blob: 4d7e786065aa6dc62c7e8868762a389d1aca4d06 [file] [log] [blame]
Eric Wolleseneb607052007-07-19 01:49:39 -07001/*
2 * Intel 5000(P/V/X) class Memory Controllers kernel module
3 *
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
8 * norsk5@xmission.com
9 *
10 * This module is based on the following document:
11 *
12 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13 * http://developer.intel.com/design/chipsets/datashts/313070.htm
14 *
15 */
16
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/pci.h>
20#include <linux/pci_ids.h>
21#include <linux/slab.h>
22#include <asm/mmzone.h>
23
24#include "edac_mc.h"
25
26/*
27 * Alter this version for the I5000 module when modifications are made
28 */
29#define I5000_REVISION " Ver: 2.0.11.devel " __DATE__
30
31#define i5000_printk(level, fmt, arg...) \
32 edac_printk(level, "i5000", fmt, ##arg)
33
34#define i5000_mc_printk(mci, level, fmt, arg...) \
35 edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
36
37#ifndef PCI_DEVICE_ID_INTEL_FBD_0
38#define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5
39#endif
40#ifndef PCI_DEVICE_ID_INTEL_FBD_1
41#define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6
42#endif
43
44/* Device 16,
45 * Function 0: System Address
46 * Function 1: Memory Branch Map, Control, Errors Register
47 * Function 2: FSB Error Registers
48 *
49 * All 3 functions of Device 16 (0,1,2) share the SAME DID
50 */
51#define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
52
53/* OFFSETS for Function 0 */
54
55/* OFFSETS for Function 1 */
56#define AMBASE 0x48
57#define MAXCH 0x56
58#define MAXDIMMPERCH 0x57
59#define TOLM 0x6C
60#define REDMEMB 0x7C
61#define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF)
62#define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
63#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00)
64#define MIR0 0x80
65#define MIR1 0x84
66#define MIR2 0x88
67#define AMIR0 0x8C
68#define AMIR1 0x90
69#define AMIR2 0x94
70
71#define FERR_FAT_FBD 0x98
72#define NERR_FAT_FBD 0x9C
73#define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
74#define FERR_FAT_FBDCHAN 0x30000000
75#define FERR_FAT_M3ERR 0x00000004
76#define FERR_FAT_M2ERR 0x00000002
77#define FERR_FAT_M1ERR 0x00000001
78#define FERR_FAT_MASK (FERR_FAT_M1ERR | \
79 FERR_FAT_M2ERR | \
80 FERR_FAT_M3ERR)
81
82#define FERR_NF_FBD 0xA0
83
84/* Thermal and SPD or BFD errors */
85#define FERR_NF_M28ERR 0x01000000
86#define FERR_NF_M27ERR 0x00800000
87#define FERR_NF_M26ERR 0x00400000
88#define FERR_NF_M25ERR 0x00200000
89#define FERR_NF_M24ERR 0x00100000
90#define FERR_NF_M23ERR 0x00080000
91#define FERR_NF_M22ERR 0x00040000
92#define FERR_NF_M21ERR 0x00020000
93
94/* Correctable errors */
95#define FERR_NF_M20ERR 0x00010000
96#define FERR_NF_M19ERR 0x00008000
97#define FERR_NF_M18ERR 0x00004000
98#define FERR_NF_M17ERR 0x00002000
99
100/* Non-Retry or redundant Retry errors */
101#define FERR_NF_M16ERR 0x00001000
102#define FERR_NF_M15ERR 0x00000800
103#define FERR_NF_M14ERR 0x00000400
104#define FERR_NF_M13ERR 0x00000200
105
106/* Uncorrectable errors */
107#define FERR_NF_M12ERR 0x00000100
108#define FERR_NF_M11ERR 0x00000080
109#define FERR_NF_M10ERR 0x00000040
110#define FERR_NF_M9ERR 0x00000020
111#define FERR_NF_M8ERR 0x00000010
112#define FERR_NF_M7ERR 0x00000008
113#define FERR_NF_M6ERR 0x00000004
114#define FERR_NF_M5ERR 0x00000002
115#define FERR_NF_M4ERR 0x00000001
116
117#define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \
118 FERR_NF_M11ERR | \
119 FERR_NF_M10ERR | \
120 FERR_NF_M8ERR | \
121 FERR_NF_M7ERR | \
122 FERR_NF_M6ERR | \
123 FERR_NF_M5ERR | \
124 FERR_NF_M4ERR)
125#define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \
126 FERR_NF_M19ERR | \
127 FERR_NF_M18ERR | \
128 FERR_NF_M17ERR)
129#define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \
130 FERR_NF_M28ERR)
131#define FERR_NF_THERMAL (FERR_NF_M26ERR | \
132 FERR_NF_M25ERR | \
133 FERR_NF_M24ERR | \
134 FERR_NF_M23ERR)
135#define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR)
136#define FERR_NF_NORTH_CRC (FERR_NF_M21ERR)
137#define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \
138 FERR_NF_M14ERR | \
139 FERR_NF_M15ERR)
140
141#define NERR_NF_FBD 0xA4
142#define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \
143 FERR_NF_CORRECTABLE | \
144 FERR_NF_DIMM_SPARE | \
145 FERR_NF_THERMAL | \
146 FERR_NF_SPD_PROTOCOL | \
147 FERR_NF_NORTH_CRC | \
148 FERR_NF_NON_RETRY)
149
150#define EMASK_FBD 0xA8
151#define EMASK_FBD_M28ERR 0x08000000
152#define EMASK_FBD_M27ERR 0x04000000
153#define EMASK_FBD_M26ERR 0x02000000
154#define EMASK_FBD_M25ERR 0x01000000
155#define EMASK_FBD_M24ERR 0x00800000
156#define EMASK_FBD_M23ERR 0x00400000
157#define EMASK_FBD_M22ERR 0x00200000
158#define EMASK_FBD_M21ERR 0x00100000
159#define EMASK_FBD_M20ERR 0x00080000
160#define EMASK_FBD_M19ERR 0x00040000
161#define EMASK_FBD_M18ERR 0x00020000
162#define EMASK_FBD_M17ERR 0x00010000
163
164#define EMASK_FBD_M15ERR 0x00004000
165#define EMASK_FBD_M14ERR 0x00002000
166#define EMASK_FBD_M13ERR 0x00001000
167#define EMASK_FBD_M12ERR 0x00000800
168#define EMASK_FBD_M11ERR 0x00000400
169#define EMASK_FBD_M10ERR 0x00000200
170#define EMASK_FBD_M9ERR 0x00000100
171#define EMASK_FBD_M8ERR 0x00000080
172#define EMASK_FBD_M7ERR 0x00000040
173#define EMASK_FBD_M6ERR 0x00000020
174#define EMASK_FBD_M5ERR 0x00000010
175#define EMASK_FBD_M4ERR 0x00000008
