blob: 93d5f87c00d57c392e43c8bd1c1e5b0df15ca0bc [file] [log] [blame]
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -07001#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/mm.h>
4#include <linux/sched.h>
5#include <linux/mmu_notifier.h>
6#include <linux/rmap.h>
7#include <linux/swap.h>
8#include <linux/mm_inline.h>
9#include <linux/kthread.h>
10#include <linux/khugepaged.h>
11#include <linux/freezer.h>
12#include <linux/mman.h>
13#include <linux/hashtable.h>
14#include <linux/userfaultfd_k.h>
15#include <linux/page_idle.h>
16#include <linux/swapops.h>
Kirill A. Shutemovf3f0e1d2016-07-26 15:26:32 -070017#include <linux/shmem_fs.h>
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -070018
19#include <asm/tlb.h>
20#include <asm/pgalloc.h>
21#include "internal.h"
22
23enum scan_result {
24 SCAN_FAIL,
25 SCAN_SUCCEED,
26 SCAN_PMD_NULL,
27 SCAN_EXCEED_NONE_PTE,
28 SCAN_PTE_NON_PRESENT,
29 SCAN_PAGE_RO,
30 SCAN_NO_REFERENCED_PAGE,
31 SCAN_PAGE_NULL,
32 SCAN_SCAN_ABORT,
33 SCAN_PAGE_COUNT,
34 SCAN_PAGE_LRU,
35 SCAN_PAGE_LOCK,
36 SCAN_PAGE_ANON,
37 SCAN_PAGE_COMPOUND,
38 SCAN_ANY_PROCESS,
39 SCAN_VMA_NULL,
40 SCAN_VMA_CHECK,
41 SCAN_ADDRESS_RANGE,
42 SCAN_SWAP_CACHE_PAGE,
43 SCAN_DEL_PAGE_LRU,
44 SCAN_ALLOC_HUGE_PAGE_FAIL,
45 SCAN_CGROUP_CHARGE_FAIL,
Kirill A. Shutemovf3f0e1d2016-07-26 15:26:32 -070046 SCAN_EXCEED_SWAP_PTE,
47 SCAN_TRUNCATED,
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -070048};
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/huge_memory.h>
52
53/* default scan 8*512 pte (or vmas) every 30 second */
54static unsigned int khugepaged_pages_to_scan __read_mostly;
55static unsigned int khugepaged_pages_collapsed;
56static unsigned int khugepaged_full_scans;
57static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58/* during fragmentation poll the hugepage allocator once every minute */
59static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60static unsigned long khugepaged_sleep_expire;
61static DEFINE_SPINLOCK(khugepaged_mm_lock);
62static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
63/*
64 * default collapse hugepages if there is at least one pte mapped like
65 * it would have happened if the vma was large enough during page
66 * fault.
67 */
68static unsigned int khugepaged_max_ptes_none __read_mostly;
69static unsigned int khugepaged_max_ptes_swap __read_mostly;
70
71#define MM_SLOTS_HASH_BITS 10
72static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
74static struct kmem_cache *mm_slot_cache __read_mostly;
75
76/**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86};
87
88/**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
100};
101
102static struct khugepaged_scan khugepaged_scan = {
103 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104};
105
106static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
107 struct kobj_attribute *attr,
108 char *buf)
109{
110 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
111}
112
113static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
114 struct kobj_attribute *attr,
115 const char *buf, size_t count)
116{
117 unsigned long msecs;
118 int err;
119
120 err = kstrtoul(buf, 10, &msecs);
121 if (err || msecs > UINT_MAX)
122 return -EINVAL;
123
124 khugepaged_scan_sleep_millisecs = msecs;
125 khugepaged_sleep_expire = 0;
126 wake_up_interruptible(&khugepaged_wait);
127
128 return count;
129}
130static struct kobj_attribute scan_sleep_millisecs_attr =
131 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
132 scan_sleep_millisecs_store);
133
134static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
135 struct kobj_attribute *attr,
136 char *buf)
137{
138 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
139}
140
141static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
142 struct kobj_attribute *attr,
143 const char *buf, size_t count)
144{
145 unsigned long msecs;
146 int err;
147
148 err = kstrtoul(buf, 10, &msecs);
149 if (err || msecs > UINT_MAX)
150 return -EINVAL;
151
152 khugepaged_alloc_sleep_millisecs = msecs;
153 khugepaged_sleep_expire = 0;
154 wake_up_interruptible(&khugepaged_wait);
155
156 return count;
157}
158static struct kobj_attribute alloc_sleep_millisecs_attr =
159 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
160 alloc_sleep_millisecs_store);
161
162static ssize_t pages_to_scan_show(struct kobject *kobj,
163 struct kobj_attribute *attr,
164 char *buf)
165{
166 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
167}
168static ssize_t pages_to_scan_store(struct kobject *kobj,
169 struct kobj_attribute *attr,
170 const char *buf, size_t count)
171{
172 int err;
173 unsigned long pages;
174
175 err = kstrtoul(buf, 10, &pages);
176 if (err || !pages || pages > UINT_MAX)
177 return -EINVAL;
178
179 khugepaged_pages_to_scan = pages;
180
181 return count;
182}
183static struct kobj_attribute pages_to_scan_attr =
184 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
185 pages_to_scan_store);
186
187static ssize_t pages_collapsed_show(struct kobject *kobj,
188 struct kobj_attribute *attr,
189 char *buf)
190{
191 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
192}
193static struct kobj_attribute pages_collapsed_attr =
194 __ATTR_RO(pages_collapsed);
195
196static ssize_t full_scans_show(struct kobject *kobj,
197 struct kobj_attribute *attr,
198 char *buf)
199{
200 return sprintf(buf, "%u\n", khugepaged_full_scans);
201}
202static struct kobj_attribute full_scans_attr =
203 __ATTR_RO(full_scans);
204
205static ssize_t khugepaged_defrag_show(struct kobject *kobj,
206 struct kobj_attribute *attr, char *buf)
207{
208 return single_hugepage_flag_show(kobj, attr, buf,
209 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
210}
211static ssize_t khugepaged_defrag_store(struct kobject *kobj,
212 struct kobj_attribute *attr,
213 const char *buf, size_t count)
214{
215 return single_hugepage_flag_store(kobj, attr, buf, count,
216 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
217}
218static struct kobj_attribute khugepaged_defrag_attr =
219 __ATTR(defrag, 0644, khugepaged_defrag_show,
220 khugepaged_defrag_store);
221
222/*
223 * max_ptes_none controls if khugepaged should collapse hugepages over
224 * any unmapped ptes in turn potentially increasing the memory
225 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
226 * reduce the available free memory in the system as it
227 * runs. Increasing max_ptes_none will instead potentially reduce the
228 * free memory in the system during the khugepaged scan.
