blob: e6fafc62acaee39cb74ba076550469647db20c52 [file] [log] [blame]
Bart Van Asschea42d9852011-10-14 01:30:46 +00001/*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/err.h>
39#include <linux/ctype.h>
40#include <linux/kthread.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/atomic.h>
44#include <scsi/scsi_tcq.h>
45#include <target/configfs_macros.h>
46#include <target/target_core_base.h>
47#include <target/target_core_fabric_configfs.h>
48#include <target/target_core_fabric.h>
49#include <target/target_core_configfs.h>
50#include "ib_srpt.h"
51
52/* Name of this kernel module. */
53#define DRV_NAME "ib_srpt"
54#define DRV_VERSION "2.0.0"
55#define DRV_RELDATE "2011-02-14"
56
57#define SRPT_ID_STRING "Linux SRP target"
58
59#undef pr_fmt
60#define pr_fmt(fmt) DRV_NAME " " fmt
61
62MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65MODULE_LICENSE("Dual BSD/GPL");
66
67/*
68 * Global Variables
69 */
70
71static u64 srpt_service_guid;
Roland Dreier486d8b92012-02-02 12:55:58 -080072static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
Bart Van Asschea42d9852011-10-14 01:30:46 +000074
75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76module_param(srp_max_req_size, int, 0444);
77MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81module_param(srpt_srq_size, int, 0444);
82MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
85static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86{
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88}
89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95static struct ib_client srpt_client;
96static struct target_fabric_configfs *srpt_target;
97static void srpt_release_channel(struct srpt_rdma_ch *ch);
98static int srpt_queue_status(struct se_cmd *cmd);
99
100/**
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102 */
103static inline
104enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105{
106 switch (dir) {
107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
109 default: return dir;
110 }
111}
112
113/**
114 * srpt_sdev_name() - Return the name associated with the HCA.
115 *
116 * Examples are ib0, ib1, ...
117 */
118static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119{
120 return sdev->device->name;
121}
122
123static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124{
125 unsigned long flags;
126 enum rdma_ch_state state;
127
128 spin_lock_irqsave(&ch->spinlock, flags);
129 state = ch->state;
130 spin_unlock_irqrestore(&ch->spinlock, flags);
131 return state;
132}
133
134static enum rdma_ch_state
135srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136{
137 unsigned long flags;
138 enum rdma_ch_state prev;
139
140 spin_lock_irqsave(&ch->spinlock, flags);
141 prev = ch->state;
142 ch->state = new_state;
143 spin_unlock_irqrestore(&ch->spinlock, flags);
144 return prev;
145}
146
147/**
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
149 *
150 * Returns true if and only if the channel state has been set to the new state.
151 */
152static bool
153srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 enum rdma_ch_state new)
155{
156 unsigned long flags;
157 enum rdma_ch_state prev;
158
159 spin_lock_irqsave(&ch->spinlock, flags);
160 prev = ch->state;
161 if (prev == old)
162 ch->state = new;
163 spin_unlock_irqrestore(&ch->spinlock, flags);
164 return prev == old;
165}
166
167/**
168 * srpt_event_handler() - Asynchronous IB event callback function.
169 *
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
174 */
175static void srpt_event_handler(struct ib_event_handler *handler,
176 struct ib_event *event)
177{
178 struct srpt_device *sdev;
179 struct srpt_port *sport;
180
181 sdev = ib_get_client_data(event->device, &srpt_client);
182 if (!sdev || sdev->device != event->device)
183 return;
184
185 pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 srpt_sdev_name(sdev));
187
188 switch (event->event) {
189 case IB_EVENT_PORT_ERR:
190 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 sport = &sdev->port[event->element.port_num - 1];
192 sport->lid = 0;
193 sport->sm_lid = 0;
194 }
195 break;
196 case IB_EVENT_PORT_ACTIVE:
197 case IB_EVENT_LID_CHANGE:
198 case IB_EVENT_PKEY_CHANGE:
199 case IB_EVENT_SM_CHANGE:
200 case IB_EVENT_CLIENT_REREGISTER:
201 /* Refresh port data asynchronously. */
202 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 sport = &sdev->port[event->element.port_num - 1];
204 if (!sport->lid && !sport->sm_lid)
205 schedule_work(&sport->work);
206 }
207 break;
208 default:
209 printk(KERN_ERR "received unrecognized IB event %d\n",
210 event->event);
211 break;
212 }
213}
214
215/**
216 * srpt_srq_event() - SRQ event callback function.
217 */
218static void srpt_srq_event(struct ib_event *event, void *ctx)
219{
220 printk(KERN_INFO "SRQ event %d\n", event->event);
221}
222
223/**
224 * srpt_qp_event() - QP event callback function.
225 */
226static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227{
228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231 switch (event->event) {
232 case IB_EVENT_COMM_EST:
233 ib_cm_notify(ch->cm_id, event->event);
234 break;
235 case IB_EVENT_QP_LAST_WQE_REACHED:
236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 CH_RELEASING))
238 srpt_release_channel(ch);
239 else
240 pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 ch->sess_name, srpt_get_ch_state(ch));
242 break;
243 default:
244 printk(KERN_ERR "received unrecognized IB QP event %d\n",
245 event->event);
246 break;
247 }
248}
249
250/**
251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252 *
253 * @slot: one-based slot number.
254 * @value: four-bit value.
255 *
256 * Copies the lowest four bits of value in element slot of the array of four
257 * bit elements called c_list (controller list). The index slot is one-based.
258 */
259static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260{
261 u16 id;
262 u8 tmp;
263
264 id = (slot - 1) / 2;
265 if (slot & 0x1) {
266 tmp = c_list[id] & 0xf;
267 c_list[id] = (value << 4) | tmp;
268 } else {
269 tmp = c_list[id] & 0xf0;
270 c_list[id] = (value & 0xf) | tmp;
271 }
272}
273
274/**
275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276 *
277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278 * Specification.
279 */
280static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281{
282 struct ib_class_port_info *cif;
283
284 cif = (struct ib_class_port_info *)mad->data;
285 memset(cif, 0, sizeof *cif);
286 cif->base_version = 1;
287 cif->class_version = 1;
288 cif->resp_time_value = 20;
289
290 mad->mad_hdr.status = 0;
291}
292
293/**
294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295 *
296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
298 */
299static void srpt_get_iou(struct ib_dm_mad *mad)
300{
301 struct ib_dm_iou_info *ioui;
302 u8 slot;
303 int i;
304
305 ioui = (struct ib_dm_iou_info *)mad->data;
306 ioui->change_id = __constant_cpu_to_be16(1);
307 ioui->max_controllers = 16;
308
309 /* set present for slot 1 and empty for the rest */
310 srpt_set_ioc(ioui->controller_list, 1, 1);
311 for (i = 1, slot = 2; i < 16; i++, slot++)
312 srpt_set_ioc(ioui->controller_list, slot, 0);
313
314 mad->mad_hdr.status = 0;
315}
316
317/**
318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
324static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 struct ib_dm_mad *mad)
326{
327 struct srpt_device *sdev = sport->sdev;
328 struct ib_dm_ioc_profile *iocp;
329
330 iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332 if (!slot || slot > 16) {
333 mad->mad_hdr.status
334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 return;
336 }
337
338 if (slot > 2) {
339 mad->mad_hdr.status
340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341 return;
342 }
343
344 memset(iocp, 0, sizeof *iocp);
345 strcpy(iocp->id_string, SRPT_ID_STRING);
346 iocp->guid = cpu_to_be64(srpt_service_guid);
347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351 iocp->subsys_device_id = 0x0;
352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357 iocp->rdma_read_depth = 4;
358 iocp->send_size = cpu_to_be32(srp_max_req_size);
359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360 1U << 24));
361 iocp->num_svc_entries = 1;
362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365 mad->mad_hdr.status = 0;
366}
367
368/**
369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370 *
371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
373 */
374static void srpt_get_svc_entries(u64 ioc_guid,
375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376{
377 struct ib_dm_svc_entries *svc_entries;
378
379 WARN_ON(!ioc_guid);
380
381 if (!slot || slot > 16) {
382 mad->mad_hdr.status
383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384 return;
385 }
386
387 if (slot > 2 || lo > hi || hi > 1) {
388 mad->mad_hdr.status
389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390 return;
391 }
392
393 svc_entries = (struct ib_dm_svc_entries *)mad->data;
394 memset(svc_entries, 0, sizeof *svc_entries);
395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396 snprintf(svc_entries->service_entries[0].name,
397 sizeof(svc_entries->service_entries[0].name),
398 "%s%016llx",
399 SRP_SERVICE_NAME_PREFIX,
400 ioc_guid);
401
402 mad->mad_hdr.status = 0;
403}
404
405/**
406 * srpt_mgmt_method_get() - Process a received management datagram.
407 * @sp: source port through which the MAD has been received.
408 * @rq_mad: received MAD.
409 * @rsp_mad: response MAD.
410 */
411static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412 struct ib_dm_mad *rsp_mad)
413{
414 u16 attr_id;
415 u32 slot;
416 u8 hi, lo;
417
418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419 switch (attr_id) {
420 case DM_ATTR_CLASS_PORT_INFO:
421 srpt_get_class_port_info(rsp_mad);
422 break;
423 case DM_ATTR_IOU_INFO:
424 srpt_get_iou(rsp_mad);
425 break;
426 case DM_ATTR_IOC_PROFILE:
427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428 srpt_get_ioc(sp, slot, rsp_mad);
429 break;
430 case DM_ATTR_SVC_ENTRIES:
431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432 hi = (u8) ((slot >> 8) & 0xff);
433 lo = (u8) (slot & 0xff);
434 slot = (u16) ((slot >> 16) & 0xffff);
435 srpt_get_svc_entries(srpt_service_guid,
436 slot, hi, lo, rsp_mad);
437 break;
438 default:
439 rsp_mad->mad_hdr.status =
440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441 break;
442 }
443}
444
445/**
446 * srpt_mad_send_handler() - Post MAD-send callback function.
447 */
448static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449 struct ib_mad_send_wc *mad_wc)
450{
451 ib_destroy_ah(mad_wc->send_buf->ah);
452 ib_free_send_mad(mad_wc->send_buf);
453}
454
455/**
456 * srpt_mad_recv_handler() - MAD reception callback function.
457 */
458static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459 struct ib_mad_recv_wc *mad_wc)
460{
461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 struct ib_ah *ah;
463 struct ib_mad_send_buf *rsp;
464 struct ib_dm_mad *dm_mad;
465
466 if (!mad_wc || !mad_wc->recv_buf.mad)
467 return;
468
469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 mad_wc->recv_buf.grh, mad_agent->port_num);
471 if (IS_ERR(ah))
472 goto err;
473
474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 mad_wc->wc->pkey_index, 0,
478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 GFP_KERNEL);
480 if (IS_ERR(rsp))
481 goto err_rsp;
482
483 rsp->ah = ah;
484
485 dm_mad = rsp->mad;
486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 dm_mad->mad_hdr.status = 0;
489
490 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 case IB_MGMT_METHOD_GET:
492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 break;
494 case IB_MGMT_METHOD_SET:
495 dm_mad->mad_hdr.status =
496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 break;
498 default:
499 dm_mad->mad_hdr.status =
500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 break;
502 }
503
504 if (!ib_post_send_mad(rsp, NULL)) {
505 ib_free_recv_mad(mad_wc);
506 /* will destroy_ah & free_send_mad in send completion */
507 return;
508 }
509
510 ib_free_send_mad(rsp);
511
512err_rsp:
513 ib_destroy_ah(ah);
514err:
515 ib_free_recv_mad(mad_wc);
516}
517
518/**
519 * srpt_refresh_port() - Configure a HCA port.
520 *
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
524 *
525 * Note: It is safe to call this function more than once for the same port.
526 */
527static int srpt_refresh_port(struct srpt_port *sport)
528{
529 struct ib_mad_reg_req reg_req;
530 struct ib_port_modify port_modify;
531 struct ib_port_attr port_attr;
532 int ret;
533
534 memset(&port_modify, 0, sizeof port_modify);
535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 port_modify.clr_port_cap_mask = 0;
537
538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 if (ret)
540 goto err_mod_port;
541
542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 if (ret)
544 goto err_query_port;
545
546 sport->sm_lid = port_attr.sm_lid;
547 sport->lid = port_attr.lid;
548
549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 if (ret)
551 goto err_query_port;
552
553 if (!sport->mad_agent) {
554 memset(&reg_req, 0, sizeof reg_req);
555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 sport->port,
562 IB_QPT_GSI,
563 &reg_req, 0,
564 srpt_mad_send_handler,
565 srpt_mad_recv_handler,
566 sport);
567 if (IS_ERR(sport->mad_agent)) {
568 ret = PTR_ERR(sport->mad_agent);
569 sport->mad_agent = NULL;
570 goto err_query_port;
571 }
572 }
573
574 return 0;
575
576err_query_port:
577
578 port_modify.set_port_cap_mask = 0;
579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582err_mod_port:
583
584 return ret;
585}
586
587/**
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 *
590 * Note: It is safe to call this function more than once for the same device.
591 */
592static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593{
594 struct ib_port_modify port_modify = {
595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 };
597 struct srpt_port *sport;
598 int i;
599
600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 sport = &sdev->port[i - 1];
602 WARN_ON(sport->port != i);
603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 printk(KERN_ERR "disabling MAD processing failed.\n");
605 if (sport->mad_agent) {
606 ib_unregister_mad_agent(sport->mad_agent);
607 sport->mad_agent = NULL;
608 }
609 }
610}
611
612/**
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 */
615static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 int ioctx_size, int dma_size,
617 enum dma_data_direction dir)
618{
619 struct srpt_ioctx *ioctx;
620
621 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 if (!ioctx)
623 goto err;
624
625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 if (!ioctx->buf)
627 goto err_free_ioctx;
628
629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 goto err_free_buf;
632
633 return ioctx;
634
635err_free_buf:
636 kfree(ioctx->buf);
637err_free_ioctx:
638 kfree(ioctx);
639err:
640 return NULL;
641}
642
643/**
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 */
646static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 int dma_size, enum dma_data_direction dir)
648{
649 if (!ioctx)
650 return;
651
652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 kfree(ioctx->buf);
654 kfree(ioctx);
655}
656
657/**
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev: Device to allocate the I/O context ring for.
