 Protected Range Limit */
167 u32 reserved2:2; /* 29:30 Reserved */
168 u32 wpe:1; /* 31 Write Protection Enable */
169 } range;
170 u32 regval;
171};
172
Auke Kokbc7f75f2007-09-17 12:30:59 -0700173static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
174static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
175static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
176static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
177static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
178static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
179 u32 offset, u8 byte);
Bruce Allanf4187b52008-08-26 18:36:50 -0700180static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
181 u8 *data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700182static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
183 u16 *data);
184static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
185 u8 size, u16 *data);
186static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
187static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
Bruce Allanf4187b52008-08-26 18:36:50 -0700188static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700189
190static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
191{
192 return readw(hw->flash_address + reg);
193}
194
195static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
196{
197 return readl(hw->flash_address + reg);
198}
199
200static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
201{
202 writew(val, hw->flash_address + reg);
203}
204
205static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
206{
207 writel(val, hw->flash_address + reg);
208}
209
210#define er16flash(reg) __er16flash(hw, (reg))
211#define er32flash(reg) __er32flash(hw, (reg))
212#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
213#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
214
215/**
216 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
217 * @hw: pointer to the HW structure
218 *
219 * Initialize family-specific PHY parameters and function pointers.
220 **/
221static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
222{
223 struct e1000_phy_info *phy = &hw->phy;
224 s32 ret_val;
225 u16 i = 0;
226
227 phy->addr = 1;
228 phy->reset_delay_us = 100;
229
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700230 /*
231 * We may need to do this twice - once for IGP and if that fails,
232 * we'll set BM func pointers and try again
233 */
234 ret_val = e1000e_determine_phy_address(hw);
235 if (ret_val) {
236 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
237 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
238 ret_val = e1000e_determine_phy_address(hw);
239 if (ret_val)
240 return ret_val;
241 }
242
Auke Kokbc7f75f2007-09-17 12:30:59 -0700243 phy->id = 0;
244 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
245 (i++ < 100)) {
246 msleep(1);
247 ret_val = e1000e_get_phy_id(hw);
248 if (ret_val)
249 return ret_val;
250 }
251
252 /* Verify phy id */
253 switch (phy->id) {
254 case IGP03E1000_E_PHY_ID:
255 phy->type = e1000_phy_igp_3;
256 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
257 break;
258 case IFE_E_PHY_ID:
259 case IFE_PLUS_E_PHY_ID:
260 case IFE_C_E_PHY_ID:
261 phy->type = e1000_phy_ife;
262 phy->autoneg_mask = E1000_ALL_NOT_GIG;
263 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700264 case BME1000_E_PHY_ID:
265 phy->type = e1000_phy_bm;
266 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
267 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
268 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
269 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
270 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700271 default:
272 return -E1000_ERR_PHY;
273 break;
274 }
275
276 return 0;
277}
278
279/**
280 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
281 * @hw: pointer to the HW structure
282 *
283 * Initialize family-specific NVM parameters and function
284 * pointers.
285 **/
286static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
287{
288 struct e1000_nvm_info *nvm = &hw->nvm;
289 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
290 u32 gfpreg;
291 u32 sector_base_addr;
292 u32 sector_end_addr;
293 u16 i;
294
Bruce Allanad680762008-03-28 09:15:03 -0700295 /* Can't read flash registers if the register set isn't mapped. */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700296 if (!hw->flash_address) {
297 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
298 return -E1000_ERR_CONFIG;
299 }
300
301 nvm->type = e1000_nvm_flash_sw;
302
303 gfpreg = er32flash(ICH_FLASH_GFPREG);
304
Bruce Allanad680762008-03-28 09:15:03 -0700305 /*
306 * sector_X_addr is a "sector"-aligned address (4096 bytes)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700307 * Add 1 to sector_end_addr since this sector is included in
Bruce Allanad680762008-03-28 09:15:03 -0700308 * the overall size.
309 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700310 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
311 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
312
313 /* flash_base_addr is byte-aligned */
314 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
315
Bruce Allanad680762008-03-28 09:15:03 -0700316 /*
317 * find total size of the NVM, then cut in half since the total
318 * size represents two separate NVM banks.
319 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700320 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
321 << FLASH_SECTOR_ADDR_SHIFT;
322 nvm->flash_bank_size /= 2;
323 /* Adjust to word count */
324 nvm->flash_bank_size /= sizeof(u16);
325
326 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
327
328 /* Clear shadow ram */
329 for (i = 0; i < nvm->word_size; i++) {
330 dev_spec->shadow_ram[i].modified = 0;
331 dev_spec->shadow_ram[i].value = 0xFFFF;
332 }
333
334 return 0;
335}
336
337/**
338 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
339 * @hw: pointer to the HW structure
340 *
341 * Initialize family-specific MAC parameters and function
342 * pointers.
343 **/
344static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
345{
346 struct e1000_hw *hw = &adapter->hw;
347 struct e1000_mac_info *mac = &hw->mac;
348
349 /* Set media type function pointer */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700350 hw->phy.media_type = e1000_media_type_copper;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700351
352 /* Set mta register count */
353 mac->mta_reg_count = 32;
354 /* Set rar entry count */
355 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
356 if (mac->type == e1000_ich8lan)
357 mac->rar_entry_count--;
358 /* Set if manageability features are enabled. */
359 mac->arc_subsystem_valid = 1;
360
361 /* Enable PCS Lock-loss workaround for ICH8 */
362 if (mac->type == e1000_ich8lan)
363 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
364
365 return 0;
366}
367
Jeff Kirsher69e3fd82008-04-02 13:48:18 -0700368static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700369{
370 struct e1000_hw *hw = &adapter->hw;
371 s32 rc;
372
373 rc = e1000_init_mac_params_ich8lan(adapter);
374 if (rc)
375 return rc;
376
377 rc = e1000_init_nvm_params_ich8lan(hw);
378 if (rc)
379 return rc;
380
381 rc = e1000_init_phy_params_ich8lan(hw);
382 if (rc)
383 return rc;
384
385 if ((adapter->hw.mac.type == e1000_ich8lan) &&
386 (adapter->hw.phy.type == e1000_phy_igp_3))
387 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
388
389 return 0;
390}
391
Thomas Gleixner717d4382008-10-02 16:33:40 -0700392static DEFINE_MUTEX(nvm_mutex);
393static pid_t nvm_owner = -1;
394
Auke Kokbc7f75f2007-09-17 12:30:59 -0700395/**
396 * e1000_acquire_swflag_ich8lan - Acquire software control flag
397 * @hw: pointer to the HW structure
398 *
399 * Acquires the software control flag for performing NVM and PHY
400 * operations. This is a function pointer entry point only called by
401 * read/write routines for the PHY and NVM parts.
402 **/
403static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
404{
405 u32 extcnf_ctrl;
406 u32 timeout = PHY_CFG_TIMEOUT;
407
Linus Torvalds95b866d2008-10-03 09:18:17 -0700408 might_sleep();
Thomas Gleixner717d4382008-10-02 16:33:40 -0700409
410 if (!mutex_trylock(&nvm_mutex)) {
411 WARN(1, KERN_ERR "e1000e mutex contention. Owned by pid %d\n",
412 nvm_owner);
413 mutex_lock(&nvm_mutex);
414 }
415 nvm_owner = current->pid;
416
Auke Kokbc7f75f2007-09-17 12:30:59 -0700417 while (timeout) {
418 extcnf_ctrl = er32(EXTCNF_CTRL);
419 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
420 ew32(EXTCNF_CTRL, extcnf_ctrl);
421
422 extcnf_ctrl = er32(EXTCNF_CTRL);
423 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
424 break;
425 mdelay(1);
426 timeout--;
427 }
428
429 if (!timeout) {
430 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
Bruce Allan2e2e8d52008-09-23 15:46:38 -0700431 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
432 ew32(EXTCNF_CTRL, extcnf_ctrl);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700433 nvm_owner = -1;
434 mutex_unlock(&nvm_mutex);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700435 return -E1000_ERR_CONFIG;
436 }
437
438 return 0;
439}
440
441/**
442 * e1000_release_swflag_ich8lan - Release software control flag
443 * @hw: pointer to the HW structure
444 *
445 * Releases the software control flag for performing NVM and PHY operations.
446 * This is a function pointer entry point only called by read/write
447 * routines for the PHY and NVM parts.
448 **/
449static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
450{
451 u32 extcnf_ctrl;
452
453 extcnf_ctrl = er32(EXTCNF_CTRL);
454 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
455 ew32(EXTCNF_CTRL, extcnf_ctrl);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700456
457 nvm_owner = -1;
458 mutex_unlock(&nvm_mutex);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700459}
460
461/**
Bruce Allan4662e822008-08-26 18:37:06 -0700462 * e1000_check_mng_mode_ich8lan - Checks management mode
463 * @hw: pointer to the HW structure
464 *
465 * This checks if the adapter has manageability enabled.
466 * This is a function pointer entry point only called by read/write
467 * routines for the PHY and NVM parts.
468 **/
469static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
470{
471 u32 fwsm = er32(FWSM);
472
473 return (fwsm & E1000_FWSM_MODE_MASK) ==
474 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
475}
476
477/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700478 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
479 * @hw: pointer to the HW structure
480 *
481 * Checks if firmware is blocking the reset of the PHY.
482 * This is a function pointer entry point only called by
483 * reset routines.
484 **/
485static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
486{
487 u32 fwsm;
488
489 fwsm = er32(FWSM);
490
491 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
492}
493
494/**
495 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
496 * @hw: pointer to the HW structure
497 *
498 * Forces the speed and duplex settings of the PHY.
499 * This is a function pointer entry point only called by
500 * PHY setup routines.
