blob: f97a58d6aae1bbbacdb29ca86ac30c1f21d19e48 [file] [log] [blame]
Boris BREZILLON1fef62c2014-10-21 15:08:41 +02001/*
2 * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
3 *
4 * Derived from:
5 * https://github.com/yuq/sunxi-nfc-mtd
6 * Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
7 *
8 * https://github.com/hno/Allwinner-Info
9 * Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
10 *
11 * Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
12 * Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#include <linux/dma-mapping.h>
26#include <linux/slab.h>
27#include <linux/module.h>
28#include <linux/moduleparam.h>
29#include <linux/platform_device.h>
30#include <linux/of.h>
31#include <linux/of_device.h>
32#include <linux/of_gpio.h>
33#include <linux/of_mtd.h>
34#include <linux/mtd/mtd.h>
35#include <linux/mtd/nand.h>
36#include <linux/mtd/partitions.h>
37#include <linux/clk.h>
38#include <linux/delay.h>
39#include <linux/dmaengine.h>
40#include <linux/gpio.h>
41#include <linux/interrupt.h>
42#include <linux/io.h>
43
44#define NFC_REG_CTL 0x0000
45#define NFC_REG_ST 0x0004
46#define NFC_REG_INT 0x0008
47#define NFC_REG_TIMING_CTL 0x000C
48#define NFC_REG_TIMING_CFG 0x0010
49#define NFC_REG_ADDR_LOW 0x0014
50#define NFC_REG_ADDR_HIGH 0x0018
51#define NFC_REG_SECTOR_NUM 0x001C
52#define NFC_REG_CNT 0x0020
53#define NFC_REG_CMD 0x0024
54#define NFC_REG_RCMD_SET 0x0028
55#define NFC_REG_WCMD_SET 0x002C
56#define NFC_REG_IO_DATA 0x0030
57#define NFC_REG_ECC_CTL 0x0034
58#define NFC_REG_ECC_ST 0x0038
59#define NFC_REG_DEBUG 0x003C
60#define NFC_REG_ECC_CNT0 0x0040
61#define NFC_REG_ECC_CNT1 0x0044
62#define NFC_REG_ECC_CNT2 0x0048
63#define NFC_REG_ECC_CNT3 0x004c
64#define NFC_REG_USER_DATA_BASE 0x0050
65#define NFC_REG_SPARE_AREA 0x00A0
66#define NFC_RAM0_BASE 0x0400
67#define NFC_RAM1_BASE 0x0800
68
69/* define bit use in NFC_CTL */
70#define NFC_EN BIT(0)
71#define NFC_RESET BIT(1)
72#define NFC_BUS_WIDYH BIT(2)
73#define NFC_RB_SEL BIT(3)
74#define NFC_CE_SEL GENMASK(26, 24)
75#define NFC_CE_CTL BIT(6)
76#define NFC_CE_CTL1 BIT(7)
77#define NFC_PAGE_SIZE GENMASK(11, 8)
78#define NFC_SAM BIT(12)
79#define NFC_RAM_METHOD BIT(14)
80#define NFC_DEBUG_CTL BIT(31)
81
82/* define bit use in NFC_ST */
83#define NFC_RB_B2R BIT(0)
84#define NFC_CMD_INT_FLAG BIT(1)
85#define NFC_DMA_INT_FLAG BIT(2)
86#define NFC_CMD_FIFO_STATUS BIT(3)
87#define NFC_STA BIT(4)
88#define NFC_NATCH_INT_FLAG BIT(5)
89#define NFC_RB_STATE0 BIT(8)
90#define NFC_RB_STATE1 BIT(9)
91#define NFC_RB_STATE2 BIT(10)
92#define NFC_RB_STATE3 BIT(11)
93
94/* define bit use in NFC_INT */
95#define NFC_B2R_INT_ENABLE BIT(0)
96#define NFC_CMD_INT_ENABLE BIT(1)
97#define NFC_DMA_INT_ENABLE BIT(2)
98#define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \
99 NFC_CMD_INT_ENABLE | \
100 NFC_DMA_INT_ENABLE)
101
Roy Splietd052e502015-06-26 11:00:11 +0200102/* define bit use in NFC_TIMING_CTL */
103#define NFC_TIMING_CTL_EDO BIT(8)
104
Roy Spliet9c618292015-06-26 11:00:10 +0200105/* define NFC_TIMING_CFG register layout */
106#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \
107 (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \
108 (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \
109 (((tCAD) & 0x7) << 8))
110
Boris BREZILLON1fef62c2014-10-21 15:08:41 +0200111/* define bit use in NFC_CMD */
112#define NFC_CMD_LOW_BYTE GENMASK(7, 0)
113#define NFC_CMD_HIGH_BYTE GENMASK(15, 8)
114#define NFC_ADR_NUM GENMASK(18, 16)
115#define NFC_SEND_ADR BIT(19)
116#define NFC_ACCESS_DIR BIT(20)
117#define NFC_DATA_TRANS BIT(21)
118#define NFC_SEND_CMD1 BIT(22)
119#define NFC_WAIT_FLAG BIT(23)
120#define NFC_SEND_CMD2 BIT(24)
121#define NFC_SEQ BIT(25)
122#define NFC_DATA_SWAP_METHOD BIT(26)
123#define NFC_ROW_AUTO_INC BIT(27)
124#define NFC_SEND_CMD3 BIT(28)
125#define NFC_SEND_CMD4 BIT(29)
126#define NFC_CMD_TYPE GENMASK(31, 30)
127
128/* define bit use in NFC_RCMD_SET */
129#define NFC_READ_CMD GENMASK(7, 0)
130#define NFC_RANDOM_READ_CMD0 GENMASK(15, 8)
131#define NFC_RANDOM_READ_CMD1 GENMASK(23, 16)
132
133/* define bit use in NFC_WCMD_SET */
134#define NFC_PROGRAM_CMD GENMASK(7, 0)
135#define NFC_RANDOM_WRITE_CMD GENMASK(15, 8)
136#define NFC_READ_CMD0 GENMASK(23, 16)
137#define NFC_READ_CMD1 GENMASK(31, 24)
138
139/* define bit use in NFC_ECC_CTL */
140#define NFC_ECC_EN BIT(0)
141#define NFC_ECC_PIPELINE BIT(3)
142#define NFC_ECC_EXCEPTION BIT(4)
143#define NFC_ECC_BLOCK_SIZE BIT(5)
144#define NFC_RANDOM_EN BIT(9)
145#define NFC_RANDOM_DIRECTION BIT(10)
146#define NFC_ECC_MODE_SHIFT 12
147#define NFC_ECC_MODE GENMASK(15, 12)
148#define NFC_RANDOM_SEED GENMASK(30, 16)
149
150#define NFC_DEFAULT_TIMEOUT_MS 1000
151
152#define NFC_SRAM_SIZE 1024
153
154#define NFC_MAX_CS 7
155
156/*
157 * Ready/Busy detection type: describes the Ready/Busy detection modes
158 *
159 * @RB_NONE: no external detection available, rely on STATUS command
160 * and software timeouts
161 * @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy
162 * pin of the NAND flash chip must be connected to one of the
163 * native NAND R/B pins (those which can be muxed to the NAND
164 * Controller)
165 * @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy
166 * pin of the NAND flash chip must be connected to a GPIO capable
167 * pin.
