blob: 4a2b32fd53a19df6d87ae4b85795e56813e7b06a [file] [log] [blame]
Nicolas Pitree8db2882012-04-12 02:45:22 -04001/*
2 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
3 *
4 * Created by: Nicolas Pitre, March 2012
5 * Copyright: (C) 2012-2013 Linaro Limited
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
Nicolas Pitre7c2b8602012-09-20 16:05:37 -040012#include <linux/kernel.h>
13#include <linux/init.h>
14#include <linux/irqflags.h>
15
Nicolas Pitree8db2882012-04-12 02:45:22 -040016#include <asm/mcpm.h>
17#include <asm/cacheflush.h>
Nicolas Pitre7c2b8602012-09-20 16:05:37 -040018#include <asm/idmap.h>
Dave Martin7fe31d22012-07-17 14:25:42 +010019#include <asm/cputype.h>
Nicolas Pitree8db2882012-04-12 02:45:22 -040020
21extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
22
23void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
24{
25 unsigned long val = ptr ? virt_to_phys(ptr) : 0;
26 mcpm_entry_vectors[cluster][cpu] = val;
27 sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
28}
Nicolas Pitre7c2b8602012-09-20 16:05:37 -040029
Nicolas Pitrede885d12012-11-27 23:11:20 -050030extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
31
32void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
33 unsigned long poke_phys_addr, unsigned long poke_val)
34{
35 unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
36 poke[0] = poke_phys_addr;
37 poke[1] = poke_val;
38 __cpuc_flush_dcache_area((void *)poke, 8);
39 outer_clean_range(__pa(poke), __pa(poke + 2));
40}
41
Nicolas Pitre7c2b8602012-09-20 16:05:37 -040042static const struct mcpm_platform_ops *platform_ops;
43
44int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
45{
46 if (platform_ops)
47 return -EBUSY;
48 platform_ops = ops;
49 return 0;
50}
51
52int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
53{
54 if (!platform_ops)
55 return -EUNATCH; /* try not to shadow power_up errors */
56 might_sleep();
57 return platform_ops->power_up(cpu, cluster);
58}
59
60typedef void (*phys_reset_t)(unsigned long);
61
62void mcpm_cpu_power_down(void)
63{
64 phys_reset_t phys_reset;
65
66 BUG_ON(!platform_ops);
67 BUG_ON(!irqs_disabled());
68
69 /*
70 * Do this before calling into the power_down method,
71 * as it might not always be safe to do afterwards.
72 */
73 setup_mm_for_reboot();
74
75 platform_ops->power_down();
76
77 /*
78 * It is possible for a power_up request to happen concurrently
79 * with a power_down request for the same CPU. In this case the
80 * power_down method might not be able to actually enter a
81 * powered down state with the WFI instruction if the power_up
82 * method has removed the required reset condition. The
83 * power_down method is then allowed to return. We must perform
84 * a re-entry in the kernel as if the power_up method just had
85 * deasserted reset on the CPU.
86 *
87 * To simplify race issues, the platform specific implementation
88 * must accommodate for the possibility of unordered calls to
89 * power_down and power_up with a usage count. Therefore, if a
90 * call to power_up is issued for a CPU that is not down, then
91 * the next call to power_down must not attempt a full shutdown
92 * but only do the minimum (normally disabling L1 cache and CPU
93 * coherency) and return just as if a concurrent power_up request
94 * had happened as described above.
95 */
96
97 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
98 phys_reset(virt_to_phys(mcpm_entry_point));
99
100 /* should never get here */
101 BUG();
102}
103
104void mcpm_cpu_suspend(u64 expected_residency)
105{
106 phys_reset_t phys_reset;
107
108 BUG_ON(!platform_ops);
109 BUG_ON(!irqs_disabled());
110
111 /* Very similar to mcpm_cpu_power_down() */
112 setup_mm_for_reboot();
113 platform_ops->suspend(expected_residency);
114 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
115 phys_reset(virt_to_phys(mcpm_entry_point));
116 BUG();
117}
118
119int mcpm_cpu_powered_up(void)
120{
121 if (!platform_ops)
122 return -EUNATCH;
123 if (platform_ops->powered_up)
124 platform_ops->powered_up();
125 return 0;
126}
Dave Martin7fe31d22012-07-17 14:25:42 +0100127
128struct sync_struct mcpm_sync;
129
130/*
131 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
132 * This must be called at the point of committing to teardown of a CPU.