660 * @ring_size: Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size: DMA buffer size.
663 * @dir: DMA data direction.
664 */
665static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 int ring_size, int ioctx_size,
667 int dma_size, enum dma_data_direction dir)
668{
669 struct srpt_ioctx **ring;
670 int i;
671
672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 if (!ring)
677 goto out;
678 for (i = 0; i < ring_size; ++i) {
679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 if (!ring[i])
681 goto err;
682 ring[i]->index = i;
683 }
684 goto out;
685
686err:
687 while (--i >= 0)
688 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 kfree(ring);
Jesper Juhl715252d2012-02-04 23:49:40 +0100690 ring = NULL;
Bart Van Asschea42d9852011-10-14 01:30:46 +0000691out:
692 return ring;
693}
694
695/**
696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697 */
698static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699 struct srpt_device *sdev, int ring_size,
700 int dma_size, enum dma_data_direction dir)
701{
702 int i;
703
704 for (i = 0; i < ring_size; ++i)
705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706 kfree(ioctx_ring);
707}
708
709/**
710 * srpt_get_cmd_state() - Get the state of a SCSI command.
711 */
712static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713{
714 enum srpt_command_state state;
715 unsigned long flags;
716
717 BUG_ON(!ioctx);
718
719 spin_lock_irqsave(&ioctx->spinlock, flags);
720 state = ioctx->state;
721 spin_unlock_irqrestore(&ioctx->spinlock, flags);
722 return state;
723}
724
725/**
726 * srpt_set_cmd_state() - Set the state of a SCSI command.
727 *
728 * Does not modify the state of aborted commands. Returns the previous command
729 * state.
730 */
731static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732 enum srpt_command_state new)
733{
734 enum srpt_command_state previous;
735 unsigned long flags;
736
737 BUG_ON(!ioctx);
738
739 spin_lock_irqsave(&ioctx->spinlock, flags);
740 previous = ioctx->state;
741 if (previous != SRPT_STATE_DONE)
742 ioctx->state = new;
743 spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745 return previous;
746}
747
748/**
749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750 *
751 * Returns true if and only if the previous command state was equal to 'old'.
752 */
753static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754 enum srpt_command_state old,
755 enum srpt_command_state new)
756{
757 enum srpt_command_state previous;
758 unsigned long flags;
759
760 WARN_ON(!ioctx);
761 WARN_ON(old == SRPT_STATE_DONE);
762 WARN_ON(new == SRPT_STATE_NEW);
763
764 spin_lock_irqsave(&ioctx->spinlock, flags);
765 previous = ioctx->state;
766 if (previous == old)
767 ioctx->state = new;
768 spin_unlock_irqrestore(&ioctx->spinlock, flags);
769 return previous == old;
770}
771
772/**
773 * srpt_post_recv() - Post an IB receive request.
774 */
775static int srpt_post_recv(struct srpt_device *sdev,
776 struct srpt_recv_ioctx *ioctx)
777{
778 struct ib_sge list;
779 struct ib_recv_wr wr, *bad_wr;
780
781 BUG_ON(!sdev);
782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784 list.addr = ioctx->ioctx.dma;
785 list.length = srp_max_req_size;
786 list.lkey = sdev->mr->lkey;
787
788 wr.next = NULL;
789 wr.sg_list = &list;
790 wr.num_sge = 1;
791
792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793}
794
795/**
796 * srpt_post_send() - Post an IB send request.
797 *
798 * Returns zero upon success and a non-zero value upon failure.
799 */
800static int srpt_post_send(struct srpt_rdma_ch *ch,
801 struct srpt_send_ioctx *ioctx, int len)
802{
803 struct ib_sge list;
804 struct ib_send_wr wr, *bad_wr;
805 struct srpt_device *sdev = ch->sport->sdev;
806 int ret;
807
808 atomic_inc(&ch->req_lim);
809
810 ret = -ENOMEM;
811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812 printk(KERN_WARNING "IB send queue full (needed 1)\n");
813 goto out;
814 }
815
816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817 DMA_TO_DEVICE);
818
819 list.addr = ioctx->ioctx.dma;
820 list.length = len;
821 list.lkey = sdev->mr->lkey;
822
823 wr.next = NULL;
824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825 wr.sg_list = &list;
826 wr.num_sge = 1;
827 wr.opcode = IB_WR_SEND;
828 wr.send_flags = IB_SEND_SIGNALED;
829
830 ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832out:
833 if (ret < 0) {
834 atomic_inc(&ch->sq_wr_avail);
835 atomic_dec(&ch->req_lim);
836 }
837 return ret;
838}
839
840/**
841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842 * @ioctx: Pointer to the I/O context associated with the request.
843 * @srp_cmd: Pointer to the SRP_CMD request data.
844 * @dir: Pointer to the variable to which the transfer direction will be
845 * written.
846 * @data_len: Pointer to the variable to which the total data length of all
847 * descriptors in the SRP_CMD request will be written.
848 *
849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850 *
851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852 * -ENOMEM when memory allocation fails and zero upon success.
853 */
854static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855 struct srp_cmd *srp_cmd,
856 enum dma_data_direction *dir, u64 *data_len)
857{
858 struct srp_indirect_buf *idb;
859 struct srp_direct_buf *db;
860 unsigned add_cdb_offset;
861 int ret;
862
863 /*
864 * The pointer computations below will only be compiled correctly
865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 * whether srp_cmd::add_data has been declared as a byte pointer.
867 */
868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869 && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871 BUG_ON(!dir);
872 BUG_ON(!data_len);
873
874 ret = 0;
875 *data_len = 0;
876
877 /*
878 * The lower four bits of the buffer format field contain the DATA-IN
879 * buffer descriptor format, and the highest four bits contain the
880 * DATA-OUT buffer descriptor format.
881 */
882 *dir = DMA_NONE;
883 if (srp_cmd->buf_fmt & 0xf)
884 /* DATA-IN: transfer data from target to initiator (read). */
885 *dir = DMA_FROM_DEVICE;
886 else if (srp_cmd->buf_fmt >> 4)
887 /* DATA-OUT: transfer data from initiator to target (write). */
888 *dir = DMA_TO_DEVICE;
889
890 /*
891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 * CDB LENGTH' field are reserved and the size in bytes of this field
893 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 */
895 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898 ioctx->n_rbuf = 1;
899 ioctx->rbufs = &ioctx->single_rbuf;
900
901 db = (struct srp_direct_buf *)(srp_cmd->add_data
902 + add_cdb_offset);
903 memcpy(ioctx->rbufs, db, sizeof *db);
904 *data_len = be32_to_cpu(db->len);
905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908 + add_cdb_offset);
909
910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912 if (ioctx->n_rbuf >
913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914 printk(KERN_ERR "received unsupported SRP_CMD request"
915 " type (%u out + %u in != %u / %zu)\n",
916 srp_cmd->data_out_desc_cnt,
917 srp_cmd->data_in_desc_cnt,
918 be32_to_cpu(idb->table_desc.len),
919 sizeof(*db));
920 ioctx->n_rbuf = 0;
921 ret = -EINVAL;
922 goto out;
923 }
924
925 if (ioctx->n_rbuf == 1)
926 ioctx->rbufs = &ioctx->single_rbuf;
927 else {
928 ioctx->rbufs =
929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930 if (!ioctx->rbufs) {
931 ioctx->n_rbuf = 0;
932 ret = -ENOMEM;
933 goto out;
934 }
935 }
936
937 db = idb->desc_list;
938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939 *data_len = be32_to_cpu(idb->len);
940 }
941out:
942 return ret;
943}
944
945/**
946 * srpt_init_ch_qp() - Initialize queue pair attributes.
947 *
948 * Initialized the attributes of queue pair 'qp' by allowing local write,
949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950 */
951static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952{
953 struct ib_qp_attr *attr;
954 int ret;
955
956 attr = kzalloc(sizeof *attr, GFP_KERNEL);
957 if (!attr)
958 return -ENOMEM;
959
960 attr->qp_state = IB_QPS_INIT;
961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962 IB_ACCESS_REMOTE_WRITE;
963 attr->port_num = ch->sport->port;
964 attr->pkey_index = 0;
965
966 ret = ib_modify_qp(qp, attr,
967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 IB_QP_PKEY_INDEX);
969
970 kfree(attr);
971 return ret;
972}
973
974/**
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
978 *
979 * Returns zero upon success and a negative value upon failure.
980 *
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
984 */
985static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986{
987 struct ib_qp_attr qp_attr;
988 int attr_mask;
989 int ret;
990
991 qp_attr.qp_state = IB_QPS_RTR;
992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 if (ret)
994 goto out;
995
996 qp_attr.max_dest_rd_atomic = 4;
997
998 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000out:
1001 return ret;
1002}
1003
1004/**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
1015static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016{
1017 struct ib_qp_attr qp_attr;
1018 int attr_mask;
1019 int ret;
1020
1021 qp_attr.qp_state = IB_QPS_RTS;
1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 if (ret)
1024 goto out;
1025
1026 qp_attr.max_rd_atomic = 4;
1027
1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030out:
1031 return ret;
1032}
1033
1034/**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
1037static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038{
1039 struct ib_qp_attr qp_attr;
1040
1041 qp_attr.qp_state = IB_QPS_ERR;
1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043}
1044
1045/**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
1048static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 struct srpt_send_ioctx *ioctx)
1050{
1051 struct scatterlist *sg;
1052 enum dma_data_direction dir;
1053
1054 BUG_ON(!ch);
1055 BUG_ON(!ioctx);
1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058 while (ioctx->n_rdma)
1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061 kfree(ioctx->rdma_ius);
1062 ioctx->rdma_ius = NULL;
1063
1064 if (ioctx->mapped_sg_count) {
1065 sg = ioctx->sg;
1066 WARN_ON(!sg);
1067 dir = ioctx->cmd.data_direction;
1068 BUG_ON(dir == DMA_NONE);
1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 opposite_dma_dir(dir));
1071 ioctx->mapped_sg_count = 0;
1072 }
1073}
1074
1075/**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
1078static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 struct srpt_send_ioctx *ioctx)
1080{
1081 struct se_cmd *cmd;
1082 struct scatterlist *sg, *sg_orig;
1083 int sg_cnt;
1084 enum dma_data_direction dir;
1085 struct rdma_iu *riu;
1086 struct srp_direct_buf *db;
1087 dma_addr_t dma_addr;
1088 struct ib_sge *sge;
1089 u64 raddr;
1090 u32 rsize;
1091 u32 tsize;
1092 u32 dma_len;
1093 int count, nrdma;
1094 int i, j, k;
1095
1096 BUG_ON(!ch);
1097 BUG_ON(!ioctx);
1098 cmd = &ioctx->cmd;
1099 dir = cmd->data_direction;
1100 BUG_ON(dir == DMA_NONE);
1101
Roland Dreier6f9e7f02012-03-30 11:29:12 -07001102 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
Bart Van Asschea42d9852011-10-14 01:30:46 +00001104
1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106 opposite_dma_dir(dir));
1107 if (unlikely(!count))
1108 return -EAGAIN;
1109
1110 ioctx->mapped_sg_count = count;
1111
1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113 nrdma = ioctx->n_rdma_ius;
1114 else {
1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116 + ioctx->n_rbuf;
1117
1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119 if (!ioctx->rdma_ius)
1120 goto free_mem;
1121
1122 ioctx->n_rdma_ius = nrdma;
1123 }
1124
1125 db = ioctx->rbufs;
1126 tsize = cmd->data_length;
1127 dma_len = sg_dma_len(&sg[0]);
1128 riu = ioctx->rdma_ius;
1129
1130 /*
1131 * For each remote desc - calculate the #ib_sge.
1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133 * each remote desc rdma_iu is required a rdma wr;
1134 * else
1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1136 * another rdma wr
1137 */
1138 for (i = 0, j = 0;
1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140 rsize = be32_to_cpu(db->len);
1141 raddr = be64_to_cpu(db->va);
1142 riu->raddr = raddr;
1143 riu->rkey = be32_to_cpu(db->key);
1144 riu->sge_cnt = 0;
1145
1146 /* calculate how many sge required for this remote_buf */
1147 while (rsize > 0 && tsize > 0) {
1148
1149 if (rsize >= dma_len) {
1150 tsize -= dma_len;
1151 rsize -= dma_len;
1152 raddr += dma_len;
1153
1154 if (tsize > 0) {
1155 ++j;
1156 if (j < count) {
1157 sg = sg_next(sg);
1158 dma_len = sg_dma_len(sg);
1159 }
1160 }
1161 } else {
1162 tsize -= rsize;
1163 dma_len -= rsize;
1164 rsize = 0;
1165 }
1166
1167 ++riu->sge_cnt;
1168
1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1170 ++ioctx->n_rdma;
1171 riu->sge =
1172 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1173 GFP_KERNEL);
1174 if (!riu->sge)
1175 goto free_mem;
1176
1177 ++riu;
1178 riu->sge_cnt = 0;
1179 riu->raddr = raddr;
1180 riu->rkey = be32_to_cpu(db->key);
1181 }
1182 }
1183
1184 ++ioctx->n_rdma;
1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1186 GFP_KERNEL);
1187 if (!riu->sge)
1188 goto free_mem;
1189 }
1190
1191 db = ioctx->rbufs;
1192 tsize = cmd->data_length;
1193 riu = ioctx->rdma_ius;
1194 sg = sg_orig;
1195 dma_len = sg_dma_len(&sg[0]);
1196 dma_addr = sg_dma_address(&sg[0]);
1197
1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1199 for (i = 0, j = 0;
1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1201 rsize = be32_to_cpu(db->len);
1202 sge = riu->sge;
1203 k = 0;
1204
1205 while (rsize > 0 && tsize > 0) {
1206 sge->addr = dma_addr;
1207 sge->lkey = ch->sport->sdev->mr->lkey;
1208
1209 if (rsize >= dma_len) {
1210 sge->length =
1211 (tsize < dma_len) ? tsize : dma_len;
1212 tsize -= dma_len;
1213 rsize -= dma_len;
1214
1215 if (tsize > 0) {
1216 ++j;
1217 if (j < count) {
1218 sg = sg_next(sg);
1219 dma_len = sg_dma_len(sg);
1220 dma_addr = sg_dma_address(sg);
1221 }
1222 }
1223 } else {
1224 sge->length = (tsize < rsize) ? tsize : rsize;
1225 tsize -= rsize;
1226 dma_len -= rsize;
1227 dma_addr += rsize;
1228 rsize = 0;
1229 }
1230
1231 ++k;
1232 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1233 ++riu;
1234 sge = riu->sge;
1235 k = 0;
1236 } else if (rsize > 0 && tsize > 0)
1237 ++sge;
1238 }
1239 }
1240
1241 return 0;
1242
1243free_mem:
1244 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1245
1246 return -ENOMEM;
1247}
1248
1249/**
1250 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1251 */
1252static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1253{
1254 struct srpt_send_ioctx *ioctx;
1255 unsigned long flags;
1256
1257 BUG_ON(!ch);
1258
1259 ioctx = NULL;
1260 spin_lock_irqsave(&ch->spinlock, flags);
1261 if (!list_empty(&ch->free_list)) {
1262 ioctx = list_first_entry(&ch->free_list,
1263 struct srpt_send_ioctx, free_list);
1264 list_del(&ioctx->free_list);
1265 }
1266 spin_unlock_irqrestore(&ch->spinlock, flags);
1267
1268 if (!ioctx)
1269 return ioctx;
1270
1271 BUG_ON(ioctx->ch != ch);
1272 kref_init(&ioctx->kref);
1273 spin_lock_init(&ioctx->spinlock);
1274 ioctx->state = SRPT_STATE_NEW;
1275 ioctx->n_rbuf = 0;
1276 ioctx->rbufs = NULL;
1277 ioctx->n_rdma = 0;
1278 ioctx->n_rdma_ius = 0;
1279 ioctx->rdma_ius = NULL;
1280 ioctx->mapped_sg_count = 0;
1281 init_completion(&ioctx->tx_done);
1282 ioctx->queue_status_only = false;
1283 /*
1284 * transport_init_se_cmd() does not initialize all fields, so do it
1285 * here.