168 */
169enum sunxi_nand_rb_type {
170 RB_NONE,
171 RB_NATIVE,
172 RB_GPIO,
173};
174
175/*
176 * Ready/Busy structure: stores information related to Ready/Busy detection
177 *
178 * @type: the Ready/Busy detection mode
179 * @info: information related to the R/B detection mode. Either a gpio
180 * id or a native R/B id (those supported by the NAND controller).
181 */
182struct sunxi_nand_rb {
183 enum sunxi_nand_rb_type type;
184 union {
185 int gpio;
186 int nativeid;
187 } info;
188};
189
190/*
191 * Chip Select structure: stores information related to NAND Chip Select
192 *
193 * @cs: the NAND CS id used to communicate with a NAND Chip
194 * @rb: the Ready/Busy description
195 */
196struct sunxi_nand_chip_sel {
197 u8 cs;
198 struct sunxi_nand_rb rb;
199};
200
201/*
202 * sunxi HW ECC infos: stores information related to HW ECC support
203 *
204 * @mode: the sunxi ECC mode field deduced from ECC requirements
205 * @layout: the OOB layout depending on the ECC requirements and the
206 * selected ECC mode
207 */
208struct sunxi_nand_hw_ecc {
209 int mode;
210 struct nand_ecclayout layout;
211};
212
213/*
214 * NAND chip structure: stores NAND chip device related information
215 *
216 * @node: used to store NAND chips into a list
217 * @nand: base NAND chip structure
218 * @mtd: base MTD structure
219 * @clk_rate: clk_rate required for this NAND chip
Roy Spliet9c618292015-06-26 11:00:10 +0200220 * @timing_cfg TIMING_CFG register value for this NAND chip
Boris BREZILLON1fef62c2014-10-21 15:08:41 +0200221 * @selected: current active CS
222 * @nsels: number of CS lines required by the NAND chip
223 * @sels: array of CS lines descriptions
224 */
225struct sunxi_nand_chip {
226 struct list_head node;
227 struct nand_chip nand;
228 struct mtd_info mtd;
229 unsigned long clk_rate;
Roy Spliet9c618292015-06-26 11:00:10 +0200230 u32 timing_cfg;
Roy Splietd052e502015-06-26 11:00:11 +0200231 u32 timing_ctl;
Boris BREZILLON1fef62c2014-10-21 15:08:41 +0200232 int selected;
233 int nsels;
234 struct sunxi_nand_chip_sel sels[0];
235};
236
237static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
238{
239 return container_of(nand, struct sunxi_nand_chip, nand);
240}
241
242/*
243 * NAND Controller structure: stores sunxi NAND controller information
244 *
245 * @controller: base controller structure
246 * @dev: parent device (used to print error messages)
247 * @regs: NAND controller registers
248 * @ahb_clk: NAND Controller AHB clock
249 * @mod_clk: NAND Controller mod clock
250 * @assigned_cs: bitmask describing already assigned CS lines
251 * @clk_rate: NAND controller current clock rate
252 * @chips: a list containing all the NAND chips attached to
253 * this NAND controller
254 * @complete: a completion object used to wait for NAND
255 * controller events
256 */
257struct sunxi_nfc {
258 struct nand_hw_control controller;
259 struct device *dev;
260 void __iomem *regs;
261 struct clk *ahb_clk;
262 struct clk *mod_clk;
263 unsigned long assigned_cs;
264 unsigned long clk_rate;
265 struct list_head chips;
266 struct completion complete;
267};
268
269static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
270{
271 return container_of(ctrl, struct sunxi_nfc, controller);
272}
273
274static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
275{
276 struct sunxi_nfc *nfc = dev_id;
277 u32 st = readl(nfc->regs + NFC_REG_ST);
278 u32 ien = readl(nfc->regs + NFC_REG_INT);
279
280 if (!(ien & st))
281 return IRQ_NONE;
282
283 if ((ien & st) == ien)
284 complete(&nfc->complete);
285
286 writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
287 writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
288
289 return IRQ_HANDLED;
290}
291
292static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
293 unsigned int timeout_ms)
294{
295 init_completion(&nfc->complete);
296
297 writel(flags, nfc->regs + NFC_REG_INT);
298
299 if (!timeout_ms)
300 timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
301
302 if (!wait_for_completion_timeout(&nfc->complete,
303 msecs_to_jiffies(timeout_ms))) {
304 dev_err(nfc->dev, "wait interrupt timedout\n");
305 return -ETIMEDOUT;
306 }
307
308 return 0;
309}
310
311static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
312{
313 unsigned long timeout = jiffies +
314 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
315
316 do {
317 if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
318 return 0;
319 } while (time_before(jiffies, timeout));
320
321 dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
322 return -ETIMEDOUT;
323}
324
325static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
326{
327 unsigned long timeout = jiffies +
328 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
329
330 writel(0, nfc->regs + NFC_REG_ECC_CTL);
331 writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
332
333 do {
334 if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
335 return 0;
336 } while (time_before(jiffies, timeout));
337
338 dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
339 return -ETIMEDOUT;
340}
341
342static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
343{
344 struct nand_chip *nand = mtd->priv;
345 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
346 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
347 struct sunxi_nand_rb *rb;
348 unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
349 int ret;
350
351 if (sunxi_nand->selected < 0)
352 return 0;
353
354 rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
