Alex Elder | 9a5a110 | 2014-06-30 17:15:37 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2014 Broadcom Corporation |
| 3 | * Copyright 2014 Linaro Limited |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public License as |
| 7 | * published by the Free Software Foundation version 2. |
| 8 | * |
| 9 | * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| 10 | * kind, whether express or implied; without even the implied warranty |
| 11 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/errno.h> |
| 17 | #include <linux/io.h> |
| 18 | #include <linux/of.h> |
| 19 | #include <linux/sched.h> |
| 20 | |
| 21 | #include <asm/smp.h> |
| 22 | #include <asm/smp_plat.h> |
| 23 | #include <asm/smp_scu.h> |
| 24 | |
| 25 | /* Size of mapped Cortex A9 SCU address space */ |
| 26 | #define CORTEX_A9_SCU_SIZE 0x58 |
| 27 | |
| 28 | #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */ |
| 29 | #define BOOT_ADDR_CPUID_MASK 0x3 |
| 30 | |
| 31 | /* Name of device node property defining secondary boot register location */ |
| 32 | #define OF_SECONDARY_BOOT "secondary-boot-reg" |
| 33 | |
| 34 | /* I/O address of register used to coordinate secondary core startup */ |
| 35 | static u32 secondary_boot; |
| 36 | |
| 37 | /* |
| 38 | * Enable the Cortex A9 Snoop Control Unit |
| 39 | * |
| 40 | * By the time this is called we already know there are multiple |
| 41 | * cores present. We assume we're running on a Cortex A9 processor, |
| 42 | * so any trouble getting the base address register or getting the |
| 43 | * SCU base is a problem. |
| 44 | * |
| 45 | * Return 0 if successful or an error code otherwise. |
| 46 | */ |
| 47 | static int __init scu_a9_enable(void) |
| 48 | { |
| 49 | unsigned long config_base; |
| 50 | void __iomem *scu_base; |
| 51 | |
| 52 | if (!scu_a9_has_base()) { |
| 53 | pr_err("no configuration base address register!\n"); |
| 54 | return -ENXIO; |
| 55 | } |
| 56 | |
| 57 | /* Config base address register value is zero for uniprocessor */ |
| 58 | config_base = scu_a9_get_base(); |
| 59 | if (!config_base) { |
| 60 | pr_err("hardware reports only one core\n"); |
| 61 | return -ENOENT; |
| 62 | } |
| 63 | |
| 64 | scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE); |
| 65 | if (!scu_base) { |
| 66 | pr_err("failed to remap config base (%lu/%u) for SCU\n", |
| 67 | config_base, CORTEX_A9_SCU_SIZE); |
| 68 | return -ENOMEM; |
| 69 | } |
| 70 | |
| 71 | scu_enable(scu_base); |
| 72 | |
| 73 | iounmap(scu_base); /* That's the last we'll need of this */ |
| 74 | |
| 75 | return 0; |
| 76 | } |
| 77 | |
| 78 | static void __init bcm_smp_prepare_cpus(unsigned int max_cpus) |
| 79 | { |
| 80 | static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 }; |
| 81 | struct device_node *node; |
| 82 | int ret; |
| 83 | |
| 84 | BUG_ON(secondary_boot); /* We're called only once */ |
| 85 | |
| 86 | /* |
| 87 | * This function is only called via smp_ops->smp_prepare_cpu(). |
| 88 | * That only happens if a "/cpus" device tree node exists |
| 89 | * and has an "enable-method" property that selects the SMP |
| 90 | * operations defined herein. |
| 91 | */ |
| 92 | node = of_find_node_by_path("/cpus"); |
| 93 | BUG_ON(!node); |
| 94 | |
| 95 | /* |
| 96 | * Our secondary enable method requires a "secondary-boot-reg" |
| 97 | * property to specify a register address used to request the |
| 98 | * ROM code boot a secondary code. If we have any trouble |
| 99 | * getting this we fall back to uniprocessor mode. |
| 100 | */ |
| 101 | if (of_property_read_u32(node, OF_SECONDARY_BOOT, &secondary_boot)) { |
| 102 | pr_err("%s: missing/invalid " OF_SECONDARY_BOOT " property\n", |
| 103 | node->name); |
| 104 | ret = -ENOENT; /* Arrange to disable SMP */ |