229 */
230static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
231 struct kobj_attribute *attr,
232 char *buf)
233{
234 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
235}
236static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
237 struct kobj_attribute *attr,
238 const char *buf, size_t count)
239{
240 int err;
241 unsigned long max_ptes_none;
242
243 err = kstrtoul(buf, 10, &max_ptes_none);
244 if (err || max_ptes_none > HPAGE_PMD_NR-1)
245 return -EINVAL;
246
247 khugepaged_max_ptes_none = max_ptes_none;
248
249 return count;
250}
251static struct kobj_attribute khugepaged_max_ptes_none_attr =
252 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
253 khugepaged_max_ptes_none_store);
254
255static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 char *buf)
258{
259 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
260}
261
262static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265{
266 int err;
267 unsigned long max_ptes_swap;
268
269 err = kstrtoul(buf, 10, &max_ptes_swap);
270 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
271 return -EINVAL;
272
273 khugepaged_max_ptes_swap = max_ptes_swap;
274
275 return count;
276}
277
278static struct kobj_attribute khugepaged_max_ptes_swap_attr =
279 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
280 khugepaged_max_ptes_swap_store);
281
282static struct attribute *khugepaged_attr[] = {
283 &khugepaged_defrag_attr.attr,
284 &khugepaged_max_ptes_none_attr.attr,
285 &pages_to_scan_attr.attr,
286 &pages_collapsed_attr.attr,
287 &full_scans_attr.attr,
288 &scan_sleep_millisecs_attr.attr,
289 &alloc_sleep_millisecs_attr.attr,
290 &khugepaged_max_ptes_swap_attr.attr,
291 NULL,
292};
293
294struct attribute_group khugepaged_attr_group = {
295 .attrs = khugepaged_attr,
296 .name = "khugepaged",
297};
298
Kirill A. Shutemovf3f0e1d2016-07-26 15:26:32 -0700299#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -0700300
301int hugepage_madvise(struct vm_area_struct *vma,
302 unsigned long *vm_flags, int advice)
303{
304 switch (advice) {
305 case MADV_HUGEPAGE:
306#ifdef CONFIG_S390
307 /*
308 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
309 * can't handle this properly after s390_enable_sie, so we simply
310 * ignore the madvise to prevent qemu from causing a SIGSEGV.
311 */
312 if (mm_has_pgste(vma->vm_mm))
313 return 0;
314#endif
315 *vm_flags &= ~VM_NOHUGEPAGE;
316 *vm_flags |= VM_HUGEPAGE;
317 /*
318 * If the vma become good for khugepaged to scan,
319 * register it here without waiting a page fault that
320 * may not happen any time soon.
321 */
322 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
323 khugepaged_enter_vma_merge(vma, *vm_flags))
324 return -ENOMEM;
325 break;
326 case MADV_NOHUGEPAGE:
327 *vm_flags &= ~VM_HUGEPAGE;
328 *vm_flags |= VM_NOHUGEPAGE;
329 /*
330 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
331 * this vma even if we leave the mm registered in khugepaged if
332 * it got registered before VM_NOHUGEPAGE was set.
333 */
334 break;
335 }
336
337 return 0;
338}
339
340int __init khugepaged_init(void)
341{
342 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
343 sizeof(struct mm_slot),
344 __alignof__(struct mm_slot), 0, NULL);
345 if (!mm_slot_cache)
346 return -ENOMEM;
347
348 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
349 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
350 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
351
352 return 0;
353}
354
355void __init khugepaged_destroy(void)
356{
357 kmem_cache_destroy(mm_slot_cache);
358}
359
360static inline struct mm_slot *alloc_mm_slot(void)
361{
362 if (!mm_slot_cache) /* initialization failed */
363 return NULL;
364 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
365}
366
367static inline void free_mm_slot(struct mm_slot *mm_slot)
368{
369 kmem_cache_free(mm_slot_cache, mm_slot);
370}
371
372static struct mm_slot *get_mm_slot(struct mm_struct *mm)
373{
374 struct mm_slot *mm_slot;
375
376 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
377 if (mm == mm_slot->mm)
378 return mm_slot;
379
380 return NULL;
381}
382
383static void insert_to_mm_slots_hash(struct mm_struct *mm,
384 struct mm_slot *mm_slot)
385{
386 mm_slot->mm = mm;
387 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
388}
389
390static inline int khugepaged_test_exit(struct mm_struct *mm)
391{
392 return atomic_read(&mm->mm_users) == 0;
393}
394
395int __khugepaged_enter(struct mm_struct *mm)
396{
397 struct mm_slot *mm_slot;
398 int wakeup;
399
400 mm_slot = alloc_mm_slot();
401 if (!mm_slot)
402 return -ENOMEM;
403
404 /* __khugepaged_exit() must not run from under us */
405 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
406 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
407 free_mm_slot(mm_slot);
408 return 0;
409 }
410
411 spin_lock(&khugepaged_mm_lock);
412 insert_to_mm_slots_hash(mm, mm_slot);
413 /*
414 * Insert just behind the scanning cursor, to let the area settle
415 * down a little.
416 */
417 wakeup = list_empty(&khugepaged_scan.mm_head);
418 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
419 spin_unlock(&khugepaged_mm_lock);
420
421 atomic_inc(&mm->mm_count);
422 if (wakeup)
423 wake_up_interruptible(&khugepaged_wait);
424
425 return 0;
426}
427
428int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
429 unsigned long vm_flags)
430{
431 unsigned long hstart, hend;
432 if (!vma->anon_vma)
433 /*
434 * Not yet faulted in so we will register later in the
435 * page fault if needed.
436 */
437 return 0;
438 if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
439 /* khugepaged not yet working on file or special mappings */
440 return 0;
441 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
442 hend = vma->vm_end & HPAGE_PMD_MASK;
443 if (hstart < hend)
444 return khugepaged_enter(vma, vm_flags);
445 return 0;
446}
447
448void __khugepaged_exit(struct mm_struct *mm)
449{
450 struct mm_slot *mm_slot;
451 int free = 0;
452
453 spin_lock(&khugepaged_mm_lock);
454 mm_slot = get_mm_slot(mm);
455 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
456 hash_del(&mm_slot->hash);
457 list_del(&mm_slot->mm_node);
458 free = 1;
459 }
460 spin_unlock(&khugepaged_mm_lock);
461
462 if (free) {
463 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
464 free_mm_slot(mm_slot);
465 mmdrop(mm);
466 } else if (mm_slot) {
467 /*
468 * This is required to serialize against
469 * khugepaged_test_exit() (which is guaranteed to run
470 * under mmap sem read mode). Stop here (after we
471 * return all pagetables will be destroyed) until
472 * khugepaged has finished working on the pagetables
473 * under the mmap_sem.
474 */
475 down_write(&mm->mmap_sem);
476 up_write(&mm->mmap_sem);
477 }
478}
479
480static void release_pte_page(struct page *page)
481{
482 /* 0 stands for page_is_file_cache(page) == false */
483 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
484 unlock_page(page);
485 putback_lru_page(page);
486}
487
488static void release_pte_pages(pte_t *pte, pte_t *_pte)
489{
490 while (--_pte >= pte) {
491 pte_t pteval = *_pte;
492 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
493 release_pte_page(pte_page(pteval));
494 }
495}
496
497static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
498 unsigned long address,
499 pte_t *pte)
500{
501 struct page *page = NULL;
502 pte_t *_pte;
503 int none_or_zero = 0, result = 0;
504 bool referenced = false, writable = false;
505
506 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
507 _pte++, address += PAGE_SIZE) {
508 pte_t pteval = *_pte;
509 if (pte_none(pteval) || (pte_present(pteval) &&
510 is_zero_pfn(pte_pfn(pteval)))) {
511 if (!userfaultfd_armed(vma) &&
512 ++none_or_zero <= khugepaged_max_ptes_none) {
513 continue;
514 } else {
515 result = SCAN_EXCEED_NONE_PTE;
516 goto out;
517 }
518 }
519 if (!pte_present(pteval)) {
520 result = SCAN_PTE_NON_PRESENT;
521 goto out;
522 }
523 page = vm_normal_page(vma, address, pteval);
524 if (unlikely(!page)) {
525 result = SCAN_PAGE_NULL;
526 goto out;
527 }
528
529 VM_BUG_ON_PAGE(PageCompound(page), page);
530 VM_BUG_ON_PAGE(!PageAnon(page), page);
531 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
532
533 /*
534 * We can do it before isolate_lru_page because the
535 * page can't be freed from under us. NOTE: PG_lock
536 * is needed to serialize against split_huge_page
537 * when invoked from the VM.