355
356 switch (rb->type) {
357 case RB_NATIVE:
358 ret = !!(readl(nfc->regs + NFC_REG_ST) &
359 (NFC_RB_STATE0 << rb->info.nativeid));
360 if (ret)
361 break;
362
363 sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
364 ret = !!(readl(nfc->regs + NFC_REG_ST) &
365 (NFC_RB_STATE0 << rb->info.nativeid));
366 break;
367 case RB_GPIO:
368 ret = gpio_get_value(rb->info.gpio);
369 break;
370 case RB_NONE:
371 default:
372 ret = 0;
373 dev_err(nfc->dev, "cannot check R/B NAND status!\n");
374 break;
375 }
376
377 return ret;
378}
379
380static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
381{
382 struct nand_chip *nand = mtd->priv;
383 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
384 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
385 struct sunxi_nand_chip_sel *sel;
386 u32 ctl;
387
388 if (chip > 0 && chip >= sunxi_nand->nsels)
389 return;
390
391 if (chip == sunxi_nand->selected)
392 return;
393
394 ctl = readl(nfc->regs + NFC_REG_CTL) &
395 ~(NFC_CE_SEL | NFC_RB_SEL | NFC_EN);
396
397 if (chip >= 0) {
398 sel = &sunxi_nand->sels[chip];
399
400 ctl |= (sel->cs << 24) | NFC_EN |
401 (((nand->page_shift - 10) & 0xf) << 8);
402 if (sel->rb.type == RB_NONE) {
403 nand->dev_ready = NULL;
404 } else {
405 nand->dev_ready = sunxi_nfc_dev_ready;
406 if (sel->rb.type == RB_NATIVE)
407 ctl |= (sel->rb.info.nativeid << 3);
408 }
409
410 writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
411
412 if (nfc->clk_rate != sunxi_nand->clk_rate) {
413 clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
414 nfc->clk_rate = sunxi_nand->clk_rate;
415 }
416 }
417
Roy Splietd052e502015-06-26 11:00:11 +0200418 writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
Roy Spliet9c618292015-06-26 11:00:10 +0200419 writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
Boris BREZILLON1fef62c2014-10-21 15:08:41 +0200420 writel(ctl, nfc->regs + NFC_REG_CTL);
421
422 sunxi_nand->selected = chip;
423}
424
425static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
426{
427 struct nand_chip *nand = mtd->priv;
428 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
429 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
430 int ret;
431 int cnt;
432 int offs = 0;
433 u32 tmp;
434
435 while (len > offs) {
436 cnt = min(len - offs, NFC_SRAM_SIZE);
437
438 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
439 if (ret)
440 break;
441
442 writel(cnt, nfc->regs + NFC_REG_CNT);
443 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
444 writel(tmp, nfc->regs + NFC_REG_CMD);
445
446 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
447 if (ret)
448 break;
449
450 if (buf)
451 memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
452 cnt);
453 offs += cnt;
454 }
455}
456
457static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
458 int len)
459{
460 struct nand_chip *nand = mtd->priv;
461 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
462 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
463 int ret;
464 int cnt;
465 int offs = 0;
466 u32 tmp;
467
468 while (len > offs) {
469 cnt = min(len - offs, NFC_SRAM_SIZE);
470
471 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
472 if (ret)
473 break;
474
475 writel(cnt, nfc->regs + NFC_REG_CNT);
476 memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
477 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
478 NFC_ACCESS_DIR;
479 writel(tmp, nfc->regs + NFC_REG_CMD);
480
481 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
482 if (ret)
483 break;
484
485 offs += cnt;
486 }
487}
488
489static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
490{
491 uint8_t ret;
492
493 sunxi_nfc_read_buf(mtd, &ret, 1);
494
495 return ret;
496}
497
498static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
499 unsigned int ctrl)
500{
501 struct nand_chip *nand = mtd->priv;
502 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
503 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
504 int ret;
505 u32 tmp;
506
507 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
508 if (ret)
509 return;
510
511 if (ctrl & NAND_CTRL_CHANGE) {
512 tmp = readl(nfc->regs + NFC_REG_CTL);
513 if (ctrl & NAND_NCE)
514 tmp |= NFC_CE_CTL;
515 else
516 tmp &= ~NFC_CE_CTL;
517 writel(tmp, nfc->regs + NFC_REG_CTL);
518 }
519
520 if (dat == NAND_CMD_NONE)
521 return;
522
523 if (ctrl & NAND_CLE) {
524 writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
525 } else {
526 writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
527 writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
528 }
529
530 sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
531}
532
533static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
534 struct nand_chip *chip, uint8_t *buf,
535 int oob_required, int page)
536{
537 struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
538 struct nand_ecc_ctrl *ecc = &chip->ecc;
539 struct nand_ecclayout *layout = ecc->layout;
540 struct sunxi_nand_hw_ecc *data = ecc->priv;
541 unsigned int max_bitflips = 0;
542 int offset;
543 int ret;
544 u32 tmp;
545 int i;
546 int cnt;
547
548 tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
549 tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
550 tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
551 NFC_ECC_EXCEPTION;
552
553 writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
554
555 for (i = 0; i < ecc->steps; i++) {
556 if (i)
557 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i * ecc->size, -1);
