Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef _M68KNOMMU_BITOPS_H |
| 2 | #define _M68KNOMMU_BITOPS_H |
| 3 | |
| 4 | /* |
| 5 | * Copyright 1992, Linus Torvalds. |
| 6 | */ |
| 7 | |
| 8 | #include <linux/config.h> |
| 9 | #include <linux/compiler.h> |
| 10 | #include <asm/byteorder.h> /* swab32 */ |
| 11 | #include <asm/system.h> /* save_flags */ |
| 12 | |
| 13 | #ifdef __KERNEL__ |
| 14 | |
| 15 | /* |
| 16 | * Generic ffs(). |
| 17 | */ |
| 18 | static inline int ffs(int x) |
| 19 | { |
| 20 | int r = 1; |
| 21 | |
| 22 | if (!x) |
| 23 | return 0; |
| 24 | if (!(x & 0xffff)) { |
| 25 | x >>= 16; |
| 26 | r += 16; |
| 27 | } |
| 28 | if (!(x & 0xff)) { |
| 29 | x >>= 8; |
| 30 | r += 8; |
| 31 | } |
| 32 | if (!(x & 0xf)) { |
| 33 | x >>= 4; |
| 34 | r += 4; |
| 35 | } |
| 36 | if (!(x & 3)) { |
| 37 | x >>= 2; |
| 38 | r += 2; |
| 39 | } |
| 40 | if (!(x & 1)) { |
| 41 | x >>= 1; |
| 42 | r += 1; |
| 43 | } |
| 44 | return r; |
| 45 | } |
| 46 | |
| 47 | /* |
| 48 | * Generic __ffs(). |
| 49 | */ |
| 50 | static inline int __ffs(int x) |
| 51 | { |
| 52 | int r = 0; |
| 53 | |
| 54 | if (!x) |
| 55 | return 0; |
| 56 | if (!(x & 0xffff)) { |
| 57 | x >>= 16; |
| 58 | r += 16; |
| 59 | } |
| 60 | if (!(x & 0xff)) { |
| 61 | x >>= 8; |
| 62 | r += 8; |
| 63 | } |
| 64 | if (!(x & 0xf)) { |
| 65 | x >>= 4; |
| 66 | r += 4; |
| 67 | } |
| 68 | if (!(x & 3)) { |
| 69 | x >>= 2; |
| 70 | r += 2; |
| 71 | } |
| 72 | if (!(x & 1)) { |
| 73 | x >>= 1; |
| 74 | r += 1; |
| 75 | } |
| 76 | return r; |
| 77 | } |
| 78 | |
| 79 | /* |
| 80 | * Every architecture must define this function. It's the fastest |
| 81 | * way of searching a 140-bit bitmap where the first 100 bits are |
| 82 | * unlikely to be set. It's guaranteed that at least one of the 140 |
| 83 | * bits is cleared. |
| 84 | */ |
| 85 | static inline int sched_find_first_bit(unsigned long *b) |
| 86 | { |
| 87 | if (unlikely(b[0])) |
| 88 | return __ffs(b[0]); |
| 89 | if (unlikely(b[1])) |
| 90 | return __ffs(b[1]) + 32; |
| 91 | if (unlikely(b[2])) |
| 92 | return __ffs(b[2]) + 64; |
| 93 | if (b[3]) |
| 94 | return __ffs(b[3]) + 96; |
| 95 | return __ffs(b[4]) + 128; |
| 96 | } |
| 97 | |
| 98 | /* |
| 99 | * ffz = Find First Zero in word. Undefined if no zero exists, |
| 100 | * so code should check against ~0UL first.. |
| 101 | */ |
| 102 | static __inline__ unsigned long ffz(unsigned long word) |
| 103 | { |
| 104 | unsigned long result = 0; |
| 105 | |
| 106 | while(word & 1) { |
| 107 | result++; |
| 108 | word >>= 1; |
| 109 | } |
| 110 | return result; |
| 111 | } |
| 112 | |
| 113 | |
| 114 | static __inline__ void set_bit(int nr, volatile unsigned long * addr) |
| 115 | { |
| 116 | #ifdef CONFIG_COLDFIRE |
| 117 | __asm__ __volatile__ ("lea %0,%%a0; bset %1,(%%a0)" |
| 118 | : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 119 | : "d" (nr) |
| 120 | : "%a0", "cc"); |
| 121 | #else |
| 122 | __asm__ __volatile__ ("bset %1,%0" |