501 **/
502static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
503{
504 struct e1000_phy_info *phy = &hw->phy;
505 s32 ret_val;
506 u16 data;
507 bool link;
508
509 if (phy->type != e1000_phy_ife) {
510 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
511 return ret_val;
512 }
513
514 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
515 if (ret_val)
516 return ret_val;
517
518 e1000e_phy_force_speed_duplex_setup(hw, &data);
519
520 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
521 if (ret_val)
522 return ret_val;
523
524 /* Disable MDI-X support for 10/100 */
525 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
526 if (ret_val)
527 return ret_val;
528
529 data &= ~IFE_PMC_AUTO_MDIX;
530 data &= ~IFE_PMC_FORCE_MDIX;
531
532 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
533 if (ret_val)
534 return ret_val;
535
536 hw_dbg(hw, "IFE PMC: %X\n", data);
537
538 udelay(1);
539
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700540 if (phy->autoneg_wait_to_complete) {
Auke Kokbc7f75f2007-09-17 12:30:59 -0700541 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
542
543 ret_val = e1000e_phy_has_link_generic(hw,
544 PHY_FORCE_LIMIT,
545 100000,
546 &link);
547 if (ret_val)
548 return ret_val;
549
550 if (!link)
551 hw_dbg(hw, "Link taking longer than expected.\n");
552
553 /* Try once more */
554 ret_val = e1000e_phy_has_link_generic(hw,
555 PHY_FORCE_LIMIT,
556 100000,
557 &link);
558 if (ret_val)
559 return ret_val;
560 }
561
562 return 0;
563}
564
565/**
566 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
567 * @hw: pointer to the HW structure
568 *
569 * Resets the PHY
570 * This is a function pointer entry point called by drivers
571 * or other shared routines.
572 **/
573static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
574{
575 struct e1000_phy_info *phy = &hw->phy;
576 u32 i;
577 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
578 s32 ret_val;
579 u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
580 u16 word_addr, reg_data, reg_addr, phy_page = 0;
581
582 ret_val = e1000e_phy_hw_reset_generic(hw);
583 if (ret_val)
584 return ret_val;
585
Bruce Allanad680762008-03-28 09:15:03 -0700586 /*
587 * Initialize the PHY from the NVM on ICH platforms. This
Auke Kokbc7f75f2007-09-17 12:30:59 -0700588 * is needed due to an issue where the NVM configuration is
589 * not properly autoloaded after power transitions.
590 * Therefore, after each PHY reset, we will load the
591 * configuration data out of the NVM manually.
592 */
593 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
594 struct e1000_adapter *adapter = hw->adapter;
595
596 /* Check if SW needs configure the PHY */
597 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
598 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
599 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
600 else
601 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
602
603 data = er32(FEXTNVM);
604 if (!(data & sw_cfg_mask))
605 return 0;
606
607 /* Wait for basic configuration completes before proceeding*/
608 do {
609 data = er32(STATUS);
610 data &= E1000_STATUS_LAN_INIT_DONE;
611 udelay(100);
612 } while ((!data) && --loop);
613
Bruce Allanad680762008-03-28 09:15:03 -0700614 /*
615 * If basic configuration is incomplete before the above loop
Auke Kokbc7f75f2007-09-17 12:30:59 -0700616 * count reaches 0, loading the configuration from NVM will
617 * leave the PHY in a bad state possibly resulting in no link.
618 */
619 if (loop == 0) {
620 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
621 }
622
623 /* Clear the Init Done bit for the next init event */
624 data = er32(STATUS);
625 data &= ~E1000_STATUS_LAN_INIT_DONE;
626 ew32(STATUS, data);
627
Bruce Allanad680762008-03-28 09:15:03 -0700628 /*
629 * Make sure HW does not configure LCD from PHY
630 * extended configuration before SW configuration
631 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700632 data = er32(EXTCNF_CTRL);
633 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
634 return 0;
635
636 cnf_size = er32(EXTCNF_SIZE);
637 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
638 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
639 if (!cnf_size)
640 return 0;
641
642 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
643 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
644
Bruce Allanad680762008-03-28 09:15:03 -0700645 /* Configure LCD from extended configuration region. */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700646
647 /* cnf_base_addr is in DWORD */
648 word_addr = (u16)(cnf_base_addr << 1);
649
650 for (i = 0; i < cnf_size; i++) {
651 ret_val = e1000_read_nvm(hw,
652 (word_addr + i * 2),
653 1,
654 &reg_data);
655 if (ret_val)
656 return ret_val;
657
658 ret_val = e1000_read_nvm(hw,
659 (word_addr + i * 2 + 1),
660 1,
661 &reg_addr);
662 if (ret_val)
663 return ret_val;
664
665 /* Save off the PHY page for future writes. */
666 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
667 phy_page = reg_data;
668 continue;
669 }
670
671 reg_addr |= phy_page;
672
673 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
674 if (ret_val)
675 return ret_val;
676 }
677 }
678
679 return 0;
680}
681
682/**
683 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
684 * @hw: pointer to the HW structure
685 *
686 * Populates "phy" structure with various feature states.
687 * This function is only called by other family-specific
688 * routines.
689 **/
690static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
691{
692 struct e1000_phy_info *phy = &hw->phy;
693 s32 ret_val;
694 u16 data;
695 bool link;
696
697 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
698 if (ret_val)
699 return ret_val;
700
701 if (!link) {
702 hw_dbg(hw, "Phy info is only valid if link is up\n");
703 return -E1000_ERR_CONFIG;
704 }
705
706 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
707 if (ret_val)
708 return ret_val;
709 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
710
711 if (phy->polarity_correction) {
712 ret_val = e1000_check_polarity_ife_ich8lan(hw);
713 if (ret_val)
714 return ret_val;
715 } else {
716 /* Polarity is forced */
717 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
718 ? e1000_rev_polarity_reversed
719 : e1000_rev_polarity_normal;
720 }
721
722 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
723 if (ret_val)
724 return ret_val;
725
726 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
727
728 /* The following parameters are undefined for 10/100 operation. */
729 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
730 phy->local_rx = e1000_1000t_rx_status_undefined;
731 phy->remote_rx = e1000_1000t_rx_status_undefined;
732
733 return 0;
734}
735
736/**
737 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
738 * @hw: pointer to the HW structure
739 *
740 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
741 * This is a function pointer entry point called by drivers
742 * or other shared routines.
743 **/
744static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
745{
746 switch (hw->phy.type) {
747 case e1000_phy_ife:
748 return e1000_get_phy_info_ife_ich8lan(hw);
749 break;
750 case e1000_phy_igp_3:
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700751 case e1000_phy_bm:
Auke Kokbc7f75f2007-09-17 12:30:59 -0700752 return e1000e_get_phy_info_igp(hw);
753 break;
754 default:
755 break;
756 }
757
758 return -E1000_ERR_PHY_TYPE;
759}
760
761/**
762 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
763 * @hw: pointer to the HW structure
764 *
Auke Kok489815c2008-02-21 15:11:07 -0800765 * Polarity is determined on the polarity reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700766 * This function is only called by other family-specific
767 * routines.
768 **/
769static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
770{
771 struct e1000_phy_info *phy = &hw->phy;
772 s32 ret_val;
773 u16 phy_data, offset, mask;
774
Bruce Allanad680762008-03-28 09:15:03 -0700775 /*
776 * Polarity is determined based on the reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700777 */
778 if (phy->polarity_correction) {
779 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
780 mask = IFE_PESC_POLARITY_REVERSED;
781 } else {
782 offset = IFE_PHY_SPECIAL_CONTROL;
783 mask = IFE_PSC_FORCE_POLARITY;
784 }
785
786 ret_val = e1e_rphy(hw, offset, &phy_data);
787
788 if (!ret_val)
789 phy->cable_polarity = (phy_data & mask)
790 ? e1000_rev_polarity_reversed
791 : e1000_rev_polarity_normal;
792
793 return ret_val;
794}
795
796/**
797 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
798 * @hw: pointer to the HW structure
799 * @active: TRUE to enable LPLU, FALSE to disable
800 *
801 * Sets the LPLU D0 state according to the active flag. When
802 * activating LPLU this function also disables smart speed
803 * and vice versa. LPLU will not be activated unless the
804 * device autonegotiation advertisement meets standards of
805 * either 10 or 10/100 or 10/100/1000 at all duplexes.
806 * This is a function pointer entry point only called by
807 * PHY setup routines.
808 **/
809static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
810{
811 struct e1000_phy_info *phy = &hw->phy;
812 u32 phy_ctrl;
813 s32 ret_val = 0;
814 u16 data;
815
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700816 if (phy->type == e1000_phy_ife)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700817 return ret_val;
818
819 phy_ctrl = er32(PHY_CTRL);
820
821 if (active) {
822 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
823 ew32(PHY_CTRL, phy_ctrl);
824
Bruce Allanad680762008-03-28 09:15:03 -0700825 /*
826 * Call gig speed drop workaround on LPLU before accessing
827 * any PHY registers
828 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700829 if ((hw->mac.type == e1000_ich8lan) &&
830 (hw->phy.type == e1000_phy_igp_3))
831 e1000e_gig_downshift_workaround_ich8lan(hw);
832
833 /* When LPLU is enabled, we should disable SmartSpeed */
834 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
835 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
836 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
837 if (ret_val)
838 return ret_val;
839 } else {
840 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
841 ew32(PHY_CTRL, phy_ctrl);
842
Bruce Allanad680762008-03-28 09:15:03 -0700843 /*
844 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -0700845 * during Dx states where the power conservation is most
846 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -0700847 * SmartSpeed, so performance is maintained.
848 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700849 if (phy->smart_speed == e1000_smart_speed_on) {
850 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -0700851 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700852 if (ret_val)
853 return ret_val;
854
855 data |= IGP01E1000_PSCFR_SMART_SPEED;
856 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -0700857 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700858 if (ret_val)
859 return ret_val;
860 } else if (phy->smart_speed == e1000_smart_speed_off) {
861 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -0700862 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700863 if (ret_val)
864 return ret_val;
865
866 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
867 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -0700868 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700869 if (ret_val)
870 return ret_val;
871 }
872 }
873
874 return 0;
875}
876
877/**
878 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
879 * @hw: pointer to the HW structure
880 * @active: TRUE to enable LPLU, FALSE to disable
881 *
882 * Sets the LPLU D3 state according to the active flag. When
883 * activating LPLU this function also disables smart speed
884 * and vice versa. LPLU will not be activated unless the
885 * device autonegotiation advertisement meets standards of
886 * either 10 or 10/100 or 10/100/1000 at all duplexes.