176#define EMASK_FBD_M3ERR 0x00000004
177#define EMASK_FBD_M2ERR 0x00000002
178#define EMASK_FBD_M1ERR 0x00000001
179
180#define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \
181 EMASK_FBD_M2ERR | \
182 EMASK_FBD_M3ERR)
183
184#define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \
185 EMASK_FBD_M5ERR | \
186 EMASK_FBD_M6ERR | \
187 EMASK_FBD_M7ERR | \
188 EMASK_FBD_M8ERR | \
189 EMASK_FBD_M9ERR | \
190 EMASK_FBD_M10ERR | \
191 EMASK_FBD_M11ERR | \
192 EMASK_FBD_M12ERR)
193#define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \
194 EMASK_FBD_M18ERR | \
195 EMASK_FBD_M19ERR | \
196 EMASK_FBD_M20ERR)
197#define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \
198 EMASK_FBD_M28ERR)
199#define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \
200 EMASK_FBD_M25ERR | \
201 EMASK_FBD_M24ERR | \
202 EMASK_FBD_M23ERR)
203#define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR)
204#define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR)
205#define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \
206 EMASK_FBD_M14ERR | \
207 EMASK_FBD_M13ERR)
208
209#define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \
210 ENABLE_EMASK_FBD_NORTH_CRC | \
211 ENABLE_EMASK_FBD_SPD_PROTOCOL | \
212 ENABLE_EMASK_FBD_THERMALS | \
213 ENABLE_EMASK_FBD_DIMM_SPARE | \
214 ENABLE_EMASK_FBD_FATAL_ERRORS | \
215 ENABLE_EMASK_FBD_CORRECTABLE | \
216 ENABLE_EMASK_FBD_UNCORRECTABLE)
217
218#define ERR0_FBD 0xAC
219#define ERR1_FBD 0xB0
220#define ERR2_FBD 0xB4
221#define MCERR_FBD 0xB8
222#define NRECMEMA 0xBE
223#define NREC_BANK(x) (((x)>>12) & 0x7)
224#define NREC_RDWR(x) (((x)>>11) & 1)
225#define NREC_RANK(x) (((x)>>8) & 0x7)
226#define NRECMEMB 0xC0
227#define NREC_CAS(x) (((x)>>16) & 0xFFFFFF)
228#define NREC_RAS(x) ((x) & 0x7FFF)
229#define NRECFGLOG 0xC4
230#define NREEECFBDA 0xC8
231#define NREEECFBDB 0xCC
232#define NREEECFBDC 0xD0
233#define NREEECFBDD 0xD4
234#define NREEECFBDE 0xD8
235#define REDMEMA 0xDC
236#define RECMEMA 0xE2
237#define REC_BANK(x) (((x)>>12) & 0x7)
238#define REC_RDWR(x) (((x)>>11) & 1)
239#define REC_RANK(x) (((x)>>8) & 0x7)
240#define RECMEMB 0xE4
241#define REC_CAS(x) (((x)>>16) & 0xFFFFFF)
242#define REC_RAS(x) ((x) & 0x7FFF)
243#define RECFGLOG 0xE8
244#define RECFBDA 0xEC
245#define RECFBDB 0xF0
246#define RECFBDC 0xF4
247#define RECFBDD 0xF8
248#define RECFBDE 0xFC
249
250/* OFFSETS for Function 2 */
251
252/*
253 * Device 21,
254 * Function 0: Memory Map Branch 0
255 *
256 * Device 22,
257 * Function 0: Memory Map Branch 1
258 */
259#define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5
260#define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6
261
262#define AMB_PRESENT_0 0x64
263#define AMB_PRESENT_1 0x66
264#define MTR0 0x80
265#define MTR1 0x84
266#define MTR2 0x88
267#define MTR3 0x8C
268
269#define NUM_MTRS 4
270#define CHANNELS_PER_BRANCH (2)
271
272/* Defines to extract the vaious fields from the
273 * MTRx - Memory Technology Registers
274 */
275#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8))
276#define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4)
277#define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4)
278#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
279#define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1)
280#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIM_RANKS(mtr) ? 2 : 1)
281#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
282#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
283#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
284#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
285
286#ifdef CONFIG_EDAC_DEBUG
287static char *numrow_toString[] = {
288 "8,192 - 13 rows",
289 "16,384 - 14 rows",
290 "32,768 - 15 rows",
291 "reserved"
292};
293
294static char *numcol_toString[] = {
295 "1,024 - 10 columns",
296 "2,048 - 11 columns",
297 "4,096 - 12 columns",
298 "reserved"
299};
300#endif
301
302/* Enumeration of supported devices */
303enum i5000_chips {
304 I5000P = 0,
305 I5000V = 1, /* future */
306 I5000X = 2 /* future */
307};
308
309/* Device name and register DID (Device ID) */
310struct i5000_dev_info {
311 const char *ctl_name; /* name for this device */
312 u16 fsb_mapping_errors; /* DID for the branchmap,control */
313};
314
315/* Table of devices attributes supported by this driver */
316static const struct i5000_dev_info i5000_devs[] = {
317 [I5000P] = {
318 .ctl_name = "I5000",
319 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
320 },
321};
322
323struct i5000_dimm_info {
324 int megabytes; /* size, 0 means not present */
325 int dual_rank;
326};
327
328#define MAX_CHANNELS 6 /* max possible channels */
329#define MAX_CSROWS (8*2) /* max possible csrows per channel */
330
331/* driver private data structure */
332struct i5000_pvt {
333 struct pci_dev *system_address; /* 16.0 */
334 struct pci_dev *branchmap_werrors; /* 16.1 */
335 struct pci_dev *fsb_error_regs; /* 16.2 */
336 struct pci_dev *branch_0; /* 21.0 */
337 struct pci_dev *branch_1; /* 22.0 */
338
339 int node_id; /* ID of this node */
340
341 u16 tolm; /* top of low memory */
342 u64 ambase; /* AMB BAR */
343
344 u16 mir0, mir1, mir2;
345
346 u16 b0_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
347 u16 b0_ambpresent0; /* Branch 0, Channel 0 */
348 u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
349
350 u16 b1_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
