blob: ef89526fb8627ccc786903f718d2c5713e804a55 [file] [log] [blame]
Hugh Dickinsf8af4da2009-09-21 17:01:57 -07001/*
Izik Eidus31dbd012009-09-21 17:02:03 -07002 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
Izik Eidus36b25282009-09-21 17:02:06 -07007 * Copyright (C) 2008-2009 Red Hat, Inc.
Izik Eidus31dbd012009-09-21 17:02:03 -07008 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
Izik Eidus36b25282009-09-21 17:02:06 -070012 * Hugh Dickins
Izik Eidus31dbd012009-09-21 17:02:03 -070013 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
Hugh Dickinsf8af4da2009-09-21 17:01:57 -070015 */
16
17#include <linux/errno.h>
Izik Eidus31dbd012009-09-21 17:02:03 -070018#include <linux/mm.h>
19#include <linux/fs.h>
Hugh Dickinsf8af4da2009-09-21 17:01:57 -070020#include <linux/mman.h>
Izik Eidus31dbd012009-09-21 17:02:03 -070021#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
32#include <linux/mmu_notifier.h>
Hugh Dickinsf8af4da2009-09-21 17:01:57 -070033#include <linux/ksm.h>
34
Izik Eidus31dbd012009-09-21 17:02:03 -070035#include <asm/tlbflush.h>
36
37/*
38 * A few notes about the KSM scanning process,
39 * to make it easier to understand the data structures below:
40 *
41 * In order to reduce excessive scanning, KSM sorts the memory pages by their
42 * contents into a data structure that holds pointers to the pages' locations.
43 *
44 * Since the contents of the pages may change at any moment, KSM cannot just
45 * insert the pages into a normal sorted tree and expect it to find anything.
46 * Therefore KSM uses two data structures - the stable and the unstable tree.
47 *
48 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
49 * by their contents. Because each such page is write-protected, searching on
50 * this tree is fully assured to be working (except when pages are unmapped),
51 * and therefore this tree is called the stable tree.
52 *
53 * In addition to the stable tree, KSM uses a second data structure called the
54 * unstable tree: this tree holds pointers to pages which have been found to
55 * be "unchanged for a period of time". The unstable tree sorts these pages
56 * by their contents, but since they are not write-protected, KSM cannot rely
57 * upon the unstable tree to work correctly - the unstable tree is liable to
58 * be corrupted as its contents are modified, and so it is called unstable.
59 *
60 * KSM solves this problem by several techniques:
61 *
62 * 1) The unstable tree is flushed every time KSM completes scanning all
63 * memory areas, and then the tree is rebuilt again from the beginning.
64 * 2) KSM will only insert into the unstable tree, pages whose hash value
65 * has not changed since the previous scan of all memory areas.
66 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
67 * colors of the nodes and not on their contents, assuring that even when
68 * the tree gets "corrupted" it won't get out of balance, so scanning time
69 * remains the same (also, searching and inserting nodes in an rbtree uses
70 * the same algorithm, so we have no overhead when we flush and rebuild).
71 * 4) KSM never flushes the stable tree, which means that even if it were to
72 * take 10 attempts to find a page in the unstable tree, once it is found,
73 * it is secured in the stable tree. (When we scan a new page, we first
74 * compare it against the stable tree, and then against the unstable tree.)
75 */
76
77/**
78 * struct mm_slot - ksm information per mm that is being scanned
79 * @link: link to the mm_slots hash list
80 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
81 * @rmap_list: head for this mm_slot's list of rmap_items
82 * @mm: the mm that this information is valid for
83 */
84struct mm_slot {
85 struct hlist_node link;
86 struct list_head mm_list;
87 struct list_head rmap_list;
88 struct mm_struct *mm;
89};
90
91/**
92 * struct ksm_scan - cursor for scanning
93 * @mm_slot: the current mm_slot we are scanning
94 * @address: the next address inside that to be scanned
95 * @rmap_item: the current rmap that we are scanning inside the rmap_list
96 * @seqnr: count of completed full scans (needed when removing unstable node)
97 *
98 * There is only the one ksm_scan instance of this cursor structure.
99 */
100struct ksm_scan {
101 struct mm_slot *mm_slot;
102 unsigned long address;
103 struct rmap_item *rmap_item;
104 unsigned long seqnr;
105};
106
107/**
108 * struct rmap_item - reverse mapping item for virtual addresses
109 * @link: link into mm_slot's rmap_list (rmap_list is per mm)
110 * @mm: the memory structure this rmap_item is pointing into
111 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
112 * @oldchecksum: previous checksum of the page at that virtual address
113 * @node: rb_node of this rmap_item in either unstable or stable tree
114 * @next: next rmap_item hanging off the same node of the stable tree
115 * @prev: previous rmap_item hanging off the same node of the stable tree
116 */
117struct rmap_item {
118 struct list_head link;
119 struct mm_struct *mm;
120 unsigned long address; /* + low bits used for flags below */
121 union {
122 unsigned int oldchecksum; /* when unstable */
123 struct rmap_item *next; /* when stable */
124 };
125 union {
126 struct rb_node node; /* when tree node */
127 struct rmap_item *prev; /* in stable list */
128 };
129};
130
131#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
132#define NODE_FLAG 0x100 /* is a node of unstable or stable tree */
133#define STABLE_FLAG 0x200 /* is a node or list item of stable tree */
134
135/* The stable and unstable tree heads */
136static struct rb_root root_stable_tree = RB_ROOT;
137static struct rb_root root_unstable_tree = RB_ROOT;
138
139#define MM_SLOTS_HASH_HEADS 1024
140static struct hlist_head *mm_slots_hash;
141
142static struct mm_slot ksm_mm_head = {
143 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
144};
145static struct ksm_scan ksm_scan = {
146 .mm_slot = &ksm_mm_head,
147};
148
149static struct kmem_cache *rmap_item_cache;
150static struct kmem_cache *mm_slot_cache;
151
152/* The number of nodes in the stable tree */