887 * This is a function pointer entry point only called by
888 * PHY setup routines.
889 **/
890static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
891{
892 struct e1000_phy_info *phy = &hw->phy;
893 u32 phy_ctrl;
894 s32 ret_val;
895 u16 data;
896
897 phy_ctrl = er32(PHY_CTRL);
898
899 if (!active) {
900 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
901 ew32(PHY_CTRL, phy_ctrl);
Bruce Allanad680762008-03-28 09:15:03 -0700902 /*
903 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -0700904 * during Dx states where the power conservation is most
905 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -0700906 * SmartSpeed, so performance is maintained.
907 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700908 if (phy->smart_speed == e1000_smart_speed_on) {
Bruce Allanad680762008-03-28 09:15:03 -0700909 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
910 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700911 if (ret_val)
912 return ret_val;
913
914 data |= IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -0700915 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
916 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700917 if (ret_val)
918 return ret_val;
919 } else if (phy->smart_speed == e1000_smart_speed_off) {
Bruce Allanad680762008-03-28 09:15:03 -0700920 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
921 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700922 if (ret_val)
923 return ret_val;
924
925 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -0700926 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
927 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700928 if (ret_val)
929 return ret_val;
930 }
931 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
932 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
933 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
934 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
935 ew32(PHY_CTRL, phy_ctrl);
936
Bruce Allanad680762008-03-28 09:15:03 -0700937 /*
938 * Call gig speed drop workaround on LPLU before accessing
939 * any PHY registers
940 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700941 if ((hw->mac.type == e1000_ich8lan) &&
942 (hw->phy.type == e1000_phy_igp_3))
943 e1000e_gig_downshift_workaround_ich8lan(hw);
944
945 /* When LPLU is enabled, we should disable SmartSpeed */
Bruce Allanad680762008-03-28 09:15:03 -0700946 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700947 if (ret_val)
948 return ret_val;
949
950 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -0700951 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700952 }
953
954 return 0;
955}
956
957/**
Bruce Allanf4187b52008-08-26 18:36:50 -0700958 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
959 * @hw: pointer to the HW structure
960 * @bank: pointer to the variable that returns the active bank
961 *
962 * Reads signature byte from the NVM using the flash access registers.
Bruce Allane2434552008-11-21 17:02:41 -0800963 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
Bruce Allanf4187b52008-08-26 18:36:50 -0700964 **/
965static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
966{
Bruce Allane2434552008-11-21 17:02:41 -0800967 u32 eecd;
Bruce Allanf4187b52008-08-26 18:36:50 -0700968 struct e1000_nvm_info *nvm = &hw->nvm;
Bruce Allanf4187b52008-08-26 18:36:50 -0700969 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
970 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
Bruce Allane2434552008-11-21 17:02:41 -0800971 u8 sig_byte = 0;
972 s32 ret_val = 0;
Bruce Allanf4187b52008-08-26 18:36:50 -0700973
Bruce Allane2434552008-11-21 17:02:41 -0800974 switch (hw->mac.type) {
975 case e1000_ich8lan:
976 case e1000_ich9lan:
977 eecd = er32(EECD);
978 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
979 E1000_EECD_SEC1VAL_VALID_MASK) {
980 if (eecd & E1000_EECD_SEC1VAL)
Bruce Allanf4187b52008-08-26 18:36:50 -0700981 *bank = 1;
Bruce Allane2434552008-11-21 17:02:41 -0800982 else
983 *bank = 0;
984
985 return 0;
Bruce Allanf4187b52008-08-26 18:36:50 -0700986 }
Bruce Allane2434552008-11-21 17:02:41 -0800987 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
988 "reading flash signature\n");
989 /* fall-thru */
990 default:
991 /* set bank to 0 in case flash read fails */
992 *bank = 0;
993
994 /* Check bank 0 */
995 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
996 &sig_byte);
997 if (ret_val)
998 return ret_val;
999 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1000 E1000_ICH_NVM_SIG_VALUE) {
1001 *bank = 0;
1002 return 0;
1003 }
1004
1005 /* Check bank 1 */
1006 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1007 bank1_offset,
1008 &sig_byte);
1009 if (ret_val)
1010 return ret_val;
1011 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1012 E1000_ICH_NVM_SIG_VALUE) {
1013 *bank = 1;
1014 return 0;
1015 }
1016
1017 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1018 return -E1000_ERR_NVM;
Bruce Allanf4187b52008-08-26 18:36:50 -07001019 }
1020
1021 return 0;
1022}
1023
1024/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001025 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1026 * @hw: pointer to the HW structure
1027 * @offset: The offset (in bytes) of the word(s) to read.
1028 * @words: Size of data to read in words
1029 * @data: Pointer to the word(s) to read at offset.
1030 *
1031 * Reads a word(s) from the NVM using the flash access registers.
1032 **/
1033static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1034 u16 *data)
1035{
1036 struct e1000_nvm_info *nvm = &hw->nvm;
1037 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1038 u32 act_offset;
1039 s32 ret_val;
Bruce Allanf4187b52008-08-26 18:36:50 -07001040 u32 bank = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001041 u16 i, word;
1042
1043 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1044 (words == 0)) {
1045 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1046 return -E1000_ERR_NVM;
1047 }
1048
1049 ret_val = e1000_acquire_swflag_ich8lan(hw);
1050 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001051 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001052
Bruce Allanf4187b52008-08-26 18:36:50 -07001053 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1054 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001055 goto release;
Bruce Allanf4187b52008-08-26 18:36:50 -07001056
1057 act_offset = (bank) ? nvm->flash_bank_size : 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001058 act_offset += offset;
1059
1060 for (i = 0; i < words; i++) {
1061 if ((dev_spec->shadow_ram) &&
1062 (dev_spec->shadow_ram[offset+i].modified)) {
1063 data[i] = dev_spec->shadow_ram[offset+i].value;
1064 } else {
1065 ret_val = e1000_read_flash_word_ich8lan(hw,
1066 act_offset + i,
1067 &word);
1068 if (ret_val)
1069 break;
1070 data[i] = word;
1071 }
1072 }
1073
Bruce Allane2434552008-11-21 17:02:41 -08001074release:
Auke Kokbc7f75f2007-09-17 12:30:59 -07001075 e1000_release_swflag_ich8lan(hw);
1076
Bruce Allane2434552008-11-21 17:02:41 -08001077out:
1078 if (ret_val)
1079 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1080
Auke Kokbc7f75f2007-09-17 12:30:59 -07001081 return ret_val;
1082}
1083
1084/**
1085 * e1000_flash_cycle_init_ich8lan - Initialize flash
1086 * @hw: pointer to the HW structure
1087 *
1088 * This function does initial flash setup so that a new read/write/erase cycle
1089 * can be started.
1090 **/
1091static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1092{
1093 union ich8_hws_flash_status hsfsts;
1094 s32 ret_val = -E1000_ERR_NVM;
1095 s32 i = 0;
1096
1097 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1098
1099 /* Check if the flash descriptor is valid */
1100 if (hsfsts.hsf_status.fldesvalid == 0) {
1101 hw_dbg(hw, "Flash descriptor invalid. "
1102 "SW Sequencing must be used.");
1103 return -E1000_ERR_NVM;
1104 }
1105
1106 /* Clear FCERR and DAEL in hw status by writing 1 */
1107 hsfsts.hsf_status.flcerr = 1;
1108 hsfsts.hsf_status.dael = 1;
1109
1110 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1111
Bruce Allanad680762008-03-28 09:15:03 -07001112 /*
1113 * Either we should have a hardware SPI cycle in progress
Auke Kokbc7f75f2007-09-17 12:30:59 -07001114 * bit to check against, in order to start a new cycle or
1115 * FDONE bit should be changed in the hardware so that it
Auke Kok489815c2008-02-21 15:11:07 -08001116 * is 1 after hardware reset, which can then be used as an
Auke Kokbc7f75f2007-09-17 12:30:59 -07001117 * indication whether a cycle is in progress or has been
1118 * completed.
1119 */
1120
1121 if (hsfsts.hsf_status.flcinprog == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001122 /*
1123 * There is no cycle running at present,
1124 * so we can start a cycle
1125 * Begin by setting Flash Cycle Done.
1126 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001127 hsfsts.hsf_status.flcdone = 1;
1128 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1129 ret_val = 0;
1130 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001131 /*
1132 * otherwise poll for sometime so the current
1133 * cycle has a chance to end before giving up.
1134 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001135 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1136 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1137 if (hsfsts.hsf_status.flcinprog == 0) {
1138 ret_val = 0;
1139 break;
1140 }
1141 udelay(1);
1142 }
1143 if (ret_val == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001144 /*
1145 * Successful in waiting for previous cycle to timeout,
1146 * now set the Flash Cycle Done.
1147 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001148 hsfsts.hsf_status.flcdone = 1;
1149 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1150 } else {
1151 hw_dbg(hw, "Flash controller busy, cannot get access");
1152 }
1153 }
1154
1155 return ret_val;
1156}
1157
1158/**
1159 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1160 * @hw: pointer to the HW structure
1161 * @timeout: maximum time to wait for completion
1162 *
1163 * This function starts a flash cycle and waits for its completion.