558
559 offset = mtd->writesize + layout->eccpos[i * ecc->bytes] - 4;
560
561 chip->read_buf(mtd, NULL, ecc->size);
562
563 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
564
565 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
566 if (ret)
567 return ret;
568
569 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
570 writel(tmp, nfc->regs + NFC_REG_CMD);
571
572 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
573 if (ret)
574 return ret;
575
576 memcpy_fromio(buf + (i * ecc->size),
577 nfc->regs + NFC_RAM0_BASE, ecc->size);
578
579 if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
580 mtd->ecc_stats.failed++;
581 } else {
582 tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
583 mtd->ecc_stats.corrected += tmp;
584 max_bitflips = max_t(unsigned int, max_bitflips, tmp);
585 }
586
587 if (oob_required) {
588 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
589
590 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
591 if (ret)
592 return ret;
593
594 offset -= mtd->writesize;
595 chip->read_buf(mtd, chip->oob_poi + offset,
596 ecc->bytes + 4);
597 }
598 }
599
600 if (oob_required) {
601 cnt = ecc->layout->oobfree[ecc->steps].length;
602 if (cnt > 0) {
603 offset = mtd->writesize +
604 ecc->layout->oobfree[ecc->steps].offset;
605 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
606 offset -= mtd->writesize;
607 chip->read_buf(mtd, chip->oob_poi + offset, cnt);
608 }
609 }
610
611 tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
612 tmp &= ~NFC_ECC_EN;
613
614 writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
615
616 return max_bitflips;
617}
618
619static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
620 struct nand_chip *chip,
621 const uint8_t *buf, int oob_required)
622{
623 struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
624 struct nand_ecc_ctrl *ecc = &chip->ecc;
625 struct nand_ecclayout *layout = ecc->layout;
626 struct sunxi_nand_hw_ecc *data = ecc->priv;
627 int offset;
628 int ret;
629 u32 tmp;
630 int i;
631 int cnt;
632
633 tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
634 tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
635 tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
636 NFC_ECC_EXCEPTION;
637
638 writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
639
640 for (i = 0; i < ecc->steps; i++) {
641 if (i)
642 chip->cmdfunc(mtd, NAND_CMD_RNDIN, i * ecc->size, -1);
643
644 chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
645
646 offset = layout->eccpos[i * ecc->bytes] - 4 + mtd->writesize;
647
648 /* Fill OOB data in */
649 if (oob_required) {
650 tmp = 0xffffffff;
651 memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
652 4);
653 } else {
654 memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE,
655 chip->oob_poi + offset - mtd->writesize,
656 4);
657 }
658
659 chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
660
661 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
662 if (ret)
663 return ret;
664
665 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
666 (1 << 30);
667 writel(tmp, nfc->regs + NFC_REG_CMD);
668 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
669 if (ret)
670 return ret;
671 }
672
673 if (oob_required) {
674 cnt = ecc->layout->oobfree[i].length;
675 if (cnt > 0) {
676 offset = mtd->writesize +
677 ecc->layout->oobfree[i].offset;
678 chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
679 offset -= mtd->writesize;
680 chip->write_buf(mtd, chip->oob_poi + offset, cnt);
681 }
682 }
683
684 tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
685 tmp &= ~NFC_ECC_EN;
686
687 writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
688
689 return 0;
690}
691
692static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
693 struct nand_chip *chip,
694 uint8_t *buf, int oob_required,
695 int page)
696{
697 struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
698 struct nand_ecc_ctrl *ecc = &chip->ecc;
699 struct sunxi_nand_hw_ecc *data = ecc->priv;
700 unsigned int max_bitflips = 0;
701 uint8_t *oob = chip->oob_poi;
702 int offset = 0;
703 int ret;
704 int cnt;
705 u32 tmp;
706 int i;
707
708 tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
709 tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
710 tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
711 NFC_ECC_EXCEPTION;
712
713 writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
714
715 for (i = 0; i < ecc->steps; i++) {
716 chip->read_buf(mtd, NULL, ecc->size);
717
718 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
719 writel(tmp, nfc->regs + NFC_REG_CMD);
720
721 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
722 if (ret)
723 return ret;
724
725 memcpy_fromio(buf, nfc->regs + NFC_RAM0_BASE, ecc->size);
726 buf += ecc->size;
727 offset += ecc->size;
728
729 if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
730 mtd->ecc_stats.failed++;
731 } else {
732 tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
733 mtd->ecc_stats.corrected += tmp;
734 max_bitflips = max_t(unsigned int, max_bitflips, tmp);
735 }
736
737 if (oob_required) {
738 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
739 chip->read_buf(mtd, oob, ecc->bytes + ecc->prepad);
740 oob += ecc->bytes + ecc->prepad;
741 }
742
743 offset += ecc->bytes + ecc->prepad;
744 }
745
746 if (oob_required) {
747 cnt = mtd->oobsize - (oob - chip->oob_poi);
748 if (cnt > 0) {
749 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
750 chip->read_buf(mtd, oob, cnt);