Hugh Dickinsb4028262009-09-21 17:02:09 -0700153static unsigned long ksm_pages_shared;
Izik Eidus31dbd012009-09-21 17:02:03 -0700154
Hugh Dickinse178dfd2009-09-21 17:02:10 -0700155/* The number of page slots additionally sharing those nodes */
Hugh Dickinsb4028262009-09-21 17:02:09 -0700156static unsigned long ksm_pages_sharing;
Izik Eidus31dbd012009-09-21 17:02:03 -0700157
158/* Limit on the number of unswappable pages used */
159static unsigned long ksm_max_kernel_pages;
160
161/* Number of pages ksmd should scan in one batch */
162static unsigned int ksm_thread_pages_to_scan;
163
164/* Milliseconds ksmd should sleep between batches */
165static unsigned int ksm_thread_sleep_millisecs;
166
167#define KSM_RUN_STOP 0
168#define KSM_RUN_MERGE 1
169#define KSM_RUN_UNMERGE 2
170static unsigned int ksm_run;
171
172static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
173static DEFINE_MUTEX(ksm_thread_mutex);
174static DEFINE_SPINLOCK(ksm_mmlist_lock);
175
176#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
177 sizeof(struct __struct), __alignof__(struct __struct),\
178 (__flags), NULL)
179
180static int __init ksm_slab_init(void)
181{
182 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
183 if (!rmap_item_cache)
184 goto out;
185
186 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
187 if (!mm_slot_cache)
188 goto out_free;
189
190 return 0;
191
192out_free:
193 kmem_cache_destroy(rmap_item_cache);
194out:
195 return -ENOMEM;
196}
197
198static void __init ksm_slab_free(void)
199{
200 kmem_cache_destroy(mm_slot_cache);
201 kmem_cache_destroy(rmap_item_cache);
202 mm_slot_cache = NULL;
203}
204
205static inline struct rmap_item *alloc_rmap_item(void)
206{
207 return kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
208}
209
210static inline void free_rmap_item(struct rmap_item *rmap_item)
211{
212 rmap_item->mm = NULL; /* debug safety */
213 kmem_cache_free(rmap_item_cache, rmap_item);
214}
215
216static inline struct mm_slot *alloc_mm_slot(void)
217{
218 if (!mm_slot_cache) /* initialization failed */
219 return NULL;
220 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
221}
222
223static inline void free_mm_slot(struct mm_slot *mm_slot)
224{
225 kmem_cache_free(mm_slot_cache, mm_slot);
226}
227
228static int __init mm_slots_hash_init(void)
229{
230 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
231 GFP_KERNEL);
232 if (!mm_slots_hash)
233 return -ENOMEM;
234 return 0;
235}
236
237static void __init mm_slots_hash_free(void)
238{
239 kfree(mm_slots_hash);
240}
241
242static struct mm_slot *get_mm_slot(struct mm_struct *mm)
243{
244 struct mm_slot *mm_slot;
245 struct hlist_head *bucket;
246 struct hlist_node *node;
247
248 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
249 % MM_SLOTS_HASH_HEADS];
250 hlist_for_each_entry(mm_slot, node, bucket, link) {
251 if (mm == mm_slot->mm)
252 return mm_slot;
253 }
254 return NULL;
255}
256
257static void insert_to_mm_slots_hash(struct mm_struct *mm,
258 struct mm_slot *mm_slot)
259{
260 struct hlist_head *bucket;
261
262 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
263 % MM_SLOTS_HASH_HEADS];
264 mm_slot->mm = mm;
265 INIT_LIST_HEAD(&mm_slot->rmap_list);
266 hlist_add_head(&mm_slot->link, bucket);
267}
268
269static inline int in_stable_tree(struct rmap_item *rmap_item)
270{
271 return rmap_item->address & STABLE_FLAG;
272}
273
274/*
275 * We use break_ksm to break COW on a ksm page: it's a stripped down
276 *
277 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
278 * put_page(page);
279 *
280 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
281 * in case the application has unmapped and remapped mm,addr meanwhile.
282 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
283 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
284 */
285static void break_ksm(struct vm_area_struct *vma, unsigned long addr)
286{
287 struct page *page;
288 int ret;
289
290 do {
291 cond_resched();
292 page = follow_page(vma, addr, FOLL_GET);
293 if (!page)
294 break;
295 if (PageKsm(page))
296 ret = handle_mm_fault(vma->vm_mm, vma, addr,
297 FAULT_FLAG_WRITE);
298 else
299 ret = VM_FAULT_WRITE;
300 put_page(page);
301 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS)));
302
303 /* Which leaves us looping there if VM_FAULT_OOM: hmmm... */
304}
305
306static void __break_cow(struct mm_struct *mm, unsigned long addr)
307{
308 struct vm_area_struct *vma;
309
310 vma = find_vma(mm, addr);
311 if (!vma || vma->vm_start > addr)
312 return;
313 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
314 return;
315 break_ksm(vma, addr);
316}
317
318static void break_cow(struct mm_struct *mm, unsigned long addr)
319{
320 down_read(&mm->mmap_sem);
321 __break_cow(mm, addr);
322 up_read(&mm->mmap_sem);
323}
324
325static struct page *get_mergeable_page(struct rmap_item *rmap_item)
326{
327 struct mm_struct *mm = rmap_item->mm;
328 unsigned long addr = rmap_item->address;
329 struct vm_area_struct *vma;
330 struct page *page;
331
332 down_read(&mm->mmap_sem);
333 vma = find_vma(mm, addr);
334 if (!vma || vma->vm_start > addr)
335 goto out;
336 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
337 goto out;
338
339 page = follow_page(vma, addr, FOLL_GET);
340 if (!page)
341 goto out;
342 if (PageAnon(page)) {
343 flush_anon_page(vma, page, addr);
344 flush_dcache_page(page);
345 } else {
346 put_page(page);
347out: page = NULL;
348 }
349 up_read(&mm->mmap_sem);
350 return page;
351}
352
353/*
354 * get_ksm_page: checks if the page at the virtual address in rmap_item
355 * is still PageKsm, in which case we can trust the content of the page,
356 * and it returns the gotten page; but NULL if the page has been zapped.
357 */
358static struct page *get_ksm_page(struct rmap_item *rmap_item)
359{
360 struct page *page;
361
362 page = get_mergeable_page(rmap_item);
363 if (page && !PageKsm(page)) {
364 put_page(page);
365 page = NULL;
366 }
367 return page;
368}
369
370/*
371 * Removing rmap_item from stable or unstable tree.
372 * This function will clean the information from the stable/unstable tree.