1286 */
1287 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1288 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1289
1290 return ioctx;
1291}
1292
1293/**
1294 * srpt_put_send_ioctx() - Free up resources.
1295 */
1296static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx)
1297{
1298 struct srpt_rdma_ch *ch;
1299 unsigned long flags;
1300
1301 BUG_ON(!ioctx);
1302 ch = ioctx->ch;
1303 BUG_ON(!ch);
1304
1305 WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE);
1306
1307 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1308 transport_generic_free_cmd(&ioctx->cmd, 0);
1309
1310 if (ioctx->n_rbuf > 1) {
1311 kfree(ioctx->rbufs);
1312 ioctx->rbufs = NULL;
1313 ioctx->n_rbuf = 0;
1314 }
1315
1316 spin_lock_irqsave(&ch->spinlock, flags);
1317 list_add(&ioctx->free_list, &ch->free_list);
1318 spin_unlock_irqrestore(&ch->spinlock, flags);
1319}
1320
1321static void srpt_put_send_ioctx_kref(struct kref *kref)
1322{
1323 srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref));
1324}
1325
1326/**
1327 * srpt_abort_cmd() - Abort a SCSI command.
1328 * @ioctx: I/O context associated with the SCSI command.
1329 * @context: Preferred execution context.
1330 */
1331static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1332{
1333 enum srpt_command_state state;
1334 unsigned long flags;
1335
1336 BUG_ON(!ioctx);
1337
1338 /*
1339 * If the command is in a state where the target core is waiting for
1340 * the ib_srpt driver, change the state to the next state. Changing
1341 * the state of the command from SRPT_STATE_NEED_DATA to
1342 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1343 * function a second time.
1344 */
1345
1346 spin_lock_irqsave(&ioctx->spinlock, flags);
1347 state = ioctx->state;
1348 switch (state) {
1349 case SRPT_STATE_NEED_DATA:
1350 ioctx->state = SRPT_STATE_DATA_IN;
1351 break;
1352 case SRPT_STATE_DATA_IN:
1353 case SRPT_STATE_CMD_RSP_SENT:
1354 case SRPT_STATE_MGMT_RSP_SENT:
1355 ioctx->state = SRPT_STATE_DONE;
1356 break;
1357 default:
1358 break;
1359 }
1360 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1361
1362 if (state == SRPT_STATE_DONE)
1363 goto out;
1364
1365 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1366 ioctx->tag);
1367
1368 switch (state) {
1369 case SRPT_STATE_NEW:
1370 case SRPT_STATE_DATA_IN:
1371 case SRPT_STATE_MGMT:
1372 /*
1373 * Do nothing - defer abort processing until
1374 * srpt_queue_response() is invoked.
1375 */
1376 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1377 break;
1378 case SRPT_STATE_NEED_DATA:
1379 /* DMA_TO_DEVICE (write) - RDMA read error. */
Christoph Hellwige672a472012-07-08 15:58:43 -04001380
1381 /* XXX(hch): this is a horrible layering violation.. */
Christoph Hellwig7d680f32011-12-21 14:13:47 -05001382 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1383 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
Christoph Hellwige672a472012-07-08 15:58:43 -04001384 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
Christoph Hellwig7d680f32011-12-21 14:13:47 -05001385 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
Christoph Hellwige672a472012-07-08 15:58:43 -04001386
1387 complete(&ioctx->cmd.transport_lun_stop_comp);
Bart Van Asschea42d9852011-10-14 01:30:46 +00001388 break;
1389 case SRPT_STATE_CMD_RSP_SENT:
1390 /*
1391 * SRP_RSP sending failed or the SRP_RSP send completion has
1392 * not been received in time.
1393 */
1394 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
Christoph Hellwig7d680f32011-12-21 14:13:47 -05001395 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1396 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1397 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
Bart Van Asschea42d9852011-10-14 01:30:46 +00001398 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1399 break;
1400 case SRPT_STATE_MGMT_RSP_SENT:
1401 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1402 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1403 break;
1404 default:
1405 WARN_ON("ERROR: unexpected command state");
1406 break;
1407 }
1408
1409out:
1410 return state;
1411}
1412
1413/**
1414 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1415 */
1416static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1417{
1418 struct srpt_send_ioctx *ioctx;
1419 enum srpt_command_state state;
1420 struct se_cmd *cmd;
1421 u32 index;
1422
1423 atomic_inc(&ch->sq_wr_avail);
1424
1425 index = idx_from_wr_id(wr_id);
1426 ioctx = ch->ioctx_ring[index];
1427 state = srpt_get_cmd_state(ioctx);
1428 cmd = &ioctx->cmd;
1429
1430 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1431 && state != SRPT_STATE_MGMT_RSP_SENT
1432 && state != SRPT_STATE_NEED_DATA
1433 && state != SRPT_STATE_DONE);
1434
1435 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1436 if (state == SRPT_STATE_CMD_RSP_SENT
1437 || state == SRPT_STATE_MGMT_RSP_SENT)
1438 atomic_dec(&ch->req_lim);
1439
1440 srpt_abort_cmd(ioctx);
1441}
1442
1443/**
1444 * srpt_handle_send_comp() - Process an IB send completion notification.
1445 */
1446static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1447 struct srpt_send_ioctx *ioctx)
1448{
1449 enum srpt_command_state state;
1450
1451 atomic_inc(&ch->sq_wr_avail);
1452
1453 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1454
1455 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1456 && state != SRPT_STATE_MGMT_RSP_SENT
1457 && state != SRPT_STATE_DONE))
1458 pr_debug("state = %d\n", state);
1459
1460 if (state != SRPT_STATE_DONE)
1461 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1462 else
1463 printk(KERN_ERR "IB completion has been received too late for"
1464 " wr_id = %u.\n", ioctx->ioctx.index);
1465}
1466
1467/**
1468 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1469 *
Christoph Hellwige672a472012-07-08 15:58:43 -04001470 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1471 * the data that has been transferred via IB RDMA had to be postponed until the
Masanari Iida142ad5d2012-08-10 00:07:58 +00001472 * check_stop_free() callback. None of this is necessary anymore and needs to
Christoph Hellwige672a472012-07-08 15:58:43 -04001473 * be cleaned up.
Bart Van Asschea42d9852011-10-14 01:30:46 +00001474 */
1475static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1476 struct srpt_send_ioctx *ioctx,
1477 enum srpt_opcode opcode)
1478{
1479 WARN_ON(ioctx->n_rdma <= 0);
1480 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1481
1482 if (opcode == SRPT_RDMA_READ_LAST) {
1483 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1484 SRPT_STATE_DATA_IN))
Christoph Hellwige672a472012-07-08 15:58:43 -04001485 target_execute_cmd(&ioctx->cmd);
Bart Van Asschea42d9852011-10-14 01:30:46 +00001486 else
1487 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1488 __LINE__, srpt_get_cmd_state(ioctx));
1489 } else if (opcode == SRPT_RDMA_ABORT) {
1490 ioctx->rdma_aborted = true;
1491 } else {
1492 WARN(true, "unexpected opcode %d\n", opcode);
1493 }
1494}
1495
1496/**
1497 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1498 */
1499static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1500 struct srpt_send_ioctx *ioctx,
1501 enum srpt_opcode opcode)
1502{
1503 struct se_cmd *cmd;
1504 enum srpt_command_state state;
Christoph Hellwig7d680f32011-12-21 14:13:47 -05001505 unsigned long flags;
Bart Van Asschea42d9852011-10-14 01:30:46 +00001506
1507 cmd = &ioctx->cmd;
1508 state = srpt_get_cmd_state(ioctx);
1509 switch (opcode) {
1510 case SRPT_RDMA_READ_LAST:
1511 if (ioctx->n_rdma <= 0) {
1512 printk(KERN_ERR "Received invalid RDMA read"
1513 " error completion with idx %d\n",
1514 ioctx->ioctx.index);
1515 break;
1516 }
1517 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1518 if (state == SRPT_STATE_NEED_DATA)
1519 srpt_abort_cmd(ioctx);
1520 else
1521 printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1522 __func__, __LINE__, state);
1523 break;
1524 case SRPT_RDMA_WRITE_LAST:
Christoph Hellwig7d680f32011-12-21 14:13:47 -05001525 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1526 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1527 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
Bart Van Asschea42d9852011-10-14 01:30:46 +00001528 break;
1529 default:
1530 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1531 __LINE__, opcode);
1532 break;
1533 }
1534}
1535
1536/**
1537 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1538 * @ch: RDMA channel through which the request has been received.
1539 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1540 * be built in the buffer ioctx->buf points at and hence this function will
1541 * overwrite the request data.
1542 * @tag: tag of the request for which this response is being generated.
1543 * @status: value for the STATUS field of the SRP_RSP information unit.
1544 *
1545 * Returns the size in bytes of the SRP_RSP response.
1546 *
1547 * An SRP_RSP response contains a SCSI status or service response. See also
1548 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1549 * response. See also SPC-2 for more information about sense data.
1550 */
1551static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1552 struct srpt_send_ioctx *ioctx, u64 tag,
1553 int status)
1554{
1555 struct srp_rsp *srp_rsp;
1556 const u8 *sense_data;
1557 int sense_data_len, max_sense_len;
1558
1559 /*
1560 * The lowest bit of all SAM-3 status codes is zero (see also
1561 * paragraph 5.3 in SAM-3).
1562 */
1563 WARN_ON(status & 1);
1564
1565 srp_rsp = ioctx->ioctx.buf;
1566 BUG_ON(!srp_rsp);
1567
1568 sense_data = ioctx->sense_data;
1569 sense_data_len = ioctx->cmd.scsi_sense_length;
1570 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1571
1572 memset(srp_rsp, 0, sizeof *srp_rsp);
1573 srp_rsp->opcode = SRP_RSP;
1574 srp_rsp->req_lim_delta =
1575 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1576 srp_rsp->tag = tag;
1577 srp_rsp->status = status;
1578
1579 if (sense_data_len) {
1580 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1581 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1582 if (sense_data_len > max_sense_len) {
1583 printk(KERN_WARNING "truncated sense data from %d to %d"
1584 " bytes\n", sense_data_len, max_sense_len);
1585 sense_data_len = max_sense_len;
1586 }
1587
1588 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1589 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1590 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1591 }
1592
1593 return sizeof(*srp_rsp) + sense_data_len;
1594}
1595
1596/**
1597 * srpt_build_tskmgmt_rsp() - Build a task management response.
1598 * @ch: RDMA channel through which the request has been received.
1599 * @ioctx: I/O context in which the SRP_RSP response will be built.
1600 * @rsp_code: RSP_CODE that will be stored in the response.
1601 * @tag: Tag of the request for which this response is being generated.
1602 *
1603 * Returns the size in bytes of the SRP_RSP response.
1604 *
1605 * An SRP_RSP response contains a SCSI status or service response. See also
1606 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1607 * response.
1608 */
1609static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1610 struct srpt_send_ioctx *ioctx,
1611 u8 rsp_code, u64 tag)
1612{
1613 struct srp_rsp *srp_rsp;
1614 int resp_data_len;
1615 int resp_len;
1616
1617 resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4;
1618 resp_len = sizeof(*srp_rsp) + resp_data_len;
1619
1620 srp_rsp = ioctx->ioctx.buf;
1621 BUG_ON(!srp_rsp);
1622 memset(srp_rsp, 0, sizeof *srp_rsp);
1623
1624 srp_rsp->opcode = SRP_RSP;
1625 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1626 + atomic_xchg(&ch->req_lim_delta, 0));
1627 srp_rsp->tag = tag;
1628
1629 if (rsp_code != SRP_TSK_MGMT_SUCCESS) {
1630 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1631 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1632 srp_rsp->data[3] = rsp_code;
1633 }
1634
1635 return resp_len;
1636}
1637
1638#define NO_SUCH_LUN ((uint64_t)-1LL)
1639
1640/*
1641 * SCSI LUN addressing method. See also SAM-2 and the section about
1642 * eight byte LUNs.