751 }
752 }
753
754 writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
755 nfc->regs + NFC_REG_ECC_CTL);
756
757 return max_bitflips;
758}
759
760static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
761 struct nand_chip *chip,
762 const uint8_t *buf,
763 int oob_required)
764{
765 struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
766 struct nand_ecc_ctrl *ecc = &chip->ecc;
767 struct sunxi_nand_hw_ecc *data = ecc->priv;
768 uint8_t *oob = chip->oob_poi;
769 int offset = 0;
770 int ret;
771 int cnt;
772 u32 tmp;
773 int i;
774
775 tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
776 tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
777 tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
778 NFC_ECC_EXCEPTION;
779
780 writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
781
782 for (i = 0; i < ecc->steps; i++) {
783 chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
784 offset += ecc->size;
785
786 /* Fill OOB data in */
787 if (oob_required) {
788 tmp = 0xffffffff;
789 memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
790 4);
791 } else {
792 memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, oob,
793 4);
794 }
795
796 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
797 (1 << 30);
798 writel(tmp, nfc->regs + NFC_REG_CMD);
799
800 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
801 if (ret)
802 return ret;
803
804 offset += ecc->bytes + ecc->prepad;
805 oob += ecc->bytes + ecc->prepad;
806 }
807
808 if (oob_required) {
809 cnt = mtd->oobsize - (oob - chip->oob_poi);
810 if (cnt > 0) {
811 chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
812 chip->write_buf(mtd, oob, cnt);
813 }
814 }
815
816 tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
817 tmp &= ~NFC_ECC_EN;
818
819 writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
820
821 return 0;
822}
823
Roy Spliet9c618292015-06-26 11:00:10 +0200824static const s32 tWB_lut[] = {6, 12, 16, 20};
825static const s32 tRHW_lut[] = {4, 8, 12, 20};
826
827static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
828 u32 clk_period)
829{
830 u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
831 int i;
832
833 for (i = 0; i < lut_size; i++) {
834 if (clk_cycles <= lut[i])
835 return i;
836 }
837
838 /* Doesn't fit */
839 return -EINVAL;
840}
841
842#define sunxi_nand_lookup_timing(l, p, c) \
843 _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
844
Boris BREZILLON1fef62c2014-10-21 15:08:41 +0200845static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
846 const struct nand_sdr_timings *timings)
847{
Roy Spliet9c618292015-06-26 11:00:10 +0200848 struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
Boris BREZILLON1fef62c2014-10-21 15:08:41 +0200849 u32 min_clk_period = 0;
Roy Spliet9c618292015-06-26 11:00:10 +0200850 s32 tWB, tADL, tWHR, tRHW, tCAD;
Boris BREZILLON1fef62c2014-10-21 15:08:41 +0200851
852 /* T1 <=> tCLS */
853 if (timings->tCLS_min > min_clk_period)
854 min_clk_period = timings->tCLS_min;
855
856 /* T2 <=> tCLH */
857 if (timings->tCLH_min > min_clk_period)
858 min_clk_period = timings->tCLH_min;
859
860 /* T3 <=> tCS */
861 if (timings->tCS_min > min_clk_period)
862 min_clk_period = timings->tCS_min;
863
864 /* T4 <=> tCH */
865 if (timings->tCH_min > min_clk_period)
866 min_clk_period = timings->tCH_min;
867
868 /* T5 <=> tWP */
869 if (timings->tWP_min > min_clk_period)
870 min_clk_period = timings->tWP_min;
871
872 /* T6 <=> tWH */
873 if (timings->tWH_min > min_clk_period)
874 min_clk_period = timings->tWH_min;
875
876 /* T7 <=> tALS */
877 if (timings->tALS_min > min_clk_period)
878 min_clk_period = timings->tALS_min;
879
880 /* T8 <=> tDS */
881 if (timings->tDS_min > min_clk_period)
882 min_clk_period = timings->tDS_min;
883
884 /* T9 <=> tDH */
885 if (timings->tDH_min > min_clk_period)
886 min_clk_period = timings->tDH_min;
887
888 /* T10 <=> tRR */
889 if (timings->tRR_min > (min_clk_period * 3))
890 min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
891
892 /* T11 <=> tALH */
893 if (timings->tALH_min > min_clk_period)
894 min_clk_period = timings->tALH_min;
895
896 /* T12 <=> tRP */
897 if (timings->tRP_min > min_clk_period)
898 min_clk_period = timings->tRP_min;
899
900 /* T13 <=> tREH */
901 if (timings->tREH_min > min_clk_period)
902 min_clk_period = timings->tREH_min;
903
904 /* T14 <=> tRC */
905 if (timings->tRC_min > (min_clk_period * 2))
906 min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
907
908 /* T15 <=> tWC */
909 if (timings->tWC_min > (min_clk_period * 2))
910 min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
911
Roy Spliet9c618292015-06-26 11:00:10 +0200912 /* T16 - T19 + tCAD */
913 tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
914 min_clk_period);
915 if (tWB < 0) {
916 dev_err(nfc->dev, "unsupported tWB\n");
917 return tWB;
918 }
919
920 tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
921 if (tADL > 3) {
922 dev_err(nfc->dev, "unsupported tADL\n");
923 return -EINVAL;
924 }
925
926 tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
927 if (tWHR > 3) {
928 dev_err(nfc->dev, "unsupported tWHR\n");
929 return -EINVAL;
930 }
931
932 tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
933 min_clk_period);
934 if (tRHW < 0) {
935 dev_err(nfc->dev, "unsupported tRHW\n");
936 return tRHW;
937 }
938
939 /*
940 * TODO: according to ONFI specs this value only applies for DDR NAND,
941 * but Allwinner seems to set this to 0x7. Mimic them for now.