538 */
539 if (!trylock_page(page)) {
540 result = SCAN_PAGE_LOCK;
541 goto out;
542 }
543
544 /*
545 * cannot use mapcount: can't collapse if there's a gup pin.
546 * The page must only be referenced by the scanned process
547 * and page swap cache.
548 */
549 if (page_count(page) != 1 + !!PageSwapCache(page)) {
550 unlock_page(page);
551 result = SCAN_PAGE_COUNT;
552 goto out;
553 }
554 if (pte_write(pteval)) {
555 writable = true;
556 } else {
557 if (PageSwapCache(page) &&
558 !reuse_swap_page(page, NULL)) {
559 unlock_page(page);
560 result = SCAN_SWAP_CACHE_PAGE;
561 goto out;
562 }
563 /*
564 * Page is not in the swap cache. It can be collapsed
565 * into a THP.
566 */
567 }
568
569 /*
570 * Isolate the page to avoid collapsing an hugepage
571 * currently in use by the VM.
572 */
573 if (isolate_lru_page(page)) {
574 unlock_page(page);
575 result = SCAN_DEL_PAGE_LRU;
576 goto out;
577 }
578 /* 0 stands for page_is_file_cache(page) == false */
579 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
580 VM_BUG_ON_PAGE(!PageLocked(page), page);
581 VM_BUG_ON_PAGE(PageLRU(page), page);
582
583 /* If there is no mapped pte young don't collapse the page */
584 if (pte_young(pteval) ||
585 page_is_young(page) || PageReferenced(page) ||
586 mmu_notifier_test_young(vma->vm_mm, address))
587 referenced = true;
588 }
589 if (likely(writable)) {
590 if (likely(referenced)) {
591 result = SCAN_SUCCEED;
592 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
593 referenced, writable, result);
594 return 1;
595 }
596 } else {
597 result = SCAN_PAGE_RO;
598 }
599
600out:
601 release_pte_pages(pte, _pte);
602 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
603 referenced, writable, result);
604 return 0;
605}
606
607static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
608 struct vm_area_struct *vma,
609 unsigned long address,
610 spinlock_t *ptl)
611{
612 pte_t *_pte;
613 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
614 pte_t pteval = *_pte;
615 struct page *src_page;
616
617 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
618 clear_user_highpage(page, address);
619 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
620 if (is_zero_pfn(pte_pfn(pteval))) {
621 /*
622 * ptl mostly unnecessary.
623 */
624 spin_lock(ptl);
625 /*
626 * paravirt calls inside pte_clear here are
627 * superfluous.
628 */
629 pte_clear(vma->vm_mm, address, _pte);
630 spin_unlock(ptl);
631 }
632 } else {
633 src_page = pte_page(pteval);
634 copy_user_highpage(page, src_page, address, vma);
635 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
636 release_pte_page(src_page);
637 /*
638 * ptl mostly unnecessary, but preempt has to
639 * be disabled to update the per-cpu stats
640 * inside page_remove_rmap().
641 */
642 spin_lock(ptl);
643 /*
644 * paravirt calls inside pte_clear here are
645 * superfluous.
646 */
647 pte_clear(vma->vm_mm, address, _pte);
648 page_remove_rmap(src_page, false);
649 spin_unlock(ptl);
650 free_page_and_swap_cache(src_page);
651 }
652
653 address += PAGE_SIZE;
654 page++;
655 }
656}
657
658static void khugepaged_alloc_sleep(void)
659{
660 DEFINE_WAIT(wait);
661
662 add_wait_queue(&khugepaged_wait, &wait);
663 freezable_schedule_timeout_interruptible(
664 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
665 remove_wait_queue(&khugepaged_wait, &wait);
666}
667
668static int khugepaged_node_load[MAX_NUMNODES];
669
670static bool khugepaged_scan_abort(int nid)
671{
672 int i;
673
674 /*
675 * If zone_reclaim_mode is disabled, then no extra effort is made to
676 * allocate memory locally.
677 */
678 if (!zone_reclaim_mode)
679 return false;
680
681 /* If there is a count for this node already, it must be acceptable */
682 if (khugepaged_node_load[nid])
683 return false;
684
685 for (i = 0; i < MAX_NUMNODES; i++) {
686 if (!khugepaged_node_load[i])
687 continue;
688 if (node_distance(nid, i) > RECLAIM_DISTANCE)
689 return true;
690 }
691 return false;
692}
693
694/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
695static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
696{
697 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
698}
699
700#ifdef CONFIG_NUMA
701static int khugepaged_find_target_node(void)
702{
703 static int last_khugepaged_target_node = NUMA_NO_NODE;
704 int nid, target_node = 0, max_value = 0;
705
706 /* find first node with max normal pages hit */
707 for (nid = 0; nid < MAX_NUMNODES; nid++)
708 if (khugepaged_node_load[nid] > max_value) {
709 max_value = khugepaged_node_load[nid];
710 target_node = nid;
711 }
712
713 /* do some balance if several nodes have the same hit record */
714 if (target_node <= last_khugepaged_target_node)
715 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
716 nid++)
717 if (max_value == khugepaged_node_load[nid]) {
718 target_node = nid;
719 break;
720 }
721
722 last_khugepaged_target_node = target_node;
723 return target_node;
724}
725
726static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
727{
728 if (IS_ERR(*hpage)) {
729 if (!*wait)
730 return false;
731
732 *wait = false;
733 *hpage = NULL;
734 khugepaged_alloc_sleep();
735 } else if (*hpage) {
736 put_page(*hpage);
737 *hpage = NULL;
738 }
739
740 return true;
741}
742
743static struct page *
Kirill A. Shutemov988ddb72016-07-26 15:26:26 -0700744khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -0700745{
746 VM_BUG_ON_PAGE(*hpage, *hpage);
747
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -0700748 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
749 if (unlikely(!*hpage)) {
750 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
751 *hpage = ERR_PTR(-ENOMEM);
752 return NULL;
753 }
754
755 prep_transhuge_page(*hpage);
756 count_vm_event(THP_COLLAPSE_ALLOC);
757 return *hpage;
758}
759#else
760static int khugepaged_find_target_node(void)
761{
762 return 0;
763}
764
765static inline struct page *alloc_khugepaged_hugepage(void)
766{
767 struct page *page;
768
769 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
770 HPAGE_PMD_ORDER);
771 if (page)
772 prep_transhuge_page(page);
773 return page;
774}
775
776static struct page *khugepaged_alloc_hugepage(bool *wait)
777{
778 struct page *hpage;
779
780 do {
781 hpage = alloc_khugepaged_hugepage();
782 if (!hpage) {
783 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
784 if (!*wait)
785 return NULL;
786
787 *wait = false;
788 khugepaged_alloc_sleep();
789 } else
790 count_vm_event(THP_COLLAPSE_ALLOC);
791 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
792
793 return hpage;
794}
795
796static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
797{
798 if (!*hpage)
799 *hpage = khugepaged_alloc_hugepage(wait);
800
801 if (unlikely(!*hpage))
802 return false;
803
804 return true;
805}
806
807static struct page *
Kirill A. Shutemov988ddb72016-07-26 15:26:26 -0700808khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -0700809{
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -0700810 VM_BUG_ON(!*hpage);
811
812 return *hpage;
813}
814#endif
815
816static bool hugepage_vma_check(struct vm_area_struct *vma)
817{
818 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
819 (vma->vm_flags & VM_NOHUGEPAGE))
820 return false;
Kirill A. Shutemovf3f0e1d2016-07-26 15:26:32 -0700821 if (shmem_file(vma->vm_file)) {
Kirill A. Shutemove496cf32016-07-26 15:26:35 -0700822 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
823 return false;
Kirill A. Shutemovf3f0e1d2016-07-26 15:26:32 -0700824 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
825 HPAGE_PMD_NR);
826 }
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -0700827 if (!vma->anon_vma || vma->vm_ops)
828 return false;
829 if (is_vma_temporary_stack(vma))
830 return false;
831 return !(vma->vm_flags & VM_NO_KHUGEPAGED);
832}
833
834/*
835 * If mmap_sem temporarily dropped, revalidate vma
836 * before taking mmap_sem.