373 */
374static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
375{
376 if (in_stable_tree(rmap_item)) {
377 struct rmap_item *next_item = rmap_item->next;
378
379 if (rmap_item->address & NODE_FLAG) {
380 if (next_item) {
381 rb_replace_node(&rmap_item->node,
382 &next_item->node,
383 &root_stable_tree);
384 next_item->address |= NODE_FLAG;
Hugh Dickinse178dfd2009-09-21 17:02:10 -0700385 ksm_pages_sharing--;
Izik Eidus31dbd012009-09-21 17:02:03 -0700386 } else {
387 rb_erase(&rmap_item->node, &root_stable_tree);
Hugh Dickinsb4028262009-09-21 17:02:09 -0700388 ksm_pages_shared--;
Izik Eidus31dbd012009-09-21 17:02:03 -0700389 }
390 } else {
391 struct rmap_item *prev_item = rmap_item->prev;
392
393 BUG_ON(prev_item->next != rmap_item);
394 prev_item->next = next_item;
395 if (next_item) {
396 BUG_ON(next_item->prev != rmap_item);
397 next_item->prev = rmap_item->prev;
398 }
Hugh Dickinse178dfd2009-09-21 17:02:10 -0700399 ksm_pages_sharing--;
Izik Eidus31dbd012009-09-21 17:02:03 -0700400 }
401
402 rmap_item->next = NULL;
Izik Eidus31dbd012009-09-21 17:02:03 -0700403
404 } else if (rmap_item->address & NODE_FLAG) {
405 unsigned char age;
406 /*
407 * ksm_thread can and must skip the rb_erase, because
408 * root_unstable_tree was already reset to RB_ROOT.
409 * But __ksm_exit has to be careful: do the rb_erase
410 * if it's interrupting a scan, and this rmap_item was
411 * inserted by this scan rather than left from before.
412 *
413 * Because of the case in which remove_mm_from_lists
414 * increments seqnr before removing rmaps, unstable_nr
415 * may even be 2 behind seqnr, but should never be
416 * further behind. Yes, I did have trouble with this!
417 */
418 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
419 BUG_ON(age > 2);
420 if (!age)
421 rb_erase(&rmap_item->node, &root_unstable_tree);
422 }
423
424 rmap_item->address &= PAGE_MASK;
425
426 cond_resched(); /* we're called from many long loops */
427}
428
429static void remove_all_slot_rmap_items(struct mm_slot *mm_slot)
430{
431 struct rmap_item *rmap_item, *node;
432
433 list_for_each_entry_safe(rmap_item, node, &mm_slot->rmap_list, link) {
434 remove_rmap_item_from_tree(rmap_item);
435 list_del(&rmap_item->link);
436 free_rmap_item(rmap_item);
437 }
438}
439
440static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
441 struct list_head *cur)
442{
443 struct rmap_item *rmap_item;
444
445 while (cur != &mm_slot->rmap_list) {
446 rmap_item = list_entry(cur, struct rmap_item, link);
447 cur = cur->next;
448 remove_rmap_item_from_tree(rmap_item);
449 list_del(&rmap_item->link);
450 free_rmap_item(rmap_item);
451 }
452}
453
454/*
455 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
456 * than check every pte of a given vma, the locking doesn't quite work for
457 * that - an rmap_item is assigned to the stable tree after inserting ksm
458 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
459 * rmap_items from parent to child at fork time (so as not to waste time
460 * if exit comes before the next scan reaches it).
461 */
462static void unmerge_ksm_pages(struct vm_area_struct *vma,
463 unsigned long start, unsigned long end)
464{
465 unsigned long addr;
466
467 for (addr = start; addr < end; addr += PAGE_SIZE)
468 break_ksm(vma, addr);
469}
470
471static void unmerge_and_remove_all_rmap_items(void)
472{
473 struct mm_slot *mm_slot;
474 struct mm_struct *mm;
475 struct vm_area_struct *vma;
476
477 list_for_each_entry(mm_slot, &ksm_mm_head.mm_list, mm_list) {
478 mm = mm_slot->mm;
479 down_read(&mm->mmap_sem);
480 for (vma = mm->mmap; vma; vma = vma->vm_next) {
481 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
482 continue;
483 unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
484 }
485 remove_all_slot_rmap_items(mm_slot);
486 up_read(&mm->mmap_sem);
487 }
488
489 spin_lock(&ksm_mmlist_lock);
490 if (ksm_scan.mm_slot != &ksm_mm_head) {
491 ksm_scan.mm_slot = &ksm_mm_head;
492 ksm_scan.seqnr++;
493 }
494 spin_unlock(&ksm_mmlist_lock);
495}
496
497static void remove_mm_from_lists(struct mm_struct *mm)
498{
499 struct mm_slot *mm_slot;
500
501 spin_lock(&ksm_mmlist_lock);
502 mm_slot = get_mm_slot(mm);
503
504 /*
505 * This mm_slot is always at the scanning cursor when we're
506 * called from scan_get_next_rmap_item; but it's a special
507 * case when we're called from __ksm_exit.
508 */
509 if (ksm_scan.mm_slot == mm_slot) {
510 ksm_scan.mm_slot = list_entry(
511 mm_slot->mm_list.next, struct mm_slot, mm_list);
512 ksm_scan.address = 0;
513 ksm_scan.rmap_item = list_entry(
514 &ksm_scan.mm_slot->rmap_list, struct rmap_item, link);
515 if (ksm_scan.mm_slot == &ksm_mm_head)
516 ksm_scan.seqnr++;
517 }
518
519 hlist_del(&mm_slot->link);
520 list_del(&mm_slot->mm_list);
521 spin_unlock(&ksm_mmlist_lock);
522
523 remove_all_slot_rmap_items(mm_slot);
524 free_mm_slot(mm_slot);
525 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
526}
527
528static u32 calc_checksum(struct page *page)
529{
530 u32 checksum;
531 void *addr = kmap_atomic(page, KM_USER0);
532 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
533 kunmap_atomic(addr, KM_USER0);
534 return checksum;
535}
536
537static int memcmp_pages(struct page *page1, struct page *page2)
538{
539 char *addr1, *addr2;
540 int ret;
541
542 addr1 = kmap_atomic(page1, KM_USER0);
543 addr2 = kmap_atomic(page2, KM_USER1);
544 ret = memcmp(addr1, addr2, PAGE_SIZE);
545 kunmap_atomic(addr2, KM_USER1);
546 kunmap_atomic(addr1, KM_USER0);
547 return ret;
548}
549
550static inline int pages_identical(struct page *page1, struct page *page2)
551{
552 return !memcmp_pages(page1, page2);
553}
554
555static int write_protect_page(struct vm_area_struct *vma, struct page *page,
556 pte_t *orig_pte)
557{
558 struct mm_struct *mm = vma->vm_mm;
559 unsigned long addr;
560 pte_t *ptep;
561 spinlock_t *ptl;
562 int swapped;
563 int err = -EFAULT;
564
565 addr = page_address_in_vma(page, vma);
566 if (addr == -EFAULT)
567 goto out;
568
569 ptep = page_check_address(page, mm, addr, &ptl, 0);
570 if (!ptep)
571 goto out;
572
573 if (pte_write(*ptep)) {
574 pte_t entry;
575
576 swapped = PageSwapCache(page);
577 flush_cache_page(vma, addr, page_to_pfn(page));
578 /*
579 * Ok this is tricky, when get_user_pages_fast() run it doesnt
580 * take any lock, therefore the check that we are going to make
581 * with the pagecount against the mapcount is racey and
582 * O_DIRECT can happen right after the check.