1164 **/
1165static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1166{
1167 union ich8_hws_flash_ctrl hsflctl;
1168 union ich8_hws_flash_status hsfsts;
1169 s32 ret_val = -E1000_ERR_NVM;
1170 u32 i = 0;
1171
1172 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1173 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1174 hsflctl.hsf_ctrl.flcgo = 1;
1175 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1176
1177 /* wait till FDONE bit is set to 1 */
1178 do {
1179 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1180 if (hsfsts.hsf_status.flcdone == 1)
1181 break;
1182 udelay(1);
1183 } while (i++ < timeout);
1184
1185 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1186 return 0;
1187
1188 return ret_val;
1189}
1190
1191/**
1192 * e1000_read_flash_word_ich8lan - Read word from flash
1193 * @hw: pointer to the HW structure
1194 * @offset: offset to data location
1195 * @data: pointer to the location for storing the data
1196 *
1197 * Reads the flash word at offset into data. Offset is converted
1198 * to bytes before read.
1199 **/
1200static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1201 u16 *data)
1202{
1203 /* Must convert offset into bytes. */
1204 offset <<= 1;
1205
1206 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1207}
1208
1209/**
Bruce Allanf4187b52008-08-26 18:36:50 -07001210 * e1000_read_flash_byte_ich8lan - Read byte from flash
1211 * @hw: pointer to the HW structure
1212 * @offset: The offset of the byte to read.
1213 * @data: Pointer to a byte to store the value read.
1214 *
1215 * Reads a single byte from the NVM using the flash access registers.
1216 **/
1217static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1218 u8 *data)
1219{
1220 s32 ret_val;
1221 u16 word = 0;
1222
1223 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1224 if (ret_val)
1225 return ret_val;
1226
1227 *data = (u8)word;
1228
1229 return 0;
1230}
1231
1232/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001233 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1234 * @hw: pointer to the HW structure
1235 * @offset: The offset (in bytes) of the byte or word to read.
1236 * @size: Size of data to read, 1=byte 2=word
1237 * @data: Pointer to the word to store the value read.
1238 *
1239 * Reads a byte or word from the NVM using the flash access registers.
1240 **/
1241static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1242 u8 size, u16 *data)
1243{
1244 union ich8_hws_flash_status hsfsts;
1245 union ich8_hws_flash_ctrl hsflctl;
1246 u32 flash_linear_addr;
1247 u32 flash_data = 0;
1248 s32 ret_val = -E1000_ERR_NVM;
1249 u8 count = 0;
1250
1251 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1252 return -E1000_ERR_NVM;
1253
1254 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1255 hw->nvm.flash_base_addr;
1256
1257 do {
1258 udelay(1);
1259 /* Steps */
1260 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1261 if (ret_val != 0)
1262 break;
1263
1264 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1265 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1266 hsflctl.hsf_ctrl.fldbcount = size - 1;
1267 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1268 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1269
1270 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1271
1272 ret_val = e1000_flash_cycle_ich8lan(hw,
1273 ICH_FLASH_READ_COMMAND_TIMEOUT);
1274
Bruce Allanad680762008-03-28 09:15:03 -07001275 /*
1276 * Check if FCERR is set to 1, if set to 1, clear it
Auke Kokbc7f75f2007-09-17 12:30:59 -07001277 * and try the whole sequence a few more times, else
1278 * read in (shift in) the Flash Data0, the order is
Bruce Allanad680762008-03-28 09:15:03 -07001279 * least significant byte first msb to lsb
1280 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001281 if (ret_val == 0) {
1282 flash_data = er32flash(ICH_FLASH_FDATA0);
1283 if (size == 1) {
1284 *data = (u8)(flash_data & 0x000000FF);
1285 } else if (size == 2) {
1286 *data = (u16)(flash_data & 0x0000FFFF);
1287 }
1288 break;
1289 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001290 /*
1291 * If we've gotten here, then things are probably
Auke Kokbc7f75f2007-09-17 12:30:59 -07001292 * completely hosed, but if the error condition is
1293 * detected, it won't hurt to give it another try...
1294 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1295 */
1296 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1297 if (hsfsts.hsf_status.flcerr == 1) {
1298 /* Repeat for some time before giving up. */
1299 continue;
1300 } else if (hsfsts.hsf_status.flcdone == 0) {
1301 hw_dbg(hw, "Timeout error - flash cycle "
1302 "did not complete.");
1303 break;
1304 }
1305 }
1306 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1307
1308 return ret_val;
1309}
1310
1311/**
1312 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1313 * @hw: pointer to the HW structure
1314 * @offset: The offset (in bytes) of the word(s) to write.
1315 * @words: Size of data to write in words
1316 * @data: Pointer to the word(s) to write at offset.
1317 *
1318 * Writes a byte or word to the NVM using the flash access registers.
1319 **/
1320static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1321 u16 *data)
1322{
1323 struct e1000_nvm_info *nvm = &hw->nvm;
1324 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1325 s32 ret_val;
1326 u16 i;
1327
1328 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1329 (words == 0)) {
1330 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1331 return -E1000_ERR_NVM;
1332 }
1333
1334 ret_val = e1000_acquire_swflag_ich8lan(hw);
1335 if (ret_val)
1336 return ret_val;
1337
1338 for (i = 0; i < words; i++) {
1339 dev_spec->shadow_ram[offset+i].modified = 1;
1340 dev_spec->shadow_ram[offset+i].value = data[i];
1341 }
1342
1343 e1000_release_swflag_ich8lan(hw);
1344
1345 return 0;
1346}
1347
1348/**
1349 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1350 * @hw: pointer to the HW structure
1351 *
1352 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1353 * which writes the checksum to the shadow ram. The changes in the shadow
1354 * ram are then committed to the EEPROM by processing each bank at a time
1355 * checking for the modified bit and writing only the pending changes.
Auke Kok489815c2008-02-21 15:11:07 -08001356 * After a successful commit, the shadow ram is cleared and is ready for
Auke Kokbc7f75f2007-09-17 12:30:59 -07001357 * future writes.
1358 **/
1359static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1360{
1361 struct e1000_nvm_info *nvm = &hw->nvm;
1362 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Bruce Allanf4187b52008-08-26 18:36:50 -07001363 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001364 s32 ret_val;
1365 u16 data;
1366
1367 ret_val = e1000e_update_nvm_checksum_generic(hw);
1368 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001369 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001370
1371 if (nvm->type != e1000_nvm_flash_sw)
Bruce Allane2434552008-11-21 17:02:41 -08001372 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001373
1374 ret_val = e1000_acquire_swflag_ich8lan(hw);
1375 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001376 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001377
Bruce Allanad680762008-03-28 09:15:03 -07001378 /*
1379 * We're writing to the opposite bank so if we're on bank 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001380 * write to bank 0 etc. We also need to erase the segment that
Bruce Allanad680762008-03-28 09:15:03 -07001381 * is going to be written
1382 */
Bruce Allanf4187b52008-08-26 18:36:50 -07001383 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
Bruce Allane2434552008-11-21 17:02:41 -08001384 if (ret_val) {
1385 e1000_release_swflag_ich8lan(hw);
1386 goto out;
1387 }
Bruce Allanf4187b52008-08-26 18:36:50 -07001388
1389 if (bank == 0) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001390 new_bank_offset = nvm->flash_bank_size;
1391 old_bank_offset = 0;
Bruce Allane2434552008-11-21 17:02:41 -08001392 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1393 if (ret_val) {
1394 e1000_release_swflag_ich8lan(hw);
1395 goto out;
1396 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001397 } else {
1398 old_bank_offset = nvm->flash_bank_size;
1399 new_bank_offset = 0;
Bruce Allane2434552008-11-21 17:02:41 -08001400 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1401 if (ret_val) {
1402 e1000_release_swflag_ich8lan(hw);
1403 goto out;
1404 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001405 }
1406
1407 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
Bruce Allanad680762008-03-28 09:15:03 -07001408 /*
1409 * Determine whether to write the value stored
Auke Kokbc7f75f2007-09-17 12:30:59 -07001410 * in the other NVM bank or a modified value stored
Bruce Allanad680762008-03-28 09:15:03 -07001411 * in the shadow RAM
1412 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001413 if (dev_spec->shadow_ram[i].modified) {
1414 data = dev_spec->shadow_ram[i].value;
1415 } else {
Bruce Allane2434552008-11-21 17:02:41 -08001416 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1417 old_bank_offset,
1418 &data);
1419 if (ret_val)
1420 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001421 }
1422
Bruce Allanad680762008-03-28 09:15:03 -07001423 /*
1424 * If the word is 0x13, then make sure the signature bits
Auke Kokbc7f75f2007-09-17 12:30:59 -07001425 * (15:14) are 11b until the commit has completed.
1426 * This will allow us to write 10b which indicates the
1427 * signature is valid. We want to do this after the write
1428 * has completed so that we don't mark the segment valid
Bruce Allanad680762008-03-28 09:15:03 -07001429 * while the write is still in progress
1430 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001431 if (i == E1000_ICH_NVM_SIG_WORD)
1432 data |= E1000_ICH_NVM_SIG_MASK;
1433
1434 /* Convert offset to bytes. */
1435 act_offset = (i + new_bank_offset) << 1;
1436
1437 udelay(100);
1438 /* Write the bytes to the new bank. */
1439 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1440 act_offset,
1441 (u8)data);
1442 if (ret_val)
1443 break;
1444
1445 udelay(100);
1446 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1447 act_offset + 1,
1448 (u8)(data >> 8));
1449 if (ret_val)
1450 break;
1451 }
1452
Bruce Allanad680762008-03-28 09:15:03 -07001453 /*
1454 * Don't bother writing the segment valid bits if sector
1455 * programming failed.