351 u16 b1_ambpresent0; /* Branch 1, Channel 8 */
352 u16 b1_ambpresent1; /* Branch 1, Channel 1 */
353
354 /* DIMM infomation matrix, allocating architecture maximums */
355 struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
356
357 /* Actual values for this controller */
358 int maxch; /* Max channels */
359 int maxdimmperch; /* Max DIMMs per channel */
360};
361
362/* I5000 MCH error information retrieved from Hardware */
363struct i5000_error_info {
364
365 /* These registers are always read from the MC */
366 u32 ferr_fat_fbd; /* First Errors Fatal */
367 u32 nerr_fat_fbd; /* Next Errors Fatal */
368 u32 ferr_nf_fbd; /* First Errors Non-Fatal */
369 u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
370
371 /* These registers are input ONLY if there was a Recoverable Error */
372 u32 redmemb; /* Recoverable Mem Data Error log B */
373 u16 recmema; /* Recoverable Mem Error log A */
374 u32 recmemb; /* Recoverable Mem Error log B */
375
376 /* These registers are input ONLY if there was a
377 * Non-Recoverable Error */
378 u16 nrecmema; /* Non-Recoverable Mem log A */
379 u16 nrecmemb; /* Non-Recoverable Mem log B */
380
381};
382
383/******************************************************************************
384 * i5000_get_error_info Retrieve the hardware error information from
385 * the hardware and cache it in the 'info'
386 * structure
387 */
388static void i5000_get_error_info(struct mem_ctl_info *mci,
389 struct i5000_error_info * info)
390{
391 struct i5000_pvt *pvt;
392 u32 value;
393
394 pvt = (struct i5000_pvt *)mci->pvt_info;
395
396 /* read in the 1st FATAL error register */
397 pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
398
399 /* Mask only the bits that the doc says are valid
400 */
401 value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
402
403 /* If there is an error, then read in the */
404 /* NEXT FATAL error register and the Memory Error Log Register A */
405 if (value & FERR_FAT_MASK) {
406 info->ferr_fat_fbd = value;
407
408 /* harvest the various error data we need */
409 pci_read_config_dword(pvt->branchmap_werrors,
410 NERR_FAT_FBD, &info->nerr_fat_fbd);
411 pci_read_config_word(pvt->branchmap_werrors,
412 NRECMEMA, &info->nrecmema);
413 pci_read_config_word(pvt->branchmap_werrors,
414 NRECMEMB, &info->nrecmemb);
415
416 /* Clear the error bits, by writing them back */
417 pci_write_config_dword(pvt->branchmap_werrors,
418 FERR_FAT_FBD, value);
419 } else {
420 info->ferr_fat_fbd = 0;
421 info->nerr_fat_fbd = 0;
422 info->nrecmema = 0;
423 info->nrecmemb = 0;
424 }
425
426 /* read in the 1st NON-FATAL error register */
427 pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
428
429 /* If there is an error, then read in the 1st NON-FATAL error
430 * register as well */
431 if (value & FERR_NF_MASK) {
432 info->ferr_nf_fbd = value;
433
434 /* harvest the various error data we need */
435 pci_read_config_dword(pvt->branchmap_werrors,
436 NERR_NF_FBD, &info->nerr_nf_fbd);
437 pci_read_config_word(pvt->branchmap_werrors,
438 RECMEMA, &info->recmema);
439 pci_read_config_dword(pvt->branchmap_werrors,
440 RECMEMB, &info->recmemb);
441 pci_read_config_dword(pvt->branchmap_werrors,
442 REDMEMB, &info->redmemb);
443
444 /* Clear the error bits, by writing them back */
445 pci_write_config_dword(pvt->branchmap_werrors,
446 FERR_NF_FBD, value);
447 } else {
448 info->ferr_nf_fbd = 0;
449 info->nerr_nf_fbd = 0;
450 info->recmema = 0;
451 info->recmemb = 0;
452 info->redmemb = 0;
453 }
454}
455
456/******************************************************************************
457 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
458 * struct i5000_error_info *info,
459 * int handle_errors);
460 *
461 * handle the Intel FATAL errors, if any
462 */
463static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
464 struct i5000_error_info * info,
465 int handle_errors)
466{
467 char msg[EDAC_MC_LABEL_LEN + 1 + 90];
468 u32 allErrors;
469 int branch;
470 int channel;
471 int bank;
472 int rank;
473 int rdwr;
474 int ras, cas;
475
476 /* mask off the Error bits that are possible */
477 allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
478 if (!allErrors)
479 return; /* if no error, return now */
480
481 /* ONLY ONE of the possible error bits will be set, as per the docs */
482 i5000_mc_printk(mci, KERN_ERR,
483 "FATAL ERRORS Found!!! 1st FATAL Err Reg= 0x%x\n",
484 allErrors);
485
486 branch = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
487 channel = branch;
488
489 /* Use the NON-Recoverable macros to extract data */
490 bank = NREC_BANK(info->nrecmema);
491 rank = NREC_RANK(info->nrecmema);
492 rdwr = NREC_RDWR(info->nrecmema);
493 ras = NREC_RAS(info->nrecmemb);
494 cas = NREC_CAS(info->nrecmemb);
495
496 debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
497 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
498 rank, channel, channel + 1, branch >> 1, bank,
499 rdwr ? "Write" : "Read", ras, cas);
500
501 /* Only 1 bit will be on */
502 if (allErrors & FERR_FAT_M1ERR) {
503 i5000_mc_printk(mci, KERN_ERR,
504 "Alert on non-redundant retry or fast "
505 "reset timeout\n");
506
507 } else if (allErrors & FERR_FAT_M2ERR) {
508 i5000_mc_printk(mci, KERN_ERR,
509 "Northbound CRC error on non-redundant "
510 "retry\n");
511
512 } else if (allErrors & FERR_FAT_M3ERR) {
513 i5000_mc_printk(mci, KERN_ERR,