1643 */
1644enum scsi_lun_addr_method {
1645 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1646 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1647 SCSI_LUN_ADDR_METHOD_LUN = 2,
1648 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1649};
1650
1651/*
1652 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1653 *
1654 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1655 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1656 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1657 */
1658static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1659{
1660 uint64_t res = NO_SUCH_LUN;
1661 int addressing_method;
1662
1663 if (unlikely(len < 2)) {
1664 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1665 "more", len);
1666 goto out;
1667 }
1668
1669 switch (len) {
1670 case 8:
1671 if ((*((__be64 *)lun) &
1672 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1673 goto out_err;
1674 break;
1675 case 4:
1676 if (*((__be16 *)&lun[2]) != 0)
1677 goto out_err;
1678 break;
1679 case 6:
1680 if (*((__be32 *)&lun[2]) != 0)
1681 goto out_err;
1682 break;
1683 case 2:
1684 break;
1685 default:
1686 goto out_err;
1687 }
1688
1689 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1690 switch (addressing_method) {
1691 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1692 case SCSI_LUN_ADDR_METHOD_FLAT:
1693 case SCSI_LUN_ADDR_METHOD_LUN:
1694 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1695 break;
1696
1697 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1698 default:
1699 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1700 addressing_method);
1701 break;
1702 }
1703
1704out:
1705 return res;
1706
1707out_err:
1708 printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1709 " implemented");
1710 goto out;
1711}
1712
1713static int srpt_check_stop_free(struct se_cmd *cmd)
1714{
1715 struct srpt_send_ioctx *ioctx;
1716
1717 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
1718 return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1719}
1720
1721/**
1722 * srpt_handle_cmd() - Process SRP_CMD.
1723 */
1724static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1725 struct srpt_recv_ioctx *recv_ioctx,
1726 struct srpt_send_ioctx *send_ioctx)
1727{
1728 struct se_cmd *cmd;
1729 struct srp_cmd *srp_cmd;
1730 uint64_t unpacked_lun;
1731 u64 data_len;
1732 enum dma_data_direction dir;
Christoph Hellwigde103c92012-11-06 12:24:09 -08001733 sense_reason_t ret;
Bart Van Asschea42d9852011-10-14 01:30:46 +00001734
1735 BUG_ON(!send_ioctx);
1736
1737 srp_cmd = recv_ioctx->ioctx.buf;
1738 kref_get(&send_ioctx->kref);
1739 cmd = &send_ioctx->cmd;
1740 send_ioctx->tag = srp_cmd->tag;
1741
1742 switch (srp_cmd->task_attr) {
1743 case SRP_CMD_SIMPLE_Q:
1744 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1745 break;
1746 case SRP_CMD_ORDERED_Q:
1747 default:
1748 cmd->sam_task_attr = MSG_ORDERED_TAG;
1749 break;
1750 case SRP_CMD_HEAD_OF_Q:
1751 cmd->sam_task_attr = MSG_HEAD_TAG;
1752 break;
1753 case SRP_CMD_ACA:
1754 cmd->sam_task_attr = MSG_ACA_TAG;
1755 break;
1756 }
1757
Christoph Hellwigde103c92012-11-06 12:24:09 -08001758 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
Bart Van Asschea42d9852011-10-14 01:30:46 +00001759 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1760 srp_cmd->tag);
Christoph Hellwigde103c92012-11-06 12:24:09 -08001761 ret = TCM_INVALID_CDB_FIELD;
Nicholas Bellinger187e70a2012-03-17 20:12:36 -07001762 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
Bart Van Asschea42d9852011-10-14 01:30:46 +00001763 goto send_sense;
1764 }
1765
1766 cmd->data_length = data_len;
1767 cmd->data_direction = dir;
1768 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1769 sizeof(srp_cmd->lun));
Christoph Hellwigde103c92012-11-06 12:24:09 -08001770 ret = transport_lookup_cmd_lun(cmd, unpacked_lun);
1771 if (ret) {
Nicholas Bellinger187e70a2012-03-17 20:12:36 -07001772 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
Bart Van Asschea42d9852011-10-14 01:30:46 +00001773 goto send_sense;
Nicholas Bellinger187e70a2012-03-17 20:12:36 -07001774 }
Andy Grovera12f41f2012-04-03 15:51:20 -07001775 ret = target_setup_cmd_from_cdb(cmd, srp_cmd->cdb);
Christoph Hellwigde103c92012-11-06 12:24:09 -08001776 if (ret) {
Nicholas Bellinger187e70a2012-03-17 20:12:36 -07001777 kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
Christoph Hellwigde103c92012-11-06 12:24:09 -08001778 if (ret == TCM_RESERVATION_CONFLICT) {
Nicholas Bellinger187e70a2012-03-17 20:12:36 -07001779 srpt_queue_status(cmd);
1780 return 0;
Christoph Hellwigde103c92012-11-06 12:24:09 -08001781 }
1782 goto send_sense;
Nicholas Bellinger187e70a2012-03-17 20:12:36 -07001783 }
Bart Van Asschea42d9852011-10-14 01:30:46 +00001784
1785 transport_handle_cdb_direct(cmd);
1786 return 0;
1787
1788send_sense:
Christoph Hellwigde103c92012-11-06 12:24:09 -08001789 transport_send_check_condition_and_sense(cmd, ret, 0);
Bart Van Asschea42d9852011-10-14 01:30:46 +00001790 return -1;
1791}
1792
1793/**
1794 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1795 * @ch: RDMA channel of the task management request.
1796 * @fn: Task management function to perform.
1797 * @req_tag: Tag of the SRP task management request.
1798 * @mgmt_ioctx: I/O context of the task management request.
1799 *
1800 * Returns zero if the target core will process the task management
1801 * request asynchronously.
1802 *
1803 * Note: It is assumed that the initiator serializes tag-based task management
1804 * requests.
1805 */
1806static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1807{
1808 struct srpt_device *sdev;
1809 struct srpt_rdma_ch *ch;
1810 struct srpt_send_ioctx *target;
1811 int ret, i;
1812
1813 ret = -EINVAL;
1814 ch = ioctx->ch;
1815 BUG_ON(!ch);
1816 BUG_ON(!ch->sport);
1817 sdev = ch->sport->sdev;
1818 BUG_ON(!sdev);
1819 spin_lock_irq(&sdev->spinlock);
1820 for (i = 0; i < ch->rq_size; ++i) {
1821 target = ch->ioctx_ring[i];
1822 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1823 target->tag == tag &&
1824 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1825 ret = 0;
1826 /* now let the target core abort &target->cmd; */
1827 break;
1828 }
1829 }
1830 spin_unlock_irq(&sdev->spinlock);
1831 return ret;
1832}
1833
1834static int srp_tmr_to_tcm(int fn)
1835{
1836 switch (fn) {
1837 case SRP_TSK_ABORT_TASK:
1838 return TMR_ABORT_TASK;
1839 case SRP_TSK_ABORT_TASK_SET:
1840 return TMR_ABORT_TASK_SET;
1841 case SRP_TSK_CLEAR_TASK_SET:
1842 return TMR_CLEAR_TASK_SET;
1843 case SRP_TSK_LUN_RESET:
1844 return TMR_LUN_RESET;
1845 case SRP_TSK_CLEAR_ACA:
1846 return TMR_CLEAR_ACA;
1847 default:
1848 return -1;
1849 }
1850}
1851
1852/**
1853 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1854 *
1855 * Returns 0 if and only if the request will be processed by the target core.
1856 *
1857 * For more information about SRP_TSK_MGMT information units, see also section
1858 * 6.7 in the SRP r16a document.
1859 */
1860static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1861 struct srpt_recv_ioctx *recv_ioctx,
1862 struct srpt_send_ioctx *send_ioctx)
1863{
1864 struct srp_tsk_mgmt *srp_tsk;
1865 struct se_cmd *cmd;
1866 uint64_t unpacked_lun;
1867 int tcm_tmr;
1868 int res;
1869
1870 BUG_ON(!send_ioctx);
1871
1872 srp_tsk = recv_ioctx->ioctx.buf;
1873 cmd = &send_ioctx->cmd;
1874
1875 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1876 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1877 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1878
1879 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1880 send_ioctx->tag = srp_tsk->tag;
1881 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1882 if (tcm_tmr < 0) {
Bart Van Asschea42d9852011-10-14 01:30:46 +00001883 send_ioctx->cmd.se_tmr_req->response =
1884 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
Christoph Hellwigde103c92012-11-06 12:24:09 -08001885 goto fail;
Bart Van Asschea42d9852011-10-14 01:30:46 +00001886 }
Andy Groverc8e31f22012-01-19 13:39:17 -08001887 res = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL);
1888 if (res < 0) {
Bart Van Asschea42d9852011-10-14 01:30:46 +00001889 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
Christoph Hellwigde103c92012-11-06 12:24:09 -08001890 goto fail;
Bart Van Asschea42d9852011-10-14 01:30:46 +00001891 }
1892
1893 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1894 sizeof(srp_tsk->lun));
1895 res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun);
1896 if (res) {
1897 pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun);
Bart Van Asschea42d9852011-10-14 01:30:46 +00001898 send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
Christoph Hellwigde103c92012-11-06 12:24:09 -08001899 goto fail;
Bart Van Asschea42d9852011-10-14 01:30:46 +00001900 }
1901
1902 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK)
1903 srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1904
Bart Van Asschea42d9852011-10-14 01:30:46 +00001905 kref_get(&send_ioctx->kref);
Christoph Hellwigde103c92012-11-06 12:24:09 -08001906 transport_generic_handle_tmr(&send_ioctx->cmd);
1907 return;
1908fail:
1909 kref_get(&send_ioctx->kref);
1910 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
Bart Van Asschea42d9852011-10-14 01:30:46 +00001911}
1912
1913/**
1914 * srpt_handle_new_iu() - Process a newly received information unit.
1915 * @ch: RDMA channel through which the information unit has been received.
1916 * @ioctx: SRPT I/O context associated with the information unit.
1917 */
1918static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1919 struct srpt_recv_ioctx *recv_ioctx,
1920 struct srpt_send_ioctx *send_ioctx)
1921{
1922 struct srp_cmd *srp_cmd;
1923 enum rdma_ch_state ch_state;
1924
1925 BUG_ON(!ch);
1926 BUG_ON(!recv_ioctx);
1927
1928 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1929 recv_ioctx->ioctx.dma, srp_max_req_size,
1930 DMA_FROM_DEVICE);
1931
1932 ch_state = srpt_get_ch_state(ch);
1933 if (unlikely(ch_state == CH_CONNECTING)) {
1934 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1935 goto out;
1936 }
1937
1938 if (unlikely(ch_state != CH_LIVE))
1939 goto out;
1940
1941 srp_cmd = recv_ioctx->ioctx.buf;
1942 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1943 if (!send_ioctx)
1944 send_ioctx = srpt_get_send_ioctx(ch);
1945 if (unlikely(!send_ioctx)) {
1946 list_add_tail(&recv_ioctx->wait_list,
1947 &ch->cmd_wait_list);
1948 goto out;
1949 }
1950 }
1951
1952 transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess,
1953 0, DMA_NONE, MSG_SIMPLE_TAG,
1954 send_ioctx->sense_data);
1955
1956 switch (srp_cmd->opcode) {
1957 case SRP_CMD:
1958 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1959 break;
1960 case SRP_TSK_MGMT:
1961 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1962 break;
1963 case SRP_I_LOGOUT:
1964 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1965 break;
1966 case SRP_CRED_RSP:
1967 pr_debug("received SRP_CRED_RSP\n");
1968 break;
1969 case SRP_AER_RSP:
1970 pr_debug("received SRP_AER_RSP\n");
1971 break;
1972 case SRP_RSP:
1973 printk(KERN_ERR "Received SRP_RSP\n");
1974 break;
1975 default:
1976 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1977 srp_cmd->opcode);
1978 break;
1979 }
1980
1981 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1982out:
1983 return;
1984}
1985
1986static void srpt_process_rcv_completion(struct ib_cq *cq,
1987 struct srpt_rdma_ch *ch,
1988 struct ib_wc *wc)
1989{
1990 struct srpt_device *sdev = ch->sport->sdev;
1991 struct srpt_recv_ioctx *ioctx;
1992 u32 index;
1993
1994 index = idx_from_wr_id(wc->wr_id);
1995 if (wc->status == IB_WC_SUCCESS) {
1996 int req_lim;
1997
1998 req_lim = atomic_dec_return(&ch->req_lim);
1999 if (unlikely(req_lim < 0))
2000 printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
2001 ioctx = sdev->ioctx_ring[index];
2002 srpt_handle_new_iu(ch, ioctx, NULL);
2003 } else {
2004 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
2005 index, wc->status);
2006 }
2007}
2008
2009/**
2010 * srpt_process_send_completion() - Process an IB send completion.
2011 *
2012 * Note: Although this has not yet been observed during tests, at least in
2013 * theory it is possible that the srpt_get_send_ioctx() call invoked by
2014 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
2015 * value in each response is set to one, and it is possible that this response
2016 * makes the initiator send a new request before the send completion for that
2017 * response has been processed. This could e.g. happen if the call to
2018 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
2019 * if IB retransmission causes generation of the send completion to be
2020 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
2021 * are queued on cmd_wait_list. The code below processes these delayed
2022 * requests one at a time.
2023 */
2024static void srpt_process_send_completion(struct ib_cq *cq,
2025 struct srpt_rdma_ch *ch,
2026 struct ib_wc *wc)
2027{
2028 struct srpt_send_ioctx *send_ioctx;
2029 uint32_t index;
2030 enum srpt_opcode opcode;
2031
2032 index = idx_from_wr_id(wc->wr_id);
2033 opcode = opcode_from_wr_id(wc->wr_id);
2034 send_ioctx = ch->ioctx_ring[index];
2035 if (wc->status == IB_WC_SUCCESS) {
2036 if (opcode == SRPT_SEND)
2037 srpt_handle_send_comp(ch, send_ioctx);
2038 else {
2039 WARN_ON(opcode != SRPT_RDMA_ABORT &&
2040 wc->opcode != IB_WC_RDMA_READ);
2041 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
2042 }
2043 } else {
2044 if (opcode == SRPT_SEND) {
2045 printk(KERN_INFO "sending response for idx %u failed"
2046 " with status %d\n", index, wc->status);
2047 srpt_handle_send_err_comp(ch, wc->wr_id);
2048 } else if (opcode != SRPT_RDMA_MID) {
2049 printk(KERN_INFO "RDMA t %d for idx %u failed with"
2050 " status %d", opcode, index, wc->status);
2051 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2052 }
2053 }
2054
2055 while (unlikely(opcode == SRPT_SEND
2056 && !list_empty(&ch->cmd_wait_list)
2057 && srpt_get_ch_state(ch) == CH_LIVE
2058 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2059 struct srpt_recv_ioctx *recv_ioctx;
2060
2061 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2062 struct srpt_recv_ioctx,
2063 wait_list);
2064 list_del(&recv_ioctx->wait_list);
2065 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2066 }
2067}
2068
2069static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2070{
2071 struct ib_wc *const wc = ch->wc;
2072 int i, n;
2073
2074 WARN_ON(cq != ch->cq);
2075
2076 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2077 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2078 for (i = 0; i < n; i++) {
2079 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2080 srpt_process_rcv_completion(cq, ch, &wc[i]);
2081 else
2082 srpt_process_send_completion(cq, ch, &wc[i]);
2083 }
2084 }
2085}
2086
2087/**
2088 * srpt_completion() - IB completion queue callback function.