837 * Return 0 if succeeds, otherwise return none-zero
838 * value (scan code).
839 */
840
841static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
842{
843 struct vm_area_struct *vma;
844 unsigned long hstart, hend;
845
846 if (unlikely(khugepaged_test_exit(mm)))
847 return SCAN_ANY_PROCESS;
848
849 vma = find_vma(mm, address);
850 if (!vma)
851 return SCAN_VMA_NULL;
852
853 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
854 hend = vma->vm_end & HPAGE_PMD_MASK;
855 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
856 return SCAN_ADDRESS_RANGE;
857 if (!hugepage_vma_check(vma))
858 return SCAN_VMA_CHECK;
859 return 0;
860}
861
862/*
863 * Bring missing pages in from swap, to complete THP collapse.
864 * Only done if khugepaged_scan_pmd believes it is worthwhile.
865 *
866 * Called and returns without pte mapped or spinlocks held,
867 * but with mmap_sem held to protect against vma changes.
868 */
869
870static bool __collapse_huge_page_swapin(struct mm_struct *mm,
871 struct vm_area_struct *vma,
872 unsigned long address, pmd_t *pmd)
873{
874 pte_t pteval;
875 int swapped_in = 0, ret = 0;
876 struct fault_env fe = {
877 .vma = vma,
878 .address = address,
879 .flags = FAULT_FLAG_ALLOW_RETRY,
880 .pmd = pmd,
881 };
882
883 fe.pte = pte_offset_map(pmd, address);
884 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
885 fe.pte++, fe.address += PAGE_SIZE) {
886 pteval = *fe.pte;
887 if (!is_swap_pte(pteval))
888 continue;
889 swapped_in++;
890 ret = do_swap_page(&fe, pteval);
891 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
892 if (ret & VM_FAULT_RETRY) {
893 down_read(&mm->mmap_sem);
894 /* vma is no longer available, don't continue to swapin */
895 if (hugepage_vma_revalidate(mm, address))
896 return false;
897 /* check if the pmd is still valid */
898 if (mm_find_pmd(mm, address) != pmd)
899 return false;
900 }
901 if (ret & VM_FAULT_ERROR) {
902 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
903 return false;
904 }
905 /* pte is unmapped now, we need to map it */
906 fe.pte = pte_offset_map(pmd, fe.address);
907 }
908 fe.pte--;
909 pte_unmap(fe.pte);
910 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
911 return true;
912}
913
914static void collapse_huge_page(struct mm_struct *mm,
915 unsigned long address,
916 struct page **hpage,
917 struct vm_area_struct *vma,
918 int node)
919{
920 pmd_t *pmd, _pmd;
921 pte_t *pte;
922 pgtable_t pgtable;
923 struct page *new_page;
924 spinlock_t *pmd_ptl, *pte_ptl;
925 int isolated = 0, result = 0;
926 struct mem_cgroup *memcg;
927 unsigned long mmun_start; /* For mmu_notifiers */
928 unsigned long mmun_end; /* For mmu_notifiers */
929 gfp_t gfp;
930
931 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
932
933 /* Only allocate from the target node */
934 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
935
Kirill A. Shutemov988ddb72016-07-26 15:26:26 -0700936 /*
937 * Before allocating the hugepage, release the mmap_sem read lock.
938 * The allocation can take potentially a long time if it involves
939 * sync compaction, and we do not need to hold the mmap_sem during
940 * that. We will recheck the vma after taking it again in write mode.
941 */
942 up_read(&mm->mmap_sem);
943 new_page = khugepaged_alloc_page(hpage, gfp, node);
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -0700944 if (!new_page) {
945 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
946 goto out_nolock;
947 }
948
949 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
950 result = SCAN_CGROUP_CHARGE_FAIL;
951 goto out_nolock;
952 }
953
954 down_read(&mm->mmap_sem);
955 result = hugepage_vma_revalidate(mm, address);
956 if (result) {
957 mem_cgroup_cancel_charge(new_page, memcg, true);
958 up_read(&mm->mmap_sem);
959 goto out_nolock;
960 }
961
962 pmd = mm_find_pmd(mm, address);
963 if (!pmd) {
964 result = SCAN_PMD_NULL;
965 mem_cgroup_cancel_charge(new_page, memcg, true);
966 up_read(&mm->mmap_sem);
967 goto out_nolock;
968 }
969
970 /*
971 * __collapse_huge_page_swapin always returns with mmap_sem locked.
972 * If it fails, release mmap_sem and jump directly out.
973 * Continuing to collapse causes inconsistency.
974 */
975 if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
976 mem_cgroup_cancel_charge(new_page, memcg, true);
977 up_read(&mm->mmap_sem);
978 goto out_nolock;
979 }
980
981 up_read(&mm->mmap_sem);
982 /*
983 * Prevent all access to pagetables with the exception of
984 * gup_fast later handled by the ptep_clear_flush and the VM
985 * handled by the anon_vma lock + PG_lock.
986 */
987 down_write(&mm->mmap_sem);
988 result = hugepage_vma_revalidate(mm, address);
989 if (result)
990 goto out;
991 /* check if the pmd is still valid */
992 if (mm_find_pmd(mm, address) != pmd)
993 goto out;
994
995 anon_vma_lock_write(vma->anon_vma);
996
997 pte = pte_offset_map(pmd, address);
998 pte_ptl = pte_lockptr(mm, pmd);
999
1000 mmun_start = address;
1001 mmun_end = address + HPAGE_PMD_SIZE;
1002 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1003 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1004 /*
1005 * After this gup_fast can't run anymore. This also removes
1006 * any huge TLB entry from the CPU so we won't allow
1007 * huge and small TLB entries for the same virtual address
1008 * to avoid the risk of CPU bugs in that area.
