Kiyoshi Ueda | f392ba8 | 2009-06-22 10:12:28 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2007-2009 NEC Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * Module Author: Kiyoshi Ueda |
| 5 | * |
| 6 | * This file is released under the GPL. |
| 7 | * |
| 8 | * Throughput oriented path selector. |
| 9 | */ |
| 10 | |
| 11 | #include "dm.h" |
| 12 | #include "dm-path-selector.h" |
| 13 | |
Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 14 | #include <linux/slab.h> |
Paul Gortmaker | 056075c | 2011-07-03 13:58:33 -0400 | [diff] [blame] | 15 | #include <linux/module.h> |
Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 16 | |
Kiyoshi Ueda | f392ba8 | 2009-06-22 10:12:28 +0100 | [diff] [blame] | 17 | #define DM_MSG_PREFIX "multipath service-time" |
| 18 | #define ST_MIN_IO 1 |
| 19 | #define ST_MAX_RELATIVE_THROUGHPUT 100 |
| 20 | #define ST_MAX_RELATIVE_THROUGHPUT_SHIFT 7 |
| 21 | #define ST_MAX_INFLIGHT_SIZE ((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT) |
| 22 | #define ST_VERSION "0.2.0" |
| 23 | |
| 24 | struct selector { |
| 25 | struct list_head valid_paths; |
| 26 | struct list_head failed_paths; |
| 27 | }; |
| 28 | |
| 29 | struct path_info { |
| 30 | struct list_head list; |
| 31 | struct dm_path *path; |
| 32 | unsigned repeat_count; |
| 33 | unsigned relative_throughput; |
| 34 | atomic_t in_flight_size; /* Total size of in-flight I/Os */ |
| 35 | }; |
| 36 | |
| 37 | static struct selector *alloc_selector(void) |
| 38 | { |
| 39 | struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL); |
| 40 | |
| 41 | if (s) { |
| 42 | INIT_LIST_HEAD(&s->valid_paths); |
| 43 | INIT_LIST_HEAD(&s->failed_paths); |
| 44 | } |
| 45 | |
| 46 | return s; |
| 47 | } |
| 48 | |
| 49 | static int st_create(struct path_selector *ps, unsigned argc, char **argv) |
| 50 | { |
| 51 | struct selector *s = alloc_selector(); |
| 52 | |
| 53 | if (!s) |
| 54 | return -ENOMEM; |
| 55 | |
| 56 | ps->context = s; |
| 57 | return 0; |
| 58 | } |
| 59 | |
| 60 | static void free_paths(struct list_head *paths) |
| 61 | { |
| 62 | struct path_info *pi, *next; |
| 63 | |
| 64 | list_for_each_entry_safe(pi, next, paths, list) { |
| 65 | list_del(&pi->list); |
| 66 | kfree(pi); |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | static void st_destroy(struct path_selector *ps) |
| 71 | { |
| 72 | struct selector *s = ps->context; |
| 73 | |
| 74 | free_paths(&s->valid_paths); |
| 75 | free_paths(&s->failed_paths); |
| 76 | kfree(s); |
| 77 | ps->context = NULL; |
| 78 | } |
| 79 | |
| 80 | static int st_status(struct path_selector *ps, struct dm_path *path, |
| 81 | status_type_t type, char *result, unsigned maxlen) |
| 82 | { |
| 83 | unsigned sz = 0; |
| 84 | struct path_info *pi; |
| 85 | |
| 86 | if (!path) |
| 87 | DMEMIT("0 "); |
| 88 | else { |
| 89 | pi = path->pscontext; |
| 90 | |
| 91 | switch (type) { |
| 92 | case STATUSTYPE_INFO: |
| 93 | DMEMIT("%d %u ", atomic_read(&pi->in_flight_size), |
| 94 | pi->relative_throughput); |
| 95 | break; |
| 96 | case STATUSTYPE_TABLE: |
| 97 | DMEMIT("%u %u ", pi->repeat_count, |
| 98 | pi->relative_throughput); |
| 99 | break; |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | return sz; |
| 104 | } |
| 105 | |
| 106 | static int st_add_path(struct path_selector *ps, struct dm_path *path, |
| 107 | int argc, char **argv, char **error) |
| 108 | { |
| 109 | struct selector *s = ps->context; |
| 110 | struct path_info *pi; |
| 111 | unsigned repeat_count = ST_MIN_IO; |
| 112 | unsigned relative_throughput = 1; |
| 113 | |
| 114 | /* |
| 115 | * Arguments: [<repeat_count> [<relative_throughput>]] |
| 116 | * <repeat_count>: The number of I/Os before switching path. |
| 117 | * If not given, default (ST_MIN_IO) is used. |
| 118 | * <relative_throughput>: The relative throughput value of |
| 119 | * the path among all paths in the path-group. |
