blob: 7129da51bb3369eeaf35fa8aa640f00a6c4a2956 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
franse6cf5df2008-08-15 23:14:31 +02002 * This file contains an ECC algorithm that detects and corrects 1 bit
3 * errors in a 256 byte block of data.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
5 * drivers/mtd/nand/nand_ecc.c
6 *
franse6cf5df2008-08-15 23:14:31 +02007 * Copyright (C) 2008 Koninklijke Philips Electronics NV.
8 * Author: Frans Meulenbroeks
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 *
franse6cf5df2008-08-15 23:14:31 +020010 * Completely replaces the previous ECC implementation which was written by:
11 * Steven J. Hill (sjhill@realitydiluted.com)
12 * Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Information on how this algorithm works and how it was developed
15 * can be found in Documentation/nand/ecc.txt
Thomas Gleixner819d6a32006-05-23 11:32:45 +020016 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 * This file is free software; you can redistribute it and/or modify it
18 * under the terms of the GNU General Public License as published by the
19 * Free Software Foundation; either version 2 or (at your option) any
20 * later version.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000021 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 * This file is distributed in the hope that it will be useful, but WITHOUT
23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 * for more details.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000026 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070027 * You should have received a copy of the GNU General Public License along
28 * with this file; if not, write to the Free Software Foundation, Inc.,
29 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000030 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070031 */
32
franse6cf5df2008-08-15 23:14:31 +020033/*
34 * The STANDALONE macro is useful when running the code outside the kernel
35 * e.g. when running the code in a testbed or a benchmark program.
36 * When STANDALONE is used, the module related macros are commented out
37 * as well as the linux include files.
38 * Instead a private definition of mtd_into is given to satisfy the compiler
39 * (the code does not use mtd_info, so the code does not care)
40 */
41#ifndef STANDALONE
Linus Torvalds1da177e2005-04-16 15:20:36 -070042#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/mtd/nand_ecc.h>
franse6cf5df2008-08-15 23:14:31 +020046#else
47typedef uint32_t unsigned long
48struct mtd_info {
49 int dummy;
50};
51#define EXPORT_SYMBOL(x) /* x */
52
53#define MODULE_LICENSE(x) /* x */
54#define MODULE_AUTHOR(x) /* x */
55#define MODULE_DESCRIPTION(x) /* x */
56#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070057
58/*
franse6cf5df2008-08-15 23:14:31 +020059 * invparity is a 256 byte table that contains the odd parity
60 * for each byte. So if the number of bits in a byte is even,
61 * the array element is 1, and when the number of bits is odd
62 * the array eleemnt is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -070063 */
franse6cf5df2008-08-15 23:14:31 +020064static const char invparity[256] = {
65 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
66 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
67 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
68 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
69 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
70 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
71 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
72 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
73 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
74 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
75 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
76 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
77 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
78 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
79 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
80 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
81};
82
83/*
84 * bitsperbyte contains the number of bits per byte
85 * this is only used for testing and repairing parity
86 * (a precalculated value slightly improves performance)
87 */
88static const char bitsperbyte[256] = {
89 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
90 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
91 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
92 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
93 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
94 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
95 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
96 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
97 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
98 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
99 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
100 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
101 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
102 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
103 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
104 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
105};
106
107/*
108 * addressbits is a lookup table to filter out the bits from the xor-ed
109 * ecc data that identify the faulty location.