2089 *
2090 * Notes:
2091 * - It is guaranteed that a completion handler will never be invoked
2092 * concurrently on two different CPUs for the same completion queue. See also
2093 * Documentation/infiniband/core_locking.txt and the implementation of
2094 * handle_edge_irq() in kernel/irq/chip.c.
2095 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2096 * context instead of interrupt context.
2097 */
2098static void srpt_completion(struct ib_cq *cq, void *ctx)
2099{
2100 struct srpt_rdma_ch *ch = ctx;
2101
2102 wake_up_interruptible(&ch->wait_queue);
2103}
2104
2105static int srpt_compl_thread(void *arg)
2106{
2107 struct srpt_rdma_ch *ch;
2108
2109 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2110 current->flags |= PF_NOFREEZE;
2111
2112 ch = arg;
2113 BUG_ON(!ch);
2114 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2115 ch->sess_name, ch->thread->comm, current->pid);
2116 while (!kthread_should_stop()) {
2117 wait_event_interruptible(ch->wait_queue,
2118 (srpt_process_completion(ch->cq, ch),
2119 kthread_should_stop()));
2120 }
2121 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2122 ch->sess_name, ch->thread->comm, current->pid);
2123 return 0;
2124}
2125
2126/**
2127 * srpt_create_ch_ib() - Create receive and send completion queues.
2128 */
2129static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2130{
2131 struct ib_qp_init_attr *qp_init;
2132 struct srpt_port *sport = ch->sport;
2133 struct srpt_device *sdev = sport->sdev;
2134 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2135 int ret;
2136
2137 WARN_ON(ch->rq_size < 1);
2138
2139 ret = -ENOMEM;
2140 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2141 if (!qp_init)
2142 goto out;
2143
2144 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2145 ch->rq_size + srp_sq_size, 0);
2146 if (IS_ERR(ch->cq)) {
2147 ret = PTR_ERR(ch->cq);
2148 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2149 ch->rq_size + srp_sq_size, ret);
2150 goto out;
2151 }
2152
2153 qp_init->qp_context = (void *)ch;
2154 qp_init->event_handler
2155 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2156 qp_init->send_cq = ch->cq;
2157 qp_init->recv_cq = ch->cq;
2158 qp_init->srq = sdev->srq;
2159 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2160 qp_init->qp_type = IB_QPT_RC;
2161 qp_init->cap.max_send_wr = srp_sq_size;
2162 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2163
2164 ch->qp = ib_create_qp(sdev->pd, qp_init);
2165 if (IS_ERR(ch->qp)) {
2166 ret = PTR_ERR(ch->qp);
2167 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2168 goto err_destroy_cq;
2169 }
2170
2171 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2172
2173 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2174 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2175 qp_init->cap.max_send_wr, ch->cm_id);
2176
2177 ret = srpt_init_ch_qp(ch, ch->qp);
2178 if (ret)
2179 goto err_destroy_qp;
2180
2181 init_waitqueue_head(&ch->wait_queue);
2182
2183 pr_debug("creating thread for session %s\n", ch->sess_name);
2184
2185 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2186 if (IS_ERR(ch->thread)) {
2187 printk(KERN_ERR "failed to create kernel thread %ld\n",
2188 PTR_ERR(ch->thread));
2189 ch->thread = NULL;
2190 goto err_destroy_qp;
2191 }
2192
2193out:
2194 kfree(qp_init);
2195 return ret;
2196
2197err_destroy_qp:
2198 ib_destroy_qp(ch->qp);
2199err_destroy_cq:
2200 ib_destroy_cq(ch->cq);
2201 goto out;
2202}
2203
2204static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2205{
2206 if (ch->thread)
2207 kthread_stop(ch->thread);
2208
2209 ib_destroy_qp(ch->qp);
2210 ib_destroy_cq(ch->cq);
2211}
2212
2213/**
2214 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2215 *
2216 * Reset the QP and make sure all resources associated with the channel will
2217 * be deallocated at an appropriate time.
2218 *
2219 * Note: The caller must hold ch->sport->sdev->spinlock.
2220 */
2221static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2222{
2223 struct srpt_device *sdev;
2224 enum rdma_ch_state prev_state;
2225 unsigned long flags;
2226
2227 sdev = ch->sport->sdev;
2228
2229 spin_lock_irqsave(&ch->spinlock, flags);
2230 prev_state = ch->state;
2231 switch (prev_state) {
2232 case CH_CONNECTING:
2233 case CH_LIVE:
2234 ch->state = CH_DISCONNECTING;
2235 break;
2236 default:
2237 break;
2238 }
2239 spin_unlock_irqrestore(&ch->spinlock, flags);
2240
2241 switch (prev_state) {
2242 case CH_CONNECTING:
2243 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2244 NULL, 0);
2245 /* fall through */
2246 case CH_LIVE:
2247 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2248 printk(KERN_ERR "sending CM DREQ failed.\n");
2249 break;
2250 case CH_DISCONNECTING:
2251 break;
2252 case CH_DRAINING:
2253 case CH_RELEASING:
2254 break;
2255 }
2256}
2257
2258/**
2259 * srpt_close_ch() - Close an RDMA channel.
2260 */
2261static void srpt_close_ch(struct srpt_rdma_ch *ch)
2262{
2263 struct srpt_device *sdev;
2264
2265 sdev = ch->sport->sdev;
2266 spin_lock_irq(&sdev->spinlock);
2267 __srpt_close_ch(ch);
2268 spin_unlock_irq(&sdev->spinlock);
2269}
2270
2271/**
2272 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2273 * @cm_id: Pointer to the CM ID of the channel to be drained.
2274 *
2275 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2276 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2277 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2278 * waits until all target sessions for the associated IB device have been
2279 * unregistered and target session registration involves a call to
2280 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2281 * this function has finished).
2282 */
2283static void srpt_drain_channel(struct ib_cm_id *cm_id)
2284{
2285 struct srpt_device *sdev;
2286 struct srpt_rdma_ch *ch;
2287 int ret;
2288 bool do_reset = false;
2289
2290 WARN_ON_ONCE(irqs_disabled());
2291
2292 sdev = cm_id->context;
2293 BUG_ON(!sdev);
2294 spin_lock_irq(&sdev->spinlock);
2295 list_for_each_entry(ch, &sdev->rch_list, list) {
2296 if (ch->cm_id == cm_id) {
2297 do_reset = srpt_test_and_set_ch_state(ch,
2298 CH_CONNECTING, CH_DRAINING) ||
2299 srpt_test_and_set_ch_state(ch,
2300 CH_LIVE, CH_DRAINING) ||
2301 srpt_test_and_set_ch_state(ch,
2302 CH_DISCONNECTING, CH_DRAINING);
2303 break;
2304 }
2305 }
2306 spin_unlock_irq(&sdev->spinlock);
2307
2308 if (do_reset) {
2309 ret = srpt_ch_qp_err(ch);
2310 if (ret < 0)
2311 printk(KERN_ERR "Setting queue pair in error state"
2312 " failed: %d\n", ret);
2313 }
2314}
2315
2316/**
2317 * srpt_find_channel() - Look up an RDMA channel.
2318 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2319 *
2320 * Return NULL if no matching RDMA channel has been found.
2321 */
2322static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2323 struct ib_cm_id *cm_id)
2324{
2325 struct srpt_rdma_ch *ch;
2326 bool found;
2327
2328 WARN_ON_ONCE(irqs_disabled());
2329 BUG_ON(!sdev);
2330
2331 found = false;
2332 spin_lock_irq(&sdev->spinlock);
2333 list_for_each_entry(ch, &sdev->rch_list, list) {
2334 if (ch->cm_id == cm_id) {
2335 found = true;
2336 break;
2337 }
2338 }
2339 spin_unlock_irq(&sdev->spinlock);
2340
2341 return found ? ch : NULL;
2342}
2343
2344/**
2345 * srpt_release_channel() - Release channel resources.
2346 *
2347 * Schedules the actual release because:
2348 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2349 * trigger a deadlock.
2350 * - It is not safe to call TCM transport_* functions from interrupt context.
2351 */
2352static void srpt_release_channel(struct srpt_rdma_ch *ch)
2353{
2354 schedule_work(&ch->release_work);
2355}
2356
2357static void srpt_release_channel_work(struct work_struct *w)
2358{
2359 struct srpt_rdma_ch *ch;
2360 struct srpt_device *sdev;
2361
2362 ch = container_of(w, struct srpt_rdma_ch, release_work);
2363 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2364 ch->release_done);
2365
2366 sdev = ch->sport->sdev;
2367 BUG_ON(!sdev);
2368
2369 transport_deregister_session_configfs(ch->sess);
2370 transport_deregister_session(ch->sess);
2371 ch->sess = NULL;
2372
2373 srpt_destroy_ch_ib(ch);
2374
2375 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2376 ch->sport->sdev, ch->rq_size,
2377 ch->rsp_size, DMA_TO_DEVICE);
2378
2379 spin_lock_irq(&sdev->spinlock);
2380 list_del(&ch->list);
2381 spin_unlock_irq(&sdev->spinlock);
2382
2383 ib_destroy_cm_id(ch->cm_id);
2384
2385 if (ch->release_done)
2386 complete(ch->release_done);
2387
2388 wake_up(&sdev->ch_releaseQ);
2389
2390 kfree(ch);
2391}
2392
2393static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2394 u8 i_port_id[16])
2395{
2396 struct srpt_node_acl *nacl;
2397
2398 list_for_each_entry(nacl, &sport->port_acl_list, list)
2399 if (memcmp(nacl->i_port_id, i_port_id,
2400 sizeof(nacl->i_port_id)) == 0)
2401 return nacl;
2402
2403 return NULL;
2404}
2405
2406static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2407 u8 i_port_id[16])
2408{
2409 struct srpt_node_acl *nacl;
2410
2411 spin_lock_irq(&sport->port_acl_lock);
2412 nacl = __srpt_lookup_acl(sport, i_port_id);
2413 spin_unlock_irq(&sport->port_acl_lock);
2414
2415 return nacl;
2416}
2417
2418/**
2419 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2420 *
2421 * Ownership of the cm_id is transferred to the target session if this
2422 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2423 */
2424static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2425 struct ib_cm_req_event_param *param,
2426 void *private_data)
2427{
2428 struct srpt_device *sdev = cm_id->context;
2429 struct srpt_port *sport = &sdev->port[param->port - 1];
2430 struct srp_login_req *req;
2431 struct srp_login_rsp *rsp;
2432 struct srp_login_rej *rej;
2433 struct ib_cm_rep_param *rep_param;
2434 struct srpt_rdma_ch *ch, *tmp_ch;
2435 struct srpt_node_acl *nacl;
2436 u32 it_iu_len;
2437 int i;
2438 int ret = 0;
2439
2440 WARN_ON_ONCE(irqs_disabled());
2441
2442 if (WARN_ON(!sdev || !private_data))
2443 return -EINVAL;
2444
2445 req = (struct srp_login_req *)private_data;
2446
2447 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2448
2449 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2450 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2451 " (guid=0x%llx:0x%llx)\n",
2452 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2453 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2454 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2455 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2456 it_iu_len,
2457 param->port,
2458 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2459 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2460
2461 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2462 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2463 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2464
2465 if (!rsp || !rej || !rep_param) {
2466 ret = -ENOMEM;
2467 goto out;
2468 }
2469
2470 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2471 rej->reason = __constant_cpu_to_be32(
2472 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2473 ret = -EINVAL;
2474 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2475 " length (%d bytes) is out of range (%d .. %d)\n",
2476 it_iu_len, 64, srp_max_req_size);
2477 goto reject;
2478 }
2479
2480 if (!sport->enabled) {
2481 rej->reason = __constant_cpu_to_be32(
2482 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2483 ret = -EINVAL;
2484 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2485 " has not yet been enabled\n");
2486 goto reject;
2487 }
2488
2489 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2490 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2491
2492 spin_lock_irq(&sdev->spinlock);
2493
2494 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2495 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2496 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2497 && param->port == ch->sport->port
2498 && param->listen_id == ch->sport->sdev->cm_id
2499 && ch->cm_id) {
2500 enum rdma_ch_state ch_state;
2501
2502 ch_state = srpt_get_ch_state(ch);
2503 if (ch_state != CH_CONNECTING
2504 && ch_state != CH_LIVE)
2505 continue;
2506
2507 /* found an existing channel */
2508 pr_debug("Found existing channel %s"
2509 " cm_id= %p state= %d\n",
2510 ch->sess_name, ch->cm_id, ch_state);
2511
2512 __srpt_close_ch(ch);
2513
2514 rsp->rsp_flags =
2515 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2516 }
2517 }
2518
2519 spin_unlock_irq(&sdev->spinlock);
2520
2521 } else
2522 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2523
2524 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2525 || *(__be64 *)(req->target_port_id + 8) !=
2526 cpu_to_be64(srpt_service_guid)) {
2527 rej->reason = __constant_cpu_to_be32(
2528 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2529 ret = -ENOMEM;
2530 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2531 " has an invalid target port identifier.\n");
2532 goto reject;
2533 }
2534
2535 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2536 if (!ch) {
2537 rej->reason = __constant_cpu_to_be32(
2538 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2539 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2540 ret = -ENOMEM;
2541 goto reject;
2542 }
2543
2544 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2545 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2546 memcpy(ch->t_port_id, req->target_port_id, 16);
2547 ch->sport = &sdev->port[param->port - 1];
2548 ch->cm_id = cm_id;
2549 /*
2550 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2551 * for the SRP protocol to the command queue size.
