Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #define _FP_DECL(wc, X) \ |
| 2 | _FP_I_TYPE X##_c, X##_s, X##_e; \ |
| 3 | _FP_FRAC_DECL_##wc(X) |
| 4 | |
| 5 | /* |
| 6 | * Finish truely unpacking a native fp value by classifying the kind |
| 7 | * of fp value and normalizing both the exponent and the fraction. |
| 8 | */ |
| 9 | |
| 10 | #define _FP_UNPACK_CANONICAL(fs, wc, X) \ |
| 11 | do { \ |
| 12 | switch (X##_e) \ |
| 13 | { \ |
| 14 | default: \ |
| 15 | _FP_FRAC_HIGH_##wc(X) |= _FP_IMPLBIT_##fs; \ |
| 16 | _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \ |
| 17 | X##_e -= _FP_EXPBIAS_##fs; \ |
| 18 | X##_c = FP_CLS_NORMAL; \ |
| 19 | break; \ |
| 20 | \ |
| 21 | case 0: \ |
| 22 | if (_FP_FRAC_ZEROP_##wc(X)) \ |
| 23 | X##_c = FP_CLS_ZERO; \ |
| 24 | else \ |
| 25 | { \ |
| 26 | /* a denormalized number */ \ |
| 27 | _FP_I_TYPE _shift; \ |
| 28 | _FP_FRAC_CLZ_##wc(_shift, X); \ |
| 29 | _shift -= _FP_FRACXBITS_##fs; \ |
| 30 | _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \ |
| 31 | X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \ |
| 32 | X##_c = FP_CLS_NORMAL; \ |
| 33 | } \ |
| 34 | break; \ |
| 35 | \ |
| 36 | case _FP_EXPMAX_##fs: \ |
| 37 | if (_FP_FRAC_ZEROP_##wc(X)) \ |
| 38 | X##_c = FP_CLS_INF; \ |
| 39 | else \ |
| 40 | /* we don't differentiate between signaling and quiet nans */ \ |
| 41 | X##_c = FP_CLS_NAN; \ |
| 42 | break; \ |
| 43 | } \ |
| 44 | } while (0) |
| 45 | |
| 46 | |
| 47 | /* |
| 48 | * Before packing the bits back into the native fp result, take care |
| 49 | * of such mundane things as rounding and overflow. Also, for some |
| 50 | * kinds of fp values, the original parts may not have been fully |
| 51 | * extracted -- but that is ok, we can regenerate them now. |
| 52 | */ |
| 53 | |
| 54 | #define _FP_PACK_CANONICAL(fs, wc, X) \ |
| 55 | ({int __ret = 0; \ |
| 56 | switch (X##_c) \ |
| 57 | { \ |
| 58 | case FP_CLS_NORMAL: \ |
| 59 | X##_e += _FP_EXPBIAS_##fs; \ |
| 60 | if (X##_e > 0) \ |
| 61 | { \ |
| 62 | __ret |= _FP_ROUND(wc, X); \ |
| 63 | if (_FP_FRAC_OVERP_##wc(fs, X)) \ |
| 64 | { \ |
| 65 | _FP_FRAC_SRL_##wc(X, (_FP_WORKBITS+1)); \ |
| 66 | X##_e++; \ |
| 67 | } \ |
| 68 | else \ |
| 69 | _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ |
| 70 | if (X##_e >= _FP_EXPMAX_##fs) \ |
| 71 | { \ |
| 72 | /* overflow to infinity */ \ |
| 73 | X##_e = _FP_EXPMAX_##fs; \ |
| 74 | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| 75 | __ret |= EFLAG_OVERFLOW; \ |
| 76 | } \ |
| 77 | } \ |
| 78 | else \ |
| 79 | { \ |
| 80 | /* we've got a denormalized number */ \ |
| 81 | X##_e = -X##_e + 1; \ |
| 82 | if (X##_e <= _FP_WFRACBITS_##fs) \ |
| 83 | { \ |
| 84 | _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \ |
| 85 | _FP_FRAC_SLL_##wc(X, 1); \ |
| 86 | if (_FP_FRAC_OVERP_##wc(fs, X)) \ |
| 87 | { \ |
| 88 | X##_e = 1; \ |
| 89 | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| 90 | } \ |
| 91 | else \ |
| 92 | { \ |
| 93 | X##_e = 0; \ |
| 94 | _FP_FRAC_SRL_##wc(X, _FP_WORKBITS+1); \ |
| 95 | __ret |= EFLAG_UNDERFLOW; \ |
| 96 | } \ |
| 97 | } \ |
| 98 | else \ |
| 99 | { \ |
| 100 | /* underflow to zero */ \ |
| 101 | X##_e = 0; \ |
| 102 | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| 103 | __ret |= EFLAG_UNDERFLOW; \ |