1009 */
1010 _pmd = pmdp_collapse_flush(vma, address, pmd);
1011 spin_unlock(pmd_ptl);
1012 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1013
1014 spin_lock(pte_ptl);
1015 isolated = __collapse_huge_page_isolate(vma, address, pte);
1016 spin_unlock(pte_ptl);
1017
1018 if (unlikely(!isolated)) {
1019 pte_unmap(pte);
1020 spin_lock(pmd_ptl);
1021 BUG_ON(!pmd_none(*pmd));
1022 /*
1023 * We can only use set_pmd_at when establishing
1024 * hugepmds and never for establishing regular pmds that
1025 * points to regular pagetables. Use pmd_populate for that
1026 */
1027 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1028 spin_unlock(pmd_ptl);
1029 anon_vma_unlock_write(vma->anon_vma);
1030 result = SCAN_FAIL;
1031 goto out;
1032 }
1033
1034 /*
1035 * All pages are isolated and locked so anon_vma rmap
1036 * can't run anymore.
1037 */
1038 anon_vma_unlock_write(vma->anon_vma);
1039
1040 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1041 pte_unmap(pte);
1042 __SetPageUptodate(new_page);
1043 pgtable = pmd_pgtable(_pmd);
1044
1045 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1046 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1047
1048 /*
1049 * spin_lock() below is not the equivalent of smp_wmb(), so
1050 * this is needed to avoid the copy_huge_page writes to become
1051 * visible after the set_pmd_at() write.
1052 */
1053 smp_wmb();
1054
1055 spin_lock(pmd_ptl);
1056 BUG_ON(!pmd_none(*pmd));
1057 page_add_new_anon_rmap(new_page, vma, address, true);
1058 mem_cgroup_commit_charge(new_page, memcg, false, true);
1059 lru_cache_add_active_or_unevictable(new_page, vma);
1060 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1061 set_pmd_at(mm, address, pmd, _pmd);
1062 update_mmu_cache_pmd(vma, address, pmd);
1063 spin_unlock(pmd_ptl);
1064
1065 *hpage = NULL;
1066
1067 khugepaged_pages_collapsed++;
1068 result = SCAN_SUCCEED;
1069out_up_write:
1070 up_write(&mm->mmap_sem);
1071out_nolock:
1072 trace_mm_collapse_huge_page(mm, isolated, result);
1073 return;
1074out:
1075 mem_cgroup_cancel_charge(new_page, memcg, true);
1076 goto out_up_write;
1077}
1078
1079static int khugepaged_scan_pmd(struct mm_struct *mm,
1080 struct vm_area_struct *vma,
1081 unsigned long address,
1082 struct page **hpage)
1083{
1084 pmd_t *pmd;
1085 pte_t *pte, *_pte;
1086 int ret = 0, none_or_zero = 0, result = 0;
1087 struct page *page = NULL;
1088 unsigned long _address;
1089 spinlock_t *ptl;
1090 int node = NUMA_NO_NODE, unmapped = 0;
1091 bool writable = false, referenced = false;
1092
1093 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1094
1095 pmd = mm_find_pmd(mm, address);
1096 if (!pmd) {
1097 result = SCAN_PMD_NULL;
1098 goto out;
1099 }
1100
1101 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1102 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1103 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1104 _pte++, _address += PAGE_SIZE) {
1105 pte_t pteval = *_pte;
1106 if (is_swap_pte(pteval)) {
1107 if (++unmapped <= khugepaged_max_ptes_swap) {
1108 continue;
1109 } else {
1110 result = SCAN_EXCEED_SWAP_PTE;
1111 goto out_unmap;
1112 }
1113 }
1114 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1115 if (!userfaultfd_armed(vma) &&
1116 ++none_or_zero <= khugepaged_max_ptes_none) {
1117 continue;
1118 } else {
1119 result = SCAN_EXCEED_NONE_PTE;
1120 goto out_unmap;
1121 }
1122 }
1123 if (!pte_present(pteval)) {
1124 result = SCAN_PTE_NON_PRESENT;
1125 goto out_unmap;
1126 }
1127 if (pte_write(pteval))
1128 writable = true;
1129
1130 page = vm_normal_page(vma, _address, pteval);
1131 if (unlikely(!page)) {
1132 result = SCAN_PAGE_NULL;
1133 goto out_unmap;
1134 }
1135
1136 /* TODO: teach khugepaged to collapse THP mapped with pte */
1137 if (PageCompound(page)) {
1138 result = SCAN_PAGE_COMPOUND;
1139 goto out_unmap;
1140 }
1141
1142 /*
1143 * Record which node the original page is from and save this
1144 * information to khugepaged_node_load[].
1145 * Khupaged will allocate hugepage from the node has the max
1146 * hit record.
1147 */
1148 node = page_to_nid(page);
1149 if (khugepaged_scan_abort(node)) {
1150 result = SCAN_SCAN_ABORT;
1151 goto out_unmap;
1152 }
1153 khugepaged_node_load[node]++;
1154 if (!PageLRU(page)) {
1155 result = SCAN_PAGE_LRU;
1156 goto out_unmap;
1157 }
1158 if (PageLocked(page)) {
1159 result = SCAN_PAGE_LOCK;
1160 goto out_unmap;
1161 }
1162 if (!PageAnon(page)) {
1163 result = SCAN_PAGE_ANON;
1164 goto out_unmap;
1165 }
1166
1167 /*
1168 * cannot use mapcount: can't collapse if there's a gup pin.
1169 * The page must only be referenced by the scanned process
1170 * and page swap cache.
1171 */
1172 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1173 result = SCAN_PAGE_COUNT;
1174 goto out_unmap;
1175 }
1176 if (pte_young(pteval) ||
1177 page_is_young(page) || PageReferenced(page) ||
1178 mmu_notifier_test_young(vma->vm_mm, address))
1179 referenced = true;
1180 }
1181 if (writable) {
1182 if (referenced) {
1183 result = SCAN_SUCCEED;
1184 ret = 1;
1185 } else {
1186 result = SCAN_NO_REFERENCED_PAGE;
1187 }
1188 } else {
1189 result = SCAN_PAGE_RO;
1190 }
1191out_unmap:
1192 pte_unmap_unlock(pte, ptl);
1193 if (ret) {
1194 node = khugepaged_find_target_node();
1195 /* collapse_huge_page will return with the mmap_sem released */
1196 collapse_huge_page(mm, address, hpage, vma, node);
1197 }
1198out:
1199 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1200 none_or_zero, result, unmapped);
1201 return ret;
1202}
1203
1204static void collect_mm_slot(struct mm_slot *mm_slot)
1205{
1206 struct mm_struct *mm = mm_slot->mm;
1207
1208 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1209
1210 if (khugepaged_test_exit(mm)) {
1211 /* free mm_slot */
1212 hash_del(&mm_slot->hash);
1213 list_del(&mm_slot->mm_node);
1214
1215 /*
1216 * Not strictly needed because the mm exited already.
1217 *
1218 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1219 */
1220
1221 /* khugepaged_mm_lock actually not necessary for the below */
1222 free_mm_slot(mm_slot);
1223 mmdrop(mm);
1224 }
1225}
1226
Kirill A. Shutemove496cf32016-07-26 15:26:35 -07001227#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
Kirill A. Shutemovf3f0e1d2016-07-26 15:26:32 -07001228static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1229{
1230 struct vm_area_struct *vma;
1231 unsigned long addr;
1232 pmd_t *pmd, _pmd;
1233
1234 i_mmap_lock_write(mapping);
1235 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1236 /* probably overkill */
1237 if (vma->anon_vma)
1238 continue;
1239 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1240 if (addr & ~HPAGE_PMD_MASK)
1241 continue;
1242 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1243 continue;
1244 pmd = mm_find_pmd(vma->vm_mm, addr);
1245 if (!pmd)
1246 continue;
1247 /*
1248 * We need exclusive mmap_sem to retract page table.