110 * this is only used for repairing parity
111 * see the comments in nand_correct_data for more details
112 */
113static const char addressbits[256] = {
114 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
115 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
116 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
117 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
118 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
119 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
120 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
121 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
122 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
123 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
124 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
125 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
126 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
127 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
128 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
129 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
130 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
131 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
132 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
133 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
134 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
135 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
136 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
137 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
138 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
139 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
140 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
141 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
142 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
143 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
144 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
145 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146};
147
Linus Torvalds1da177e2005-04-16 15:20:36 -0700148/**
Randy Dunlap844d3b42006-06-28 21:48:27 -0700149 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
franse6cf5df2008-08-15 23:14:31 +0200150 * @mtd: MTD block structure (unused)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700151 * @dat: raw data
152 * @ecc_code: buffer for ECC
153 */
franse6cf5df2008-08-15 23:14:31 +0200154int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
155 unsigned char *code)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156{
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200157 int i;
franse6cf5df2008-08-15 23:14:31 +0200158 const uint32_t *bp = (uint32_t *)buf;
159 uint32_t cur; /* current value in buffer */
160 /* rp0..rp15 are the various accumulated parities (per byte) */
161 uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
162 uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
163 uint32_t par; /* the cumulative parity for all data */
164 uint32_t tmppar; /* the cumulative parity for this iteration;
165 for rp12 and rp14 at the end of the loop */
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000166
franse6cf5df2008-08-15 23:14:31 +0200167 par = 0;
168 rp4 = 0;
169 rp6 = 0;
170 rp8 = 0;
171 rp10 = 0;
172 rp12 = 0;
173 rp14 = 0;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000174
franse6cf5df2008-08-15 23:14:31 +0200175 /*
176 * The loop is unrolled a number of times;
177 * This avoids if statements to decide on which rp value to update
178 * Also we process the data by longwords.
179 * Note: passing unaligned data might give a performance penalty.
180 * It is assumed that the buffers are aligned.
181 * tmppar is the cumulative sum of this iteration.
182 * needed for calculating rp12, rp14 and par
183 * also used as a performance improvement for rp6, rp8 and rp10
184 */
185 for (i = 0; i < 4; i++) {
186 cur = *bp++;
187 tmppar = cur;
188 rp4 ^= cur;
189 cur = *bp++;
190 tmppar ^= cur;
191 rp6 ^= tmppar;
192 cur = *bp++;
193 tmppar ^= cur;
194 rp4 ^= cur;
195 cur = *bp++;
196 tmppar ^= cur;
197 rp8 ^= tmppar;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000198
franse6cf5df2008-08-15 23:14:31 +0200199 cur = *bp++;
200 tmppar ^= cur;
201 rp4 ^= cur;
202 rp6 ^= cur;
203 cur = *bp++;
204 tmppar ^= cur;
205 rp6 ^= cur;
206 cur = *bp++;
207 tmppar ^= cur;
208 rp4 ^= cur;
209 cur = *bp++;
210 tmppar ^= cur;
211 rp10 ^= tmppar;
212
213 cur = *bp++;
214 tmppar ^= cur;
215 rp4 ^= cur;
216 rp6 ^= cur;
217 rp8 ^= cur;
218 cur = *bp++;
219 tmppar ^= cur;
220 rp6 ^= cur;
221 rp8 ^= cur;
222 cur = *bp++;
223 tmppar ^= cur;
224 rp4 ^= cur;
225 rp8 ^= cur;
226 cur = *bp++;
227 tmppar ^= cur;
228 rp8 ^= cur;
229
230 cur = *bp++;
231 tmppar ^= cur;
232 rp4 ^= cur;
233 rp6 ^= cur;
234 cur = *bp++;
235 tmppar ^= cur;
236 rp6 ^= cur;
237 cur = *bp++;
238 tmppar ^= cur;
239 rp4 ^= cur;
240 cur = *bp++;
241 tmppar ^= cur;
242
243 par ^= tmppar;
244 if ((i & 0x1) == 0)
245 rp12 ^= tmppar;
246 if ((i & 0x2) == 0)
247 rp14 ^= tmppar;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700248 }
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000249
franse6cf5df2008-08-15 23:14:31 +0200250 /*
251 * handle the fact that we use longword operations
252 * we'll bring rp4..rp14 back to single byte entities by shifting and
253 * xoring first fold the upper and lower 16 bits,
254 * then the upper and lower 8 bits.