| 104 | } \ |
| 105 | } \ |
| 106 | break; \ |
| 107 | \ |
| 108 | case FP_CLS_ZERO: \ |
| 109 | X##_e = 0; \ |
| 110 | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| 111 | break; \ |
| 112 | \ |
| 113 | case FP_CLS_INF: \ |
| 114 | X##_e = _FP_EXPMAX_##fs; \ |
| 115 | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| 116 | break; \ |
| 117 | \ |
| 118 | case FP_CLS_NAN: \ |
| 119 | X##_e = _FP_EXPMAX_##fs; \ |
| 120 | if (!_FP_KEEPNANFRACP) \ |
| 121 | { \ |
| 122 | _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \ |
| 123 | X##_s = 0; \ |
| 124 | } \ |
| 125 | else \ |
| 126 | _FP_FRAC_HIGH_##wc(X) |= _FP_QNANBIT_##fs; \ |
| 127 | break; \ |
| 128 | } \ |
| 129 | __ret; \ |
| 130 | }) |
| 131 | |
| 132 | |
| 133 | /* |
| 134 | * Main addition routine. The input values should be cooked. |
| 135 | */ |
| 136 | |
| 137 | #define _FP_ADD(fs, wc, R, X, Y) \ |
| 138 | do { \ |
| 139 | switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ |
| 140 | { \ |
| 141 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ |
| 142 | { \ |
| 143 | /* shift the smaller number so that its exponent matches the larger */ \ |
| 144 | _FP_I_TYPE diff = X##_e - Y##_e; \ |
| 145 | \ |
| 146 | if (diff < 0) \ |
| 147 | { \ |
| 148 | diff = -diff; \ |
| 149 | if (diff <= _FP_WFRACBITS_##fs) \ |
| 150 | _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \ |
| 151 | else if (!_FP_FRAC_ZEROP_##wc(X)) \ |
| 152 | _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ |
| 153 | else \ |
| 154 | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| 155 | R##_e = Y##_e; \ |
| 156 | } \ |
| 157 | else \ |
| 158 | { \ |
| 159 | if (diff > 0) \ |
| 160 | { \ |
| 161 | if (diff <= _FP_WFRACBITS_##fs) \ |
| 162 | _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \ |
| 163 | else if (!_FP_FRAC_ZEROP_##wc(Y)) \ |
| 164 | _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \ |
| 165 | else \ |
| 166 | _FP_FRAC_SET_##wc(Y, _FP_ZEROFRAC_##wc); \ |
| 167 | } \ |
| 168 | R##_e = X##_e; \ |
| 169 | } \ |
| 170 | \ |
| 171 | R##_c = FP_CLS_NORMAL; \ |
| 172 | \ |
| 173 | if (X##_s == Y##_s) \ |
| 174 | { \ |
| 175 | R##_s = X##_s; \ |
| 176 | _FP_FRAC_ADD_##wc(R, X, Y); \ |
| 177 | if (_FP_FRAC_OVERP_##wc(fs, R)) \ |
| 178 | { \ |
| 179 | _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ |
| 180 | R##_e++; \ |
| 181 | } \ |
| 182 | } \ |
| 183 | else \ |
| 184 | { \ |
| 185 | R##_s = X##_s; \ |
| 186 | _FP_FRAC_SUB_##wc(R, X, Y); \ |
| 187 | if (_FP_FRAC_ZEROP_##wc(R)) \ |
| 188 | { \ |
| 189 | /* return an exact zero */ \ |
| 190 | if (FP_ROUNDMODE == FP_RND_MINF) \ |
| 191 | R##_s |= Y##_s; \ |
| 192 | else \ |
| 193 | R##_s &= Y##_s; \ |
| 194 | R##_c = FP_CLS_ZERO; \ |
| 195 | } \ |
| 196 | else \ |
| 197 | { \ |
| 198 | if (_FP_FRAC_NEGP_##wc(R)) \ |
| 199 | { \ |
| 200 | _FP_FRAC_SUB_##wc(R, Y, X); \ |
| 201 | R##_s = Y##_s; \ |
| 202 | } \ |
| 203 | \ |
| 204 | /* renormalize after subtraction */ \ |
| 205 | _FP_FRAC_CLZ_##wc(diff, R); \ |
| 206 | diff -= _FP_WFRACXBITS_##fs; \ |
| 207 | if (diff) \ |
| 208 | { \ |
| 209 | R##_e -= diff; \ |
| 210 | _FP_FRAC_SLL_##wc(R, diff); \ |
| 211 | } \ |
| 212 | } \ |
| 213 | } \ |
| 214 | break; \ |