942 */
943 tCAD = 0x7;
944
945 /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
946 chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
Boris BREZILLON1fef62c2014-10-21 15:08:41 +0200947
Roy Splietd052e502015-06-26 11:00:11 +0200948 /*
949 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
950 * output cycle timings shall be used if the host drives tRC less than
951 * 30 ns.
952 */
953 chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0;
954
Boris BREZILLON1fef62c2014-10-21 15:08:41 +0200955 /* Convert min_clk_period from picoseconds to nanoseconds */
956 min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
957
958 /*
959 * Convert min_clk_period into a clk frequency, then get the
960 * appropriate rate for the NAND controller IP given this formula
961 * (specified in the datasheet):
962 * nand clk_rate = 2 * min_clk_rate
963 */
964 chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;
965
Boris BREZILLON1fef62c2014-10-21 15:08:41 +0200966 return 0;
967}
968
969static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
970 struct device_node *np)
971{
972 const struct nand_sdr_timings *timings;
973 int ret;
974 int mode;
975
976 mode = onfi_get_async_timing_mode(&chip->nand);
977 if (mode == ONFI_TIMING_MODE_UNKNOWN) {
978 mode = chip->nand.onfi_timing_mode_default;
979 } else {
980 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
981
982 mode = fls(mode) - 1;
983 if (mode < 0)
984 mode = 0;
985
986 feature[0] = mode;
987 ret = chip->nand.onfi_set_features(&chip->mtd, &chip->nand,
988 ONFI_FEATURE_ADDR_TIMING_MODE,
989 feature);
990 if (ret)
991 return ret;
992 }
993
994 timings = onfi_async_timing_mode_to_sdr_timings(mode);
995 if (IS_ERR(timings))
996 return PTR_ERR(timings);
997
998 return sunxi_nand_chip_set_timings(chip, timings);
999}
1000
1001static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
1002 struct nand_ecc_ctrl *ecc,
1003 struct device_node *np)
1004{
1005 static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
1006 struct nand_chip *nand = mtd->priv;
1007 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
1008 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
1009 struct sunxi_nand_hw_ecc *data;
1010 struct nand_ecclayout *layout;
1011 int nsectors;
1012 int ret;
1013 int i;
1014
1015 data = kzalloc(sizeof(*data), GFP_KERNEL);
1016 if (!data)
1017 return -ENOMEM;
1018
1019 /* Add ECC info retrieval from DT */
1020 for (i = 0; i < ARRAY_SIZE(strengths); i++) {
1021 if (ecc->strength <= strengths[i])
1022 break;
1023 }
1024
1025 if (i >= ARRAY_SIZE(strengths)) {
1026 dev_err(nfc->dev, "unsupported strength\n");
1027 ret = -ENOTSUPP;
1028 goto err;
1029 }
1030
1031 data->mode = i;
1032
1033 /* HW ECC always request ECC bytes for 1024 bytes blocks */
1034 ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
1035
1036 /* HW ECC always work with even numbers of ECC bytes */
1037 ecc->bytes = ALIGN(ecc->bytes, 2);
1038
1039 layout = &data->layout;
1040 nsectors = mtd->writesize / ecc->size;
1041
1042 if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
1043 ret = -EINVAL;
1044 goto err;
1045 }
1046
1047 layout->eccbytes = (ecc->bytes * nsectors);
1048
1049 ecc->layout = layout;
1050 ecc->priv = data;
1051
1052 return 0;
1053
1054err:
1055 kfree(data);
1056
1057 return ret;
1058}
1059
1060static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
1061{
1062 kfree(ecc->priv);
1063}
1064
1065static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
1066 struct nand_ecc_ctrl *ecc,
1067 struct device_node *np)
1068{
1069 struct nand_ecclayout *layout;
1070 int nsectors;
1071 int i, j;
1072 int ret;
1073
1074 ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1075 if (ret)
1076 return ret;
1077
1078 ecc->read_page = sunxi_nfc_hw_ecc_read_page;
1079 ecc->write_page = sunxi_nfc_hw_ecc_write_page;
1080 layout = ecc->layout;
1081 nsectors = mtd->writesize / ecc->size;
1082
1083 for (i = 0; i < nsectors; i++) {
1084 if (i) {
1085 layout->oobfree[i].offset =
1086 layout->oobfree[i - 1].offset +
1087 layout->oobfree[i - 1].length +
1088 ecc->bytes;
1089 layout->oobfree[i].length = 4;
1090 } else {
1091 /*
1092 * The first 2 bytes are used for BB markers, hence we
1093 * only have 2 bytes available in the first user data
1094 * section.