2552 */
2553 ch->rq_size = SRPT_RQ_SIZE;
2554 spin_lock_init(&ch->spinlock);
2555 ch->state = CH_CONNECTING;
2556 INIT_LIST_HEAD(&ch->cmd_wait_list);
2557 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2558
2559 ch->ioctx_ring = (struct srpt_send_ioctx **)
2560 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2561 sizeof(*ch->ioctx_ring[0]),
2562 ch->rsp_size, DMA_TO_DEVICE);
2563 if (!ch->ioctx_ring)
2564 goto free_ch;
2565
2566 INIT_LIST_HEAD(&ch->free_list);
2567 for (i = 0; i < ch->rq_size; i++) {
2568 ch->ioctx_ring[i]->ch = ch;
2569 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2570 }
2571
2572 ret = srpt_create_ch_ib(ch);
2573 if (ret) {
2574 rej->reason = __constant_cpu_to_be32(
2575 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2576 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2577 " a new RDMA channel failed.\n");
2578 goto free_ring;
2579 }
2580
2581 ret = srpt_ch_qp_rtr(ch, ch->qp);
2582 if (ret) {
2583 rej->reason = __constant_cpu_to_be32(
2584 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2585 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2586 " RTR failed (error code = %d)\n", ret);
2587 goto destroy_ib;
2588 }
2589 /*
2590 * Use the initator port identifier as the session name.
2591 */
2592 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2593 be64_to_cpu(*(__be64 *)ch->i_port_id),
2594 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2595
2596 pr_debug("registering session %s\n", ch->sess_name);
2597
2598 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2599 if (!nacl) {
2600 printk(KERN_INFO "Rejected login because no ACL has been"
2601 " configured yet for initiator %s.\n", ch->sess_name);
2602 rej->reason = __constant_cpu_to_be32(
2603 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2604 goto destroy_ib;
2605 }
2606
2607 ch->sess = transport_init_session();
Dan Carpenter3af33632011-11-04 21:27:32 +03002608 if (IS_ERR(ch->sess)) {
Bart Van Asschea42d9852011-10-14 01:30:46 +00002609 rej->reason = __constant_cpu_to_be32(
2610 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2611 pr_debug("Failed to create session\n");
2612 goto deregister_session;
2613 }
2614 ch->sess->se_node_acl = &nacl->nacl;
2615 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2616
2617 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2618 ch->sess_name, ch->cm_id);
2619
2620 /* create srp_login_response */
2621 rsp->opcode = SRP_LOGIN_RSP;
2622 rsp->tag = req->tag;
2623 rsp->max_it_iu_len = req->req_it_iu_len;
2624 rsp->max_ti_iu_len = req->req_it_iu_len;
2625 ch->max_ti_iu_len = it_iu_len;
2626 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2627 | SRP_BUF_FORMAT_INDIRECT);
2628 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2629 atomic_set(&ch->req_lim, ch->rq_size);
2630 atomic_set(&ch->req_lim_delta, 0);
2631
2632 /* create cm reply */
2633 rep_param->qp_num = ch->qp->qp_num;
2634 rep_param->private_data = (void *)rsp;
2635 rep_param->private_data_len = sizeof *rsp;
2636 rep_param->rnr_retry_count = 7;
2637 rep_param->flow_control = 1;
2638 rep_param->failover_accepted = 0;
2639 rep_param->srq = 1;
2640 rep_param->responder_resources = 4;
2641 rep_param->initiator_depth = 4;
2642
2643 ret = ib_send_cm_rep(cm_id, rep_param);
2644 if (ret) {
2645 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2646 " (error code = %d)\n", ret);
2647 goto release_channel;
2648 }
2649
2650 spin_lock_irq(&sdev->spinlock);
2651 list_add_tail(&ch->list, &sdev->rch_list);
2652 spin_unlock_irq(&sdev->spinlock);
2653
2654 goto out;
2655
2656release_channel:
2657 srpt_set_ch_state(ch, CH_RELEASING);
2658 transport_deregister_session_configfs(ch->sess);
2659
2660deregister_session:
2661 transport_deregister_session(ch->sess);
2662 ch->sess = NULL;
2663
2664destroy_ib:
2665 srpt_destroy_ch_ib(ch);
2666
2667free_ring:
2668 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2669 ch->sport->sdev, ch->rq_size,
2670 ch->rsp_size, DMA_TO_DEVICE);
2671free_ch:
2672 kfree(ch);
2673
2674reject:
2675 rej->opcode = SRP_LOGIN_REJ;
2676 rej->tag = req->tag;
2677 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2678 | SRP_BUF_FORMAT_INDIRECT);
2679
2680 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2681 (void *)rej, sizeof *rej);
2682
2683out:
2684 kfree(rep_param);
2685 kfree(rsp);
2686 kfree(rej);
2687
2688 return ret;
2689}
2690
2691static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2692{
2693 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2694 srpt_drain_channel(cm_id);
2695}
2696
2697/**
2698 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2699 *
2700 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2701 * and that the recipient may begin transmitting (RTU = ready to use).
2702 */
2703static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2704{
2705 struct srpt_rdma_ch *ch;
2706 int ret;
2707
2708 ch = srpt_find_channel(cm_id->context, cm_id);
2709 BUG_ON(!ch);
2710
2711 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2712 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2713
2714 ret = srpt_ch_qp_rts(ch, ch->qp);
2715
2716 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2717 wait_list) {
2718 list_del(&ioctx->wait_list);
2719 srpt_handle_new_iu(ch, ioctx, NULL);
2720 }
2721 if (ret)
2722 srpt_close_ch(ch);
2723 }
2724}
2725
2726static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2727{
2728 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2729 srpt_drain_channel(cm_id);
2730}
2731
2732static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2733{
2734 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2735 srpt_drain_channel(cm_id);
2736}
2737
2738/**
2739 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2740 */
2741static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2742{
2743 struct srpt_rdma_ch *ch;
2744 unsigned long flags;
2745 bool send_drep = false;
2746
2747 ch = srpt_find_channel(cm_id->context, cm_id);
2748 BUG_ON(!ch);
2749
2750 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2751
2752 spin_lock_irqsave(&ch->spinlock, flags);
2753 switch (ch->state) {
2754 case CH_CONNECTING:
2755 case CH_LIVE:
2756 send_drep = true;
2757 ch->state = CH_DISCONNECTING;
2758 break;
2759 case CH_DISCONNECTING:
2760 case CH_DRAINING:
2761 case CH_RELEASING:
2762 WARN(true, "unexpected channel state %d\n", ch->state);
2763 break;
2764 }
2765 spin_unlock_irqrestore(&ch->spinlock, flags);
2766
2767 if (send_drep) {
2768 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2769 printk(KERN_ERR "Sending IB DREP failed.\n");
2770 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2771 ch->sess_name);
2772 }
2773}
2774
2775/**
2776 * srpt_cm_drep_recv() - Process reception of a DREP message.
2777 */
2778static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2779{
2780 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2781 cm_id);
2782 srpt_drain_channel(cm_id);
2783}
2784
2785/**
2786 * srpt_cm_handler() - IB connection manager callback function.
2787 *
2788 * A non-zero return value will cause the caller destroy the CM ID.
2789 *
2790 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2791 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2792 * a non-zero value in any other case will trigger a race with the
2793 * ib_destroy_cm_id() call in srpt_release_channel().
2794 */
2795static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2796{
2797 int ret;
2798
2799 ret = 0;
2800 switch (event->event) {
2801 case IB_CM_REQ_RECEIVED:
2802 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2803 event->private_data);
2804 break;
2805 case IB_CM_REJ_RECEIVED:
2806 srpt_cm_rej_recv(cm_id);
2807 break;
2808 case IB_CM_RTU_RECEIVED:
2809 case IB_CM_USER_ESTABLISHED:
2810 srpt_cm_rtu_recv(cm_id);
2811 break;
2812 case IB_CM_DREQ_RECEIVED:
2813 srpt_cm_dreq_recv(cm_id);
2814 break;
2815 case IB_CM_DREP_RECEIVED:
2816 srpt_cm_drep_recv(cm_id);
2817 break;
2818 case IB_CM_TIMEWAIT_EXIT:
2819 srpt_cm_timewait_exit(cm_id);
2820 break;
2821 case IB_CM_REP_ERROR:
2822 srpt_cm_rep_error(cm_id);
2823 break;
2824 case IB_CM_DREQ_ERROR:
2825 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2826 break;
2827 case IB_CM_MRA_RECEIVED:
2828 printk(KERN_INFO "Received IB MRA event\n");
2829 break;
2830 default:
2831 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2832 event->event);
2833 break;
2834 }
2835
2836 return ret;
2837}
2838
2839/**
2840 * srpt_perform_rdmas() - Perform IB RDMA.
2841 *
2842 * Returns zero upon success or a negative number upon failure.
2843 */
2844static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2845 struct srpt_send_ioctx *ioctx)
2846{
2847 struct ib_send_wr wr;
2848 struct ib_send_wr *bad_wr;
2849 struct rdma_iu *riu;
2850 int i;
2851 int ret;
2852 int sq_wr_avail;
2853 enum dma_data_direction dir;
2854 const int n_rdma = ioctx->n_rdma;
2855
2856 dir = ioctx->cmd.data_direction;
2857 if (dir == DMA_TO_DEVICE) {
2858 /* write */
2859 ret = -ENOMEM;
2860 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2861 if (sq_wr_avail < 0) {
2862 printk(KERN_WARNING "IB send queue full (needed %d)\n",
2863 n_rdma);
2864 goto out;
2865 }
2866 }
2867
2868 ioctx->rdma_aborted = false;
2869 ret = 0;
2870 riu = ioctx->rdma_ius;
2871 memset(&wr, 0, sizeof wr);
2872
2873 for (i = 0; i < n_rdma; ++i, ++riu) {
2874 if (dir == DMA_FROM_DEVICE) {
2875 wr.opcode = IB_WR_RDMA_WRITE;
2876 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2877 SRPT_RDMA_WRITE_LAST :
2878 SRPT_RDMA_MID,
2879 ioctx->ioctx.index);
2880 } else {
2881 wr.opcode = IB_WR_RDMA_READ;
2882 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2883 SRPT_RDMA_READ_LAST :
2884 SRPT_RDMA_MID,
2885 ioctx->ioctx.index);
2886 }
2887 wr.next = NULL;
2888 wr.wr.rdma.remote_addr = riu->raddr;
2889 wr.wr.rdma.rkey = riu->rkey;
2890 wr.num_sge = riu->sge_cnt;
2891 wr.sg_list = riu->sge;
2892
2893 /* only get completion event for the last rdma write */
2894 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2895 wr.send_flags = IB_SEND_SIGNALED;
2896
2897 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2898 if (ret)
2899 break;
2900 }
2901
2902 if (ret)
2903 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2904 __func__, __LINE__, ret, i, n_rdma);
2905 if (ret && i > 0) {
2906 wr.num_sge = 0;
2907 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2908 wr.send_flags = IB_SEND_SIGNALED;
2909 while (ch->state == CH_LIVE &&
2910 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2911 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2912 ioctx->ioctx.index);
2913 msleep(1000);
2914 }
2915 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2916 printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2917 ioctx->ioctx.index);
2918 msleep(1000);
2919 }
2920 }
2921out:
2922 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2923 atomic_add(n_rdma, &ch->sq_wr_avail);
2924 return ret;
2925}
2926
2927/**
2928 * srpt_xfer_data() - Start data transfer from initiator to target.
2929 */
2930static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2931 struct srpt_send_ioctx *ioctx)
2932{
2933 int ret;
2934
2935 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2936 if (ret) {
2937 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2938 goto out;
2939 }
2940
2941 ret = srpt_perform_rdmas(ch, ioctx);
2942 if (ret) {
2943 if (ret == -EAGAIN || ret == -ENOMEM)
2944 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2945 __func__, __LINE__, ret);
2946 else
2947 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2948 __func__, __LINE__, ret);
2949 goto out_unmap;
2950 }
2951
2952out:
2953 return ret;
2954out_unmap:
2955 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2956 goto out;
2957}
2958
2959static int srpt_write_pending_status(struct se_cmd *se_cmd)
2960{
2961 struct srpt_send_ioctx *ioctx;
2962
2963 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2964 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2965}
2966
2967/*
2968 * srpt_write_pending() - Start data transfer from initiator to target (write).
2969 */
2970static int srpt_write_pending(struct se_cmd *se_cmd)
2971{
2972 struct srpt_rdma_ch *ch;
2973 struct srpt_send_ioctx *ioctx;
2974 enum srpt_command_state new_state;
2975 enum rdma_ch_state ch_state;
2976 int ret;
2977
2978 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2979
2980 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2981 WARN_ON(new_state == SRPT_STATE_DONE);
2982
2983 ch = ioctx->ch;
2984 BUG_ON(!ch);
2985
2986 ch_state = srpt_get_ch_state(ch);
2987 switch (ch_state) {
2988 case CH_CONNECTING:
2989 WARN(true, "unexpected channel state %d\n", ch_state);
2990 ret = -EINVAL;
2991 goto out;
2992 case CH_LIVE:
2993 break;
2994 case CH_DISCONNECTING:
2995 case CH_DRAINING:
2996 case CH_RELEASING:
2997 pr_debug("cmd with tag %lld: channel disconnecting\n",
2998 ioctx->tag);
2999 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
3000 ret = -EINVAL;
3001 goto out;
3002 }
3003 ret = srpt_xfer_data(ch, ioctx);
3004
3005out:
3006 return ret;
3007}
3008
3009static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
3010{
3011 switch (tcm_mgmt_status) {
3012 case TMR_FUNCTION_COMPLETE:
3013 return SRP_TSK_MGMT_SUCCESS;
3014 case TMR_FUNCTION_REJECTED:
3015 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3016 }
3017 return SRP_TSK_MGMT_FAILED;
3018}
3019
3020/**
3021 * srpt_queue_response() - Transmits the response to a SCSI command.
3022 *
3023 * Callback function called by the TCM core. Must not block since it can be
3024 * invoked on the context of the IB completion handler.