| 215 | } \ |
| 216 | \ |
| 217 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ |
| 218 | _FP_CHOOSENAN(fs, wc, R, X, Y); \ |
| 219 | break; \ |
| 220 | \ |
| 221 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ |
| 222 | R##_e = X##_e; \ |
| 223 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ |
| 224 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ |
| 225 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ |
| 226 | _FP_FRAC_COPY_##wc(R, X); \ |
| 227 | R##_s = X##_s; \ |
| 228 | R##_c = X##_c; \ |
| 229 | break; \ |
| 230 | \ |
| 231 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ |
| 232 | R##_e = Y##_e; \ |
| 233 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ |
| 234 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ |
| 235 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ |
| 236 | _FP_FRAC_COPY_##wc(R, Y); \ |
| 237 | R##_s = Y##_s; \ |
| 238 | R##_c = Y##_c; \ |
| 239 | break; \ |
| 240 | \ |
| 241 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ |
| 242 | if (X##_s != Y##_s) \ |
| 243 | { \ |
| 244 | /* +INF + -INF => NAN */ \ |
| 245 | _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ |
| 246 | R##_s = X##_s ^ Y##_s; \ |
| 247 | R##_c = FP_CLS_NAN; \ |
| 248 | break; \ |
| 249 | } \ |
| 250 | /* FALLTHRU */ \ |
| 251 | \ |
| 252 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ |
| 253 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ |
| 254 | R##_s = X##_s; \ |
| 255 | R##_c = FP_CLS_INF; \ |
| 256 | break; \ |
| 257 | \ |
| 258 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ |
| 259 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ |
| 260 | R##_s = Y##_s; \ |
| 261 | R##_c = FP_CLS_INF; \ |
| 262 | break; \ |
| 263 | \ |
| 264 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ |
| 265 | /* make sure the sign is correct */ \ |
| 266 | if (FP_ROUNDMODE == FP_RND_MINF) \ |
| 267 | R##_s = X##_s | Y##_s; \ |
| 268 | else \ |
| 269 | R##_s = X##_s & Y##_s; \ |
| 270 | R##_c = FP_CLS_ZERO; \ |
| 271 | break; \ |
| 272 | \ |
| 273 | default: \ |
| 274 | abort(); \ |
| 275 | } \ |
| 276 | } while (0) |
| 277 | |
| 278 | |
| 279 | /* |
| 280 | * Main negation routine. FIXME -- when we care about setting exception |
| 281 | * bits reliably, this will not do. We should examine all of the fp classes. |
| 282 | */ |
| 283 | |
| 284 | #define _FP_NEG(fs, wc, R, X) \ |
| 285 | do { \ |
| 286 | _FP_FRAC_COPY_##wc(R, X); \ |
| 287 | R##_c = X##_c; \ |
| 288 | R##_e = X##_e; \ |
| 289 | R##_s = 1 ^ X##_s; \ |
| 290 | } while (0) |
| 291 | |
| 292 | |
| 293 | /* |
| 294 | * Main multiplication routine. The input values should be cooked. |
| 295 | */ |
| 296 | |
| 297 | #define _FP_MUL(fs, wc, R, X, Y) \ |
| 298 | do { \ |
| 299 | R##_s = X##_s ^ Y##_s; \ |
| 300 | switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ |
| 301 | { \ |
| 302 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ |
| 303 | R##_c = FP_CLS_NORMAL; \ |
| 304 | R##_e = X##_e + Y##_e + 1; \ |
| 305 | \ |
| 306 | _FP_MUL_MEAT_##fs(R,X,Y); \ |
| 307 | \ |
| 308 | if (_FP_FRAC_OVERP_##wc(fs, R)) \ |
| 309 | _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ |
| 310 | else \ |
| 311 | R##_e--; \ |
| 312 | break; \ |
| 313 | \ |