514 ">Tmid Thermal event with intelligent "
515 "throttling disabled\n");
516 }
517
518 /* Form out message */
519 snprintf(msg, sizeof(msg),
520 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d "
521 "FATAL Err=0x%x)",
522 branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
523 allErrors);
524
525 /* Call the helper to output message */
526 edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
527}
528
529/******************************************************************************
530 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
531 * struct i5000_error_info *info,
532 * int handle_errors);
533 *
534 * handle the Intel NON-FATAL errors, if any
535 */
536static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
537 struct i5000_error_info * info,
538 int handle_errors)
539{
540 char msg[EDAC_MC_LABEL_LEN + 1 + 90];
541 u32 allErrors;
542 u32 ue_errors;
543 u32 ce_errors;
544 u32 misc_errors;
545 int branch;
546 int channel;
547 int bank;
548 int rank;
549 int rdwr;
550 int ras, cas;
551
552 /* mask off the Error bits that are possible */
553 allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
554 if (!allErrors)
555 return; /* if no error, return now */
556
557 /* ONLY ONE of the possible error bits will be set, as per the docs */
558 i5000_mc_printk(mci, KERN_WARNING,
559 "NON-FATAL ERRORS Found!!! 1st NON-FATAL Err "
560 "Reg= 0x%x\n", allErrors);
561
562 ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
563 if (ue_errors) {
564 debugf0("\tUncorrected bits= 0x%x\n", ue_errors);
565
566 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
567 channel = branch;
568 bank = NREC_BANK(info->nrecmema);
569 rank = NREC_RANK(info->nrecmema);
570 rdwr = NREC_RDWR(info->nrecmema);
571 ras = NREC_RAS(info->nrecmemb);
572 cas = NREC_CAS(info->nrecmemb);
573
574 debugf0
575 ("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
576 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
577 rank, channel, channel + 1, branch >> 1, bank,
578 rdwr ? "Write" : "Read", ras, cas);
579
580 /* Form out message */
581 snprintf(msg, sizeof(msg),
582 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
583 "CAS=%d, UE Err=0x%x)",
584 branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
585 ue_errors);
586
587 /* Call the helper to output message */
588 edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
589 }
590
591 /* Check correctable errors */
592 ce_errors = allErrors & FERR_NF_CORRECTABLE;
593 if (ce_errors) {
594 debugf0("\tCorrected bits= 0x%x\n", ce_errors);
595
596 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
597
598 channel = 0;
599 if (REC_ECC_LOCATOR_ODD(info->redmemb))
600 channel = 1;
601
602 /* Convert channel to be based from zero, instead of
603 * from branch base of 0 */
604 channel += branch;
605
606 bank = REC_BANK(info->recmema);
607 rank = REC_RANK(info->recmema);
608 rdwr = REC_RDWR(info->recmema);
609 ras = REC_RAS(info->recmemb);
610 cas = REC_CAS(info->recmemb);
611
612 debugf0("\t\tCSROW= %d Channel= %d (Branch %d "
613 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
614 rank, channel, branch >> 1, bank,
615 rdwr ? "Write" : "Read", ras, cas);
616
617 /* Form out message */
618 snprintf(msg, sizeof(msg),
619 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
620 "CAS=%d, CE Err=0x%x)", branch >> 1, bank,
621 rdwr ? "Write" : "Read", ras, cas, ce_errors);
622
623 /* Call the helper to output message */
624 edac_mc_handle_fbd_ce(mci, rank, channel, msg);
625 }
626
627 /* See if any of the thermal errors have fired */
628 misc_errors = allErrors & FERR_NF_THERMAL;
629 if (misc_errors) {
630 i5000_printk(KERN_WARNING, "\tTHERMAL Error, bits= 0x%x\n",
631 misc_errors);
632 }
633
634 /* See if any of the thermal errors have fired */
635 misc_errors = allErrors & FERR_NF_NON_RETRY;
636 if (misc_errors) {
637 i5000_printk(KERN_WARNING, "\tNON-Retry Errors, bits= 0x%x\n",
638 misc_errors);
639 }
640
641 /* See if any of the thermal errors have fired */
642 misc_errors = allErrors & FERR_NF_NORTH_CRC;
643 if (misc_errors) {
644 i5000_printk(KERN_WARNING,
645 "\tNORTHBOUND CRC Error, bits= 0x%x\n",
646 misc_errors);
647 }
648
649 /* See if any of the thermal errors have fired */
650 misc_errors = allErrors & FERR_NF_SPD_PROTOCOL;
651 if (misc_errors) {
652 i5000_printk(KERN_WARNING,
653 "\tSPD Protocol Error, bits= 0x%x\n",
654 misc_errors);
655 }
656
657 /* See if any of the thermal errors have fired */
658 misc_errors = allErrors & FERR_NF_DIMM_SPARE;
659 if (misc_errors) {
660 i5000_printk(KERN_WARNING, "\tDIMM-Spare Error, bits= 0x%x\n",
661 misc_errors);
662 }
663}
664
665/******************************************************************************
666 * i5000_process_error_info Process the error info that is
667 * in the 'info' structure, previously retrieved from hardware
668 */
669static void i5000_process_error_info(struct mem_ctl_info *mci,
670 struct i5000_error_info * info,
671 int handle_errors)
672{
673 /* First handle any fatal errors that occurred */
674 i5000_process_fatal_error_info(mci, info, handle_errors);
675
676 /* now handle any non-fatal errors that occurred */
677 i5000_process_nonfatal_error_info(mci, info, handle_errors);
678}
679
680/******************************************************************************
681 * i5000_clear_error Retrieve any error from the hardware
682 * but do NOT process that error.