1249 * If trylock fails we would end up with pte-mapped THP after
1250 * re-fault. Not ideal, but it's more important to not disturb
1251 * the system too much.
1252 */
1253 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1254 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1255 /* assume page table is clear */
1256 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1257 spin_unlock(ptl);
1258 up_write(&vma->vm_mm->mmap_sem);
1259 atomic_long_dec(&vma->vm_mm->nr_ptes);
1260 pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1261 }
1262 }
1263 i_mmap_unlock_write(mapping);
1264}
1265
1266/**
1267 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1268 *
1269 * Basic scheme is simple, details are more complex:
1270 * - allocate and freeze a new huge page;
1271 * - scan over radix tree replacing old pages the new one
1272 * + swap in pages if necessary;
1273 * + fill in gaps;
1274 * + keep old pages around in case if rollback is required;
1275 * - if replacing succeed:
1276 * + copy data over;
1277 * + free old pages;
1278 * + unfreeze huge page;
1279 * - if replacing failed;
1280 * + put all pages back and unfreeze them;
1281 * + restore gaps in the radix-tree;
1282 * + free huge page;
1283 */
1284static void collapse_shmem(struct mm_struct *mm,
1285 struct address_space *mapping, pgoff_t start,
1286 struct page **hpage, int node)
1287{
1288 gfp_t gfp;
1289 struct page *page, *new_page, *tmp;
1290 struct mem_cgroup *memcg;
1291 pgoff_t index, end = start + HPAGE_PMD_NR;
1292 LIST_HEAD(pagelist);
1293 struct radix_tree_iter iter;
1294 void **slot;
1295 int nr_none = 0, result = SCAN_SUCCEED;
1296
1297 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1298
1299 /* Only allocate from the target node */
1300 gfp = alloc_hugepage_khugepaged_gfpmask() |
1301 __GFP_OTHER_NODE | __GFP_THISNODE;
1302
1303 new_page = khugepaged_alloc_page(hpage, gfp, node);
1304 if (!new_page) {
1305 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1306 goto out;
1307 }
1308
1309 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1310 result = SCAN_CGROUP_CHARGE_FAIL;
1311 goto out;
1312 }
1313
1314 new_page->index = start;
1315 new_page->mapping = mapping;
1316 __SetPageSwapBacked(new_page);
1317 __SetPageLocked(new_page);
1318 BUG_ON(!page_ref_freeze(new_page, 1));
1319
1320
1321 /*
1322 * At this point the new_page is 'frozen' (page_count() is zero), locked
1323 * and not up-to-date. It's safe to insert it into radix tree, because
1324 * nobody would be able to map it or use it in other way until we
1325 * unfreeze it.
1326 */
1327
1328 index = start;
1329 spin_lock_irq(&mapping->tree_lock);
1330 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1331 int n = min(iter.index, end) - index;
1332
1333 /*
1334 * Handle holes in the radix tree: charge it from shmem and
1335 * insert relevant subpage of new_page into the radix-tree.
1336 */
1337 if (n && !shmem_charge(mapping->host, n)) {
1338 result = SCAN_FAIL;
1339 break;
1340 }
1341 nr_none += n;
1342 for (; index < min(iter.index, end); index++) {
1343 radix_tree_insert(&mapping->page_tree, index,
1344 new_page + (index % HPAGE_PMD_NR));
1345 }
1346
1347 /* We are done. */
1348 if (index >= end)
1349 break;
1350
1351 page = radix_tree_deref_slot_protected(slot,
1352 &mapping->tree_lock);
1353 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1354 spin_unlock_irq(&mapping->tree_lock);
1355 /* swap in or instantiate fallocated page */
1356 if (shmem_getpage(mapping->host, index, &page,
1357 SGP_NOHUGE)) {
1358 result = SCAN_FAIL;
1359 goto tree_unlocked;
1360 }
1361 spin_lock_irq(&mapping->tree_lock);
1362 } else if (trylock_page(page)) {
1363 get_page(page);
1364 } else {
1365 result = SCAN_PAGE_LOCK;
1366 break;
1367 }
1368
1369 /*
1370 * The page must be locked, so we can drop the tree_lock
1371 * without racing with truncate.
1372 */
1373 VM_BUG_ON_PAGE(!PageLocked(page), page);
1374 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1375 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1376
1377 if (page_mapping(page) != mapping) {
1378 result = SCAN_TRUNCATED;
1379 goto out_unlock;
1380 }
1381 spin_unlock_irq(&mapping->tree_lock);
1382
1383 if (isolate_lru_page(page)) {
1384 result = SCAN_DEL_PAGE_LRU;
1385 goto out_isolate_failed;
1386 }
1387
1388 if (page_mapped(page))
1389 unmap_mapping_range(mapping, index << PAGE_SHIFT,
1390 PAGE_SIZE, 0);
1391
1392 spin_lock_irq(&mapping->tree_lock);
1393
1394 VM_BUG_ON_PAGE(page_mapped(page), page);
1395
1396 /*
1397 * The page is expected to have page_count() == 3:
1398 * - we hold a pin on it;
1399 * - one reference from radix tree;
1400 * - one from isolate_lru_page;
1401 */
1402 if (!page_ref_freeze(page, 3)) {
1403 result = SCAN_PAGE_COUNT;
1404 goto out_lru;
1405 }
1406
1407 /*
1408 * Add the page to the list to be able to undo the collapse if
1409 * something go wrong.
1410 */
1411 list_add_tail(&page->lru, &pagelist);
1412
1413 /* Finally, replace with the new page. */
1414 radix_tree_replace_slot(slot,
1415 new_page + (index % HPAGE_PMD_NR));
1416
1417 index++;
1418 continue;
1419out_lru:
1420 spin_unlock_irq(&mapping->tree_lock);
1421 putback_lru_page(page);
1422out_isolate_failed:
1423 unlock_page(page);
1424 put_page(page);
1425 goto tree_unlocked;
1426out_unlock:
1427 unlock_page(page);
1428 put_page(page);
1429 break;
1430 }
1431
1432 /*
1433 * Handle hole in radix tree at the end of the range.
1434 * This code only triggers if there's nothing in radix tree
1435 * beyond 'end'.
1436 */
1437 if (result == SCAN_SUCCEED && index < end) {
1438 int n = end - index;
1439
1440 if (!shmem_charge(mapping->host, n)) {
1441 result = SCAN_FAIL;
1442 goto tree_locked;
1443 }
1444
1445 for (; index < end; index++) {
1446 radix_tree_insert(&mapping->page_tree, index,
1447 new_page + (index % HPAGE_PMD_NR));
1448 }
1449 nr_none += n;
1450 }
1451
1452tree_locked:
1453 spin_unlock_irq(&mapping->tree_lock);
1454tree_unlocked:
1455
1456 if (result == SCAN_SUCCEED) {
1457 unsigned long flags;
1458 struct zone *zone = page_zone(new_page);
1459
1460 /*
1461 * Replacing old pages with new one has succeed, now we need to
1462 * copy the content and free old pages.