| 105 | goto out; |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * Enable the SCU on Cortex A9 based SoCs. If -ENOENT is |
| 110 | * returned, the SoC reported a uniprocessor configuration. |
| 111 | * We bail on any other error. |
| 112 | */ |
| 113 | ret = scu_a9_enable(); |
| 114 | out: |
| 115 | of_node_put(node); |
| 116 | if (ret) { |
| 117 | /* Update the CPU present map to reflect uniprocessor mode */ |
| 118 | BUG_ON(ret != -ENOENT); |
| 119 | pr_warn("disabling SMP\n"); |
| 120 | init_cpu_present(&only_cpu_0); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | * The ROM code has the secondary cores looping, waiting for an event. |
| 126 | * When an event occurs each core examines the bottom two bits of the |
| 127 | * secondary boot register. When a core finds those bits contain its |
| 128 | * own core id, it performs initialization, including computing its boot |
| 129 | * address by clearing the boot register value's bottom two bits. The |
| 130 | * core signals that it is beginning its execution by writing its boot |
| 131 | * address back to the secondary boot register, and finally jumps to |
| 132 | * that address. |
| 133 | * |
| 134 | * So to start a core executing we need to: |
| 135 | * - Encode the (hardware) CPU id with the bottom bits of the secondary |
| 136 | * start address. |
| 137 | * - Write that value into the secondary boot register. |
| 138 | * - Generate an event to wake up the secondary CPU(s). |
| 139 | * - Wait for the secondary boot register to be re-written, which |
| 140 | * indicates the secondary core has started. |
| 141 | */ |
| 142 | static int bcm_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| 143 | { |
| 144 | void __iomem *boot_reg; |
| 145 | phys_addr_t boot_func; |
| 146 | u64 start_clock; |
| 147 | u32 cpu_id; |
| 148 | u32 boot_val; |
| 149 | bool timeout = false; |
| 150 | |
| 151 | cpu_id = cpu_logical_map(cpu); |
| 152 | if (cpu_id & ~BOOT_ADDR_CPUID_MASK) { |
| 153 | pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK); |
| 154 | return -EINVAL; |
| 155 | } |
| 156 | |
| 157 | if (!secondary_boot) { |
| 158 | pr_err("required secondary boot register not specified\n"); |
| 159 | return -EINVAL; |
| 160 | } |
| 161 | |
| 162 | boot_reg = ioremap_nocache((phys_addr_t)secondary_boot, sizeof(u32)); |
| 163 | if (!boot_reg) { |
| 164 | pr_err("unable to map boot register for cpu %u\n", cpu_id); |
| 165 | return -ENOSYS; |
| 166 | } |
| 167 | |
| 168 | /* |
| 169 | * Secondary cores will start in secondary_startup(), |
| 170 | * defined in "arch/arm/kernel/head.S" |
| 171 | */ |
| 172 | boot_func = virt_to_phys(secondary_startup); |
| 173 | BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK); |
| 174 | BUG_ON(boot_func > (phys_addr_t)U32_MAX); |
| 175 | |
| 176 | /* The core to start is encoded in the low bits */ |
| 177 | boot_val = (u32)boot_func | cpu_id; |
| 178 | writel_relaxed(boot_val, boot_reg); |
| 179 | |
| 180 | sev(); |
| 181 | |
| 182 | /* The low bits will be cleared once the core has started */ |
| 183 | start_clock = local_clock(); |
| 184 | while (!timeout && readl_relaxed(boot_reg) == boot_val) |
| 185 | timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS; |
| 186 | |
| 187 | iounmap(boot_reg); |
| 188 | |
| 189 | if (!timeout) |
| 190 | return 0; |
| 191 | |
| 192 | pr_err("timeout waiting for cpu %u to start\n", cpu_id); |
| 193 | |
| 194 | return -ENOSYS; |
| 195 | } |
| 196 | |
| 197 | static struct smp_operations bcm_smp_ops __initdata = { |
| 198 | .smp_prepare_cpus = bcm_smp_prepare_cpus, |
| 199 | .smp_boot_secondary = bcm_boot_secondary, |
| 200 | }; |
| 201 | CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method", |
| 202 | &bcm_smp_ops); |