| 314 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ |
| 315 | _FP_CHOOSENAN(fs, wc, R, X, Y); \ |
| 316 | break; \ |
| 317 | \ |
| 318 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ |
| 319 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ |
| 320 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ |
| 321 | R##_s = X##_s; \ |
| 322 | \ |
| 323 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ |
| 324 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ |
| 325 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ |
| 326 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ |
| 327 | _FP_FRAC_COPY_##wc(R, X); \ |
| 328 | R##_c = X##_c; \ |
| 329 | break; \ |
| 330 | \ |
| 331 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ |
| 332 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ |
| 333 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ |
| 334 | R##_s = Y##_s; \ |
| 335 | \ |
| 336 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ |
| 337 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ |
| 338 | _FP_FRAC_COPY_##wc(R, Y); \ |
| 339 | R##_c = Y##_c; \ |
| 340 | break; \ |
| 341 | \ |
| 342 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ |
| 343 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ |
| 344 | R##_c = FP_CLS_NAN; \ |
| 345 | _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ |
| 346 | break; \ |
| 347 | \ |
| 348 | default: \ |
| 349 | abort(); \ |
| 350 | } \ |
| 351 | } while (0) |
| 352 | |
| 353 | |
| 354 | /* |
| 355 | * Main division routine. The input values should be cooked. |
| 356 | */ |
| 357 | |
| 358 | #define _FP_DIV(fs, wc, R, X, Y) \ |
| 359 | do { \ |
| 360 | R##_s = X##_s ^ Y##_s; \ |
| 361 | switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ |
| 362 | { \ |
| 363 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ |
| 364 | R##_c = FP_CLS_NORMAL; \ |
| 365 | R##_e = X##_e - Y##_e; \ |
| 366 | \ |
| 367 | _FP_DIV_MEAT_##fs(R,X,Y); \ |
| 368 | break; \ |
| 369 | \ |
| 370 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ |
| 371 | _FP_CHOOSENAN(fs, wc, R, X, Y); \ |
| 372 | break; \ |
| 373 | \ |
| 374 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ |
| 375 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ |
| 376 | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ |
| 377 | R##_s = X##_s; \ |
| 378 | _FP_FRAC_COPY_##wc(R, X); \ |
| 379 | R##_c = X##_c; \ |
| 380 | break; \ |
| 381 | \ |
| 382 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ |
| 383 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ |
| 384 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ |
| 385 | R##_s = Y##_s; \ |
| 386 | _FP_FRAC_COPY_##wc(R, Y); \ |
| 387 | R##_c = Y##_c; \ |
| 388 | break; \ |
| 389 | \ |
| 390 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ |
| 391 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ |
| 392 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ |
| 393 | R##_c = FP_CLS_ZERO; \ |
| 394 | break; \ |
| 395 | \ |
| 396 | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ |
| 397 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ |
| 398 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ |
| 399 | R##_c = FP_CLS_INF; \ |
| 400 | break; \ |