583 * So we clear the pte and flush the tlb before the check
584 * this assure us that no O_DIRECT can happen after the check
585 * or in the middle of the check.
586 */
587 entry = ptep_clear_flush(vma, addr, ptep);
588 /*
589 * Check that no O_DIRECT or similar I/O is in progress on the
590 * page
591 */
592 if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
593 set_pte_at_notify(mm, addr, ptep, entry);
594 goto out_unlock;
595 }
596 entry = pte_wrprotect(entry);
597 set_pte_at_notify(mm, addr, ptep, entry);
598 }
599 *orig_pte = *ptep;
600 err = 0;
601
602out_unlock:
603 pte_unmap_unlock(ptep, ptl);
604out:
605 return err;
606}
607
608/**
609 * replace_page - replace page in vma by new ksm page
610 * @vma: vma that holds the pte pointing to oldpage
611 * @oldpage: the page we are replacing by newpage
612 * @newpage: the ksm page we replace oldpage by
613 * @orig_pte: the original value of the pte
614 *
615 * Returns 0 on success, -EFAULT on failure.
616 */
617static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
618 struct page *newpage, pte_t orig_pte)
619{
620 struct mm_struct *mm = vma->vm_mm;
621 pgd_t *pgd;
622 pud_t *pud;
623 pmd_t *pmd;
624 pte_t *ptep;
625 spinlock_t *ptl;
626 unsigned long addr;
627 pgprot_t prot;
628 int err = -EFAULT;
629
630 prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
631
632 addr = page_address_in_vma(oldpage, vma);
633 if (addr == -EFAULT)
634 goto out;
635
636 pgd = pgd_offset(mm, addr);
637 if (!pgd_present(*pgd))
638 goto out;
639
640 pud = pud_offset(pgd, addr);
641 if (!pud_present(*pud))
642 goto out;
643
644 pmd = pmd_offset(pud, addr);
645 if (!pmd_present(*pmd))
646 goto out;
647
648 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
649 if (!pte_same(*ptep, orig_pte)) {
650 pte_unmap_unlock(ptep, ptl);
651 goto out;
652 }
653
654 get_page(newpage);
655 page_add_ksm_rmap(newpage);
656
657 flush_cache_page(vma, addr, pte_pfn(*ptep));
658 ptep_clear_flush(vma, addr, ptep);
659 set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
660
661 page_remove_rmap(oldpage);
662 put_page(oldpage);
663
664 pte_unmap_unlock(ptep, ptl);
665 err = 0;
666out:
667 return err;
668}
669
670/*
671 * try_to_merge_one_page - take two pages and merge them into one
672 * @vma: the vma that hold the pte pointing into oldpage
673 * @oldpage: the page that we want to replace with newpage
674 * @newpage: the page that we want to map instead of oldpage
675 *
676 * Note:
677 * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
678 * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
679 *
680 * This function returns 0 if the pages were merged, -EFAULT otherwise.
681 */
682static int try_to_merge_one_page(struct vm_area_struct *vma,
683 struct page *oldpage,
684 struct page *newpage)
685{
686 pte_t orig_pte = __pte(0);
687 int err = -EFAULT;
688
689 if (!(vma->vm_flags & VM_MERGEABLE))
690 goto out;
691
692 if (!PageAnon(oldpage))
693 goto out;
694
695 get_page(newpage);
696 get_page(oldpage);
697
698 /*
699 * We need the page lock to read a stable PageSwapCache in
700 * write_protect_page(). We use trylock_page() instead of
701 * lock_page() because we don't want to wait here - we
702 * prefer to continue scanning and merging different pages,
703 * then come back to this page when it is unlocked.
704 */
705 if (!trylock_page(oldpage))
706 goto out_putpage;
707 /*
708 * If this anonymous page is mapped only here, its pte may need
709 * to be write-protected. If it's mapped elsewhere, all of its
710 * ptes are necessarily already write-protected. But in either
711 * case, we need to lock and check page_count is not raised.
712 */
713 if (write_protect_page(vma, oldpage, &orig_pte)) {
714 unlock_page(oldpage);
715 goto out_putpage;
716 }
717 unlock_page(oldpage);
718
719 if (pages_identical(oldpage, newpage))
720 err = replace_page(vma, oldpage, newpage, orig_pte);
721
722out_putpage:
723 put_page(oldpage);
724 put_page(newpage);
725out:
726 return err;
727}
728
729/*
730 * try_to_merge_two_pages - take two identical pages and prepare them
731 * to be merged into one page.
732 *
733 * This function returns 0 if we successfully mapped two identical pages
734 * into one page, -EFAULT otherwise.
735 *
736 * Note that this function allocates a new kernel page: if one of the pages
737 * is already a ksm page, try_to_merge_with_ksm_page should be used.
738 */
739static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
740 struct page *page1, struct mm_struct *mm2,
741 unsigned long addr2, struct page *page2)
742{
743 struct vm_area_struct *vma;
744 struct page *kpage;
745 int err = -EFAULT;
746
747 /*
748 * The number of nodes in the stable tree
749 * is the number of kernel pages that we hold.
750 */
751 if (ksm_max_kernel_pages &&
Hugh Dickinsb4028262009-09-21 17:02:09 -0700752 ksm_max_kernel_pages <= ksm_pages_shared)
Izik Eidus31dbd012009-09-21 17:02:03 -0700753 return err;
754
755 kpage = alloc_page(GFP_HIGHUSER);
756 if (!kpage)
757 return err;
758
759 down_read(&mm1->mmap_sem);
760 vma = find_vma(mm1, addr1);
761 if (!vma || vma->vm_start > addr1) {
762 put_page(kpage);
763 up_read(&mm1->mmap_sem);
764 return err;
765 }
766
767 copy_user_highpage(kpage, page1, addr1, vma);
768 err = try_to_merge_one_page(vma, page1, kpage);
769 up_read(&mm1->mmap_sem);
770
771 if (!err) {
772 down_read(&mm2->mmap_sem);
773 vma = find_vma(mm2, addr2);
774 if (!vma || vma->vm_start > addr2) {
775 put_page(kpage);
776 up_read(&mm2->mmap_sem);
777 break_cow(mm1, addr1);
778 return -EFAULT;
779 }
780
781 err = try_to_merge_one_page(vma, page2, kpage);
782 up_read(&mm2->mmap_sem);
783
784 /*
785 * If the second try_to_merge_one_page failed, we have a
786 * ksm page with just one pte pointing to it, so break it.