255 */
256 rp4 ^= (rp4 >> 16);
257 rp4 ^= (rp4 >> 8);
258 rp4 &= 0xff;
259 rp6 ^= (rp6 >> 16);
260 rp6 ^= (rp6 >> 8);
261 rp6 &= 0xff;
262 rp8 ^= (rp8 >> 16);
263 rp8 ^= (rp8 >> 8);
264 rp8 &= 0xff;
265 rp10 ^= (rp10 >> 16);
266 rp10 ^= (rp10 >> 8);
267 rp10 &= 0xff;
268 rp12 ^= (rp12 >> 16);
269 rp12 ^= (rp12 >> 8);
270 rp12 &= 0xff;
271 rp14 ^= (rp14 >> 16);
272 rp14 ^= (rp14 >> 8);
273 rp14 &= 0xff;
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200274
franse6cf5df2008-08-15 23:14:31 +0200275 /*
276 * we also need to calculate the row parity for rp0..rp3
277 * This is present in par, because par is now
278 * rp3 rp3 rp2 rp2
279 * as well as
280 * rp1 rp0 rp1 rp0
281 * First calculate rp2 and rp3
282 * (and yes: rp2 = (par ^ rp3) & 0xff; but doing that did not
283 * give a performance improvement)
284 */
285 rp3 = (par >> 16);
286 rp3 ^= (rp3 >> 8);
287 rp3 &= 0xff;
288 rp2 = par & 0xffff;
289 rp2 ^= (rp2 >> 8);
290 rp2 &= 0xff;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000291
franse6cf5df2008-08-15 23:14:31 +0200292 /* reduce par to 16 bits then calculate rp1 and rp0 */
293 par ^= (par >> 16);
294 rp1 = (par >> 8) & 0xff;
295 rp0 = (par & 0xff);
296
297 /* finally reduce par to 8 bits */
298 par ^= (par >> 8);
299 par &= 0xff;
300
301 /*
302 * and calculate rp5..rp15
303 * note that par = rp4 ^ rp5 and due to the commutative property
304 * of the ^ operator we can say:
305 * rp5 = (par ^ rp4);
306 * The & 0xff seems superfluous, but benchmarking learned that
307 * leaving it out gives slightly worse results. No idea why, probably
308 * it has to do with the way the pipeline in pentium is organized.
309 */
310 rp5 = (par ^ rp4) & 0xff;
311 rp7 = (par ^ rp6) & 0xff;
312 rp9 = (par ^ rp8) & 0xff;
313 rp11 = (par ^ rp10) & 0xff;
314 rp13 = (par ^ rp12) & 0xff;
315 rp15 = (par ^ rp14) & 0xff;
316
317 /*
318 * Finally calculate the ecc bits.
319 * Again here it might seem that there are performance optimisations
320 * possible, but benchmarks showed that on the system this is developed
321 * the code below is the fastest
322 */
Timo Lindhorstfc029192006-11-27 13:35:49 +0100323#ifdef CONFIG_MTD_NAND_ECC_SMC
franse6cf5df2008-08-15 23:14:31 +0200324 code[0] =
325 (invparity[rp7] << 7) |
326 (invparity[rp6] << 6) |
327 (invparity[rp5] << 5) |
328 (invparity[rp4] << 4) |
329 (invparity[rp3] << 3) |
330 (invparity[rp2] << 2) |
331 (invparity[rp1] << 1) |
332 (invparity[rp0]);
333 code[1] =
334 (invparity[rp15] << 7) |
335 (invparity[rp14] << 6) |
336 (invparity[rp13] << 5) |
337 (invparity[rp12] << 4) |
338 (invparity[rp11] << 3) |
339 (invparity[rp10] << 2) |
340 (invparity[rp9] << 1) |
341 (invparity[rp8]);
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200342#else
franse6cf5df2008-08-15 23:14:31 +0200343 code[1] =
344 (invparity[rp7] << 7) |
345 (invparity[rp6] << 6) |
346 (invparity[rp5] << 5) |
347 (invparity[rp4] << 4) |
348 (invparity[rp3] << 3) |
349 (invparity[rp2] << 2) |
350 (invparity[rp1] << 1) |
351 (invparity[rp0]);
352 code[0] =
353 (invparity[rp15] << 7) |
354 (invparity[rp14] << 6) |
355 (invparity[rp13] << 5) |
356 (invparity[rp12] << 4) |
357 (invparity[rp11] << 3) |
358 (invparity[rp10] << 2) |
359 (invparity[rp9] << 1) |
360 (invparity[rp8]);
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200361#endif
franse6cf5df2008-08-15 23:14:31 +0200362 code[2] =
363 (invparity[par & 0xf0] << 7) |
364 (invparity[par & 0x0f] << 6) |
365 (invparity[par & 0xcc] << 5) |
366 (invparity[par & 0x33] << 4) |
367 (invparity[par & 0xaa] << 3) |
368 (invparity[par & 0x55] << 2) |
369 3;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700370 return 0;
371}