| 401 | \ |
| 402 | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ |
| 403 | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ |
| 404 | R##_c = FP_CLS_NAN; \ |
| 405 | _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ |
| 406 | break; \ |
| 407 | \ |
| 408 | default: \ |
| 409 | abort(); \ |
| 410 | } \ |
| 411 | } while (0) |
| 412 | |
| 413 | |
| 414 | /* |
| 415 | * Main differential comparison routine. The inputs should be raw not |
| 416 | * cooked. The return is -1,0,1 for normal values, 2 otherwise. |
| 417 | */ |
| 418 | |
| 419 | #define _FP_CMP(fs, wc, ret, X, Y, un) \ |
| 420 | do { \ |
| 421 | /* NANs are unordered */ \ |
| 422 | if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ |
| 423 | || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ |
| 424 | { \ |
| 425 | ret = un; \ |
| 426 | } \ |
| 427 | else \ |
| 428 | { \ |
| 429 | int __x_zero = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \ |
| 430 | int __y_zero = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \ |
| 431 | \ |
| 432 | if (__x_zero && __y_zero) \ |
| 433 | ret = 0; \ |
| 434 | else if (__x_zero) \ |
| 435 | ret = Y##_s ? 1 : -1; \ |
| 436 | else if (__y_zero) \ |
| 437 | ret = X##_s ? -1 : 1; \ |
| 438 | else if (X##_s != Y##_s) \ |
| 439 | ret = X##_s ? -1 : 1; \ |
| 440 | else if (X##_e > Y##_e) \ |
| 441 | ret = X##_s ? -1 : 1; \ |
| 442 | else if (X##_e < Y##_e) \ |
| 443 | ret = X##_s ? 1 : -1; \ |
| 444 | else if (_FP_FRAC_GT_##wc(X, Y)) \ |
| 445 | ret = X##_s ? -1 : 1; \ |
| 446 | else if (_FP_FRAC_GT_##wc(Y, X)) \ |
| 447 | ret = X##_s ? 1 : -1; \ |
| 448 | else \ |
| 449 | ret = 0; \ |
| 450 | } \ |
| 451 | } while (0) |
| 452 | |
| 453 | |
| 454 | /* Simplification for strict equality. */ |
| 455 | |
| 456 | #define _FP_CMP_EQ(fs, wc, ret, X, Y) \ |
| 457 | do { \ |
| 458 | /* NANs are unordered */ \ |
| 459 | if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ |
| 460 | || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ |
| 461 | { \ |
| 462 | ret = 1; \ |
| 463 | } \ |
| 464 | else \ |
| 465 | { \ |
| 466 | ret = !(X##_e == Y##_e \ |
| 467 | && _FP_FRAC_EQ_##wc(X, Y) \ |
| 468 | && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \ |
| 469 | } \ |
| 470 | } while (0) |
| 471 | |
| 472 | /* |
| 473 | * Main square root routine. The input value should be cooked. |
| 474 | */ |
| 475 | |
| 476 | #define _FP_SQRT(fs, wc, R, X) \ |
| 477 | do { \ |
| 478 | _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \ |
| 479 | _FP_W_TYPE q; \ |
| 480 | switch (X##_c) \ |
| 481 | { \ |
| 482 | case FP_CLS_NAN: \ |
| 483 | R##_s = 0; \ |
| 484 | R##_c = FP_CLS_NAN; \ |
| 485 | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ |
| 486 | break; \ |
| 487 | case FP_CLS_INF: \ |
| 488 | if (X##_s) \ |
| 489 | { \ |
| 490 | R##_s = 0; \ |
| 491 | R##_c = FP_CLS_NAN; /* sNAN */ \ |
| 492 | } \ |
| 493 | else \ |
| 494 | { \ |
| 495 | R##_s = 0; \ |
| 496 | R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \ |
| 497 | } \ |
| 498 | break; \ |
| 499 | case FP_CLS_ZERO: \ |
| 500 | R##_s = X##_s; \ |
| 501 | R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \ |
| 502 | break; \ |
| 503 | case FP_CLS_NORMAL: \ |
| 504 | R##_s = 0; \ |
| 505 | if (X##_s) \ |