787 */
788 if (err)
789 break_cow(mm1, addr1);
Izik Eidus31dbd012009-09-21 17:02:03 -0700790 }
791
792 put_page(kpage);
793 return err;
794}
795
796/*
797 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
798 * but no new kernel page is allocated: kpage must already be a ksm page.
799 */
800static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
801 unsigned long addr1,
802 struct page *page1,
803 struct page *kpage)
804{
805 struct vm_area_struct *vma;
806 int err = -EFAULT;
807
808 down_read(&mm1->mmap_sem);
809 vma = find_vma(mm1, addr1);
810 if (!vma || vma->vm_start > addr1) {
811 up_read(&mm1->mmap_sem);
812 return err;
813 }
814
815 err = try_to_merge_one_page(vma, page1, kpage);
816 up_read(&mm1->mmap_sem);
817
Izik Eidus31dbd012009-09-21 17:02:03 -0700818 return err;
819}
820
821/*
822 * stable_tree_search - search page inside the stable tree
823 * @page: the page that we are searching identical pages to.
824 * @page2: pointer into identical page that we are holding inside the stable
825 * tree that we have found.
826 * @rmap_item: the reverse mapping item
827 *
828 * This function checks if there is a page inside the stable tree
829 * with identical content to the page that we are scanning right now.
830 *
831 * This function return rmap_item pointer to the identical item if found,
832 * NULL otherwise.
833 */
834static struct rmap_item *stable_tree_search(struct page *page,
835 struct page **page2,
836 struct rmap_item *rmap_item)
837{
838 struct rb_node *node = root_stable_tree.rb_node;
839
840 while (node) {
841 struct rmap_item *tree_rmap_item, *next_rmap_item;
842 int ret;
843
844 tree_rmap_item = rb_entry(node, struct rmap_item, node);
845 while (tree_rmap_item) {
846 BUG_ON(!in_stable_tree(tree_rmap_item));
847 cond_resched();
848 page2[0] = get_ksm_page(tree_rmap_item);
849 if (page2[0])
850 break;
851 next_rmap_item = tree_rmap_item->next;
852 remove_rmap_item_from_tree(tree_rmap_item);
853 tree_rmap_item = next_rmap_item;
854 }
855 if (!tree_rmap_item)
856 return NULL;
857
858 ret = memcmp_pages(page, page2[0]);
859
860 if (ret < 0) {
861 put_page(page2[0]);
862 node = node->rb_left;
863 } else if (ret > 0) {
864 put_page(page2[0]);
865 node = node->rb_right;
866 } else {
867 return tree_rmap_item;
868 }
869 }
870
871 return NULL;
872}
873
874/*
875 * stable_tree_insert - insert rmap_item pointing to new ksm page
876 * into the stable tree.
877 *
878 * @page: the page that we are searching identical page to inside the stable
879 * tree.
880 * @rmap_item: pointer to the reverse mapping item.
881 *
882 * This function returns rmap_item if success, NULL otherwise.
883 */
884static struct rmap_item *stable_tree_insert(struct page *page,
885 struct rmap_item *rmap_item)
886{
887 struct rb_node **new = &root_stable_tree.rb_node;
888 struct rb_node *parent = NULL;
889
890 while (*new) {
891 struct rmap_item *tree_rmap_item, *next_rmap_item;
892 struct page *tree_page;
893 int ret;
894
895 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
896 while (tree_rmap_item) {
897 BUG_ON(!in_stable_tree(tree_rmap_item));
898 cond_resched();
899 tree_page = get_ksm_page(tree_rmap_item);
900 if (tree_page)
901 break;
902 next_rmap_item = tree_rmap_item->next;
903 remove_rmap_item_from_tree(tree_rmap_item);
904 tree_rmap_item = next_rmap_item;
905 }
906 if (!tree_rmap_item)
907 return NULL;
908
909 ret = memcmp_pages(page, tree_page);
910 put_page(tree_page);
911
912 parent = *new;
913 if (ret < 0)
914 new = &parent->rb_left;
915 else if (ret > 0)
916 new = &parent->rb_right;
917 else {
918 /*
919 * It is not a bug that stable_tree_search() didn't
920 * find this node: because at that time our page was
921 * not yet write-protected, so may have changed since.
922 */
923 return NULL;
924 }
925 }
926
Izik Eidus31dbd012009-09-21 17:02:03 -0700927 rmap_item->address |= NODE_FLAG | STABLE_FLAG;
928 rmap_item->next = NULL;
929 rb_link_node(&rmap_item->node, parent, new);
930 rb_insert_color(&rmap_item->node, &root_stable_tree);
931
Hugh Dickinse178dfd2009-09-21 17:02:10 -0700932 ksm_pages_shared++;
Izik Eidus31dbd012009-09-21 17:02:03 -0700933 return rmap_item;
934}
935
936/*
937 * unstable_tree_search_insert - search and insert items into the unstable tree.
938 *
939 * @page: the page that we are going to search for identical page or to insert
940 * into the unstable tree
941 * @page2: pointer into identical page that was found inside the unstable tree
942 * @rmap_item: the reverse mapping item of page
943 *
944 * This function searches for a page in the unstable tree identical to the
945 * page currently being scanned; and if no identical page is found in the
946 * tree, we insert rmap_item as a new object into the unstable tree.
947 *
948 * This function returns pointer to rmap_item found to be identical
949 * to the currently scanned page, NULL otherwise.
950 *
951 * This function does both searching and inserting, because they share
952 * the same walking algorithm in an rbtree.
953 */
954static struct rmap_item *unstable_tree_search_insert(struct page *page,
955 struct page **page2,
956 struct rmap_item *rmap_item)
957{
958 struct rb_node **new = &root_unstable_tree.rb_node;
959 struct rb_node *parent = NULL;
960
961 while (*new) {
962 struct rmap_item *tree_rmap_item;
963 int ret;
964
965 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
966 page2[0] = get_mergeable_page(tree_rmap_item);
967 if (!page2[0])
968 return NULL;
969
970 /*
971 * Don't substitute an unswappable ksm page
972 * just for one good swappable forked page.