683 * Used for 'clearing' out of previous errors
684 * Called by the Core module.
685 */
686static void i5000_clear_error(struct mem_ctl_info *mci)
687{
688 struct i5000_error_info info;
689
690 i5000_get_error_info(mci, &info);
691}
692
693/******************************************************************************
694 * i5000_check_error Retrieve and process errors reported by the
695 * hardware. Called by the Core module.
696 */
697static void i5000_check_error(struct mem_ctl_info *mci)
698{
699 struct i5000_error_info info;
700 debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
701 i5000_get_error_info(mci, &info);
702 i5000_process_error_info(mci, &info, 1);
703}
704
705/******************************************************************************
706 * i5000_get_devices Find and perform 'get' operation on the MCH's
707 * device/functions we want to reference for this driver
708 *
709 * Need to 'get' device 16 func 1 and func 2
710 */
711static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
712{
713 //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
714 struct i5000_pvt *pvt;
715 struct pci_dev *pdev;
716
717 pvt = (struct i5000_pvt *)mci->pvt_info;
718
719 /* Attempt to 'get' the MCH register we want */
720 pdev = NULL;
721 while (1) {
722 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
723 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
724
725 /* End of list, leave */
726 if (pdev == NULL) {
727 i5000_printk(KERN_ERR,
728 "'system address,Process Bus' "
729 "device not found:"
730 "vendor 0x%x device 0x%x FUNC 1 "
731 "(broken BIOS?)\n",
732 PCI_VENDOR_ID_INTEL,
733 PCI_DEVICE_ID_INTEL_I5000_DEV16);
734
735 return 1;
736 }
737
738 /* Scan for device 16 func 1 */
739 if (PCI_FUNC(pdev->devfn) == 1)
740 break;
741 }
742
743 pvt->branchmap_werrors = pdev;
744
745 /* Attempt to 'get' the MCH register we want */
746 pdev = NULL;
747 while (1) {
748 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
749 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
750
751 if (pdev == NULL) {
752 i5000_printk(KERN_ERR,
753 "MC: 'branchmap,control,errors' "
754 "device not found:"
755 "vendor 0x%x device 0x%x Func 2 "
756 "(broken BIOS?)\n",
757 PCI_VENDOR_ID_INTEL,
758 PCI_DEVICE_ID_INTEL_I5000_DEV16);
759
760 pci_dev_put(pvt->branchmap_werrors);
761 return 1;
762 }
763
764 /* Scan for device 16 func 1 */
765 if (PCI_FUNC(pdev->devfn) == 2)
766 break;
767 }
768
769 pvt->fsb_error_regs = pdev;
770
771 debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
772 pci_name(pvt->system_address),
773 pvt->system_address->vendor, pvt->system_address->device);
774 debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
775 pci_name(pvt->branchmap_werrors),
776 pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
777 debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
778 pci_name(pvt->fsb_error_regs),
779 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
780
781 pdev = NULL;
782 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
783 PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
784
785 if (pdev == NULL) {
786 i5000_printk(KERN_ERR,
787 "MC: 'BRANCH 0' device not found:"
788 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
789 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
790
791 pci_dev_put(pvt->branchmap_werrors);
792 pci_dev_put(pvt->fsb_error_regs);
793 return 1;
794 }
795
796 pvt->branch_0 = pdev;
797
798 /* If this device claims to have more than 2 channels then
799 * fetch Branch 1's information
800 */
801 if (pvt->maxch >= CHANNELS_PER_BRANCH) {
802 pdev = NULL;
803 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
804 PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
805
806 if (pdev == NULL) {
807 i5000_printk(KERN_ERR,
808 "MC: 'BRANCH 1' device not found:"
809 "vendor 0x%x device 0x%x Func 0 "
810 "(broken BIOS?)\n",
811 PCI_VENDOR_ID_INTEL,
812 PCI_DEVICE_ID_I5000_BRANCH_1);
813
814 pci_dev_put(pvt->branchmap_werrors);
815 pci_dev_put(pvt->fsb_error_regs);
816 pci_dev_put(pvt->branch_0);
817 return 1;
818 }
819
820 pvt->branch_1 = pdev;
821 }
822
823 return 0;
824}
825
826/******************************************************************************
827 * i5000_put_devices 'put' all the devices that we have
828 * reserved via 'get'
829 */
830static void i5000_put_devices(struct mem_ctl_info *mci)
831{
832 struct i5000_pvt *pvt;
833
834 pvt = (struct i5000_pvt *)mci->pvt_info;
835
836 pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */
837 pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */
838 pci_dev_put(pvt->branch_0); /* DEV 21 */
839
840 /* Only if more than 2 channels do we release the second branch */
841 if (pvt->maxch >= CHANNELS_PER_BRANCH) {
842 pci_dev_put(pvt->branch_1); /* DEV 22 */
843 }
844}
845
846/******************************************************************************
847 * determine_amb_resent
848 *
849 * the information is contained in NUM_MTRS different registers
850 * determineing which of the NUM_MTRS requires knowing
851 * which channel is in question
852 *
853 * 2 branches, each with 2 channels
854 * b0_ambpresent0 for channel '0'
855 * b0_ambpresent1 for channel '1'
856 * b1_ambpresent0 for channel '2'
857 * b1_ambpresent1 for channel '3'
858 */
859static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
860{
861 int amb_present;
862
863 if (channel < CHANNELS_PER_BRANCH) {
864 if (channel & 0x1)
865 amb_present = pvt->b0_ambpresent1;
866 else
867 amb_present = pvt->b0_ambpresent0;
868 } else {
869 if (channel & 0x1)
870 amb_present = pvt->b1_ambpresent1;
871 else
872 amb_present = pvt->b1_ambpresent0;
873 }
874
875 return amb_present;
876}
877
878/******************************************************************************
879 * determine_mtr(pvt, csrow, channel)
880 *
881 * return the proper MTR register as determine by the csrow and channel desired