1456 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001457 if (ret_val) {
Bruce Allan4a770352008-10-01 17:18:35 -07001458 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001459 hw_dbg(hw, "Flash commit failed.\n");
1460 e1000_release_swflag_ich8lan(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001461 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001462 }
1463
Bruce Allanad680762008-03-28 09:15:03 -07001464 /*
1465 * Finally validate the new segment by setting bit 15:14
Auke Kokbc7f75f2007-09-17 12:30:59 -07001466 * to 10b in word 0x13 , this can be done without an
1467 * erase as well since these bits are 11 to start with
Bruce Allanad680762008-03-28 09:15:03 -07001468 * and we need to change bit 14 to 0b
1469 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001470 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
Bruce Allane2434552008-11-21 17:02:41 -08001471 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1472 if (ret_val) {
1473 e1000_release_swflag_ich8lan(hw);
1474 goto out;
1475 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001476 data &= 0xBFFF;
1477 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1478 act_offset * 2 + 1,
1479 (u8)(data >> 8));
1480 if (ret_val) {
1481 e1000_release_swflag_ich8lan(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001482 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001483 }
1484
Bruce Allanad680762008-03-28 09:15:03 -07001485 /*
1486 * And invalidate the previously valid segment by setting
Auke Kokbc7f75f2007-09-17 12:30:59 -07001487 * its signature word (0x13) high_byte to 0b. This can be
1488 * done without an erase because flash erase sets all bits
Bruce Allanad680762008-03-28 09:15:03 -07001489 * to 1's. We can write 1's to 0's without an erase
1490 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001491 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1492 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1493 if (ret_val) {
1494 e1000_release_swflag_ich8lan(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001495 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001496 }
1497
1498 /* Great! Everything worked, we can now clear the cached entries. */
1499 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1500 dev_spec->shadow_ram[i].modified = 0;
1501 dev_spec->shadow_ram[i].value = 0xFFFF;
1502 }
1503
1504 e1000_release_swflag_ich8lan(hw);
1505
Bruce Allanad680762008-03-28 09:15:03 -07001506 /*
1507 * Reload the EEPROM, or else modifications will not appear
Auke Kokbc7f75f2007-09-17 12:30:59 -07001508 * until after the next adapter reset.
1509 */
1510 e1000e_reload_nvm(hw);
1511 msleep(10);
1512
Bruce Allane2434552008-11-21 17:02:41 -08001513out:
1514 if (ret_val)
1515 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1516
Auke Kokbc7f75f2007-09-17 12:30:59 -07001517 return ret_val;
1518}
1519
1520/**
1521 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1522 * @hw: pointer to the HW structure
1523 *
1524 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1525 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1526 * calculated, in which case we need to calculate the checksum and set bit 6.
1527 **/
1528static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1529{
1530 s32 ret_val;
1531 u16 data;
1532
Bruce Allanad680762008-03-28 09:15:03 -07001533 /*
1534 * Read 0x19 and check bit 6. If this bit is 0, the checksum
Auke Kokbc7f75f2007-09-17 12:30:59 -07001535 * needs to be fixed. This bit is an indication that the NVM
1536 * was prepared by OEM software and did not calculate the
1537 * checksum...a likely scenario.
1538 */
1539 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1540 if (ret_val)
1541 return ret_val;
1542
1543 if ((data & 0x40) == 0) {
1544 data |= 0x40;
1545 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1546 if (ret_val)
1547 return ret_val;
1548 ret_val = e1000e_update_nvm_checksum(hw);
1549 if (ret_val)
1550 return ret_val;
1551 }
1552
1553 return e1000e_validate_nvm_checksum_generic(hw);
1554}
1555
1556/**
Bruce Allan4a770352008-10-01 17:18:35 -07001557 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1558 * @hw: pointer to the HW structure
1559 *
1560 * To prevent malicious write/erase of the NVM, set it to be read-only
1561 * so that the hardware ignores all write/erase cycles of the NVM via
1562 * the flash control registers. The shadow-ram copy of the NVM will
1563 * still be updated, however any updates to this copy will not stick
1564 * across driver reloads.
1565 **/
1566void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1567{
1568 union ich8_flash_protected_range pr0;
1569 union ich8_hws_flash_status hsfsts;
1570 u32 gfpreg;
1571 s32 ret_val;
1572
1573 ret_val = e1000_acquire_swflag_ich8lan(hw);
1574 if (ret_val)
1575 return;
1576
1577 gfpreg = er32flash(ICH_FLASH_GFPREG);
1578
1579 /* Write-protect GbE Sector of NVM */
1580 pr0.regval = er32flash(ICH_FLASH_PR0);
1581 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1582 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1583 pr0.range.wpe = true;
1584 ew32flash(ICH_FLASH_PR0, pr0.regval);
1585
1586 /*
1587 * Lock down a subset of GbE Flash Control Registers, e.g.
1588 * PR0 to prevent the write-protection from being lifted.
1589 * Once FLOCKDN is set, the registers protected by it cannot
1590 * be written until FLOCKDN is cleared by a hardware reset.
1591 */
1592 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1593 hsfsts.hsf_status.flockdn = true;
1594 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1595
1596 e1000_release_swflag_ich8lan(hw);
1597}
1598
1599/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001600 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1601 * @hw: pointer to the HW structure
1602 * @offset: The offset (in bytes) of the byte/word to read.
1603 * @size: Size of data to read, 1=byte 2=word
1604 * @data: The byte(s) to write to the NVM.
1605 *
1606 * Writes one/two bytes to the NVM using the flash access registers.
1607 **/
1608static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1609 u8 size, u16 data)
1610{
1611 union ich8_hws_flash_status hsfsts;
1612 union ich8_hws_flash_ctrl hsflctl;
1613 u32 flash_linear_addr;
1614 u32 flash_data = 0;
1615 s32 ret_val;
1616 u8 count = 0;
1617
1618 if (size < 1 || size > 2 || data > size * 0xff ||
1619 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1620 return -E1000_ERR_NVM;
1621
1622 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1623 hw->nvm.flash_base_addr;
1624
1625 do {
1626 udelay(1);
1627 /* Steps */
1628 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1629 if (ret_val)
1630 break;
1631
1632 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1633 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1634 hsflctl.hsf_ctrl.fldbcount = size -1;
1635 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1636 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1637
1638 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1639
1640 if (size == 1)
1641 flash_data = (u32)data & 0x00FF;
1642 else
1643 flash_data = (u32)data;
1644
1645 ew32flash(ICH_FLASH_FDATA0, flash_data);
1646
Bruce Allanad680762008-03-28 09:15:03 -07001647 /*
1648 * check if FCERR is set to 1 , if set to 1, clear it
1649 * and try the whole sequence a few more times else done
1650 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001651 ret_val = e1000_flash_cycle_ich8lan(hw,
1652 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1653 if (!ret_val)
1654 break;
1655
Bruce Allanad680762008-03-28 09:15:03 -07001656 /*
1657 * If we're here, then things are most likely
Auke Kokbc7f75f2007-09-17 12:30:59 -07001658 * completely hosed, but if the error condition
1659 * is detected, it won't hurt to give it another
1660 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1661 */
1662 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1663 if (hsfsts.hsf_status.flcerr == 1)
1664 /* Repeat for some time before giving up. */
1665 continue;
1666 if (hsfsts.hsf_status.flcdone == 0) {
1667 hw_dbg(hw, "Timeout error - flash cycle "
1668 "did not complete.");
1669 break;
1670 }
1671 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1672
1673 return ret_val;
1674}
1675
1676/**
1677 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1678 * @hw: pointer to the HW structure
1679 * @offset: The index of the byte to read.
1680 * @data: The byte to write to the NVM.
1681 *
1682 * Writes a single byte to the NVM using the flash access registers.
1683 **/
1684static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1685 u8 data)
1686{
1687 u16 word = (u16)data;
1688
1689 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1690}
1691
1692/**
1693 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1694 * @hw: pointer to the HW structure
1695 * @offset: The offset of the byte to write.
1696 * @byte: The byte to write to the NVM.
1697 *
1698 * Writes a single byte to the NVM using the flash access registers.
1699 * Goes through a retry algorithm before giving up.
1700 **/
1701static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1702 u32 offset, u8 byte)
1703{
1704 s32 ret_val;
1705 u16 program_retries;
1706
1707 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1708 if (!ret_val)
1709 return ret_val;
1710
1711 for (program_retries = 0; program_retries < 100; program_retries++) {
1712 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1713 udelay(100);
1714 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1715 if (!ret_val)
1716 break;
1717 }
1718 if (program_retries == 100)
1719 return -E1000_ERR_NVM;
1720
1721 return 0;
1722}
1723
1724/**
1725 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1726 * @hw: pointer to the HW structure
1727 * @bank: 0 for first bank, 1 for second bank, etc.
1728 *
1729 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1730 * bank N is 4096 * N + flash_reg_addr.
1731 **/
1732static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1733{
1734 struct e1000_nvm_info *nvm = &hw->nvm;
1735 union ich8_hws_flash_status hsfsts;
1736 union ich8_hws_flash_ctrl hsflctl;
1737 u32 flash_linear_addr;
1738 /* bank size is in 16bit words - adjust to bytes */
1739 u32 flash_bank_size = nvm->flash_bank_size * 2;
1740 s32 ret_val;
1741 s32 count = 0;
1742 s32 iteration;
1743 s32 sector_size;
1744 s32 j;
1745
1746 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1747
Bruce Allanad680762008-03-28 09:15:03 -07001748 /*
1749 * Determine HW Sector size: Read BERASE bits of hw flash status
1750 * register
1751 * 00: The Hw sector is 256 bytes, hence we need to erase 16
Auke Kokbc7f75f2007-09-17 12:30:59 -07001752 * consecutive sectors. The start index for the nth Hw sector
1753 * can be calculated as = bank * 4096 + n * 256
1754 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1755 * The start index for the nth Hw sector can be calculated
1756 * as = bank * 4096
1757 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1758 * (ich9 only, otherwise error condition)
1759 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1760 */
1761 switch (hsfsts.hsf_status.berasesz) {
1762 case 0:
1763 /* Hw sector size 256 */
1764 sector_size = ICH_FLASH_SEG_SIZE_256;
1765 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1766 break;
1767 case 1:
1768 sector_size = ICH_FLASH_SEG_SIZE_4K;
1769 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1770 break;
1771 case 2:
1772 if (hw->mac.type == e1000_ich9lan) {
1773 sector_size = ICH_FLASH_SEG_SIZE_8K;
1774 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1775 } else {
1776 return -E1000_ERR_NVM;
1777 }
1778 break;
1779 case 3:
1780 sector_size = ICH_FLASH_SEG_SIZE_64K;
1781 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1782 break;
1783 default:
1784 return -E1000_ERR_NVM;
1785 }
1786
1787 /* Start with the base address, then add the sector offset. */
1788 flash_linear_addr = hw->nvm.flash_base_addr;
1789 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1790
1791 for (j = 0; j < iteration ; j++) {
1792 do {
1793 /* Steps */
1794 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1795 if (ret_val)
1796 return ret_val;
1797
Bruce Allanad680762008-03-28 09:15:03 -07001798 /*
1799 * Write a value 11 (block Erase) in Flash
1800 * Cycle field in hw flash control
1801 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001802 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1803 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1804 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1805
Bruce Allanad680762008-03-28 09:15:03 -07001806 /*
1807 * Write the last 24 bits of an index within the
Auke Kokbc7f75f2007-09-17 12:30:59 -07001808 * block into Flash Linear address field in Flash
1809 * Address.