3025 */
3026static int srpt_queue_response(struct se_cmd *cmd)
3027{
3028 struct srpt_rdma_ch *ch;
3029 struct srpt_send_ioctx *ioctx;
3030 enum srpt_command_state state;
3031 unsigned long flags;
3032 int ret;
3033 enum dma_data_direction dir;
3034 int resp_len;
3035 u8 srp_tm_status;
3036
3037 ret = 0;
3038
3039 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3040 ch = ioctx->ch;
3041 BUG_ON(!ch);
3042
3043 spin_lock_irqsave(&ioctx->spinlock, flags);
3044 state = ioctx->state;
3045 switch (state) {
3046 case SRPT_STATE_NEW:
3047 case SRPT_STATE_DATA_IN:
3048 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3049 break;
3050 case SRPT_STATE_MGMT:
3051 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3052 break;
3053 default:
3054 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3055 ch, ioctx->ioctx.index, ioctx->state);
3056 break;
3057 }
3058 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3059
3060 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3061 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3062 atomic_inc(&ch->req_lim_delta);
3063 srpt_abort_cmd(ioctx);
3064 goto out;
3065 }
3066
3067 dir = ioctx->cmd.data_direction;
3068
3069 /* For read commands, transfer the data to the initiator. */
3070 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3071 !ioctx->queue_status_only) {
3072 ret = srpt_xfer_data(ch, ioctx);
3073 if (ret) {
3074 printk(KERN_ERR "xfer_data failed for tag %llu\n",
3075 ioctx->tag);
3076 goto out;
3077 }
3078 }
3079
3080 if (state != SRPT_STATE_MGMT)
3081 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3082 cmd->scsi_status);
3083 else {
3084 srp_tm_status
3085 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3086 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3087 ioctx->tag);
3088 }
3089 ret = srpt_post_send(ch, ioctx, resp_len);
3090 if (ret) {
3091 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3092 ioctx->tag);
3093 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3094 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3095 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
3096 }
3097
3098out:
3099 return ret;
3100}
3101
3102static int srpt_queue_status(struct se_cmd *cmd)
3103{
3104 struct srpt_send_ioctx *ioctx;
3105
3106 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3107 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3108 if (cmd->se_cmd_flags &
3109 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3110 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3111 ioctx->queue_status_only = true;
3112 return srpt_queue_response(cmd);
3113}
3114
3115static void srpt_refresh_port_work(struct work_struct *work)
3116{
3117 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3118
3119 srpt_refresh_port(sport);
3120}
3121
3122static int srpt_ch_list_empty(struct srpt_device *sdev)
3123{
3124 int res;
3125
3126 spin_lock_irq(&sdev->spinlock);
3127 res = list_empty(&sdev->rch_list);
3128 spin_unlock_irq(&sdev->spinlock);
3129
3130 return res;
3131}
3132
3133/**
3134 * srpt_release_sdev() - Free the channel resources associated with a target.
3135 */
3136static int srpt_release_sdev(struct srpt_device *sdev)
3137{
3138 struct srpt_rdma_ch *ch, *tmp_ch;
3139 int res;
3140
3141 WARN_ON_ONCE(irqs_disabled());
3142
3143 BUG_ON(!sdev);
3144
3145 spin_lock_irq(&sdev->spinlock);
3146 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3147 __srpt_close_ch(ch);
3148 spin_unlock_irq(&sdev->spinlock);
3149
3150 res = wait_event_interruptible(sdev->ch_releaseQ,
3151 srpt_ch_list_empty(sdev));
3152 if (res)
3153 printk(KERN_ERR "%s: interrupted.\n", __func__);
3154
3155 return 0;
3156}
3157
3158static struct srpt_port *__srpt_lookup_port(const char *name)
3159{
3160 struct ib_device *dev;
3161 struct srpt_device *sdev;
3162 struct srpt_port *sport;
3163 int i;
3164
3165 list_for_each_entry(sdev, &srpt_dev_list, list) {
3166 dev = sdev->device;
3167 if (!dev)
3168 continue;
3169
3170 for (i = 0; i < dev->phys_port_cnt; i++) {
3171 sport = &sdev->port[i];
3172
3173 if (!strcmp(sport->port_guid, name))
3174 return sport;
3175 }
3176 }
3177
3178 return NULL;
3179}
3180
3181static struct srpt_port *srpt_lookup_port(const char *name)
3182{
3183 struct srpt_port *sport;
3184
3185 spin_lock(&srpt_dev_lock);
3186 sport = __srpt_lookup_port(name);
3187 spin_unlock(&srpt_dev_lock);
3188
3189 return sport;
3190}
3191
3192/**
3193 * srpt_add_one() - Infiniband device addition callback function.
3194 */
3195static void srpt_add_one(struct ib_device *device)
3196{
3197 struct srpt_device *sdev;
3198 struct srpt_port *sport;
3199 struct ib_srq_init_attr srq_attr;
3200 int i;
3201
3202 pr_debug("device = %p, device->dma_ops = %p\n", device,
3203 device->dma_ops);
3204
3205 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3206 if (!sdev)
3207 goto err;
3208
3209 sdev->device = device;
3210 INIT_LIST_HEAD(&sdev->rch_list);
3211 init_waitqueue_head(&sdev->ch_releaseQ);
3212 spin_lock_init(&sdev->spinlock);
3213
3214 if (ib_query_device(device, &sdev->dev_attr))
3215 goto free_dev;
3216
3217 sdev->pd = ib_alloc_pd(device);
3218 if (IS_ERR(sdev->pd))
3219 goto free_dev;
3220
3221 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3222 if (IS_ERR(sdev->mr))
3223 goto err_pd;
3224
3225 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3226
3227 srq_attr.event_handler = srpt_srq_event;
3228 srq_attr.srq_context = (void *)sdev;
3229 srq_attr.attr.max_wr = sdev->srq_size;
3230 srq_attr.attr.max_sge = 1;
3231 srq_attr.attr.srq_limit = 0;
Roland Dreier6f360332012-04-12 07:51:08 -07003232 srq_attr.srq_type = IB_SRQT_BASIC;
Bart Van Asschea42d9852011-10-14 01:30:46 +00003233
3234 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3235 if (IS_ERR(sdev->srq))
3236 goto err_mr;
3237
3238 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3239 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3240 device->name);
3241
3242 if (!srpt_service_guid)
3243 srpt_service_guid = be64_to_cpu(device->node_guid);
3244
3245 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3246 if (IS_ERR(sdev->cm_id))
3247 goto err_srq;
3248
3249 /* print out target login information */
3250 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3251 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3252 srpt_service_guid, srpt_service_guid);
3253
3254 /*
3255 * We do not have a consistent service_id (ie. also id_ext of target_id)
3256 * to identify this target. We currently use the guid of the first HCA
3257 * in the system as service_id; therefore, the target_id will change
3258 * if this HCA is gone bad and replaced by different HCA
3259 */
3260 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3261 goto err_cm;
3262
3263 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3264 srpt_event_handler);
3265 if (ib_register_event_handler(&sdev->event_handler))
3266 goto err_cm;
3267
3268 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3269 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3270 sizeof(*sdev->ioctx_ring[0]),
3271 srp_max_req_size, DMA_FROM_DEVICE);
3272 if (!sdev->ioctx_ring)
3273 goto err_event;
3274
3275 for (i = 0; i < sdev->srq_size; ++i)
3276 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3277
Roland Dreierf2250662012-02-02 12:55:58 -08003278 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
Bart Van Asschea42d9852011-10-14 01:30:46 +00003279
3280 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3281 sport = &sdev->port[i - 1];
3282 sport->sdev = sdev;
3283 sport->port = i;
3284 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3285 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3286 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3287 INIT_WORK(&sport->work, srpt_refresh_port_work);
3288 INIT_LIST_HEAD(&sport->port_acl_list);
3289 spin_lock_init(&sport->port_acl_lock);
3290
3291 if (srpt_refresh_port(sport)) {
3292 printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3293 srpt_sdev_name(sdev), i);
3294 goto err_ring;
3295 }
3296 snprintf(sport->port_guid, sizeof(sport->port_guid),
3297 "0x%016llx%016llx",
3298 be64_to_cpu(sport->gid.global.subnet_prefix),
3299 be64_to_cpu(sport->gid.global.interface_id));
3300 }
3301
3302 spin_lock(&srpt_dev_lock);
3303 list_add_tail(&sdev->list, &srpt_dev_list);
3304 spin_unlock(&srpt_dev_lock);
3305
3306out:
3307 ib_set_client_data(device, &srpt_client, sdev);
3308 pr_debug("added %s.\n", device->name);
3309 return;
3310
3311err_ring:
3312 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3313 sdev->srq_size, srp_max_req_size,
3314 DMA_FROM_DEVICE);
3315err_event:
3316 ib_unregister_event_handler(&sdev->event_handler);
3317err_cm:
3318 ib_destroy_cm_id(sdev->cm_id);
3319err_srq:
3320 ib_destroy_srq(sdev->srq);
3321err_mr:
3322 ib_dereg_mr(sdev->mr);
3323err_pd:
3324 ib_dealloc_pd(sdev->pd);
3325free_dev:
3326 kfree(sdev);
3327err:
3328 sdev = NULL;
3329 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3330 goto out;
3331}
3332
3333/**
3334 * srpt_remove_one() - InfiniBand device removal callback function.
3335 */
3336static void srpt_remove_one(struct ib_device *device)
3337{
3338 struct srpt_device *sdev;
3339 int i;
3340
3341 sdev = ib_get_client_data(device, &srpt_client);
3342 if (!sdev) {
3343 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3344 device->name);
3345 return;
3346 }
3347
3348 srpt_unregister_mad_agent(sdev);
3349
3350 ib_unregister_event_handler(&sdev->event_handler);
3351
3352 /* Cancel any work queued by the just unregistered IB event handler. */
3353 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3354 cancel_work_sync(&sdev->port[i].work);
3355
3356 ib_destroy_cm_id(sdev->cm_id);
3357
3358 /*
3359 * Unregistering a target must happen after destroying sdev->cm_id
3360 * such that no new SRP_LOGIN_REQ information units can arrive while
3361 * destroying the target.
3362 */
3363 spin_lock(&srpt_dev_lock);
3364 list_del(&sdev->list);
3365 spin_unlock(&srpt_dev_lock);
3366 srpt_release_sdev(sdev);
3367
3368 ib_destroy_srq(sdev->srq);
3369 ib_dereg_mr(sdev->mr);
3370 ib_dealloc_pd(sdev->pd);
3371
3372 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3373 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3374 sdev->ioctx_ring = NULL;
3375 kfree(sdev);
3376}
3377
3378static struct ib_client srpt_client = {
3379 .name = DRV_NAME,
3380 .add = srpt_add_one,
3381 .remove = srpt_remove_one
3382};
3383
3384static int srpt_check_true(struct se_portal_group *se_tpg)
3385{
3386 return 1;
3387}
3388
3389static int srpt_check_false(struct se_portal_group *se_tpg)
3390{
3391 return 0;
3392}
3393
3394static char *srpt_get_fabric_name(void)
3395{
3396 return "srpt";
3397}
3398
3399static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3400{
3401 return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3402}
3403
3404static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3405{
3406 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3407
3408 return sport->port_guid;
3409}
3410
3411static u16 srpt_get_tag(struct se_portal_group *tpg)
3412{
3413 return 1;
3414}
3415
3416static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3417{
3418 return 1;
3419}
3420
3421static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3422 struct se_node_acl *se_nacl,
3423 struct t10_pr_registration *pr_reg,
3424 int *format_code, unsigned char *buf)
3425{
3426 struct srpt_node_acl *nacl;
3427 struct spc_rdma_transport_id *tr_id;
3428
3429 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3430 tr_id = (void *)buf;
3431 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3432 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3433 return sizeof(*tr_id);
3434}
3435
3436static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3437 struct se_node_acl *se_nacl,
3438 struct t10_pr_registration *pr_reg,
3439 int *format_code)
3440{
3441 *format_code = 0;
3442 return sizeof(struct spc_rdma_transport_id);
3443}
3444
3445static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3446 const char *buf, u32 *out_tid_len,
3447 char **port_nexus_ptr)
3448{
3449 struct spc_rdma_transport_id *tr_id;
3450
3451 *port_nexus_ptr = NULL;
3452 *out_tid_len = sizeof(struct spc_rdma_transport_id);
3453 tr_id = (void *)buf;
3454 return (char *)tr_id->i_port_id;
3455}
3456
3457static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3458{
3459 struct srpt_node_acl *nacl;
3460
3461 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3462 if (!nacl) {
Masanari Iida7367d992012-02-09 23:37:43 +09003463 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
Bart Van Asschea42d9852011-10-14 01:30:46 +00003464 return NULL;
3465 }
3466
3467 return &nacl->nacl;
3468}
3469
3470static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3471 struct se_node_acl *se_nacl)
3472{
3473 struct srpt_node_acl *nacl;
3474
3475 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3476 kfree(nacl);
3477}
3478
3479static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3480{
3481 return 1;
3482}
3483
3484static void srpt_release_cmd(struct se_cmd *se_cmd)
3485{
3486}
3487
3488/**
3489 * srpt_shutdown_session() - Whether or not a session may be shut down.
3490 */
3491static int srpt_shutdown_session(struct se_session *se_sess)
3492{
3493 return true;
3494}
3495
3496/**
3497 * srpt_close_session() - Forcibly close a session.
3498 *
3499 * Callback function invoked by the TCM core to clean up sessions associated
3500 * with a node ACL when the user invokes
3501 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3502 */
3503static void srpt_close_session(struct se_session *se_sess)
3504{
3505 DECLARE_COMPLETION_ONSTACK(release_done);
3506 struct srpt_rdma_ch *ch;
3507 struct srpt_device *sdev;
3508 int res;
3509
3510 ch = se_sess->fabric_sess_ptr;
3511 WARN_ON(ch->sess != se_sess);
3512
3513 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3514
3515 sdev = ch->sport->sdev;
3516 spin_lock_irq(&sdev->spinlock);
3517 BUG_ON(ch->release_done);
3518 ch->release_done = &release_done;
3519 __srpt_close_ch(ch);
3520 spin_unlock_irq(&sdev->spinlock);
3521
3522 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3523 WARN_ON(res <= 0);
3524}
3525
3526/**
Bart Van Asschea42d9852011-10-14 01:30:46 +00003527 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3528 *
3529 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3530 * This object represents an arbitrary integer used to uniquely identify a
3531 * particular attached remote initiator port to a particular SCSI target port
3532 * within a particular SCSI target device within a particular SCSI instance.