973 */
974 if (page == page2[0]) {
975 put_page(page2[0]);
976 return NULL;
977 }
978
979 ret = memcmp_pages(page, page2[0]);
980
981 parent = *new;
982 if (ret < 0) {
983 put_page(page2[0]);
984 new = &parent->rb_left;
985 } else if (ret > 0) {
986 put_page(page2[0]);
987 new = &parent->rb_right;
988 } else {
989 return tree_rmap_item;
990 }
991 }
992
993 rmap_item->address |= NODE_FLAG;
994 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
995 rb_link_node(&rmap_item->node, parent, new);
996 rb_insert_color(&rmap_item->node, &root_unstable_tree);
997
998 return NULL;
999}
1000
1001/*
1002 * stable_tree_append - add another rmap_item to the linked list of
1003 * rmap_items hanging off a given node of the stable tree, all sharing
1004 * the same ksm page.
1005 */
1006static void stable_tree_append(struct rmap_item *rmap_item,
1007 struct rmap_item *tree_rmap_item)
1008{
1009 rmap_item->next = tree_rmap_item->next;
1010 rmap_item->prev = tree_rmap_item;
1011
1012 if (tree_rmap_item->next)
1013 tree_rmap_item->next->prev = rmap_item;
1014
1015 tree_rmap_item->next = rmap_item;
1016 rmap_item->address |= STABLE_FLAG;
Hugh Dickinse178dfd2009-09-21 17:02:10 -07001017
1018 ksm_pages_sharing++;
Izik Eidus31dbd012009-09-21 17:02:03 -07001019}
1020
1021/*
1022 * cmp_and_merge_page - take a page computes its hash value and check if there
1023 * is similar hash value to different page,
1024 * in case we find that there is similar hash to different page we call to
1025 * try_to_merge_two_pages().
1026 *
1027 * @page: the page that we are searching identical page to.
1028 * @rmap_item: the reverse mapping into the virtual address of this page
1029 */
1030static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1031{
1032 struct page *page2[1];
1033 struct rmap_item *tree_rmap_item;
1034 unsigned int checksum;
1035 int err;
1036
1037 if (in_stable_tree(rmap_item))
1038 remove_rmap_item_from_tree(rmap_item);
1039
1040 /* We first start with searching the page inside the stable tree */
1041 tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1042 if (tree_rmap_item) {
Hugh Dickinse178dfd2009-09-21 17:02:10 -07001043 if (page == page2[0]) /* forked */
Izik Eidus31dbd012009-09-21 17:02:03 -07001044 err = 0;
Hugh Dickinse178dfd2009-09-21 17:02:10 -07001045 else
Izik Eidus31dbd012009-09-21 17:02:03 -07001046 err = try_to_merge_with_ksm_page(rmap_item->mm,
1047 rmap_item->address,
1048 page, page2[0]);
1049 put_page(page2[0]);
1050
1051 if (!err) {
1052 /*
1053 * The page was successfully merged:
1054 * add its rmap_item to the stable tree.
1055 */
1056 stable_tree_append(rmap_item, tree_rmap_item);
1057 }
1058 return;
1059 }
1060
1061 /*
1062 * A ksm page might have got here by fork, but its other
1063 * references have already been removed from the stable tree.
1064 */
1065 if (PageKsm(page))
1066 break_cow(rmap_item->mm, rmap_item->address);
1067
1068 /*
1069 * In case the hash value of the page was changed from the last time we
1070 * have calculated it, this page to be changed frequely, therefore we
1071 * don't want to insert it to the unstable tree, and we don't want to
1072 * waste our time to search if there is something identical to it there.
1073 */
1074 checksum = calc_checksum(page);
1075 if (rmap_item->oldchecksum != checksum) {
1076 rmap_item->oldchecksum = checksum;
1077 return;
1078 }
1079
1080 tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1081 if (tree_rmap_item) {
1082 err = try_to_merge_two_pages(rmap_item->mm,
1083 rmap_item->address, page,
1084 tree_rmap_item->mm,
1085 tree_rmap_item->address, page2[0]);
1086 /*
1087 * As soon as we merge this page, we want to remove the
1088 * rmap_item of the page we have merged with from the unstable
1089 * tree, and insert it instead as new node in the stable tree.
1090 */
1091 if (!err) {
1092 rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1093 tree_rmap_item->address &= ~NODE_FLAG;
1094 /*
1095 * If we fail to insert the page into the stable tree,
1096 * we will have 2 virtual addresses that are pointing
1097 * to a ksm page left outside the stable tree,
1098 * in which case we need to break_cow on both.
1099 */
1100 if (stable_tree_insert(page2[0], tree_rmap_item))
1101 stable_tree_append(rmap_item, tree_rmap_item);
1102 else {
1103 break_cow(tree_rmap_item->mm,
1104 tree_rmap_item->address);
1105 break_cow(rmap_item->mm, rmap_item->address);
Izik Eidus31dbd012009-09-21 17:02:03 -07001106 }
1107 }
1108
1109 put_page(page2[0]);
1110 }
1111}
1112
1113static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1114 struct list_head *cur,
1115 unsigned long addr)
1116{
1117 struct rmap_item *rmap_item;
1118
1119 while (cur != &mm_slot->rmap_list) {
1120 rmap_item = list_entry(cur, struct rmap_item, link);
1121 if ((rmap_item->address & PAGE_MASK) == addr) {
1122 if (!in_stable_tree(rmap_item))
1123 remove_rmap_item_from_tree(rmap_item);
1124 return rmap_item;
1125 }
1126 if (rmap_item->address > addr)
1127 break;
1128 cur = cur->next;
1129 remove_rmap_item_from_tree(rmap_item);
1130 list_del(&rmap_item->link);
1131 free_rmap_item(rmap_item);
1132 }
1133
1134 rmap_item = alloc_rmap_item();
1135 if (rmap_item) {
1136 /* It has already been zeroed */
1137 rmap_item->mm = mm_slot->mm;
1138 rmap_item->address = addr;
1139 list_add_tail(&rmap_item->link, cur);
1140 }
1141 return rmap_item;
1142}
1143
1144static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1145{
1146 struct mm_struct *mm;
1147 struct mm_slot *slot;
1148 struct vm_area_struct *vma;
1149 struct rmap_item *rmap_item;
1150
1151 if (list_empty(&ksm_mm_head.mm_list))
1152 return NULL;
1153
1154 slot = ksm_scan.mm_slot;
1155 if (slot == &ksm_mm_head) {
1156 root_unstable_tree = RB_ROOT;
1157
1158 spin_lock(&ksm_mmlist_lock);
1159 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1160 ksm_scan.mm_slot = slot;
1161 spin_unlock(&ksm_mmlist_lock);
1162next_mm:
1163 ksm_scan.address = 0;
1164 ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1165 struct rmap_item, link);
1166 }
1167
1168 mm = slot->mm;
1169 down_read(&mm->mmap_sem);
1170 for (vma = find_vma(mm, ksm_scan.address); vma; vma = vma->vm_next) {
1171 if (!(vma->vm_flags & VM_MERGEABLE))
1172 continue;
1173 if (ksm_scan.address < vma->vm_start)
1174 ksm_scan.address = vma->vm_start;
1175 if (!vma->anon_vma)
1176 ksm_scan.address = vma->vm_end;
1177
1178 while (ksm_scan.address < vma->vm_end) {
1179 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1180 if (*page && PageAnon(*page)) {
1181 flush_anon_page(vma, *page, ksm_scan.address);
1182 flush_dcache_page(*page);
1183 rmap_item = get_next_rmap_item(slot,
1184 ksm_scan.rmap_item->link.next,
1185 ksm_scan.address);
1186 if (rmap_item) {
1187 ksm_scan.rmap_item = rmap_item;
1188 ksm_scan.address += PAGE_SIZE;
1189 } else
1190 put_page(*page);
1191 up_read(&mm->mmap_sem);
1192 return rmap_item;
1193 }
1194 if (*page)
1195 put_page(*page);
1196 ksm_scan.address += PAGE_SIZE;
1197 cond_resched();
1198 }
1199 }
1200
1201 if (!ksm_scan.address) {
1202 /*
1203 * We've completed a full scan of all vmas, holding mmap_sem
1204 * throughout, and found no VM_MERGEABLE: so do the same as
1205 * __ksm_exit does to remove this mm from all our lists now.