882 */
883static int determine_mtr(struct i5000_pvt *pvt, int csrow, int channel)
884{
885 int mtr;
886
887 if (channel < CHANNELS_PER_BRANCH)
888 mtr = pvt->b0_mtr[csrow >> 1];
889 else
890 mtr = pvt->b1_mtr[csrow >> 1];
891
892 return mtr;
893}
894
895/******************************************************************************
896 */
897static void decode_mtr(int slot_row, u16 mtr)
898{
899 int ans;
900
901 ans = MTR_DIMMS_PRESENT(mtr);
902
903 debugf2("\tMTR%d=0x%x: DIMMs are %s\n", slot_row, mtr,
904 ans ? "Present" : "NOT Present");
905 if (!ans)
906 return;
907
908 debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
909 debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
910 debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
911 debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
912 debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
913}
914
915static void handle_channel(struct i5000_pvt *pvt, int csrow, int channel,
916 struct i5000_dimm_info *dinfo)
917{
918 int mtr;
919 int amb_present_reg;
920 int addrBits;
921
922 mtr = determine_mtr(pvt, csrow, channel);
923 if (MTR_DIMMS_PRESENT(mtr)) {
924 amb_present_reg = determine_amb_present_reg(pvt, channel);
925
926 /* Determine if there is a DIMM present in this DIMM slot */
927 if (amb_present_reg & (1 << (csrow >> 1))) {
928 dinfo->dual_rank = MTR_DIMM_RANK(mtr);
929
930 if (!((dinfo->dual_rank == 0) &&
931 ((csrow & 0x1) == 0x1))) {
932 /* Start with the number of bits for a Bank
933 * on the DRAM */
934 addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
935 /* Add thenumber of ROW bits */
936 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
937 /* add the number of COLUMN bits */
938 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
939
940 addrBits += 6; /* add 64 bits per DIMM */
941 addrBits -= 20; /* divide by 2^^20 */
942 addrBits -= 3; /* 8 bits per bytes */
943
944 dinfo->megabytes = 1 << addrBits;
945 }
946 }
947 }
948}
949
950/******************************************************************************
951 * calculate_dimm_size
952 *
953 * also will output a DIMM matrix map, if debug is enabled, for viewing
954 * how the DIMMs are populated
955 */
956static void calculate_dimm_size(struct i5000_pvt *pvt)
957{
958 struct i5000_dimm_info *dinfo;
959 int csrow, max_csrows;
960 char *p, *mem_buffer;
961 int space, n;
962 int channel;
963
964 /* ================= Generate some debug output ================= */
965 space = PAGE_SIZE;
966 mem_buffer = p = kmalloc(space, GFP_KERNEL);
967 if (p == NULL) {
968 i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
969 __FILE__, __func__);
970 return;
971 }
972
973 n = snprintf(p, space, "\n");
974 p += n;
975 space -= n;
976
977 /* Scan all the actual CSROWS (which is # of DIMMS * 2)
978 * and calculate the information for each DIMM
979 * Start with the highest csrow first, to display it first
980 * and work toward the 0th csrow
981 */
982 max_csrows = pvt->maxdimmperch * 2;
983 for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
984
985 /* on an odd csrow, first output a 'boundary' marker,
986 * then reset the message buffer */
987 if (csrow & 0x1) {
988 n = snprintf(p, space, "---------------------------"
989 "--------------------------------");
990 p += n;
991 space -= n;
992 debugf2("%s\n", mem_buffer);
993 p = mem_buffer;
994 space = PAGE_SIZE;
995 }
996 n = snprintf(p, space, "csrow %2d ", csrow);
997 p += n;
998 space -= n;
999
1000 for (channel = 0; channel < pvt->maxch; channel++) {
1001 dinfo = &pvt->dimm_info[csrow][channel];
1002 handle_channel(pvt, csrow, channel, dinfo);
1003 n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
1004 p += n;
1005 space -= n;
1006 }
1007 n = snprintf(p, space, "\n");
1008 p += n;
1009 space -= n;
1010 }
1011
1012 /* Output the last bottom 'boundary' marker */
1013 n = snprintf(p, space, "---------------------------"
1014 "--------------------------------\n");
1015 p += n;
1016 space -= n;
1017
1018 /* now output the 'channel' labels */
1019 n = snprintf(p, space, " ");
1020 p += n;
1021 space -= n;
1022 for (channel = 0; channel < pvt->maxch; channel++) {
1023 n = snprintf(p, space, "channel %d | ", channel);
1024 p += n;
1025 space -= n;
1026 }
1027 n = snprintf(p, space, "\n");
1028 p += n;
1029 space -= n;
1030
1031 /* output the last message and free buffer */
1032 debugf2("%s\n", mem_buffer);
1033 kfree(mem_buffer);
1034}
1035
1036/******************************************************************************
1037 * i5000_get_mc_regs read in the necessary registers and
1038 * cache locally
1039 *
1040 * Fills in the private data members
1041 */
1042static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1043{
1044 struct i5000_pvt *pvt;
1045 u32 actual_tolm;
1046 u16 limit;
1047 int slot_row;
1048 int maxch;
1049 int maxdimmperch;
1050 int way0, way1;
1051
1052 pvt = (struct i5000_pvt *)mci->pvt_info;
1053
1054 pci_read_config_dword(pvt->system_address, AMBASE,
1055 (u32 *) & pvt->ambase);
1056 pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1057 ((u32 *) & pvt->ambase) + sizeof(u32));
1058
1059 maxdimmperch = pvt->maxdimmperch;
1060 maxch = pvt->maxch;
1061
1062 debugf2("AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1063 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1064
1065 /* Get the Branch Map regs */
1066 pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1067 pvt->tolm >>= 12;
1068 debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1069 pvt->tolm);
1070
1071 actual_tolm = pvt->tolm << 28;
1072 debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);
1073
1074 pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1075 pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1076 pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1077
1078 /* Get the MIR[0-2] regs */