1463 */
1464 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1465 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1466 page);
1467 list_del(&page->lru);
1468 unlock_page(page);
1469 page_ref_unfreeze(page, 1);
1470 page->mapping = NULL;
1471 ClearPageActive(page);
1472 ClearPageUnevictable(page);
1473 put_page(page);
1474 }
1475
1476 local_irq_save(flags);
1477 __inc_zone_page_state(new_page, NR_SHMEM_THPS);
1478 if (nr_none) {
1479 __mod_zone_page_state(zone, NR_FILE_PAGES, nr_none);
1480 __mod_zone_page_state(zone, NR_SHMEM, nr_none);
1481 }
1482 local_irq_restore(flags);
1483
1484 /*
1485 * Remove pte page tables, so we can re-faulti
1486 * the page as huge.
1487 */
1488 retract_page_tables(mapping, start);
1489
1490 /* Everything is ready, let's unfreeze the new_page */
1491 set_page_dirty(new_page);
1492 SetPageUptodate(new_page);
1493 page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1494 mem_cgroup_commit_charge(new_page, memcg, false, true);
1495 lru_cache_add_anon(new_page);
1496 unlock_page(new_page);
1497
1498 *hpage = NULL;
1499 } else {
1500 /* Something went wrong: rollback changes to the radix-tree */
1501 shmem_uncharge(mapping->host, nr_none);
1502 spin_lock_irq(&mapping->tree_lock);
1503 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1504 start) {
1505 if (iter.index >= end)
1506 break;
1507 page = list_first_entry_or_null(&pagelist,
1508 struct page, lru);
1509 if (!page || iter.index < page->index) {
1510 if (!nr_none)
1511 break;
1512 /* Put holes back where they were */
1513 radix_tree_replace_slot(slot, NULL);
1514 nr_none--;
1515 continue;
1516 }
1517
1518 VM_BUG_ON_PAGE(page->index != iter.index, page);
1519
1520 /* Unfreeze the page. */
1521 list_del(&page->lru);
1522 page_ref_unfreeze(page, 2);
1523 radix_tree_replace_slot(slot, page);
1524 spin_unlock_irq(&mapping->tree_lock);
1525 putback_lru_page(page);
1526 unlock_page(page);
1527 spin_lock_irq(&mapping->tree_lock);
1528 }
1529 VM_BUG_ON(nr_none);
1530 spin_unlock_irq(&mapping->tree_lock);
1531
1532 /* Unfreeze new_page, caller would take care about freeing it */
1533 page_ref_unfreeze(new_page, 1);
1534 mem_cgroup_cancel_charge(new_page, memcg, true);
1535 unlock_page(new_page);
1536 new_page->mapping = NULL;
1537 }
1538out:
1539 VM_BUG_ON(!list_empty(&pagelist));
1540 /* TODO: tracepoints */
1541}
1542
1543static void khugepaged_scan_shmem(struct mm_struct *mm,
1544 struct address_space *mapping,
1545 pgoff_t start, struct page **hpage)
1546{
1547 struct page *page = NULL;
1548 struct radix_tree_iter iter;
1549 void **slot;
1550 int present, swap;
1551 int node = NUMA_NO_NODE;
1552 int result = SCAN_SUCCEED;
1553
1554 present = 0;
1555 swap = 0;
1556 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1557 rcu_read_lock();
1558 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1559 if (iter.index >= start + HPAGE_PMD_NR)
1560 break;
1561
1562 page = radix_tree_deref_slot(slot);
1563 if (radix_tree_deref_retry(page)) {
1564 slot = radix_tree_iter_retry(&iter);
1565 continue;
1566 }
1567
1568 if (radix_tree_exception(page)) {
1569 if (++swap > khugepaged_max_ptes_swap) {
1570 result = SCAN_EXCEED_SWAP_PTE;
1571 break;
1572 }
1573 continue;
1574 }
1575
1576 if (PageTransCompound(page)) {
1577 result = SCAN_PAGE_COMPOUND;
1578 break;
1579 }
1580
1581 node = page_to_nid(page);
1582 if (khugepaged_scan_abort(node)) {
1583 result = SCAN_SCAN_ABORT;
1584 break;
1585 }
1586 khugepaged_node_load[node]++;
1587
1588 if (!PageLRU(page)) {
1589 result = SCAN_PAGE_LRU;
1590 break;
1591 }
1592
1593 if (page_count(page) != 1 + page_mapcount(page)) {
1594 result = SCAN_PAGE_COUNT;
1595 break;
1596 }
1597
1598 /*
1599 * We probably should check if the page is referenced here, but
1600 * nobody would transfer pte_young() to PageReferenced() for us.
1601 * And rmap walk here is just too costly...
1602 */
1603
1604 present++;
1605
1606 if (need_resched()) {
1607 cond_resched_rcu();
1608 slot = radix_tree_iter_next(&iter);
1609 }
1610 }
1611 rcu_read_unlock();
1612
1613 if (result == SCAN_SUCCEED) {
1614 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1615 result = SCAN_EXCEED_NONE_PTE;
1616 } else {
1617 node = khugepaged_find_target_node();
1618 collapse_shmem(mm, mapping, start, hpage, node);
1619 }
1620 }
1621
1622 /* TODO: tracepoints */
1623}
1624#else
1625static void khugepaged_scan_shmem(struct mm_struct *mm,
1626 struct address_space *mapping,
1627 pgoff_t start, struct page **hpage)
1628{
1629 BUILD_BUG();
1630}
1631#endif
1632
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -07001633static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1634 struct page **hpage)
1635 __releases(&khugepaged_mm_lock)
1636 __acquires(&khugepaged_mm_lock)
1637{
1638 struct mm_slot *mm_slot;
1639 struct mm_struct *mm;
1640 struct vm_area_struct *vma;
1641 int progress = 0;
1642
1643 VM_BUG_ON(!pages);
1644 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1645
1646 if (khugepaged_scan.mm_slot)
1647 mm_slot = khugepaged_scan.mm_slot;
1648 else {
1649 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1650 struct mm_slot, mm_node);
1651 khugepaged_scan.address = 0;
1652 khugepaged_scan.mm_slot = mm_slot;
1653 }
1654 spin_unlock(&khugepaged_mm_lock);
1655
1656 mm = mm_slot->mm;
1657 down_read(&mm->mmap_sem);
1658 if (unlikely(khugepaged_test_exit(mm)))
1659 vma = NULL;
1660 else
1661 vma = find_vma(mm, khugepaged_scan.address);
1662
1663 progress++;
1664 for (; vma; vma = vma->vm_next) {
1665 unsigned long hstart, hend;
1666
1667 cond_resched();
1668 if (unlikely(khugepaged_test_exit(mm))) {
1669 progress++;
1670 break;
1671 }
1672 if (!hugepage_vma_check(vma)) {
1673skip:
1674 progress++;
1675 continue;
1676 }
1677 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1678 hend = vma->vm_end & HPAGE_PMD_MASK;
1679 if (hstart >= hend)
1680 goto skip;
1681 if (khugepaged_scan.address > hend)
1682 goto skip;
1683 if (khugepaged_scan.address < hstart)
1684 khugepaged_scan.address = hstart;
1685 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1686
1687 while (khugepaged_scan.address < hend) {
1688 int ret;
1689 cond_resched();
1690 if (unlikely(khugepaged_test_exit(mm)))
1691 goto breakouterloop;
1692
1693 VM_BUG_ON(khugepaged_scan.address < hstart ||
1694 khugepaged_scan.address + HPAGE_PMD_SIZE >
1695 hend);
Kirill A. Shutemovf3f0e1d2016-07-26 15:26:32 -07001696 if (shmem_file(vma->vm_file)) {
Kirill A. Shutemove496cf32016-07-26 15:26:35 -07001697 struct file *file;
Kirill A. Shutemovf3f0e1d2016-07-26 15:26:32 -07001698 pgoff_t pgoff = linear_page_index(vma,
1699 khugepaged_scan.address);
Kirill A. Shutemove496cf32016-07-26 15:26:35 -07001700 if (!shmem_huge_enabled(vma))
1701 goto skip;
1702 file = get_file(vma->vm_file);
Kirill A. Shutemovf3f0e1d2016-07-26 15:26:32 -07001703 up_read(&mm->mmap_sem);
1704 ret = 1;
1705 khugepaged_scan_shmem(mm, file->f_mapping,
1706 pgoff, hpage);
1707 fput(file);
1708 } else {
1709 ret = khugepaged_scan_pmd(mm, vma,
1710 khugepaged_scan.address,
1711 hpage);
1712 }
Kirill A. Shutemovb46e7562016-07-26 15:26:24 -07001713 /* move to next address */
1714 khugepaged_scan.address += HPAGE_PMD_SIZE;
1715 progress += HPAGE_PMD_NR;
1716 if (ret)
1717 /* we released mmap_sem so break loop */
1718 goto breakouterloop_mmap_sem;
1719 if (progress >= pages)
1720 goto breakouterloop;
1721 }
1722 }
1723breakouterloop:
1724 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1725breakouterloop_mmap_sem:
1726
1727 spin_lock(&khugepaged_mm_lock);
1728 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1729 /*
1730 * Release the current mm_slot if this mm is about to die, or
1731 * if we scanned all vmas of this mm.