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200372EXPORT_SYMBOL(nand_calculate_ecc);
373
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374/**
375 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
franse6cf5df2008-08-15 23:14:31 +0200376 * @mtd: MTD block structure (unused)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377 * @dat: raw data read from the chip
378 * @read_ecc: ECC from the chip
379 * @calc_ecc: the ECC calculated from raw data
380 *
381 * Detect and correct a 1 bit error for 256 byte block
382 */
franse6cf5df2008-08-15 23:14:31 +0200383int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
384 unsigned char *read_ecc, unsigned char *calc_ecc)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700385{
franse6cf5df2008-08-15 23:14:31 +0200386 int nr_bits;
387 unsigned char b0, b1, b2;
388 unsigned char byte_addr, bit_addr;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000389
franse6cf5df2008-08-15 23:14:31 +0200390 /*
391 * b0 to b2 indicate which bit is faulty (if any)
392 * we might need the xor result more than once,
393 * so keep them in a local var
394 */
Timo Lindhorstfc029192006-11-27 13:35:49 +0100395#ifdef CONFIG_MTD_NAND_ECC_SMC
franse6cf5df2008-08-15 23:14:31 +0200396 b0 = read_ecc[0] ^ calc_ecc[0];
397 b1 = read_ecc[1] ^ calc_ecc[1];
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200398#else
franse6cf5df2008-08-15 23:14:31 +0200399 b0 = read_ecc[1] ^ calc_ecc[1];
400 b1 = read_ecc[0] ^ calc_ecc[0];
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200401#endif
franse6cf5df2008-08-15 23:14:31 +0200402 b2 = read_ecc[2] ^ calc_ecc[2];
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000403
franse6cf5df2008-08-15 23:14:31 +0200404 /* check if there are any bitfaults */
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200405
franse6cf5df2008-08-15 23:14:31 +0200406 /* count nr of bits; use table lookup, faster than calculating it */
407 nr_bits = bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2];
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200408
franse6cf5df2008-08-15 23:14:31 +0200409 /* repeated if statements are slightly more efficient than switch ... */
410 /* ordered in order of likelihood */
411 if (nr_bits == 0)
412 return (0); /* no error */
413 if (nr_bits == 11) { /* correctable error */
414 /*
415 * rp15/13/11/9/7/5/3/1 indicate which byte is the faulty byte
416 * cp 5/3/1 indicate the faulty bit.
417 * A lookup table (called addressbits) is used to filter
418 * the bits from the byte they are in.
419 * A marginal optimisation is possible by having three
420 * different lookup tables.
421 * One as we have now (for b0), one for b2
422 * (that would avoid the >> 1), and one for b1 (with all values
423 * << 4). However it was felt that introducing two more tables
424 * hardly justify the gain.
425 *
426 * The b2 shift is there to get rid of the lowest two bits.
427 * We could also do addressbits[b2] >> 1 but for the
428 * performace it does not make any difference
429 */
430 byte_addr = (addressbits[b1] << 4) + addressbits[b0];
431 bit_addr = addressbits[b2 >> 2];
432 /* flip the bit */
433 buf[byte_addr] ^= (1 << bit_addr);
434 return (1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435 }
franse6cf5df2008-08-15 23:14:31 +0200436 if (nr_bits == 1)
437 return (1); /* error in ecc data; no action needed */
438 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700439}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700440EXPORT_SYMBOL(nand_correct_data);
441
442MODULE_LICENSE("GPL");
franse6cf5df2008-08-15 23:14:31 +0200443MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444MODULE_DESCRIPTION("Generic NAND ECC support");