1079 limit = (pvt->mir0 >> 4) & 0x0FFF;
1080 way0 = pvt->mir0 & 0x1;
1081 way1 = pvt->mir0 & 0x2;
1082 debugf2("MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
1083 limit = (pvt->mir1 >> 4) & 0x0FFF;
1084 way0 = pvt->mir1 & 0x1;
1085 way1 = pvt->mir1 & 0x2;
1086 debugf2("MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
1087 limit = (pvt->mir2 >> 4) & 0x0FFF;
1088 way0 = pvt->mir2 & 0x1;
1089 way1 = pvt->mir2 & 0x2;
1090 debugf2("MIR2: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
1091
1092 /* Get the MTR[0-3] regs */
1093 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1094 int where = MTR0 + (slot_row * sizeof(u32));
1095
1096 pci_read_config_word(pvt->branch_0, where,
1097 &pvt->b0_mtr[slot_row]);
1098
1099 debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1100 pvt->b0_mtr[slot_row]);
1101
1102 if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1103 pci_read_config_word(pvt->branch_1, where,
1104 &pvt->b1_mtr[slot_row]);
1105 debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
1106 where, pvt->b0_mtr[slot_row]);
1107 } else {
1108 pvt->b1_mtr[slot_row] = 0;
1109 }
1110 }
1111
1112 /* Read and dump branch 0's MTRs */
1113 debugf2("\nMemory Technology Registers:\n");
1114 debugf2(" Branch 0:\n");
1115 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1116 decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1117 }
1118 pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1119 &pvt->b0_ambpresent0);
1120 debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1121 pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1122 &pvt->b0_ambpresent1);
1123 debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1124
1125 /* Only if we have 2 branchs (4 channels) */
1126 if (pvt->maxch < CHANNELS_PER_BRANCH) {
1127 pvt->b1_ambpresent0 = 0;
1128 pvt->b1_ambpresent1 = 0;
1129 } else {
1130 /* Read and dump branch 1's MTRs */
1131 debugf2(" Branch 1:\n");
1132 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1133 decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1134 }
1135 pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1136 &pvt->b1_ambpresent0);
1137 debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1138 pvt->b1_ambpresent0);
1139 pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1140 &pvt->b1_ambpresent1);
1141 debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1142 pvt->b1_ambpresent1);
1143 }
1144
1145 /* Go and determine the size of each DIMM and place in an
1146 * orderly matrix */
1147 calculate_dimm_size(pvt);
1148}
1149
1150/******************************************************************************
1151 * i5000_init_csrows Initialize the 'csrows' table within
1152 * the mci control structure with the
1153 * addressing of memory.
1154 *
1155 * return:
1156 * 0 success
1157 * 1 no actual memory found on this MC
1158 */
1159static int i5000_init_csrows(struct mem_ctl_info *mci)
1160{
1161 struct i5000_pvt *pvt;
1162 struct csrow_info *p_csrow;
1163 int empty, channel_count;
1164 int max_csrows;
1165 int mtr;
1166 int csrow_megs;
1167 int channel;
1168 int csrow;
1169
1170 pvt = (struct i5000_pvt *)mci->pvt_info;
1171
1172 channel_count = pvt->maxch;
1173 max_csrows = pvt->maxdimmperch * 2;
1174
1175 empty = 1; /* Assume NO memory */
1176
1177 for (csrow = 0; csrow < max_csrows; csrow++) {
1178 p_csrow = &mci->csrows[csrow];
1179
1180 p_csrow->csrow_idx = csrow;
1181
1182 /* use branch 0 for the basis */
1183 mtr = pvt->b0_mtr[csrow >> 1];
1184
1185 /* if no DIMMS on this row, continue */
1186 if (!MTR_DIMMS_PRESENT(mtr))
1187 continue;
1188
1189 /* FAKE OUT VALUES, FIXME */
1190 p_csrow->first_page = 0 + csrow * 20;
1191 p_csrow->last_page = 9 + csrow * 20;
1192 p_csrow->page_mask = 0xFFF;
1193
1194 p_csrow->grain = 8;
1195
1196 csrow_megs = 0;
1197 for (channel = 0; channel < pvt->maxch; channel++) {
1198 csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1199 }
1200
1201 p_csrow->nr_pages = csrow_megs << 8;
1202
1203 /* Assume DDR2 for now */
1204 p_csrow->mtype = MEM_FB_DDR2;
1205
1206 /* ask what device type on this row */
1207 if (MTR_DRAM_WIDTH(mtr))
1208 p_csrow->dtype = DEV_X8;
1209 else
1210 p_csrow->dtype = DEV_X4;
1211
1212 p_csrow->edac_mode = EDAC_S8ECD8ED;
1213
1214 empty = 0;
1215 }
1216
1217 return empty;
1218}
1219
1220/******************************************************************************
1221 * i5000_enable_error_reporting
1222 * Turn on the memory reporting features of the hardware
1223 */
1224static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1225{
1226 struct i5000_pvt *pvt;
1227 u32 fbd_error_mask;
1228
1229 pvt = (struct i5000_pvt *)mci->pvt_info;
1230
1231 /* Read the FBD Error Mask Register */
1232 pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1233 &fbd_error_mask);
1234
1235 /* Enable with a '0' */
1236 fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1237
1238 pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1239 fbd_error_mask);
1240}
1241
1242/******************************************************************************
1243 * i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
1244 *
1245 * ask the device how many channels are present and how many CSROWS
1246 * as well
1247 */
1248static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1249 int *num_dimms_per_channel,
1250 int *num_channels)
1251{
1252 u8 value;
1253
1254 /* Need to retrieve just how many channels and dimms per channel are
1255 * supported on this memory controller
1256 */
1257 pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1258 *num_dimms_per_channel = (int)value *2;
1259
1260 pci_read_config_byte(pdev, MAXCH, &value);
1261 *num_channels = (int)value;
1262}
1263
1264/******************************************************************************
1265 * i5000_probe1 Probe for ONE instance of device to see if it is
1266 * present.