| 123 | : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 124 | : "di" (nr) |
| 125 | : "cc"); |
| 126 | #endif |
| 127 | } |
| 128 | |
| 129 | #define __set_bit(nr, addr) set_bit(nr, addr) |
| 130 | |
| 131 | /* |
| 132 | * clear_bit() doesn't provide any barrier for the compiler. |
| 133 | */ |
| 134 | #define smp_mb__before_clear_bit() barrier() |
| 135 | #define smp_mb__after_clear_bit() barrier() |
| 136 | |
| 137 | static __inline__ void clear_bit(int nr, volatile unsigned long * addr) |
| 138 | { |
| 139 | #ifdef CONFIG_COLDFIRE |
| 140 | __asm__ __volatile__ ("lea %0,%%a0; bclr %1,(%%a0)" |
| 141 | : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 142 | : "d" (nr) |
| 143 | : "%a0", "cc"); |
| 144 | #else |
| 145 | __asm__ __volatile__ ("bclr %1,%0" |
| 146 | : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 147 | : "di" (nr) |
| 148 | : "cc"); |
| 149 | #endif |
| 150 | } |
| 151 | |
| 152 | #define __clear_bit(nr, addr) clear_bit(nr, addr) |
| 153 | |
| 154 | static __inline__ void change_bit(int nr, volatile unsigned long * addr) |
| 155 | { |
| 156 | #ifdef CONFIG_COLDFIRE |
| 157 | __asm__ __volatile__ ("lea %0,%%a0; bchg %1,(%%a0)" |
| 158 | : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 159 | : "d" (nr) |
| 160 | : "%a0", "cc"); |
| 161 | #else |
| 162 | __asm__ __volatile__ ("bchg %1,%0" |
| 163 | : "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 164 | : "di" (nr) |
| 165 | : "cc"); |
| 166 | #endif |
| 167 | } |
| 168 | |
| 169 | #define __change_bit(nr, addr) change_bit(nr, addr) |
| 170 | |
| 171 | static __inline__ int test_and_set_bit(int nr, volatile unsigned long * addr) |
| 172 | { |
| 173 | char retval; |
| 174 | |
| 175 | #ifdef CONFIG_COLDFIRE |
| 176 | __asm__ __volatile__ ("lea %1,%%a0; bset %2,(%%a0); sne %0" |
| 177 | : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 178 | : "d" (nr) |
| 179 | : "%a0"); |
| 180 | #else |
| 181 | __asm__ __volatile__ ("bset %2,%1; sne %0" |
| 182 | : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 183 | : "di" (nr) |
| 184 | /* No clobber */); |
| 185 | #endif |
| 186 | |
| 187 | return retval; |
| 188 | } |
| 189 | |
| 190 | #define __test_and_set_bit(nr, addr) test_and_set_bit(nr, addr) |
| 191 | |
| 192 | static __inline__ int test_and_clear_bit(int nr, volatile unsigned long * addr) |
| 193 | { |
| 194 | char retval; |
| 195 | |
| 196 | #ifdef CONFIG_COLDFIRE |
| 197 | __asm__ __volatile__ ("lea %1,%%a0; bclr %2,(%%a0); sne %0" |
| 198 | : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 199 | : "d" (nr) |
| 200 | : "%a0"); |
| 201 | #else |
| 202 | __asm__ __volatile__ ("bclr %2,%1; sne %0" |
| 203 | : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 204 | : "di" (nr) |
| 205 | /* No clobber */); |
| 206 | #endif |
| 207 | |
| 208 | return retval; |
| 209 | } |
| 210 | |
| 211 | #define __test_and_clear_bit(nr, addr) test_and_clear_bit(nr, addr) |
| 212 | |
| 213 | static __inline__ int test_and_change_bit(int nr, volatile unsigned long * addr) |