1206 */
1207 remove_mm_from_lists(mm);
1208 up_read(&mm->mmap_sem);
1209 slot = ksm_scan.mm_slot;
1210 if (slot != &ksm_mm_head)
1211 goto next_mm;
1212 return NULL;
1213 }
1214
1215 /*
1216 * Nuke all the rmap_items that are above this current rmap:
1217 * because there were no VM_MERGEABLE vmas with such addresses.
1218 */
1219 remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1220 up_read(&mm->mmap_sem);
1221
1222 spin_lock(&ksm_mmlist_lock);
1223 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1224 ksm_scan.mm_slot = slot;
1225 spin_unlock(&ksm_mmlist_lock);
1226
1227 /* Repeat until we've completed scanning the whole list */
1228 if (slot != &ksm_mm_head)
1229 goto next_mm;
1230
1231 /*
1232 * Bump seqnr here rather than at top, so that __ksm_exit
1233 * can skip rb_erase on unstable tree until we run again.
1234 */
1235 ksm_scan.seqnr++;
1236 return NULL;
1237}
1238
1239/**
1240 * ksm_do_scan - the ksm scanner main worker function.
1241 * @scan_npages - number of pages we want to scan before we return.
1242 */
1243static void ksm_do_scan(unsigned int scan_npages)
1244{
1245 struct rmap_item *rmap_item;
1246 struct page *page;
1247
1248 while (scan_npages--) {
1249 cond_resched();
1250 rmap_item = scan_get_next_rmap_item(&page);
1251 if (!rmap_item)
1252 return;
1253 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1254 cmp_and_merge_page(page, rmap_item);
1255 put_page(page);
1256 }
1257}
1258
1259static int ksm_scan_thread(void *nothing)
1260{
Izik Eidus339aa622009-09-21 17:02:07 -07001261 set_user_nice(current, 5);
Izik Eidus31dbd012009-09-21 17:02:03 -07001262
1263 while (!kthread_should_stop()) {
1264 if (ksm_run & KSM_RUN_MERGE) {
1265 mutex_lock(&ksm_thread_mutex);
1266 ksm_do_scan(ksm_thread_pages_to_scan);
1267 mutex_unlock(&ksm_thread_mutex);
1268 schedule_timeout_interruptible(
1269 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1270 } else {
1271 wait_event_interruptible(ksm_thread_wait,
1272 (ksm_run & KSM_RUN_MERGE) ||
1273 kthread_should_stop());
1274 }
1275 }
1276 return 0;
1277}
1278
Hugh Dickinsf8af4da2009-09-21 17:01:57 -07001279int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1280 unsigned long end, int advice, unsigned long *vm_flags)
1281{
1282 struct mm_struct *mm = vma->vm_mm;
1283
1284 switch (advice) {
1285 case MADV_MERGEABLE:
1286 /*
1287 * Be somewhat over-protective for now!
1288 */
1289 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1290 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1291 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1292 VM_MIXEDMAP | VM_SAO))
1293 return 0; /* just ignore the advice */
1294
1295 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
1296 if (__ksm_enter(mm) < 0)
1297 return -EAGAIN;
1298
1299 *vm_flags |= VM_MERGEABLE;
1300 break;
1301
1302 case MADV_UNMERGEABLE:
1303 if (!(*vm_flags & VM_MERGEABLE))
1304 return 0; /* just ignore the advice */
1305
Izik Eidus31dbd012009-09-21 17:02:03 -07001306 if (vma->anon_vma)
1307 unmerge_ksm_pages(vma, start, end);
Hugh Dickinsf8af4da2009-09-21 17:01:57 -07001308
1309 *vm_flags &= ~VM_MERGEABLE;
1310 break;
1311 }
1312
1313 return 0;
1314}
1315
1316int __ksm_enter(struct mm_struct *mm)
1317{
Izik Eidus31dbd012009-09-21 17:02:03 -07001318 struct mm_slot *mm_slot = alloc_mm_slot();
1319 if (!mm_slot)
1320 return -ENOMEM;
1321
1322 spin_lock(&ksm_mmlist_lock);
1323 insert_to_mm_slots_hash(mm, mm_slot);
1324 /*
1325 * Insert just behind the scanning cursor, to let the area settle
1326 * down a little; when fork is followed by immediate exec, we don't
1327 * want ksmd to waste time setting up and tearing down an rmap_list.
1328 */
1329 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1330 spin_unlock(&ksm_mmlist_lock);
1331
Hugh Dickinsf8af4da2009-09-21 17:01:57 -07001332 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1333 return 0;
1334}
1335
1336void __ksm_exit(struct mm_struct *mm)
1337{
Izik Eidus31dbd012009-09-21 17:02:03 -07001338 /*
1339 * This process is exiting: doesn't hold and doesn't need mmap_sem;
1340 * but we do need to exclude ksmd and other exiters while we modify
1341 * the various lists and trees.