1810 */
1811 flash_linear_addr += (j * sector_size);
1812 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1813
1814 ret_val = e1000_flash_cycle_ich8lan(hw,
1815 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1816 if (ret_val == 0)
1817 break;
1818
Bruce Allanad680762008-03-28 09:15:03 -07001819 /*
1820 * Check if FCERR is set to 1. If 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001821 * clear it and try the whole sequence
Bruce Allanad680762008-03-28 09:15:03 -07001822 * a few more times else Done
1823 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001824 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1825 if (hsfsts.hsf_status.flcerr == 1)
Bruce Allanad680762008-03-28 09:15:03 -07001826 /* repeat for some time before giving up */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001827 continue;
1828 else if (hsfsts.hsf_status.flcdone == 0)
1829 return ret_val;
1830 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1831 }
1832
1833 return 0;
1834}
1835
1836/**
1837 * e1000_valid_led_default_ich8lan - Set the default LED settings
1838 * @hw: pointer to the HW structure
1839 * @data: Pointer to the LED settings
1840 *
1841 * Reads the LED default settings from the NVM to data. If the NVM LED
1842 * settings is all 0's or F's, set the LED default to a valid LED default
1843 * setting.
1844 **/
1845static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1846{
1847 s32 ret_val;
1848
1849 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1850 if (ret_val) {
1851 hw_dbg(hw, "NVM Read Error\n");
1852 return ret_val;
1853 }
1854
1855 if (*data == ID_LED_RESERVED_0000 ||
1856 *data == ID_LED_RESERVED_FFFF)
1857 *data = ID_LED_DEFAULT_ICH8LAN;
1858
1859 return 0;
1860}
1861
1862/**
1863 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1864 * @hw: pointer to the HW structure
1865 *
1866 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1867 * register, so the the bus width is hard coded.
1868 **/
1869static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1870{
1871 struct e1000_bus_info *bus = &hw->bus;
1872 s32 ret_val;
1873
1874 ret_val = e1000e_get_bus_info_pcie(hw);
1875
Bruce Allanad680762008-03-28 09:15:03 -07001876 /*
1877 * ICH devices are "PCI Express"-ish. They have
Auke Kokbc7f75f2007-09-17 12:30:59 -07001878 * a configuration space, but do not contain
1879 * PCI Express Capability registers, so bus width
1880 * must be hardcoded.
1881 */
1882 if (bus->width == e1000_bus_width_unknown)
1883 bus->width = e1000_bus_width_pcie_x1;
1884
1885 return ret_val;
1886}
1887
1888/**
1889 * e1000_reset_hw_ich8lan - Reset the hardware
1890 * @hw: pointer to the HW structure
1891 *
1892 * Does a full reset of the hardware which includes a reset of the PHY and
1893 * MAC.
1894 **/
1895static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1896{
1897 u32 ctrl, icr, kab;
1898 s32 ret_val;
1899
Bruce Allanad680762008-03-28 09:15:03 -07001900 /*
1901 * Prevent the PCI-E bus from sticking if there is no TLP connection
Auke Kokbc7f75f2007-09-17 12:30:59 -07001902 * on the last TLP read/write transaction when MAC is reset.
1903 */
1904 ret_val = e1000e_disable_pcie_master(hw);
1905 if (ret_val) {
1906 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1907 }
1908
1909 hw_dbg(hw, "Masking off all interrupts\n");
1910 ew32(IMC, 0xffffffff);
1911
Bruce Allanad680762008-03-28 09:15:03 -07001912 /*
1913 * Disable the Transmit and Receive units. Then delay to allow
Auke Kokbc7f75f2007-09-17 12:30:59 -07001914 * any pending transactions to complete before we hit the MAC
1915 * with the global reset.
1916 */
1917 ew32(RCTL, 0);
1918 ew32(TCTL, E1000_TCTL_PSP);
1919 e1e_flush();
1920
1921 msleep(10);
1922
1923 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1924 if (hw->mac.type == e1000_ich8lan) {
1925 /* Set Tx and Rx buffer allocation to 8k apiece. */
1926 ew32(PBA, E1000_PBA_8K);
1927 /* Set Packet Buffer Size to 16k. */
1928 ew32(PBS, E1000_PBS_16K);
1929 }
1930
1931 ctrl = er32(CTRL);
1932
1933 if (!e1000_check_reset_block(hw)) {
Bruce Allanad680762008-03-28 09:15:03 -07001934 /*
1935 * PHY HW reset requires MAC CORE reset at the same
Auke Kokbc7f75f2007-09-17 12:30:59 -07001936 * time to make sure the interface between MAC and the
1937 * external PHY is reset.
1938 */
1939 ctrl |= E1000_CTRL_PHY_RST;
1940 }
1941 ret_val = e1000_acquire_swflag_ich8lan(hw);
Jeff Kirsher30bb0e02008-12-11 21:28:11 -08001942 /* Whether or not the swflag was acquired, we need to reset the part */
Bruce Allan0285c8d2008-11-21 16:59:54 -08001943 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001944 ew32(CTRL, (ctrl | E1000_CTRL_RST));
1945 msleep(20);
1946
Jeff Kirsher30bb0e02008-12-11 21:28:11 -08001947 if (!ret_val) {
1948 /* release the swflag because it is not reset by
1949 * hardware reset
1950 */
1951 e1000_release_swflag_ich8lan(hw);
1952 }
Jesse Brandeburg37f40232008-10-02 16:33:20 -07001953
Auke Kokbc7f75f2007-09-17 12:30:59 -07001954 ret_val = e1000e_get_auto_rd_done(hw);
1955 if (ret_val) {
1956 /*
1957 * When auto config read does not complete, do not
1958 * return with an error. This can happen in situations
1959 * where there is no eeprom and prevents getting link.
1960 */
1961 hw_dbg(hw, "Auto Read Done did not complete\n");
1962 }
1963
1964 ew32(IMC, 0xffffffff);
1965 icr = er32(ICR);
1966
1967 kab = er32(KABGTXD);
1968 kab |= E1000_KABGTXD_BGSQLBIAS;
1969 ew32(KABGTXD, kab);
1970
1971 return ret_val;
1972}
1973
1974/**
1975 * e1000_init_hw_ich8lan - Initialize the hardware
1976 * @hw: pointer to the HW structure
1977 *
1978 * Prepares the hardware for transmit and receive by doing the following:
1979 * - initialize hardware bits
1980 * - initialize LED identification
1981 * - setup receive address registers
1982 * - setup flow control
Auke Kok489815c2008-02-21 15:11:07 -08001983 * - setup transmit descriptors
Auke Kokbc7f75f2007-09-17 12:30:59 -07001984 * - clear statistics
1985 **/
1986static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1987{
1988 struct e1000_mac_info *mac = &hw->mac;
1989 u32 ctrl_ext, txdctl, snoop;
1990 s32 ret_val;
1991 u16 i;
1992
1993 e1000_initialize_hw_bits_ich8lan(hw);
1994
1995 /* Initialize identification LED */
1996 ret_val = e1000e_id_led_init(hw);
1997 if (ret_val) {
1998 hw_dbg(hw, "Error initializing identification LED\n");
1999 return ret_val;
2000 }
2001
2002 /* Setup the receive address. */
2003 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2004
2005 /* Zero out the Multicast HASH table */
2006 hw_dbg(hw, "Zeroing the MTA\n");
2007 for (i = 0; i < mac->mta_reg_count; i++)
2008 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2009
2010 /* Setup link and flow control */
2011 ret_val = e1000_setup_link_ich8lan(hw);
2012
2013 /* Set the transmit descriptor write-back policy for both queues */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002014 txdctl = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002015 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2016 E1000_TXDCTL_FULL_TX_DESC_WB;
2017 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2018 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002019 ew32(TXDCTL(0), txdctl);
2020 txdctl = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002021 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2022 E1000_TXDCTL_FULL_TX_DESC_WB;
2023 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2024 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002025 ew32(TXDCTL(1), txdctl);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002026
Bruce Allanad680762008-03-28 09:15:03 -07002027 /*
2028 * ICH8 has opposite polarity of no_snoop bits.
2029 * By default, we should use snoop behavior.
2030 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002031 if (mac->type == e1000_ich8lan)
2032 snoop = PCIE_ICH8_SNOOP_ALL;
2033 else
2034 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2035 e1000e_set_pcie_no_snoop(hw, snoop);
2036
2037 ctrl_ext = er32(CTRL_EXT);
2038 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2039 ew32(CTRL_EXT, ctrl_ext);
2040
Bruce Allanad680762008-03-28 09:15:03 -07002041 /*
2042 * Clear all of the statistics registers (clear on read). It is
Auke Kokbc7f75f2007-09-17 12:30:59 -07002043 * important that we do this after we have tried to establish link
2044 * because the symbol error count will increment wildly if there
2045 * is no link.
2046 */
2047 e1000_clear_hw_cntrs_ich8lan(hw);
2048
2049 return 0;
2050}
2051/**
2052 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2053 * @hw: pointer to the HW structure
2054 *
2055 * Sets/Clears required hardware bits necessary for correctly setting up the
2056 * hardware for transmit and receive.