| 214 | { |
| 215 | char retval; |
| 216 | |
| 217 | #ifdef CONFIG_COLDFIRE |
| 218 | __asm__ __volatile__ ("lea %1,%%a0\n\tbchg %2,(%%a0)\n\tsne %0" |
| 219 | : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 220 | : "d" (nr) |
| 221 | : "%a0"); |
| 222 | #else |
| 223 | __asm__ __volatile__ ("bchg %2,%1; sne %0" |
| 224 | : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) |
| 225 | : "di" (nr) |
| 226 | /* No clobber */); |
| 227 | #endif |
| 228 | |
| 229 | return retval; |
| 230 | } |
| 231 | |
| 232 | #define __test_and_change_bit(nr, addr) test_and_change_bit(nr, addr) |
| 233 | |
| 234 | /* |
| 235 | * This routine doesn't need to be atomic. |
| 236 | */ |
| 237 | static __inline__ int __constant_test_bit(int nr, const volatile unsigned long * addr) |
| 238 | { |
| 239 | return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0; |
| 240 | } |
| 241 | |
| 242 | static __inline__ int __test_bit(int nr, const volatile unsigned long * addr) |
| 243 | { |
| 244 | int * a = (int *) addr; |
| 245 | int mask; |
| 246 | |
| 247 | a += nr >> 5; |
| 248 | mask = 1 << (nr & 0x1f); |
| 249 | return ((mask & *a) != 0); |
| 250 | } |
| 251 | |
| 252 | #define test_bit(nr,addr) \ |
| 253 | (__builtin_constant_p(nr) ? \ |
| 254 | __constant_test_bit((nr),(addr)) : \ |
| 255 | __test_bit((nr),(addr))) |
| 256 | |
| 257 | #define find_first_zero_bit(addr, size) \ |
| 258 | find_next_zero_bit((addr), (size), 0) |
| 259 | #define find_first_bit(addr, size) \ |
| 260 | find_next_bit((addr), (size), 0) |
| 261 | |
| 262 | static __inline__ int find_next_zero_bit (void * addr, int size, int offset) |
| 263 | { |
| 264 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 265 | unsigned long result = offset & ~31UL; |
| 266 | unsigned long tmp; |
| 267 | |
| 268 | if (offset >= size) |
| 269 | return size; |
| 270 | size -= result; |
| 271 | offset &= 31UL; |
| 272 | if (offset) { |
| 273 | tmp = *(p++); |
| 274 | tmp |= ~0UL >> (32-offset); |
| 275 | if (size < 32) |
| 276 | goto found_first; |
| 277 | if (~tmp) |
| 278 | goto found_middle; |
| 279 | size -= 32; |
| 280 | result += 32; |
| 281 | } |
| 282 | while (size & ~31UL) { |
| 283 | if (~(tmp = *(p++))) |
| 284 | goto found_middle; |
| 285 | result += 32; |
| 286 | size -= 32; |
| 287 | } |
| 288 | if (!size) |
| 289 | return result; |
| 290 | tmp = *p; |
| 291 | |
| 292 | found_first: |
| 293 | tmp |= ~0UL >> size; |
| 294 | found_middle: |
| 295 | return result + ffz(tmp); |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * Find next one bit in a bitmap reasonably efficiently. |
| 300 | */ |
| 301 | static __inline__ unsigned long find_next_bit(const unsigned long *addr, |
| 302 | unsigned long size, unsigned long offset) |
| 303 | { |
| 304 | unsigned int *p = ((unsigned int *) addr) + (offset >> 5); |
| 305 | unsigned int result = offset & ~31UL; |
| 306 | unsigned int tmp; |
| 307 | |
| 308 | if (offset >= size) |
| 309 | return size; |
| 310 | size -= result; |