1095 */
1096 layout->oobfree[i].length = 2;
1097 layout->oobfree[i].offset = 2;
1098 }
1099
1100 for (j = 0; j < ecc->bytes; j++)
1101 layout->eccpos[(ecc->bytes * i) + j] =
1102 layout->oobfree[i].offset +
1103 layout->oobfree[i].length + j;
1104 }
1105
1106 if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
1107 layout->oobfree[nsectors].offset =
1108 layout->oobfree[nsectors - 1].offset +
1109 layout->oobfree[nsectors - 1].length +
1110 ecc->bytes;
1111 layout->oobfree[nsectors].length = mtd->oobsize -
1112 ((ecc->bytes + 4) * nsectors);
1113 }
1114
1115 return 0;
1116}
1117
1118static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
1119 struct nand_ecc_ctrl *ecc,
1120 struct device_node *np)
1121{
1122 struct nand_ecclayout *layout;
1123 int nsectors;
1124 int i;
1125 int ret;
1126
1127 ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1128 if (ret)
1129 return ret;
1130
1131 ecc->prepad = 4;
1132 ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
1133 ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1134
1135 layout = ecc->layout;
1136 nsectors = mtd->writesize / ecc->size;
1137
1138 for (i = 0; i < (ecc->bytes * nsectors); i++)
1139 layout->eccpos[i] = i;
1140
1141 layout->oobfree[0].length = mtd->oobsize - i;
1142 layout->oobfree[0].offset = i;
1143
1144 return 0;
1145}
1146
1147static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
1148{
1149 switch (ecc->mode) {
1150 case NAND_ECC_HW:
1151 case NAND_ECC_HW_SYNDROME:
1152 sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
1153 break;
1154 case NAND_ECC_NONE:
1155 kfree(ecc->layout);
1156 default:
1157 break;
1158 }
1159}
1160
1161static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
1162 struct device_node *np)
1163{
1164 struct nand_chip *nand = mtd->priv;
1165 int strength;
1166 int blk_size;
1167 int ret;
1168
1169 blk_size = of_get_nand_ecc_step_size(np);
1170 strength = of_get_nand_ecc_strength(np);
1171 if (blk_size > 0 && strength > 0) {
1172 ecc->size = blk_size;
1173 ecc->strength = strength;
1174 } else {
1175 ecc->size = nand->ecc_step_ds;
1176 ecc->strength = nand->ecc_strength_ds;
1177 }
1178
1179 if (!ecc->size || !ecc->strength)
1180 return -EINVAL;
1181
1182 ecc->mode = NAND_ECC_HW;
1183
1184 ret = of_get_nand_ecc_mode(np);
1185 if (ret >= 0)
1186 ecc->mode = ret;
1187
1188 switch (ecc->mode) {
1189 case NAND_ECC_SOFT_BCH:
Boris BREZILLON1fef62c2014-10-21 15:08:41 +02001190 break;
1191 case NAND_ECC_HW:
1192 ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
1193 if (ret)
1194 return ret;
1195 break;
1196 case NAND_ECC_HW_SYNDROME:
1197 ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
1198 if (ret)
1199 return ret;
1200 break;
1201 case NAND_ECC_NONE:
1202 ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
1203 if (!ecc->layout)
1204 return -ENOMEM;
1205 ecc->layout->oobfree[0].length = mtd->oobsize;
1206 case NAND_ECC_SOFT:
1207 break;
1208 default:
1209 return -EINVAL;
1210 }
1211
1212 return 0;
1213}
1214
1215static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
1216 struct device_node *np)
1217{
1218 const struct nand_sdr_timings *timings;
1219 struct sunxi_nand_chip *chip;
1220 struct mtd_part_parser_data ppdata;
1221 struct mtd_info *mtd;
1222 struct nand_chip *nand;
1223 int nsels;
1224 int ret;
1225 int i;
1226 u32 tmp;
1227
1228 if (!of_get_property(np, "reg", &nsels))
1229 return -EINVAL;
1230
1231 nsels /= sizeof(u32);
1232 if (!nsels) {
1233 dev_err(dev, "invalid reg property size\n");
1234 return -EINVAL;
1235 }
1236
1237 chip = devm_kzalloc(dev,
1238 sizeof(*chip) +
1239 (nsels * sizeof(struct sunxi_nand_chip_sel)),
1240 GFP_KERNEL);
1241 if (!chip) {
1242 dev_err(dev, "could not allocate chip\n");
1243 return -ENOMEM;
1244 }
1245
1246 chip->nsels = nsels;
1247 chip->selected = -1;
1248
1249 for (i = 0; i < nsels; i++) {
1250 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1251 if (ret) {
1252 dev_err(dev, "could not retrieve reg property: %d\n",
1253 ret);
1254 return ret;
1255 }
1256
1257 if (tmp > NFC_MAX_CS) {
1258 dev_err(dev,
1259 "invalid reg value: %u (max CS = 7)\n",
1260 tmp);
1261 return -EINVAL;
1262 }
1263
1264 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1265 dev_err(dev, "CS %d already assigned\n", tmp);
1266 return -EINVAL;
1267 }
1268
1269 chip->sels[i].cs = tmp;
1270
1271 if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
1272 tmp < 2) {
1273 chip->sels[i].rb.type = RB_NATIVE;
1274 chip->sels[i].rb.info.nativeid = tmp;
1275 } else {
1276 ret = of_get_named_gpio(np, "rb-gpios", i);
1277 if (ret >= 0) {
1278 tmp = ret;
1279 chip->sels[i].rb.type = RB_GPIO;
1280 chip->sels[i].rb.info.gpio = tmp;
1281 ret = devm_gpio_request(dev, tmp, "nand-rb");
1282 if (ret)
1283 return ret;
1284
1285 ret = gpio_direction_input(tmp);
1286 if (ret)
1287 return ret;
1288 } else {
1289 chip->sels[i].rb.type = RB_NONE;
1290 }
1291 }
1292 }
1293
1294 timings = onfi_async_timing_mode_to_sdr_timings(0);
1295 if (IS_ERR(timings)) {
1296 ret = PTR_ERR(timings);
1297 dev_err(dev,
1298 "could not retrieve timings for ONFI mode 0: %d\n",
1299 ret);
1300 return ret;
1301 }
1302
1303 ret = sunxi_nand_chip_set_timings(chip, timings);
1304 if (ret) {