2057 **/
2058static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2059{
2060 u32 reg;
2061
2062 /* Extended Device Control */
2063 reg = er32(CTRL_EXT);
2064 reg |= (1 << 22);
2065 ew32(CTRL_EXT, reg);
2066
2067 /* Transmit Descriptor Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002068 reg = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002069 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002070 ew32(TXDCTL(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002071
2072 /* Transmit Descriptor Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002073 reg = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002074 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002075 ew32(TXDCTL(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002076
2077 /* Transmit Arbitration Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002078 reg = er32(TARC(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002079 if (hw->mac.type == e1000_ich8lan)
2080 reg |= (1 << 28) | (1 << 29);
2081 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002082 ew32(TARC(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002083
2084 /* Transmit Arbitration Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002085 reg = er32(TARC(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002086 if (er32(TCTL) & E1000_TCTL_MULR)
2087 reg &= ~(1 << 28);
2088 else
2089 reg |= (1 << 28);
2090 reg |= (1 << 24) | (1 << 26) | (1 << 30);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002091 ew32(TARC(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002092
2093 /* Device Status */
2094 if (hw->mac.type == e1000_ich8lan) {
2095 reg = er32(STATUS);
2096 reg &= ~(1 << 31);
2097 ew32(STATUS, reg);
2098 }
2099}
2100
2101/**
2102 * e1000_setup_link_ich8lan - Setup flow control and link settings
2103 * @hw: pointer to the HW structure
2104 *
2105 * Determines which flow control settings to use, then configures flow
2106 * control. Calls the appropriate media-specific link configuration
2107 * function. Assuming the adapter has a valid link partner, a valid link
2108 * should be established. Assumes the hardware has previously been reset
2109 * and the transmitter and receiver are not enabled.
2110 **/
2111static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2112{
Auke Kokbc7f75f2007-09-17 12:30:59 -07002113 s32 ret_val;
2114
2115 if (e1000_check_reset_block(hw))
2116 return 0;
2117
Bruce Allanad680762008-03-28 09:15:03 -07002118 /*
2119 * ICH parts do not have a word in the NVM to determine
Auke Kokbc7f75f2007-09-17 12:30:59 -07002120 * the default flow control setting, so we explicitly
2121 * set it to full.
2122 */
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08002123 if (hw->fc.requested_mode == e1000_fc_default)
2124 hw->fc.requested_mode = e1000_fc_full;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002125
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08002126 /*
2127 * Save off the requested flow control mode for use later. Depending
2128 * on the link partner's capabilities, we may or may not use this mode.
2129 */
2130 hw->fc.current_mode = hw->fc.requested_mode;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002131
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08002132 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2133 hw->fc.current_mode);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002134
2135 /* Continue to configure the copper link. */
2136 ret_val = e1000_setup_copper_link_ich8lan(hw);
2137 if (ret_val)
2138 return ret_val;
2139
Jeff Kirsher318a94d2008-03-28 09:15:16 -07002140 ew32(FCTTV, hw->fc.pause_time);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002141
2142 return e1000e_set_fc_watermarks(hw);
2143}
2144
2145/**
2146 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2147 * @hw: pointer to the HW structure
2148 *
2149 * Configures the kumeran interface to the PHY to wait the appropriate time
2150 * when polling the PHY, then call the generic setup_copper_link to finish
2151 * configuring the copper link.
2152 **/
2153static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2154{
2155 u32 ctrl;
2156 s32 ret_val;
2157 u16 reg_data;
2158
2159 ctrl = er32(CTRL);
2160 ctrl |= E1000_CTRL_SLU;
2161 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2162 ew32(CTRL, ctrl);
2163
Bruce Allanad680762008-03-28 09:15:03 -07002164 /*
2165 * Set the mac to wait the maximum time between each iteration
Auke Kokbc7f75f2007-09-17 12:30:59 -07002166 * and increase the max iterations when polling the phy;
Bruce Allanad680762008-03-28 09:15:03 -07002167 * this fixes erroneous timeouts at 10Mbps.
2168 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002169 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2170 if (ret_val)
2171 return ret_val;
2172 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2173 if (ret_val)
2174 return ret_val;
2175 reg_data |= 0x3F;
2176 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2177 if (ret_val)
2178 return ret_val;
2179
2180 if (hw->phy.type == e1000_phy_igp_3) {
2181 ret_val = e1000e_copper_link_setup_igp(hw);
2182 if (ret_val)
2183 return ret_val;
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002184 } else if (hw->phy.type == e1000_phy_bm) {
2185 ret_val = e1000e_copper_link_setup_m88(hw);
2186 if (ret_val)
2187 return ret_val;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002188 }
2189
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002190 if (hw->phy.type == e1000_phy_ife) {
2191 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
2192 if (ret_val)
2193 return ret_val;
2194
2195 reg_data &= ~IFE_PMC_AUTO_MDIX;
2196
2197 switch (hw->phy.mdix) {
2198 case 1:
2199 reg_data &= ~IFE_PMC_FORCE_MDIX;
2200 break;
2201 case 2:
2202 reg_data |= IFE_PMC_FORCE_MDIX;
2203 break;
2204 case 0:
2205 default:
2206 reg_data |= IFE_PMC_AUTO_MDIX;
2207 break;
2208 }
2209 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
2210 if (ret_val)
2211 return ret_val;
2212 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002213 return e1000e_setup_copper_link(hw);
2214}
2215
2216/**
2217 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2218 * @hw: pointer to the HW structure
2219 * @speed: pointer to store current link speed
2220 * @duplex: pointer to store the current link duplex
2221 *
Bruce Allanad680762008-03-28 09:15:03 -07002222 * Calls the generic get_speed_and_duplex to retrieve the current link
Auke Kokbc7f75f2007-09-17 12:30:59 -07002223 * information and then calls the Kumeran lock loss workaround for links at
2224 * gigabit speeds.
2225 **/
2226static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2227 u16 *duplex)
2228{
2229 s32 ret_val;
2230
2231 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2232 if (ret_val)
2233 return ret_val;
2234
2235 if ((hw->mac.type == e1000_ich8lan) &&
2236 (hw->phy.type == e1000_phy_igp_3) &&
2237 (*speed == SPEED_1000)) {
2238 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2239 }
2240
2241 return ret_val;
2242}
2243
2244/**
2245 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2246 * @hw: pointer to the HW structure
2247 *
2248 * Work-around for 82566 Kumeran PCS lock loss:
2249 * On link status change (i.e. PCI reset, speed change) and link is up and
2250 * speed is gigabit-
2251 * 0) if workaround is optionally disabled do nothing
2252 * 1) wait 1ms for Kumeran link to come up
2253 * 2) check Kumeran Diagnostic register PCS lock loss bit
2254 * 3) if not set the link is locked (all is good), otherwise...
2255 * 4) reset the PHY
2256 * 5) repeat up to 10 times
2257 * Note: this is only called for IGP3 copper when speed is 1gb.
2258 **/
2259static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2260{
2261 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2262 u32 phy_ctrl;
2263 s32 ret_val;
2264 u16 i, data;
2265 bool link;
2266
2267 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2268 return 0;
2269
Bruce Allanad680762008-03-28 09:15:03 -07002270 /*
2271 * Make sure link is up before proceeding. If not just return.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002272 * Attempting this while link is negotiating fouled up link
Bruce Allanad680762008-03-28 09:15:03 -07002273 * stability
2274 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002275 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2276 if (!link)
2277 return 0;
2278
2279 for (i = 0; i < 10; i++) {
2280 /* read once to clear */
2281 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2282 if (ret_val)
2283 return ret_val;
2284 /* and again to get new status */
2285 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2286 if (ret_val)
2287 return ret_val;
2288
2289 /* check for PCS lock */
2290 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2291 return 0;
2292
2293 /* Issue PHY reset */
2294 e1000_phy_hw_reset(hw);
2295 mdelay(5);
2296 }
2297 /* Disable GigE link negotiation */
2298 phy_ctrl = er32(PHY_CTRL);
2299 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2300 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2301 ew32(PHY_CTRL, phy_ctrl);
2302
Bruce Allanad680762008-03-28 09:15:03 -07002303 /*
2304 * Call gig speed drop workaround on Gig disable before accessing
2305 * any PHY registers
2306 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002307 e1000e_gig_downshift_workaround_ich8lan(hw);
2308
2309 /* unable to acquire PCS lock */
2310 return -E1000_ERR_PHY;
2311}
2312
2313/**
Bruce Allanad680762008-03-28 09:15:03 -07002314 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07002315 * @hw: pointer to the HW structure
Auke Kok489815c2008-02-21 15:11:07 -08002316 * @state: boolean value used to set the current Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07002317 *
2318 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2319 * /disabled - FALSE).