| 120 | * The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT> |
| 121 | * If not given, minimum value '1' is used. |
| 122 | * If '0' is given, the path isn't selected while |
| 123 | * other paths having a positive value are |
| 124 | * available. |
| 125 | */ |
| 126 | if (argc > 2) { |
| 127 | *error = "service-time ps: incorrect number of arguments"; |
| 128 | return -EINVAL; |
| 129 | } |
| 130 | |
| 131 | if (argc && (sscanf(argv[0], "%u", &repeat_count) != 1)) { |
| 132 | *error = "service-time ps: invalid repeat count"; |
| 133 | return -EINVAL; |
| 134 | } |
| 135 | |
| 136 | if ((argc == 2) && |
| 137 | (sscanf(argv[1], "%u", &relative_throughput) != 1 || |
| 138 | relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) { |
| 139 | *error = "service-time ps: invalid relative_throughput value"; |
| 140 | return -EINVAL; |
| 141 | } |
| 142 | |
| 143 | /* allocate the path */ |
| 144 | pi = kmalloc(sizeof(*pi), GFP_KERNEL); |
| 145 | if (!pi) { |
| 146 | *error = "service-time ps: Error allocating path context"; |
| 147 | return -ENOMEM; |
| 148 | } |
| 149 | |
| 150 | pi->path = path; |
| 151 | pi->repeat_count = repeat_count; |
| 152 | pi->relative_throughput = relative_throughput; |
| 153 | atomic_set(&pi->in_flight_size, 0); |
| 154 | |
| 155 | path->pscontext = pi; |
| 156 | |
| 157 | list_add_tail(&pi->list, &s->valid_paths); |
| 158 | |
| 159 | return 0; |
| 160 | } |
| 161 | |
| 162 | static void st_fail_path(struct path_selector *ps, struct dm_path *path) |
| 163 | { |
| 164 | struct selector *s = ps->context; |
| 165 | struct path_info *pi = path->pscontext; |
| 166 | |
| 167 | list_move(&pi->list, &s->failed_paths); |
| 168 | } |
| 169 | |
| 170 | static int st_reinstate_path(struct path_selector *ps, struct dm_path *path) |
| 171 | { |
| 172 | struct selector *s = ps->context; |
| 173 | struct path_info *pi = path->pscontext; |
| 174 | |
| 175 | list_move_tail(&pi->list, &s->valid_paths); |
| 176 | |
| 177 | return 0; |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * Compare the estimated service time of 2 paths, pi1 and pi2, |
| 182 | * for the incoming I/O. |
| 183 | * |
| 184 | * Returns: |
| 185 | * < 0 : pi1 is better |
| 186 | * 0 : no difference between pi1 and pi2 |
| 187 | * > 0 : pi2 is better |
| 188 | * |
| 189 | * Description: |
| 190 | * Basically, the service time is estimated by: |
| 191 | * ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput' |
| 192 | * To reduce the calculation, some optimizations are made. |
| 193 | * (See comments inline) |
| 194 | */ |
| 195 | static int st_compare_load(struct path_info *pi1, struct path_info *pi2, |
| 196 | size_t incoming) |
| 197 | { |
| 198 | size_t sz1, sz2, st1, st2; |
| 199 | |
| 200 | sz1 = atomic_read(&pi1->in_flight_size); |
| 201 | sz2 = atomic_read(&pi2->in_flight_size); |
| 202 | |
| 203 | /* |
| 204 | * Case 1: Both have same throughput value. Choose less loaded path. |
| 205 | */ |
| 206 | if (pi1->relative_throughput == pi2->relative_throughput) |
| 207 | return sz1 - sz2; |
| 208 | |
| 209 | /* |
| 210 | * Case 2a: Both have same load. Choose higher throughput path. |
| 211 | * Case 2b: One path has no throughput value. Choose the other one. |
| 212 | */ |
| 213 | if (sz1 == sz2 || |
| 214 | !pi1->relative_throughput || !pi2->relative_throughput) |
| 215 | return pi2->relative_throughput - pi1->relative_throughput; |
| 216 | |
| 217 | /* |
| 218 | * Case 3: Calculate service time. Choose faster path. |
| 219 | * Service time using pi1: |
| 220 | * st1 = (sz1 + incoming) / pi1->relative_throughput |
| 221 | * Service time using pi2: |
| 222 | * st2 = (sz2 + incoming) / pi2->relative_throughput |
| 223 | * |
| 224 | * To avoid the division, transform the expression to use |
| 225 | * multiplication. |
| 226 | * Because ->relative_throughput > 0 here, if st1 < st2, |