1732 */
1733 if (khugepaged_test_exit(mm) || !vma) {
1734 /*
1735 * Make sure that if mm_users is reaching zero while
1736 * khugepaged runs here, khugepaged_exit will find
1737 * mm_slot not pointing to the exiting mm.
1738 */
1739 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1740 khugepaged_scan.mm_slot = list_entry(
1741 mm_slot->mm_node.next,
1742 struct mm_slot, mm_node);
1743 khugepaged_scan.address = 0;
1744 } else {
1745 khugepaged_scan.mm_slot = NULL;
1746 khugepaged_full_scans++;
1747 }
1748
1749 collect_mm_slot(mm_slot);
1750 }
1751
1752 return progress;
1753}
1754
1755static int khugepaged_has_work(void)
1756{
1757 return !list_empty(&khugepaged_scan.mm_head) &&
1758 khugepaged_enabled();
1759}
1760
1761static int khugepaged_wait_event(void)
1762{
1763 return !list_empty(&khugepaged_scan.mm_head) ||
1764 kthread_should_stop();
1765}
1766
1767static void khugepaged_do_scan(void)
1768{
1769 struct page *hpage = NULL;
1770 unsigned int progress = 0, pass_through_head = 0;
1771 unsigned int pages = khugepaged_pages_to_scan;
1772 bool wait = true;
1773
1774 barrier(); /* write khugepaged_pages_to_scan to local stack */
1775
1776 while (progress < pages) {
1777 if (!khugepaged_prealloc_page(&hpage, &wait))
1778 break;
1779
1780 cond_resched();
1781
1782 if (unlikely(kthread_should_stop() || try_to_freeze()))
1783 break;
1784
1785 spin_lock(&khugepaged_mm_lock);
1786 if (!khugepaged_scan.mm_slot)
1787 pass_through_head++;
1788 if (khugepaged_has_work() &&
1789 pass_through_head < 2)
1790 progress += khugepaged_scan_mm_slot(pages - progress,
1791 &hpage);
1792 else
1793 progress = pages;
1794 spin_unlock(&khugepaged_mm_lock);
1795 }
1796
1797 if (!IS_ERR_OR_NULL(hpage))
1798 put_page(hpage);
1799}
1800
1801static bool khugepaged_should_wakeup(void)
1802{
1803 return kthread_should_stop() ||
1804 time_after_eq(jiffies, khugepaged_sleep_expire);
1805}
1806
1807static void khugepaged_wait_work(void)
1808{
1809 if (khugepaged_has_work()) {
1810 const unsigned long scan_sleep_jiffies =
1811 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1812
1813 if (!scan_sleep_jiffies)
1814 return;
1815
1816 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1817 wait_event_freezable_timeout(khugepaged_wait,
1818 khugepaged_should_wakeup(),
1819 scan_sleep_jiffies);
1820 return;
1821 }
1822
1823 if (khugepaged_enabled())
1824 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1825}
1826
1827static int khugepaged(void *none)
1828{
1829 struct mm_slot *mm_slot;
1830
1831 set_freezable();
1832 set_user_nice(current, MAX_NICE);
1833
1834 while (!kthread_should_stop()) {
1835 khugepaged_do_scan();
1836 khugepaged_wait_work();
1837 }
1838
1839 spin_lock(&khugepaged_mm_lock);
1840 mm_slot = khugepaged_scan.mm_slot;
1841 khugepaged_scan.mm_slot = NULL;
1842 if (mm_slot)
1843 collect_mm_slot(mm_slot);
1844 spin_unlock(&khugepaged_mm_lock);
1845 return 0;
1846}
1847
1848static void set_recommended_min_free_kbytes(void)
1849{
1850 struct zone *zone;
1851 int nr_zones = 0;
1852 unsigned long recommended_min;
1853
1854 for_each_populated_zone(zone)
1855 nr_zones++;
1856
1857 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1858 recommended_min = pageblock_nr_pages * nr_zones * 2;
1859
1860 /*
1861 * Make sure that on average at least two pageblocks are almost free
1862 * of another type, one for a migratetype to fall back to and a
1863 * second to avoid subsequent fallbacks of other types There are 3
1864 * MIGRATE_TYPES we care about.
1865 */
1866 recommended_min += pageblock_nr_pages * nr_zones *
1867 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1868
1869 /* don't ever allow to reserve more than 5% of the lowmem */
1870 recommended_min = min(recommended_min,
1871 (unsigned long) nr_free_buffer_pages() / 20);
1872 recommended_min <<= (PAGE_SHIFT-10);
1873
1874 if (recommended_min > min_free_kbytes) {
1875 if (user_min_free_kbytes >= 0)
1876 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1877 min_free_kbytes, recommended_min);
1878
1879 min_free_kbytes = recommended_min;
1880 }
1881 setup_per_zone_wmarks();
1882}
1883
1884int start_stop_khugepaged(void)
1885{
1886 static struct task_struct *khugepaged_thread __read_mostly;
1887 static DEFINE_MUTEX(khugepaged_mutex);
1888 int err = 0;
1889
1890 mutex_lock(&khugepaged_mutex);
1891 if (khugepaged_enabled()) {
1892 if (!khugepaged_thread)
1893 khugepaged_thread = kthread_run(khugepaged, NULL,
1894 "khugepaged");
1895 if (IS_ERR(khugepaged_thread)) {
1896 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1897 err = PTR_ERR(khugepaged_thread);
1898 khugepaged_thread = NULL;
1899 goto fail;
1900 }
1901
1902 if (!list_empty(&khugepaged_scan.mm_head))
1903 wake_up_interruptible(&khugepaged_wait);
1904
1905 set_recommended_min_free_kbytes();
1906 } else if (khugepaged_thread) {
1907 kthread_stop(khugepaged_thread);
1908 khugepaged_thread = NULL;
1909 }
1910fail:
1911 mutex_unlock(&khugepaged_mutex);
1912 return err;
1913}