| 506 | { \ |
| 507 | R##_c = FP_CLS_NAN; /* sNAN */ \ |
| 508 | break; \ |
| 509 | } \ |
| 510 | R##_c = FP_CLS_NORMAL; \ |
| 511 | if (X##_e & 1) \ |
| 512 | _FP_FRAC_SLL_##wc(X, 1); \ |
| 513 | R##_e = X##_e >> 1; \ |
| 514 | _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \ |
| 515 | _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \ |
| 516 | q = _FP_OVERFLOW_##fs; \ |
| 517 | _FP_FRAC_SLL_##wc(X, 1); \ |
| 518 | _FP_SQRT_MEAT_##wc(R, S, T, X, q); \ |
| 519 | _FP_FRAC_SRL_##wc(R, 1); \ |
| 520 | } \ |
| 521 | } while (0) |
| 522 | |
| 523 | /* |
| 524 | * Convert from FP to integer |
| 525 | */ |
| 526 | |
| 527 | /* "When a NaN, infinity, large positive argument >= 2147483648.0, or |
| 528 | * large negative argument <= -2147483649.0 is converted to an integer, |
| 529 | * the invalid_current bit...should be set and fp_exception_IEEE_754 should |
| 530 | * be raised. If the floating point invalid trap is disabled, no trap occurs |
| 531 | * and a numerical result is generated: if the sign bit of the operand |
| 532 | * is 0, the result is 2147483647; if the sign bit of the operand is 1, |
| 533 | * the result is -2147483648." |
| 534 | * Similarly for conversion to extended ints, except that the boundaries |
| 535 | * are >= 2^63, <= -(2^63 + 1), and the results are 2^63 + 1 for s=0 and |
| 536 | * -2^63 for s=1. |
| 537 | * -- SPARC Architecture Manual V9, Appendix B, which specifies how |
| 538 | * SPARCs resolve implementation dependencies in the IEEE-754 spec. |
| 539 | * I don't believe that the code below follows this. I'm not even sure |
| 540 | * it's right! |
| 541 | * It doesn't cope with needing to convert to an n bit integer when there |
| 542 | * is no n bit integer type. Fortunately gcc provides long long so this |
| 543 | * isn't a problem for sparc32. |
| 544 | * I have, however, fixed its NaN handling to conform as above. |
| 545 | * -- PMM 02/1998 |
| 546 | * NB: rsigned is not 'is r declared signed?' but 'should the value stored |
| 547 | * in r be signed or unsigned?'. r is always(?) declared unsigned. |
| 548 | * Comments below are mine, BTW -- PMM |
| 549 | */ |
| 550 | #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \ |
| 551 | do { \ |
| 552 | switch (X##_c) \ |
| 553 | { \ |
| 554 | case FP_CLS_NORMAL: \ |
| 555 | if (X##_e < 0) \ |
| 556 | { \ |
| 557 | /* case FP_CLS_NAN: see above! */ \ |
| 558 | case FP_CLS_ZERO: \ |
| 559 | r = 0; \ |
| 560 | } \ |
| 561 | else if (X##_e >= rsize - (rsigned != 0)) \ |
| 562 | { /* overflow */ \ |
| 563 | case FP_CLS_NAN: \ |
| 564 | case FP_CLS_INF: \ |
| 565 | if (rsigned) \ |
| 566 | { \ |
| 567 | r = 1; \ |
| 568 | r <<= rsize - 1; \ |
| 569 | r -= 1 - X##_s; \ |
| 570 | } \ |
| 571 | else \ |
| 572 | { \ |
| 573 | r = 0; \ |
| 574 | if (!X##_s) \ |
| 575 | r = ~r; \ |
| 576 | } \ |
| 577 | } \ |
| 578 | else \ |
| 579 | { \ |
| 580 | if (_FP_W_TYPE_SIZE*wc < rsize) \ |
| 581 | { \ |
| 582 | _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ |
| 583 | r <<= X##_e - _FP_WFRACBITS_##fs; \ |
| 584 | } \ |
| 585 | else \ |
| 586 | { \ |
| 587 | if (X##_e >= _FP_WFRACBITS_##fs) \ |
| 588 | _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));\ |
| 589 | else \ |