| 227 | * the expressions below are the same meaning: |
| 228 | * (sz1 + incoming) / pi1->relative_throughput < |
| 229 | * (sz2 + incoming) / pi2->relative_throughput |
| 230 | * (sz1 + incoming) * pi2->relative_throughput < |
| 231 | * (sz2 + incoming) * pi1->relative_throughput |
| 232 | * So use the later one. |
| 233 | */ |
| 234 | sz1 += incoming; |
| 235 | sz2 += incoming; |
| 236 | if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE || |
| 237 | sz2 >= ST_MAX_INFLIGHT_SIZE)) { |
| 238 | /* |
| 239 | * Size may be too big for multiplying pi->relative_throughput |
| 240 | * and overflow. |
| 241 | * To avoid the overflow and mis-selection, shift down both. |
| 242 | */ |
| 243 | sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT; |
| 244 | sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT; |
| 245 | } |
| 246 | st1 = sz1 * pi2->relative_throughput; |
| 247 | st2 = sz2 * pi1->relative_throughput; |
| 248 | if (st1 != st2) |
| 249 | return st1 - st2; |
| 250 | |
| 251 | /* |
| 252 | * Case 4: Service time is equal. Choose higher throughput path. |
| 253 | */ |
| 254 | return pi2->relative_throughput - pi1->relative_throughput; |
| 255 | } |
| 256 | |
| 257 | static struct dm_path *st_select_path(struct path_selector *ps, |
| 258 | unsigned *repeat_count, size_t nr_bytes) |
| 259 | { |
| 260 | struct selector *s = ps->context; |
| 261 | struct path_info *pi = NULL, *best = NULL; |
| 262 | |
| 263 | if (list_empty(&s->valid_paths)) |
| 264 | return NULL; |
| 265 | |
| 266 | /* Change preferred (first in list) path to evenly balance. */ |
| 267 | list_move_tail(s->valid_paths.next, &s->valid_paths); |
| 268 | |
| 269 | list_for_each_entry(pi, &s->valid_paths, list) |
| 270 | if (!best || (st_compare_load(pi, best, nr_bytes) < 0)) |
| 271 | best = pi; |
| 272 | |
| 273 | if (!best) |
| 274 | return NULL; |
| 275 | |
| 276 | *repeat_count = best->repeat_count; |
| 277 | |
| 278 | return best->path; |
| 279 | } |
| 280 | |
| 281 | static int st_start_io(struct path_selector *ps, struct dm_path *path, |
| 282 | size_t nr_bytes) |
| 283 | { |
| 284 | struct path_info *pi = path->pscontext; |
| 285 | |
| 286 | atomic_add(nr_bytes, &pi->in_flight_size); |
| 287 | |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | static int st_end_io(struct path_selector *ps, struct dm_path *path, |
| 292 | size_t nr_bytes) |
| 293 | { |
| 294 | struct path_info *pi = path->pscontext; |
| 295 | |
| 296 | atomic_sub(nr_bytes, &pi->in_flight_size); |
| 297 | |
| 298 | return 0; |
| 299 | } |
| 300 | |
| 301 | static struct path_selector_type st_ps = { |
| 302 | .name = "service-time", |
| 303 | .module = THIS_MODULE, |
| 304 | .table_args = 2, |
| 305 | .info_args = 2, |
| 306 | .create = st_create, |
| 307 | .destroy = st_destroy, |
| 308 | .status = st_status, |
| 309 | .add_path = st_add_path, |
| 310 | .fail_path = st_fail_path, |
| 311 | .reinstate_path = st_reinstate_path, |
| 312 | .select_path = st_select_path, |
| 313 | .start_io = st_start_io, |
| 314 | .end_io = st_end_io, |
| 315 | }; |
| 316 | |
| 317 | static int __init dm_st_init(void) |
| 318 | { |
| 319 | int r = dm_register_path_selector(&st_ps); |
| 320 | |
| 321 | if (r < 0) |
| 322 | DMERR("register failed %d", r); |
| 323 | |
| 324 | DMINFO("version " ST_VERSION " loaded"); |
| 325 | |
| 326 | return r; |
| 327 | } |
| 328 | |
| 329 | static void __exit dm_st_exit(void) |
| 330 | { |
| 331 | int r = dm_unregister_path_selector(&st_ps); |
| 332 | |
| 333 | if (r < 0) |
| 334 | DMERR("unregister failed %d", r); |
| 335 | } |
| 336 | |
| 337 | module_init(dm_st_init); |
| 338 | module_exit(dm_st_exit); |
| 339 | |
| 340 | MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector"); |
| 341 | MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>"); |
| 342 | MODULE_LICENSE("GPL"); |