| 311 | offset &= 31UL; |
| 312 | if (offset) { |
| 313 | tmp = *p++; |
| 314 | tmp &= ~0UL << offset; |
| 315 | if (size < 32) |
| 316 | goto found_first; |
| 317 | if (tmp) |
| 318 | goto found_middle; |
| 319 | size -= 32; |
| 320 | result += 32; |
| 321 | } |
| 322 | while (size >= 32) { |
| 323 | if ((tmp = *p++) != 0) |
| 324 | goto found_middle; |
| 325 | result += 32; |
| 326 | size -= 32; |
| 327 | } |
| 328 | if (!size) |
| 329 | return result; |
| 330 | tmp = *p; |
| 331 | |
| 332 | found_first: |
| 333 | tmp &= ~0UL >> (32 - size); |
| 334 | if (tmp == 0UL) /* Are any bits set? */ |
| 335 | return result + size; /* Nope. */ |
| 336 | found_middle: |
| 337 | return result + __ffs(tmp); |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * hweightN: returns the hamming weight (i.e. the number |
| 342 | * of bits set) of a N-bit word |
| 343 | */ |
| 344 | |
| 345 | #define hweight32(x) generic_hweight32(x) |
| 346 | #define hweight16(x) generic_hweight16(x) |
| 347 | #define hweight8(x) generic_hweight8(x) |
| 348 | |
| 349 | |
| 350 | static __inline__ int ext2_set_bit(int nr, volatile void * addr) |
| 351 | { |
| 352 | char retval; |
| 353 | |
| 354 | #ifdef CONFIG_COLDFIRE |
| 355 | __asm__ __volatile__ ("lea %1,%%a0; bset %2,(%%a0); sne %0" |
| 356 | : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) |
| 357 | : "d" (nr) |
| 358 | : "%a0"); |
| 359 | #else |
| 360 | __asm__ __volatile__ ("bset %2,%1; sne %0" |
| 361 | : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) |
| 362 | : "di" (nr) |
| 363 | /* No clobber */); |
| 364 | #endif |
| 365 | |
| 366 | return retval; |
| 367 | } |
| 368 | |
| 369 | static __inline__ int ext2_clear_bit(int nr, volatile void * addr) |
| 370 | { |
| 371 | char retval; |
| 372 | |
| 373 | #ifdef CONFIG_COLDFIRE |
| 374 | __asm__ __volatile__ ("lea %1,%%a0; bclr %2,(%%a0); sne %0" |
| 375 | : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) |
| 376 | : "d" (nr) |
| 377 | : "%a0"); |
| 378 | #else |
| 379 | __asm__ __volatile__ ("bclr %2,%1; sne %0" |
| 380 | : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) |
| 381 | : "di" (nr) |
| 382 | /* No clobber */); |
| 383 | #endif |
| 384 | |
| 385 | return retval; |
| 386 | } |
| 387 | |
| 388 | #define ext2_set_bit_atomic(lock, nr, addr) \ |
| 389 | ({ \ |
| 390 | int ret; \ |
| 391 | spin_lock(lock); \ |
| 392 | ret = ext2_set_bit((nr), (addr)); \ |
| 393 | spin_unlock(lock); \ |
| 394 | ret; \ |
| 395 | }) |
| 396 | |
| 397 | #define ext2_clear_bit_atomic(lock, nr, addr) \ |
| 398 | ({ \ |
| 399 | int ret; \ |
| 400 | spin_lock(lock); \ |
| 401 | ret = ext2_clear_bit((nr), (addr)); \ |
| 402 | spin_unlock(lock); \ |
| 403 | ret; \ |
| 404 | }) |
| 405 | |
| 406 | static __inline__ int ext2_test_bit(int nr, const volatile void * addr) |
| 407 | { |
| 408 | char retval; |
| 409 | |
| 410 | #ifdef CONFIG_COLDFIRE |
| 411 | __asm__ __volatile__ ("lea %1,%%a0; btst %2,(%%a0); sne %0" |
| 412 | : "=d" (retval) |