| 590 | _FP_FRAC_SRL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));\ |
| 591 | _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ |
| 592 | } \ |
| 593 | if (rsigned && X##_s) \ |
| 594 | r = -r; \ |
| 595 | } \ |
| 596 | break; \ |
| 597 | } \ |
| 598 | } while (0) |
| 599 | |
| 600 | #define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \ |
| 601 | do { \ |
| 602 | if (r) \ |
| 603 | { \ |
| 604 | X##_c = FP_CLS_NORMAL; \ |
| 605 | \ |
| 606 | if ((X##_s = (r < 0))) \ |
| 607 | r = -r; \ |
| 608 | /* Note that `r' is now considered unsigned, so we don't have \ |
| 609 | to worry about the single signed overflow case. */ \ |
| 610 | \ |
| 611 | if (rsize <= _FP_W_TYPE_SIZE) \ |
| 612 | __FP_CLZ(X##_e, r); \ |
| 613 | else \ |
| 614 | __FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), \ |
| 615 | (_FP_W_TYPE)r); \ |
| 616 | if (rsize < _FP_W_TYPE_SIZE) \ |
| 617 | X##_e -= (_FP_W_TYPE_SIZE - rsize); \ |
| 618 | X##_e = rsize - X##_e - 1; \ |
| 619 | \ |
| 620 | if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e) \ |
| 621 | __FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize); \ |
| 622 | r &= ~((_FP_W_TYPE)1 << X##_e); \ |
| 623 | _FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize); \ |
| 624 | _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \ |
| 625 | } \ |
| 626 | else \ |
| 627 | { \ |
| 628 | X##_c = FP_CLS_ZERO, X##_s = 0; \ |
| 629 | } \ |
| 630 | } while (0) |
| 631 | |
| 632 | |
| 633 | #define FP_CONV(dfs,sfs,dwc,swc,D,S) \ |
| 634 | do { \ |
| 635 | _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \ |
| 636 | D##_e = S##_e; \ |
| 637 | D##_c = S##_c; \ |
| 638 | D##_s = S##_s; \ |
| 639 | } while (0) |
| 640 | |
| 641 | /* |
| 642 | * Helper primitives. |
| 643 | */ |
| 644 | |
| 645 | /* Count leading zeros in a word. */ |
| 646 | |
| 647 | #ifndef __FP_CLZ |
| 648 | #if _FP_W_TYPE_SIZE < 64 |
| 649 | /* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */ |
| 650 | #define __FP_CLZ(r, x) \ |
| 651 | do { \ |
| 652 | _FP_W_TYPE _t = (x); \ |
| 653 | r = _FP_W_TYPE_SIZE - 1; \ |
| 654 | if (_t > 0xffff) r -= 16; \ |
| 655 | if (_t > 0xffff) _t >>= 16; \ |
| 656 | if (_t > 0xff) r -= 8; \ |
| 657 | if (_t > 0xff) _t >>= 8; \ |
| 658 | if (_t & 0xf0) r -= 4; \ |
| 659 | if (_t & 0xf0) _t >>= 4; \ |
| 660 | if (_t & 0xc) r -= 2; \ |
| 661 | if (_t & 0xc) _t >>= 2; \ |
| 662 | if (_t & 0x2) r -= 1; \ |
| 663 | } while (0) |
| 664 | #else /* not _FP_W_TYPE_SIZE < 64 */ |
| 665 | #define __FP_CLZ(r, x) \ |
| 666 | do { \ |
| 667 | _FP_W_TYPE _t = (x); \ |
| 668 | r = _FP_W_TYPE_SIZE - 1; \ |
| 669 | if (_t > 0xffffffff) r -= 32; \ |
| 670 | if (_t > 0xffffffff) _t >>= 32; \ |
| 671 | if (_t > 0xffff) r -= 16; \ |
| 672 | if (_t > 0xffff) _t >>= 16; \ |
| 673 | if (_t > 0xff) r -= 8; \ |
| 674 | if (_t > 0xff) _t >>= 8; \ |
| 675 | if (_t & 0xf0) r -= 4; \ |
| 676 | if (_t & 0xf0) _t >>= 4; \ |
| 677 | if (_t & 0xc) r -= 2; \ |
| 678 | if (_t & 0xc) _t >>= 2; \ |
| 679 | if (_t & 0x2) r -= 1; \ |
| 680 | } while (0) |
| 681 | #endif /* not _FP_W_TYPE_SIZE < 64 */ |
| 682 | #endif /* ndef __FP_CLZ */ |
| 683 | |
| 684 | #define _FP_DIV_HELP_imm(q, r, n, d) \ |
| 685 | do { \ |
| 686 | q = n / d, r = n % d; \ |
| 687 | } while (0) |
| 688 | |