2320 **/
2321void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2322 bool state)
2323{
2324 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2325
2326 if (hw->mac.type != e1000_ich8lan) {
2327 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2328 return;
2329 }
2330
2331 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2332}
2333
2334/**
2335 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2336 * @hw: pointer to the HW structure
2337 *
2338 * Workaround for 82566 power-down on D3 entry:
2339 * 1) disable gigabit link
2340 * 2) write VR power-down enable
2341 * 3) read it back
2342 * Continue if successful, else issue LCD reset and repeat
2343 **/
2344void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2345{
2346 u32 reg;
2347 u16 data;
2348 u8 retry = 0;
2349
2350 if (hw->phy.type != e1000_phy_igp_3)
2351 return;
2352
2353 /* Try the workaround twice (if needed) */
2354 do {
2355 /* Disable link */
2356 reg = er32(PHY_CTRL);
2357 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2358 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2359 ew32(PHY_CTRL, reg);
2360
Bruce Allanad680762008-03-28 09:15:03 -07002361 /*
2362 * Call gig speed drop workaround on Gig disable before
2363 * accessing any PHY registers
2364 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002365 if (hw->mac.type == e1000_ich8lan)
2366 e1000e_gig_downshift_workaround_ich8lan(hw);
2367
2368 /* Write VR power-down enable */
2369 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2370 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2371 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2372
2373 /* Read it back and test */
2374 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2375 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2376 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2377 break;
2378
2379 /* Issue PHY reset and repeat at most one more time */
2380 reg = er32(CTRL);
2381 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2382 retry++;
2383 } while (retry);
2384}
2385
2386/**
2387 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2388 * @hw: pointer to the HW structure
2389 *
2390 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
Auke Kok489815c2008-02-21 15:11:07 -08002391 * LPLU, Gig disable, MDIC PHY reset):
Auke Kokbc7f75f2007-09-17 12:30:59 -07002392 * 1) Set Kumeran Near-end loopback
2393 * 2) Clear Kumeran Near-end loopback
2394 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2395 **/
2396void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2397{
2398 s32 ret_val;
2399 u16 reg_data;
2400
2401 if ((hw->mac.type != e1000_ich8lan) ||
2402 (hw->phy.type != e1000_phy_igp_3))
2403 return;
2404
2405 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2406 &reg_data);
2407 if (ret_val)
2408 return;
2409 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2410 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2411 reg_data);
2412 if (ret_val)
2413 return;
2414 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2415 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2416 reg_data);
2417}
2418
2419/**
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002420 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2421 * @hw: pointer to the HW structure
2422 *
2423 * During S0 to Sx transition, it is possible the link remains at gig
2424 * instead of negotiating to a lower speed. Before going to Sx, set
2425 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2426 * to a lower speed.
2427 *
Bruce Allanf4187b52008-08-26 18:36:50 -07002428 * Should only be called for ICH9 and ICH10 devices.
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002429 **/
2430void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2431{
2432 u32 phy_ctrl;
2433
Bruce Allanf4187b52008-08-26 18:36:50 -07002434 if ((hw->mac.type == e1000_ich10lan) ||
2435 (hw->mac.type == e1000_ich9lan)) {
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002436 phy_ctrl = er32(PHY_CTRL);
2437 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2438 E1000_PHY_CTRL_GBE_DISABLE;
2439 ew32(PHY_CTRL, phy_ctrl);
2440 }
2441
2442 return;
2443}
2444
2445/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002446 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2447 * @hw: pointer to the HW structure
2448 *
2449 * Return the LED back to the default configuration.
2450 **/
2451static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2452{
2453 if (hw->phy.type == e1000_phy_ife)
2454 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2455
2456 ew32(LEDCTL, hw->mac.ledctl_default);
2457 return 0;
2458}
2459
2460/**
Auke Kok489815c2008-02-21 15:11:07 -08002461 * e1000_led_on_ich8lan - Turn LEDs on
Auke Kokbc7f75f2007-09-17 12:30:59 -07002462 * @hw: pointer to the HW structure
2463 *
Auke Kok489815c2008-02-21 15:11:07 -08002464 * Turn on the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002465 **/
2466static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2467{
2468 if (hw->phy.type == e1000_phy_ife)
2469 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2470 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2471
2472 ew32(LEDCTL, hw->mac.ledctl_mode2);
2473 return 0;
2474}
2475
2476/**
Auke Kok489815c2008-02-21 15:11:07 -08002477 * e1000_led_off_ich8lan - Turn LEDs off
Auke Kokbc7f75f2007-09-17 12:30:59 -07002478 * @hw: pointer to the HW structure
2479 *
Auke Kok489815c2008-02-21 15:11:07 -08002480 * Turn off the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002481 **/
2482static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2483{
2484 if (hw->phy.type == e1000_phy_ife)
2485 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2486 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2487
2488 ew32(LEDCTL, hw->mac.ledctl_mode1);
2489 return 0;
2490}
2491
2492/**
Bruce Allanf4187b52008-08-26 18:36:50 -07002493 * e1000_get_cfg_done_ich8lan - Read config done bit
2494 * @hw: pointer to the HW structure
2495 *
2496 * Read the management control register for the config done bit for
2497 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2498 * to read the config done bit, so an error is *ONLY* logged and returns
2499 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
2500 * would not be able to be reset or change link.
2501 **/
2502static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2503{
2504 u32 bank = 0;
2505
2506 e1000e_get_cfg_done(hw);
2507
2508 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2509 if (hw->mac.type != e1000_ich10lan) {
2510 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2511 (hw->phy.type == e1000_phy_igp_3)) {
2512 e1000e_phy_init_script_igp3(hw);
2513 }
2514 } else {
2515 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2516 /* Maybe we should do a basic PHY config */
2517 hw_dbg(hw, "EEPROM not present\n");
2518 return -E1000_ERR_CONFIG;
2519 }
2520 }
2521
2522 return 0;
2523}
2524
2525/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002526 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2527 * @hw: pointer to the HW structure
2528 *
2529 * Clears hardware counters specific to the silicon family and calls
2530 * clear_hw_cntrs_generic to clear all general purpose counters.
2531 **/
2532static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2533{
2534 u32 temp;
2535
2536 e1000e_clear_hw_cntrs_base(hw);
2537
2538 temp = er32(ALGNERRC);
2539 temp = er32(RXERRC);
2540 temp = er32(TNCRS);
2541 temp = er32(CEXTERR);
2542 temp = er32(TSCTC);
2543 temp = er32(TSCTFC);
2544
2545 temp = er32(MGTPRC);
2546 temp = er32(MGTPDC);
2547 temp = er32(MGTPTC);
2548
2549 temp = er32(IAC);
2550 temp = er32(ICRXOC);
2551
2552}
2553
2554static struct e1000_mac_operations ich8_mac_ops = {
Bruce Allan4662e822008-08-26 18:37:06 -07002555 .check_mng_mode = e1000_check_mng_mode_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002556 .check_for_link = e1000e_check_for_copper_link,
2557 .cleanup_led = e1000_cleanup_led_ich8lan,
2558 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2559 .get_bus_info = e1000_get_bus_info_ich8lan,
2560 .get_link_up_info = e1000_get_link_up_info_ich8lan,
2561 .led_on = e1000_led_on_ich8lan,
2562 .led_off = e1000_led_off_ich8lan,
Jeff Kirshere2de3eb2008-03-28 09:15:11 -07002563 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002564 .reset_hw = e1000_reset_hw_ich8lan,
2565 .init_hw = e1000_init_hw_ich8lan,
2566 .setup_link = e1000_setup_link_ich8lan,
2567 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2568};
2569
2570static struct e1000_phy_operations ich8_phy_ops = {
2571 .acquire_phy = e1000_acquire_swflag_ich8lan,
2572 .check_reset_block = e1000_check_reset_block_ich8lan,
2573 .commit_phy = NULL,
2574 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
Bruce Allanf4187b52008-08-26 18:36:50 -07002575 .get_cfg_done = e1000_get_cfg_done_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002576 .get_cable_length = e1000e_get_cable_length_igp_2,
2577 .get_phy_info = e1000_get_phy_info_ich8lan,
2578 .read_phy_reg = e1000e_read_phy_reg_igp,
2579 .release_phy = e1000_release_swflag_ich8lan,
2580 .reset_phy = e1000_phy_hw_reset_ich8lan,
2581 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
2582 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
2583 .write_phy_reg = e1000e_write_phy_reg_igp,
2584};
2585
2586static struct e1000_nvm_operations ich8_nvm_ops = {
2587 .acquire_nvm = e1000_acquire_swflag_ich8lan,
2588 .read_nvm = e1000_read_nvm_ich8lan,
2589 .release_nvm = e1000_release_swflag_ich8lan,
2590 .update_nvm = e1000_update_nvm_checksum_ich8lan,
2591 .valid_led_default = e1000_valid_led_default_ich8lan,
2592 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
2593 .write_nvm = e1000_write_nvm_ich8lan,
2594};
2595
2596struct e1000_info e1000_ich8_info = {
2597 .mac = e1000_ich8lan,
2598 .flags = FLAG_HAS_WOL
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002599 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07002600 | FLAG_RX_CSUM_ENABLED
2601 | FLAG_HAS_CTRLEXT_ON_LOAD
2602 | FLAG_HAS_AMT
2603 | FLAG_HAS_FLASH
2604 | FLAG_APME_IN_WUC,
2605 .pba = 8,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07002606 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002607 .mac_ops = &ich8_mac_ops,
2608 .phy_ops = &ich8_phy_ops,
2609 .nvm_ops = &ich8_nvm_ops,
2610};
2611
2612struct e1000_info e1000_ich9_info = {
2613 .mac = e1000_ich9lan,
2614 .flags = FLAG_HAS_JUMBO_FRAMES
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002615 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07002616 | FLAG_HAS_WOL
2617 | FLAG_RX_CSUM_ENABLED
2618 | FLAG_HAS_CTRLEXT_ON_LOAD
2619 | FLAG_HAS_AMT
2620 | FLAG_HAS_ERT
2621 | FLAG_HAS_FLASH
2622 | FLAG_APME_IN_WUC,
2623 .pba = 10,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07002624 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002625 .mac_ops = &ich8_mac_ops,
2626 .phy_ops = &ich8_phy_ops,
2627 .nvm_ops = &ich8_nvm_ops,
2628};
2629
Bruce Allanf4187b52008-08-26 18:36:50 -07002630struct e1000_info e1000_ich10_info = {
2631 .mac = e1000_ich10lan,
2632 .flags = FLAG_HAS_JUMBO_FRAMES
2633 | FLAG_IS_ICH
2634 | FLAG_HAS_WOL
2635 | FLAG_RX_CSUM_ENABLED
2636 | FLAG_HAS_CTRLEXT_ON_LOAD
2637 | FLAG_HAS_AMT
2638 | FLAG_HAS_ERT
2639 | FLAG_HAS_FLASH
2640 | FLAG_APME_IN_WUC,
2641 .pba = 10,
2642 .get_variants = e1000_get_variants_ich8lan,
2643 .mac_ops = &ich8_mac_ops,
2644 .phy_ops = &ich8_phy_ops,
2645 .nvm_ops = &ich8_nvm_ops,
2646};