1267 * return:
1268 * 0 for FOUND a device
1269 * < 0 for error code
1270 */
1271static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1272{
1273 struct mem_ctl_info *mci;
1274 struct i5000_pvt *pvt;
1275 int num_channels;
1276 int num_dimms_per_channel;
1277 int num_csrows;
1278
1279 debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1280 __func__,
1281 pdev->bus->number,
1282 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1283
1284 /* We only are looking for func 0 of the set */
1285 if (PCI_FUNC(pdev->devfn) != 0)
1286 return -ENODEV;
1287
1288 /* Ask the devices for the number of CSROWS and CHANNELS so
1289 * that we can calculate the memory resources, etc
1290 *
1291 * The Chipset will report what it can handle which will be greater
1292 * or equal to what the motherboard manufacturer will implement.
1293 *
1294 * As we don't have a motherboard identification routine to determine
1295 * actual number of slots/dimms per channel, we thus utilize the
1296 * resource as specified by the chipset. Thus, we might have
1297 * have more DIMMs per channel than actually on the mobo, but this
1298 * allows the driver to support upto the chipset max, without
1299 * some fancy mobo determination.
1300 */
1301 i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1302 &num_channels);
1303 num_csrows = num_dimms_per_channel * 2;
1304
1305 debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
1306 __func__, num_channels, num_dimms_per_channel, num_csrows);
1307
1308 /* allocate a new MC control structure */
1309 mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels);
1310
1311 if (mci == NULL)
1312 return -ENOMEM;
1313
1314 debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1315
1316 mci->dev = &pdev->dev; /* record ptr to the generic device */
1317
1318 pvt = (struct i5000_pvt *)mci->pvt_info;
1319 pvt->system_address = pdev; /* Record this device in our private */
1320 pvt->maxch = num_channels;
1321 pvt->maxdimmperch = num_dimms_per_channel;
1322
1323 /* 'get' the pci devices we want to reserve for our use */
1324 if (i5000_get_devices(mci, dev_idx))
1325 goto fail0;
1326
1327 /* Time to get serious */
1328 i5000_get_mc_regs(mci); /* retrieve the hardware registers */
1329
1330 mci->mc_idx = 0;
1331 mci->mtype_cap = MEM_FLAG_FB_DDR2;
1332 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1333 mci->edac_cap = EDAC_FLAG_NONE;
1334 mci->mod_name = "i5000_edac.c";
1335 mci->mod_ver = I5000_REVISION;
1336 mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1337 mci->ctl_page_to_phys = NULL;
1338
1339 /* Set the function pointer to an actual operation function */
1340 mci->edac_check = i5000_check_error;
1341
1342 /* initialize the MC control structure 'csrows' table
1343 * with the mapping and control information */
1344 if (i5000_init_csrows(mci)) {
1345 debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1346 " because i5000_init_csrows() returned nonzero "
1347 "value\n");
1348 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1349 } else {
1350 debugf1("MC: Enable error reporting now\n");
1351 i5000_enable_error_reporting(mci);
1352 }
1353
1354 /* add this new MC control structure to EDAC's list of MCs */
1355 if (edac_mc_add_mc(mci, pvt->node_id)) {
1356 debugf0("MC: " __FILE__
1357 ": %s(): failed edac_mc_add_mc()\n", __func__);
1358 /* FIXME: perhaps some code should go here that disables error
1359 * reporting if we just enabled it
1360 */
1361 goto fail1;
1362 }
1363
1364 i5000_clear_error(mci);
1365
1366 return 0;
1367
1368 /* Error exit unwinding stack */
1369 fail1:
1370
1371 i5000_put_devices(mci);
1372
1373 fail0:
1374 edac_mc_free(mci);
1375 return -ENODEV;
1376}
1377
1378/******************************************************************************
1379 * i5000_init_one constructor for one instance of device
1380 *
1381 * returns:
1382 * negative on error
1383 * count (>= 0)
1384 */
1385static int __devinit i5000_init_one(struct pci_dev *pdev,
1386 const struct pci_device_id *id)
1387{
1388 int rc;
1389
1390 debugf0("MC: " __FILE__ ": %s()\n", __func__);
1391
1392 /* wake up device */
1393 rc = pci_enable_device(pdev);
1394 if (rc == -EIO)
1395 return rc;
1396
1397 /* now probe and enable the device */
1398 return i5000_probe1(pdev, id->driver_data);
1399}
1400
1401/**************************************************************************
1402 * i5000_remove_one destructor for one instance of device
1403 *
1404 */
1405static void __devexit i5000_remove_one(struct pci_dev *pdev)
1406{
1407 struct mem_ctl_info *mci;
1408
1409 debugf0(__FILE__ ": %s()\n", __func__);
1410
1411 if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1412 return;
1413
1414 /* retrieve references to resources, and free those resources */
1415 i5000_put_devices(mci);
1416
1417 edac_mc_free(mci);
1418}
1419
1420/**************************************************************************
1421 * pci_device_id table for which devices we are looking for
1422 *
1423 * The "E500P" device is the first device supported.
1424 */
1425static const struct pci_device_id i5000_pci_tbl[] __devinitdata = {
1426 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1427 .driver_data = I5000P},
1428
1429 {0,} /* 0 terminated list. */
1430};
1431
1432MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1433
1434/**************************************************************************
1435 * i5000_driver pci_driver structure for this module
1436 *
1437 */
1438static struct pci_driver i5000_driver = {
1439 .name = __stringify(KBUILD_BASENAME),
1440 .probe = i5000_init_one,
1441 .remove = __devexit_p(i5000_remove_one),
1442 .id_table = i5000_pci_tbl,
1443};
1444
1445/**************************************************************************
1446 * i5000_init Module entry function
1447 * Try to initialize this module for its devices
1448 */
1449static int __init i5000_init(void)
1450{
1451 int pci_rc;
1452
1453 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1454
1455 pci_rc = pci_register_driver(&i5000_driver);
1456
1457 return (pci_rc < 0) ? pci_rc : 0;
1458}
1459
1460/**************************************************************************
1461 * i5000_exit() Module exit function
1462 * Unregister the driver
1463 */
1464static void __exit i5000_exit(void)
1465{
1466 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1467 pci_unregister_driver(&i5000_driver);
1468}
1469
1470module_init(i5000_init);
1471module_exit(i5000_exit);
1472
1473MODULE_LICENSE("GPL");
1474MODULE_AUTHOR
1475 ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1476MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1477 I5000_REVISION);