1305 dev_err(dev, "could not configure chip timings: %d\n", ret);
1306 return ret;
1307 }
1308
1309 nand = &chip->nand;
1310 /* Default tR value specified in the ONFI spec (chapter 4.15.1) */
1311 nand->chip_delay = 200;
1312 nand->controller = &nfc->controller;
1313 nand->select_chip = sunxi_nfc_select_chip;
1314 nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
1315 nand->read_buf = sunxi_nfc_read_buf;
1316 nand->write_buf = sunxi_nfc_write_buf;
1317 nand->read_byte = sunxi_nfc_read_byte;
1318
1319 if (of_get_nand_on_flash_bbt(np))
1320 nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1321
1322 mtd = &chip->mtd;
1323 mtd->dev.parent = dev;
1324 mtd->priv = nand;
1325 mtd->owner = THIS_MODULE;
1326
1327 ret = nand_scan_ident(mtd, nsels, NULL);
1328 if (ret)
1329 return ret;
1330
1331 ret = sunxi_nand_chip_init_timings(chip, np);
1332 if (ret) {
1333 dev_err(dev, "could not configure chip timings: %d\n", ret);
1334 return ret;
1335 }
1336
1337 ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
1338 if (ret) {
1339 dev_err(dev, "ECC init failed: %d\n", ret);
1340 return ret;
1341 }
1342
1343 ret = nand_scan_tail(mtd);
1344 if (ret) {
1345 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1346 return ret;
1347 }
1348
1349 ppdata.of_node = np;
1350 ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1351 if (ret) {
1352 dev_err(dev, "failed to register mtd device: %d\n", ret);
1353 nand_release(mtd);
1354 return ret;
1355 }
1356
1357 list_add_tail(&chip->node, &nfc->chips);
1358
1359 return 0;
1360}
1361
1362static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
1363{
1364 struct device_node *np = dev->of_node;
1365 struct device_node *nand_np;
1366 int nchips = of_get_child_count(np);
1367 int ret;
1368
1369 if (nchips > 8) {
1370 dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
1371 return -EINVAL;
1372 }
1373
1374 for_each_child_of_node(np, nand_np) {
1375 ret = sunxi_nand_chip_init(dev, nfc, nand_np);
1376 if (ret)
1377 return ret;
1378 }
1379
1380 return 0;
1381}
1382
1383static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
1384{
1385 struct sunxi_nand_chip *chip;
1386
1387 while (!list_empty(&nfc->chips)) {
1388 chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
1389 node);
1390 nand_release(&chip->mtd);
1391 sunxi_nand_ecc_cleanup(&chip->nand.ecc);
1392 }
1393}
1394
1395static int sunxi_nfc_probe(struct platform_device *pdev)
1396{
1397 struct device *dev = &pdev->dev;
1398 struct resource *r;
1399 struct sunxi_nfc *nfc;
1400 int irq;
1401 int ret;
1402
1403 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1404 if (!nfc)
1405 return -ENOMEM;
1406
1407 nfc->dev = dev;
1408 spin_lock_init(&nfc->controller.lock);
1409 init_waitqueue_head(&nfc->controller.wq);
1410 INIT_LIST_HEAD(&nfc->chips);
1411
1412 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1413 nfc->regs = devm_ioremap_resource(dev, r);
1414 if (IS_ERR(nfc->regs))
1415 return PTR_ERR(nfc->regs);
1416
1417 irq = platform_get_irq(pdev, 0);
1418 if (irq < 0) {
1419 dev_err(dev, "failed to retrieve irq\n");
1420 return irq;
1421 }
1422
1423 nfc->ahb_clk = devm_clk_get(dev, "ahb");
1424 if (IS_ERR(nfc->ahb_clk)) {
1425 dev_err(dev, "failed to retrieve ahb clk\n");
1426 return PTR_ERR(nfc->ahb_clk);
1427 }
1428
1429 ret = clk_prepare_enable(nfc->ahb_clk);
1430 if (ret)
1431 return ret;
1432
1433 nfc->mod_clk = devm_clk_get(dev, "mod");
1434 if (IS_ERR(nfc->mod_clk)) {
1435 dev_err(dev, "failed to retrieve mod clk\n");
1436 ret = PTR_ERR(nfc->mod_clk);
1437 goto out_ahb_clk_unprepare;
1438 }
1439
1440 ret = clk_prepare_enable(nfc->mod_clk);
1441 if (ret)
1442 goto out_ahb_clk_unprepare;
1443
1444 ret = sunxi_nfc_rst(nfc);
1445 if (ret)
1446 goto out_mod_clk_unprepare;
1447
1448 writel(0, nfc->regs + NFC_REG_INT);
1449 ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
1450 0, "sunxi-nand", nfc);
1451 if (ret)
1452 goto out_mod_clk_unprepare;
1453
1454 platform_set_drvdata(pdev, nfc);
1455
Boris BREZILLON1fef62c2014-10-21 15:08:41 +02001456 ret = sunxi_nand_chips_init(dev, nfc);
1457 if (ret) {
1458 dev_err(dev, "failed to init nand chips\n");
1459 goto out_mod_clk_unprepare;
1460 }
1461
1462 return 0;
1463
1464out_mod_clk_unprepare:
1465 clk_disable_unprepare(nfc->mod_clk);
1466out_ahb_clk_unprepare:
1467 clk_disable_unprepare(nfc->ahb_clk);
1468
1469 return ret;
1470}
1471
1472static int sunxi_nfc_remove(struct platform_device *pdev)
1473{
1474 struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
1475
1476 sunxi_nand_chips_cleanup(nfc);
1477
1478 return 0;
1479}
1480
1481static const struct of_device_id sunxi_nfc_ids[] = {
1482 { .compatible = "allwinner,sun4i-a10-nand" },
1483 { /* sentinel */ }
1484};
1485MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
1486
1487static struct platform_driver sunxi_nfc_driver = {
1488 .driver = {
1489 .name = "sunxi_nand",
1490 .of_match_table = sunxi_nfc_ids,
1491 },
1492 .probe = sunxi_nfc_probe,
1493 .remove = sunxi_nfc_remove,
1494};
1495module_platform_driver(sunxi_nfc_driver);
1496
1497MODULE_LICENSE("GPL v2");
1498MODULE_AUTHOR("Boris BREZILLON");
1499MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
1500MODULE_ALIAS("platform:sunxi_nand");