133 * The CPU cache (SCTRL.C bit) is expected to still be active.
134 */
135void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
136{
137 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
138 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
139}
140
141/*
142 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
143 * cluster can be torn down without disrupting this CPU.
144 * To avoid deadlocks, this must be called before a CPU is powered down.
145 * The CPU cache (SCTRL.C bit) is expected to be off.
146 * However L2 cache might or might not be active.
147 */
148void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
149{
150 dmb();
151 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
152 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
153 dsb_sev();
154}
155
156/*
157 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
158 * @state: the final state of the cluster:
159 * CLUSTER_UP: no destructive teardown was done and the cluster has been
160 * restored to the previous state (CPU cache still active); or
161 * CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
162 * (CPU cache disabled, L2 cache either enabled or disabled).
163 */
164void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
165{
166 dmb();
167 mcpm_sync.clusters[cluster].cluster = state;
168 sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
169 dsb_sev();
170}
171
172/*
173 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
174 * This function should be called by the last man, after local CPU teardown
175 * is complete. CPU cache expected to be active.
176 *
177 * Returns:
178 * false: the critical section was not entered because an inbound CPU was
179 * observed, or the cluster is already being set up;
180 * true: the critical section was entered: it is now safe to tear down the
181 * cluster.
182 */
183bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
184{
185 unsigned int i;
186 struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
187
188 /* Warn inbound CPUs that the cluster is being torn down: */
189 c->cluster = CLUSTER_GOING_DOWN;
190 sync_cache_w(&c->cluster);
191
192 /* Back out if the inbound cluster is already in the critical region: */
193 sync_cache_r(&c->inbound);
194 if (c->inbound == INBOUND_COMING_UP)
195 goto abort;
196
197 /*
198 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
199 * teardown is complete on each CPU before tearing down the cluster.
200 *
201 * If any CPU has been woken up again from the DOWN state, then we
202 * shouldn't be taking the cluster down at all: abort in that case.
203 */
204 sync_cache_r(&c->cpus);
205 for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
206 int cpustate;
207
208 if (i == cpu)
209 continue;
210
211 while (1) {
212 cpustate = c->cpus[i].cpu;
213 if (cpustate != CPU_GOING_DOWN)
214 break;
215
216 wfe();
217 sync_cache_r(&c->cpus[i].cpu);
218 }
219
220 switch (cpustate) {
221 case CPU_DOWN:
222 continue;
223
224 default:
225 goto abort;
226 }
227 }
228
229 return true;
230
231abort:
232 __mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
233 return false;
234}
235
236int __mcpm_cluster_state(unsigned int cluster)
237{
238 sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
239 return mcpm_sync.clusters[cluster].cluster;
240}
241
242extern unsigned long mcpm_power_up_setup_phys;
243
244int __init mcpm_sync_init(
245 void (*power_up_setup)(unsigned int affinity_level))
246{
247 unsigned int i, j, mpidr, this_cluster;
248
249 BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
250 BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
251
252 /*
253 * Set initial CPU and cluster states.
254 * Only one cluster is assumed to be active at this point.
255 */
256 for (i = 0; i < MAX_NR_CLUSTERS; i++) {
257 mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
258 mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
259 for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
260 mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
261 }
262 mpidr = read_cpuid_mpidr();
263 this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
264 for_each_online_cpu(i)
265 mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
266 mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
267 sync_cache_w(&mcpm_sync);
268
269 if (power_up_setup) {
270 mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
271 sync_cache_w(&mcpm_power_up_setup_phys);
272 }
273
274 return 0;
275}