1342 */
1343 mutex_lock(&ksm_thread_mutex);
1344 remove_mm_from_lists(mm);
1345 mutex_unlock(&ksm_thread_mutex);
Hugh Dickinsf8af4da2009-09-21 17:01:57 -07001346}
Izik Eidus31dbd012009-09-21 17:02:03 -07001347
1348#define KSM_ATTR_RO(_name) \
1349 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1350#define KSM_ATTR(_name) \
1351 static struct kobj_attribute _name##_attr = \
1352 __ATTR(_name, 0644, _name##_show, _name##_store)
1353
1354static ssize_t sleep_millisecs_show(struct kobject *kobj,
1355 struct kobj_attribute *attr, char *buf)
1356{
1357 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1358}
1359
1360static ssize_t sleep_millisecs_store(struct kobject *kobj,
1361 struct kobj_attribute *attr,
1362 const char *buf, size_t count)
1363{
1364 unsigned long msecs;
1365 int err;
1366
1367 err = strict_strtoul(buf, 10, &msecs);
1368 if (err || msecs > UINT_MAX)
1369 return -EINVAL;
1370
1371 ksm_thread_sleep_millisecs = msecs;
1372
1373 return count;
1374}
1375KSM_ATTR(sleep_millisecs);
1376
1377static ssize_t pages_to_scan_show(struct kobject *kobj,
1378 struct kobj_attribute *attr, char *buf)
1379{
1380 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1381}
1382
1383static ssize_t pages_to_scan_store(struct kobject *kobj,
1384 struct kobj_attribute *attr,
1385 const char *buf, size_t count)
1386{
1387 int err;
1388 unsigned long nr_pages;
1389
1390 err = strict_strtoul(buf, 10, &nr_pages);
1391 if (err || nr_pages > UINT_MAX)
1392 return -EINVAL;
1393
1394 ksm_thread_pages_to_scan = nr_pages;
1395
1396 return count;
1397}
1398KSM_ATTR(pages_to_scan);
1399
1400static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1401 char *buf)
1402{
1403 return sprintf(buf, "%u\n", ksm_run);
1404}
1405
1406static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1407 const char *buf, size_t count)
1408{
1409 int err;
1410 unsigned long flags;
1411
1412 err = strict_strtoul(buf, 10, &flags);
1413 if (err || flags > UINT_MAX)
1414 return -EINVAL;
1415 if (flags > KSM_RUN_UNMERGE)
1416 return -EINVAL;
1417
1418 /*
1419 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1420 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
Hugh Dickinsb4028262009-09-21 17:02:09 -07001421 * breaking COW to free the unswappable pages_shared (but leaves
Izik Eidus31dbd012009-09-21 17:02:03 -07001422 * mm_slots on the list for when ksmd may be set running again).
1423 */
1424
1425 mutex_lock(&ksm_thread_mutex);
1426 if (ksm_run != flags) {
1427 ksm_run = flags;
1428 if (flags & KSM_RUN_UNMERGE)
1429 unmerge_and_remove_all_rmap_items();
1430 }
1431 mutex_unlock(&ksm_thread_mutex);
1432
1433 if (flags & KSM_RUN_MERGE)
1434 wake_up_interruptible(&ksm_thread_wait);
1435
1436 return count;
1437}
1438KSM_ATTR(run);
1439
Izik Eidus31dbd012009-09-21 17:02:03 -07001440static ssize_t max_kernel_pages_store(struct kobject *kobj,
1441 struct kobj_attribute *attr,
1442 const char *buf, size_t count)
1443{
1444 int err;
1445 unsigned long nr_pages;
1446
1447 err = strict_strtoul(buf, 10, &nr_pages);
1448 if (err)
1449 return -EINVAL;
1450
1451 ksm_max_kernel_pages = nr_pages;
1452
1453 return count;
1454}
1455
1456static ssize_t max_kernel_pages_show(struct kobject *kobj,
1457 struct kobj_attribute *attr, char *buf)
1458{
1459 return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1460}
1461KSM_ATTR(max_kernel_pages);
1462
Hugh Dickinsb4028262009-09-21 17:02:09 -07001463static ssize_t pages_shared_show(struct kobject *kobj,
1464 struct kobj_attribute *attr, char *buf)
1465{
1466 return sprintf(buf, "%lu\n", ksm_pages_shared);
1467}
1468KSM_ATTR_RO(pages_shared);
1469
1470static ssize_t pages_sharing_show(struct kobject *kobj,
1471 struct kobj_attribute *attr, char *buf)
1472{
Hugh Dickinse178dfd2009-09-21 17:02:10 -07001473 return sprintf(buf, "%lu\n", ksm_pages_sharing);
Hugh Dickinsb4028262009-09-21 17:02:09 -07001474}
1475KSM_ATTR_RO(pages_sharing);
1476
Izik Eidus31dbd012009-09-21 17:02:03 -07001477static struct attribute *ksm_attrs[] = {
1478 &sleep_millisecs_attr.attr,
1479 &pages_to_scan_attr.attr,
1480 &run_attr.attr,
Izik Eidus31dbd012009-09-21 17:02:03 -07001481 &max_kernel_pages_attr.attr,
Hugh Dickinsb4028262009-09-21 17:02:09 -07001482 &pages_shared_attr.attr,
1483 &pages_sharing_attr.attr,
Izik Eidus31dbd012009-09-21 17:02:03 -07001484 NULL,
1485};
1486
1487static struct attribute_group ksm_attr_group = {
1488 .attrs = ksm_attrs,
1489 .name = "ksm",
1490};
1491
1492static int __init ksm_init(void)
1493{
1494 struct task_struct *ksm_thread;
1495 int err;
1496
1497 err = ksm_slab_init();
1498 if (err)
1499 goto out;
1500
1501 err = mm_slots_hash_init();
1502 if (err)
1503 goto out_free1;
1504
1505 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1506 if (IS_ERR(ksm_thread)) {
1507 printk(KERN_ERR "ksm: creating kthread failed\n");
1508 err = PTR_ERR(ksm_thread);
1509 goto out_free2;
1510 }
1511
1512 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1513 if (err) {
1514 printk(KERN_ERR "ksm: register sysfs failed\n");
1515 goto out_free3;
1516 }
1517
1518 return 0;
1519
1520out_free3:
1521 kthread_stop(ksm_thread);
1522out_free2:
1523 mm_slots_hash_free();
1524out_free1:
1525 ksm_slab_free();
1526out:
1527 return err;
1528}
1529module_init(ksm_init)