3533 */
3534static u32 srpt_sess_get_index(struct se_session *se_sess)
3535{
3536 return 0;
3537}
3538
3539static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3540{
3541}
3542
3543static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3544{
3545 struct srpt_send_ioctx *ioctx;
3546
3547 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3548 return ioctx->tag;
3549}
3550
3551/* Note: only used from inside debug printk's by the TCM core. */
3552static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3553{
3554 struct srpt_send_ioctx *ioctx;
3555
3556 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3557 return srpt_get_cmd_state(ioctx);
3558}
3559
Bart Van Asschea42d9852011-10-14 01:30:46 +00003560/**
3561 * srpt_parse_i_port_id() - Parse an initiator port ID.
3562 * @name: ASCII representation of a 128-bit initiator port ID.
3563 * @i_port_id: Binary 128-bit port ID.
3564 */
3565static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3566{
3567 const char *p;
3568 unsigned len, count, leading_zero_bytes;
3569 int ret, rc;
3570
3571 p = name;
3572 if (strnicmp(p, "0x", 2) == 0)
3573 p += 2;
3574 ret = -EINVAL;
3575 len = strlen(p);
3576 if (len % 2)
3577 goto out;
3578 count = min(len / 2, 16U);
3579 leading_zero_bytes = 16 - count;
3580 memset(i_port_id, 0, leading_zero_bytes);
3581 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3582 if (rc < 0)
3583 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3584 ret = 0;
3585out:
3586 return ret;
3587}
3588
3589/*
3590 * configfs callback function invoked for
3591 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3592 */
3593static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3594 struct config_group *group,
3595 const char *name)
3596{
3597 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3598 struct se_node_acl *se_nacl, *se_nacl_new;
3599 struct srpt_node_acl *nacl;
3600 int ret = 0;
3601 u32 nexus_depth = 1;
3602 u8 i_port_id[16];
3603
3604 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3605 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3606 ret = -EINVAL;
3607 goto err;
3608 }
3609
3610 se_nacl_new = srpt_alloc_fabric_acl(tpg);
3611 if (!se_nacl_new) {
3612 ret = -ENOMEM;
3613 goto err;
3614 }
3615 /*
3616 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3617 * when converting a node ACL from demo mode to explict
3618 */
3619 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3620 nexus_depth);
3621 if (IS_ERR(se_nacl)) {
3622 ret = PTR_ERR(se_nacl);
3623 goto err;
3624 }
3625 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3626 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3627 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3628 nacl->sport = sport;
3629
3630 spin_lock_irq(&sport->port_acl_lock);
3631 list_add_tail(&nacl->list, &sport->port_acl_list);
3632 spin_unlock_irq(&sport->port_acl_lock);
3633
3634 return se_nacl;
3635err:
3636 return ERR_PTR(ret);
3637}
3638
3639/*
3640 * configfs callback function invoked for
3641 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3642 */
3643static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3644{
3645 struct srpt_node_acl *nacl;
3646 struct srpt_device *sdev;
3647 struct srpt_port *sport;
3648
3649 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3650 sport = nacl->sport;
3651 sdev = sport->sdev;
3652 spin_lock_irq(&sport->port_acl_lock);
3653 list_del(&nacl->list);
3654 spin_unlock_irq(&sport->port_acl_lock);
3655 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3656 srpt_release_fabric_acl(NULL, se_nacl);
3657}
3658
3659static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3660 struct se_portal_group *se_tpg,
3661 char *page)
3662{
3663 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3664
3665 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3666}
3667
3668static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3669 struct se_portal_group *se_tpg,
3670 const char *page,
3671 size_t count)
3672{
3673 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3674 unsigned long val;
3675 int ret;
3676
3677 ret = strict_strtoul(page, 0, &val);
3678 if (ret < 0) {
3679 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3680 return -EINVAL;
3681 }
3682 if (val > MAX_SRPT_RDMA_SIZE) {
3683 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3684 MAX_SRPT_RDMA_SIZE);
3685 return -EINVAL;
3686 }
3687 if (val < DEFAULT_MAX_RDMA_SIZE) {
3688 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3689 val, DEFAULT_MAX_RDMA_SIZE);
3690 return -EINVAL;
3691 }
3692 sport->port_attrib.srp_max_rdma_size = val;
3693
3694 return count;
3695}
3696
3697TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3698
3699static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3700 struct se_portal_group *se_tpg,
3701 char *page)
3702{
3703 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3704
3705 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3706}
3707
3708static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3709 struct se_portal_group *se_tpg,
3710 const char *page,
3711 size_t count)
3712{
3713 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3714 unsigned long val;
3715 int ret;
3716
3717 ret = strict_strtoul(page, 0, &val);
3718 if (ret < 0) {
3719 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3720 return -EINVAL;
3721 }
3722 if (val > MAX_SRPT_RSP_SIZE) {
3723 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3724 MAX_SRPT_RSP_SIZE);
3725 return -EINVAL;
3726 }
3727 if (val < MIN_MAX_RSP_SIZE) {
3728 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3729 MIN_MAX_RSP_SIZE);
3730 return -EINVAL;
3731 }
3732 sport->port_attrib.srp_max_rsp_size = val;
3733
3734 return count;
3735}
3736
3737TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3738
3739static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3740 struct se_portal_group *se_tpg,
3741 char *page)
3742{
3743 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3744
3745 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3746}
3747
3748static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3749 struct se_portal_group *se_tpg,
3750 const char *page,
3751 size_t count)
3752{
3753 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3754 unsigned long val;
3755 int ret;
3756
3757 ret = strict_strtoul(page, 0, &val);
3758 if (ret < 0) {
3759 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3760 return -EINVAL;
3761 }
3762 if (val > MAX_SRPT_SRQ_SIZE) {
3763 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3764 MAX_SRPT_SRQ_SIZE);
3765 return -EINVAL;
3766 }
3767 if (val < MIN_SRPT_SRQ_SIZE) {
3768 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3769 MIN_SRPT_SRQ_SIZE);
3770 return -EINVAL;
3771 }
3772 sport->port_attrib.srp_sq_size = val;
3773
3774 return count;
3775}
3776
3777TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3778
3779static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3780 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3781 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3782 &srpt_tpg_attrib_srp_sq_size.attr,
3783 NULL,
3784};
3785
3786static ssize_t srpt_tpg_show_enable(
3787 struct se_portal_group *se_tpg,
3788 char *page)
3789{
3790 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3791
3792 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3793}
3794
3795static ssize_t srpt_tpg_store_enable(
3796 struct se_portal_group *se_tpg,
3797 const char *page,
3798 size_t count)
3799{
3800 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3801 unsigned long tmp;
3802 int ret;
3803
3804 ret = strict_strtoul(page, 0, &tmp);
3805 if (ret < 0) {
3806 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3807 return -EINVAL;
3808 }
3809
3810 if ((tmp != 0) && (tmp != 1)) {
3811 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3812 return -EINVAL;
3813 }
3814 if (tmp == 1)
3815 sport->enabled = true;
3816 else
3817 sport->enabled = false;
3818
3819 return count;
3820}
3821
3822TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3823
3824static struct configfs_attribute *srpt_tpg_attrs[] = {
3825 &srpt_tpg_enable.attr,
3826 NULL,
3827};
3828
3829/**
3830 * configfs callback invoked for
3831 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3832 */
3833static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3834 struct config_group *group,
3835 const char *name)
3836{
3837 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3838 int res;
3839
3840 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3841 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3842 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3843 if (res)
3844 return ERR_PTR(res);
3845
3846 return &sport->port_tpg_1;
3847}
3848
3849/**
3850 * configfs callback invoked for
3851 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3852 */
3853static void srpt_drop_tpg(struct se_portal_group *tpg)
3854{
3855 struct srpt_port *sport = container_of(tpg,
3856 struct srpt_port, port_tpg_1);
3857
3858 sport->enabled = false;
3859 core_tpg_deregister(&sport->port_tpg_1);
3860}
3861
3862/**
3863 * configfs callback invoked for
3864 * mkdir /sys/kernel/config/target/$driver/$port
3865 */
3866static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3867 struct config_group *group,
3868 const char *name)
3869{
3870 struct srpt_port *sport;
3871 int ret;
3872
3873 sport = srpt_lookup_port(name);
3874 pr_debug("make_tport(%s)\n", name);
3875 ret = -EINVAL;
3876 if (!sport)
3877 goto err;
3878
3879 return &sport->port_wwn;
3880
3881err:
3882 return ERR_PTR(ret);
3883}
3884
3885/**
3886 * configfs callback invoked for
3887 * rmdir /sys/kernel/config/target/$driver/$port
3888 */
3889static void srpt_drop_tport(struct se_wwn *wwn)
3890{
3891 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3892
3893 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3894}
3895
3896static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3897 char *buf)
3898{
3899 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3900}
3901
3902TF_WWN_ATTR_RO(srpt, version);
3903
3904static struct configfs_attribute *srpt_wwn_attrs[] = {
3905 &srpt_wwn_version.attr,
3906 NULL,
3907};
3908
3909static struct target_core_fabric_ops srpt_template = {
3910 .get_fabric_name = srpt_get_fabric_name,
3911 .get_fabric_proto_ident = srpt_get_fabric_proto_ident,
3912 .tpg_get_wwn = srpt_get_fabric_wwn,
3913 .tpg_get_tag = srpt_get_tag,
3914 .tpg_get_default_depth = srpt_get_default_depth,
3915 .tpg_get_pr_transport_id = srpt_get_pr_transport_id,
3916 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
3917 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
3918 .tpg_check_demo_mode = srpt_check_false,
3919 .tpg_check_demo_mode_cache = srpt_check_true,
3920 .tpg_check_demo_mode_write_protect = srpt_check_true,
3921 .tpg_check_prod_mode_write_protect = srpt_check_false,
3922 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
3923 .tpg_release_fabric_acl = srpt_release_fabric_acl,
3924 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3925 .release_cmd = srpt_release_cmd,
3926 .check_stop_free = srpt_check_stop_free,
3927 .shutdown_session = srpt_shutdown_session,
3928 .close_session = srpt_close_session,
Bart Van Asschea42d9852011-10-14 01:30:46 +00003929 .sess_get_index = srpt_sess_get_index,
3930 .sess_get_initiator_sid = NULL,
3931 .write_pending = srpt_write_pending,
3932 .write_pending_status = srpt_write_pending_status,
3933 .set_default_node_attributes = srpt_set_default_node_attrs,
3934 .get_task_tag = srpt_get_task_tag,
3935 .get_cmd_state = srpt_get_tcm_cmd_state,
3936 .queue_data_in = srpt_queue_response,
3937 .queue_status = srpt_queue_status,
3938 .queue_tm_rsp = srpt_queue_response,
Bart Van Asschea42d9852011-10-14 01:30:46 +00003939 /*
3940 * Setup function pointers for generic logic in
3941 * target_core_fabric_configfs.c
3942 */
3943 .fabric_make_wwn = srpt_make_tport,
3944 .fabric_drop_wwn = srpt_drop_tport,
3945 .fabric_make_tpg = srpt_make_tpg,
3946 .fabric_drop_tpg = srpt_drop_tpg,
3947 .fabric_post_link = NULL,
3948 .fabric_pre_unlink = NULL,
3949 .fabric_make_np = NULL,
3950 .fabric_drop_np = NULL,
3951 .fabric_make_nodeacl = srpt_make_nodeacl,
3952 .fabric_drop_nodeacl = srpt_drop_nodeacl,
3953};
3954
3955/**
3956 * srpt_init_module() - Kernel module initialization.
3957 *
3958 * Note: Since ib_register_client() registers callback functions, and since at
3959 * least one of these callback functions (srpt_add_one()) calls target core
3960 * functions, this driver must be registered with the target core before
3961 * ib_register_client() is called.
3962 */
3963static int __init srpt_init_module(void)
3964{
3965 int ret;
3966
3967 ret = -EINVAL;
3968 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3969 printk(KERN_ERR "invalid value %d for kernel module parameter"
3970 " srp_max_req_size -- must be at least %d.\n",
3971 srp_max_req_size, MIN_MAX_REQ_SIZE);
3972 goto out;
3973 }
3974
3975 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3976 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3977 printk(KERN_ERR "invalid value %d for kernel module parameter"
3978 " srpt_srq_size -- must be in the range [%d..%d].\n",
3979 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3980 goto out;
3981 }
3982
Bart Van Asschea42d9852011-10-14 01:30:46 +00003983 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
Dan Carpenter3af33632011-11-04 21:27:32 +03003984 if (IS_ERR(srpt_target)) {
Bart Van Asschea42d9852011-10-14 01:30:46 +00003985 printk(KERN_ERR "couldn't register\n");
Dan Carpenter3af33632011-11-04 21:27:32 +03003986 ret = PTR_ERR(srpt_target);
Bart Van Asschea42d9852011-10-14 01:30:46 +00003987 goto out;
3988 }
3989
3990 srpt_target->tf_ops = srpt_template;
3991
Bart Van Asschea42d9852011-10-14 01:30:46 +00003992 /*
3993 * Set up default attribute lists.
3994 */
3995 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
3996 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
3997 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
3998 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
3999 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4000 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4001 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4002 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4003 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4004
4005 ret = target_fabric_configfs_register(srpt_target);
4006 if (ret < 0) {
4007 printk(KERN_ERR "couldn't register\n");
4008 goto out_free_target;
4009 }
4010
4011 ret = ib_register_client(&srpt_client);
4012 if (ret) {
4013 printk(KERN_ERR "couldn't register IB client\n");
4014 goto out_unregister_target;
4015 }
4016
4017 return 0;
4018
4019out_unregister_target:
4020 target_fabric_configfs_deregister(srpt_target);
4021 srpt_target = NULL;
4022out_free_target:
4023 if (srpt_target)
4024 target_fabric_configfs_free(srpt_target);
4025out:
4026 return ret;
4027}
4028
4029static void __exit srpt_cleanup_module(void)
4030{
4031 ib_unregister_client(&srpt_client);
4032 target_fabric_configfs_deregister(srpt_target);
4033 srpt_target = NULL;
4034}
4035
4036module_init(srpt_init_module);
4037module_exit(srpt_cleanup_module);