| 413 | : "m" (((const volatile char *)addr)[nr >> 3]), "d" (nr) |
| 414 | : "%a0"); |
| 415 | #else |
| 416 | __asm__ __volatile__ ("btst %2,%1; sne %0" |
| 417 | : "=d" (retval) |
| 418 | : "m" (((const volatile char *)addr)[nr >> 3]), "di" (nr) |
| 419 | /* No clobber */); |
| 420 | #endif |
| 421 | |
| 422 | return retval; |
| 423 | } |
| 424 | |
| 425 | #define ext2_find_first_zero_bit(addr, size) \ |
| 426 | ext2_find_next_zero_bit((addr), (size), 0) |
| 427 | |
| 428 | static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) |
| 429 | { |
| 430 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 431 | unsigned long result = offset & ~31UL; |
| 432 | unsigned long tmp; |
| 433 | |
| 434 | if (offset >= size) |
| 435 | return size; |
| 436 | size -= result; |
| 437 | offset &= 31UL; |
| 438 | if(offset) { |
| 439 | /* We hold the little endian value in tmp, but then the |
| 440 | * shift is illegal. So we could keep a big endian value |
| 441 | * in tmp, like this: |
| 442 | * |
| 443 | * tmp = __swab32(*(p++)); |
| 444 | * tmp |= ~0UL >> (32-offset); |
| 445 | * |
| 446 | * but this would decrease preformance, so we change the |
| 447 | * shift: |
| 448 | */ |
| 449 | tmp = *(p++); |
| 450 | tmp |= __swab32(~0UL >> (32-offset)); |
| 451 | if(size < 32) |
| 452 | goto found_first; |
| 453 | if(~tmp) |
| 454 | goto found_middle; |
| 455 | size -= 32; |
| 456 | result += 32; |
| 457 | } |
| 458 | while(size & ~31UL) { |
| 459 | if(~(tmp = *(p++))) |
| 460 | goto found_middle; |
| 461 | result += 32; |
| 462 | size -= 32; |
| 463 | } |
| 464 | if(!size) |
| 465 | return result; |
| 466 | tmp = *p; |
| 467 | |
| 468 | found_first: |
| 469 | /* tmp is little endian, so we would have to swab the shift, |
| 470 | * see above. But then we have to swab tmp below for ffz, so |
| 471 | * we might as well do this here. |
| 472 | */ |
| 473 | return result + ffz(__swab32(tmp) | (~0UL << size)); |
| 474 | found_middle: |
| 475 | return result + ffz(__swab32(tmp)); |
| 476 | } |
| 477 | |
| 478 | /* Bitmap functions for the minix filesystem. */ |
| 479 | #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| 480 | #define minix_set_bit(nr,addr) set_bit(nr,addr) |
| 481 | #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| 482 | #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| 483 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| 484 | |
| 485 | /** |
| 486 | * hweightN - returns the hamming weight of a N-bit word |
| 487 | * @x: the word to weigh |
| 488 | * |
| 489 | * The Hamming Weight of a number is the total number of bits set in it. |
| 490 | */ |
| 491 | |
| 492 | #define hweight32(x) generic_hweight32(x) |
| 493 | #define hweight16(x) generic_hweight16(x) |
| 494 | #define hweight8(x) generic_hweight8(x) |
| 495 | |
| 496 | #endif /* __KERNEL__ */ |
| 497 | |
| 498 | /* |
| 499 | * fls: find last bit set. |
| 500 | */ |
| 501 | #define fls(x) generic_fls(x) |
| 502 | |
| 503 | #endif /* _M68KNOMMU_BITOPS_H */ |